
PHYSICAL REVIEW C 98, 044317 (2018)

Editors’ Suggestion

Symmetry conserving configuration mixing description of odd mass nuclei

M. Borrajo and J. Luis Egido*

Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049, Madrid, Spain

(Received 31 May 2018; revised manuscript received 2 August 2018; published 19 October 2018)

We present a self-consistent theory for the description of the spectroscopic properties of odd nuclei, which

includes exact blocking, particle-number and angular-momentum projection, and configuration mixing. In our

theory the pairing correlations are treated in a variation-after-projection approach and the triaxial deformation

parameters are explicitly considered as generator coordinates. The angular-momentum and particle-number

symmetries are exactly recovered. The use of the effective finite-range density-dependent Gogny force in the

calculations provides an added value to the theoretical results. We apply the theory to the textbook example of
25Mg and, although this nucleus has been thoroughly studied in the past, we still provide a novel view of nuclear

phenomena taking place in this nucleus. We obtain an overall good agreement with the known experimental

energies and transition probabilities without any additional parameter such as effective charges. In particular, we

clearly identify six bands, two of which we interpret as collective γ bands.
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I. INTRODUCTION

The theoretical developments that have taken place in

the last years with effective forces in beyond-mean-field ap-

proaches (BMFAs) have allowed us to extend the traditional

domain of these forces to the full nuclear spectroscopy. The

calculations have been performed with the Skyrme [1], the

relativistic [2] and the Gogny [3] interactions.

The breakthrough has been possible by the recovery of the

symmetries broken in the mean-field approach (MFA) and

by the explicit consideration of large-amplitude fluctuations

around the most probable mean-field values. The shape

parameters (β, γ ) [4–6] (and pairing gaps [7–9]) have been

used as coordinates in the framework of the generator-

coordinate method (GCM) and the particle-number (PN) and

angular-momentum (AM) symmetries recovered by means of

projectors. The most sophisticated level has been reached

by considering the cranking frequency as an additional

generator coordinate [3,10,11], which considerably improves

the results and allows the study of new phenomena. These

developments are called symmetry-conserving configuration

mixing (SCCM) approaches and so far have only been

applied to even-even nuclei. Methods based on the Bohr

collective Hamiltonian have also made significant progress

lately [12–14].

Calculations for odd-even and odd-odd nuclei are not as

much developed as those for even-even ones. The reason is

that odd nuclei are far more complicated to deal with. Already

at the mean field, in the BCS approach or in Hartree-Fock-

Bogoliubov (HFB) theories, they are numerically awkward

and one must consider several channels (spins, parity, etc.) to

find the ground state. An additional difficulty is the breaking

of the time-reversal symmetry by the blocked structure of
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the wave function and the fact that triaxial calculations must

be performed. In spite of these difficulties it seems natural

to extend the above-mentioned approaches to odd-even and

odd-odd nuclei. As a matter of fact angular-momentum pro-

jected calculations for odd-A nuclei started long ago, though

they have been mostly performed on HF or HFB states in

small valence spaces [15–19]. More recently, a GCM mixing

based on parity and AM-projected Slater determinants in a

model space of antisymmetrized Gaussian wave packets has

been carried out in the frameworks of fermionic [20] and

antisymmetrized [21,22] molecular dynamics. In the latter

calculations, however, the pairing correlations are not treated

properly. A preliminary BMFA study of odd-even nuclei with

the Skyrme force has been presented in Ref. [23]. Our first

BMFA applications to odd-nuclei with the Gogny force did

not consider configuration mixing. Thus, in Ref. [24] the

nucleus 31Mg at the border of the N = 20 inversion island

was studied, with relevant contributions to the understanding

of the shape coexistence phenomenon in excited states. More

recently, an exhaustive study of the ground-state properties in

the magnesium isotopic chain with the Gogny force has been

performed in Ref. [25]. Excellent agreement has been ob-

tained for binding energies, one-neutron separation energies,

odd-even mass differences, radii, quadrupole and magnetic

moments, etc.

In this work we generalize the full SCCM approach with

the Gogny interaction to the description of spectroscopic

properties of odd-even nuclei. Specifically, we consider linear

combinations of PN and AM projected, exactly blocked,

triaxial HFB wave functions generated in the (β, γ ) plane. As

an application we have chosen the nucleus 25Mg, which has

widely been studied theoretically and experimentally in the

past. The reason for this choice is that this nucleus presents

collective as well as single-particle degrees of freedom. Fur-

thermore, the knowledge of many experimental properties will

allow us to make a thorough check of our theory.
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In Sec. II we outline the theoretical methods used in the

calculations. In Sec. III we present the single-particle aspects

and the potential energy surfaces. In Sec. IV, the SCCM

results are discussed with special emphasis on the different

bands and transition probabilities. We finish this paper with a

summary and the corresponding conclusions.

II. THEORY

As mentioned in Sec. I, our SCCM wave functions are

written as a linear combination of PN and AM projected

blocked HFB wave functions generated with the quadrupole

moments as coordinates. In this section, in a first step we

explain how the HFB wave functions are generated and in the

following we describe the way in which the SCCM equations

are solved.

A. Blocked equations

The cornerstone of the BMFA is the HFB theory [26].

The HFB wave function |φ〉 is a product of quasiparticles αρ

defined by the transformation

α†
ρ =

2M
∑

µ=1

Uµρc
†
µ + Vµρcµ, (1)

where c†µ, cµ are the particle-creation and -annihilation opera-

tors in the reference basis, in our case the harmonic oscillator

one. The matrices U and V are determined by the variational

principle.

As usual we impose three discrete self-consistent symme-

tries on our basis states {c†µ, cµ}: spatial parity, P̂ , simplex,

�1 = P̂ e−iπJx and the �2T symmetry, with �2 = P̂ e−iπJy

and T the time-reversal operator. The first two symmetries

provide good parity and simplex quantum numbers and the

third allows to use only real quantities. The simplex symmetry

furthermore characterizes the blocking structure of odd and

even nuclei [25,27,28]. The single-particle basis states are

symmetrized in such a way that

�1c
†
k�

†
1 = +ic

†
k, �1c

†

k
�

†
1 = −ic

†

k
(2)

with k = 1, ...,M and 2M the dimension of the configuration

space. We use latin indices to distinguish the levels according

to their simplex, {k, l,m} for simplex +i and {k, l,m} for sim-

plex −i. Greek indices on the other hand do not distinguish

simplex and run over the full configuration space. Notice

furthermore that with our single-particle symmetrization the

states c
†
k and c

†

k
are related by time-reversal symmetry, i.e.,

T c
†
kT

† = c
†

k
.

If we impose the intrinsic wave function |φ〉 to be an

eigenstate of the simplex operator, then, for a paired even-even

nucleus, half of the quasiparticle operators α†
µ have simplex

+i and the other half have simplex −i, i.e., Eq. (1) separates

in two blocks:

α†
m =

M
∑

k=1

U+
kmc

†
k + V +

kmc
k
, α

†
m =

M
∑

k=1

U−
kmc

†

k
+ V −

kmck (3)

with m = 1, ...,M in an obvious notation.

The wave function of the ground state of an even-even

nucleus is given by

|φ〉 =
2M
∏

µ=1

αµ|−〉, (4)

with |−〉 the bare vacuum.1 The quasiparticle vacuum |φ〉 is

obviously defined by

αµ|φ〉 = 0, µ = 1, ..., 2M. (5)

Since in Eq. (4) there are as many quasiparticle operators

with simplex +i as with −i, the ground state of an even-even

nucleus has simplex +1. The quasiparticle excitations

|φ̃π 〉 = α†
ρ1

|φ〉 (6)

correspond to odd-even nuclei. They can be written as vacuum

to the quasiparticle operators α̃ρ ,

α̃ρ |φ̃π 〉 = 0, ρ = 1, ..., 2M. (7)

The 2M operators

α̃†
ρ =

∑

µ

Ũµρc
†
µ + Ṽµρcµ, (8)

are obtained from the set {α†
µ} by replacing the creation op-

erator α†
ρ1

by the annihilation operator αρ1
, the other 2M − 1

operators remain unchanged. The simplex of the state |φ̃π 〉 is

given by

�1|φ̃π 〉 = in|φ̃π 〉, (9)

where we have introduced the blocking number n. It is n =
1 if α†

ρ1
has simplex +i and n = −1 if α†

ρ1
has simplex

−i. The symbol π indicates the parity of the state |φ̃π 〉.
Notice that in the running product of Eq. (4), orbitals with

the same parity are occupied pairwise. Therefore, the parity

π of the state |φ̃π 〉 is given by the parity of the blocked

level α†
ρ1

. In this work we are interested in 25Mg. Since the

magnesium isotopes have Z = 12, we restrict ourselves to

the neutron channels. We therefore consider wave functions

of the form of Eq. (6), where ρ1 denotes a neutron state.

According to the parity we have two blocking channels:

neutrons of positive or negative parity. Once the isospin and

the parity are chosen one must furthermore decide the simplex

of the state to block, i.e., +i or −i. However, if the HFB

Hamiltonian is time-reversal invariant, the matrices {Ũ , Ṽ }
of the Bogoliubov transformation obtained either from the

solution of the HFB equations or from Eq. (10) are such that

T α
†
kT

† = α
†

k
. In this case the HFB states α

†
k|φ〉 and α

†

k
|φ〉

obtained by blocking a positive and a negative simplex state,

respectively, see Eq. (6), are related by the time-reversal

symmetry, α
†

k
|φ〉 = T α

†
k|φ〉, and are degenerated (Kramers

degeneracy). Since this is our case, see Eq. (10) below, we

1In the product only quasiparticle operators that do not annihilate

trivially the bare vacuum are allowed.
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only need to block a quasiparticle with a given simplex.2

Notice that in the case of the cranking Hamiltonian, Ĥ ′ =
Ĥ − ωĴx , the former statement is not correct.

Though the state |φ̃π 〉 has the right blocking structure, |φ̃π 〉
is not an eigenstate of the PN or the AM operators since

the Bogoliubov transformation mixes creator and annihilator

operators and states with different angular momenta. As for

even-even nuclei, to recover the particle-number symmetry

one has to project to the right quantum numbers, see Ref. [26].

The easiest way to recover the symmetries would be to mini-

mize the HFB energy, i.e., determine (Ũ , Ṽ ) and then perform

the projections. This is the so-called projection-after-variation

(PAV) approach. The optimal way is to determine (Ũ , Ṽ )

directly from the minimisation of the projected energy, i.e.,

the variation-after-projection (VAP) method. From even-even

nuclei one knows that PN-VAP is feasible while AM-VAP is

very CPU time consuming. The approach of solving the PN-

VAP variational equation to find the self-consistent minimum

and afterwards to perform an AM-PAV is not very good

because the AMP is not able to exploit any degree of freedom

of the HFB transformation and self-consistency with respect

to the AMP is therefore not guaranteed.

An interesting option is to perform an approximate AM-

VAP approach as it has been used in the projected mean-field

theory of Refs. [24,25]. In this approach the variational PN-

VAP equation is solved for a large set of relevant physical

situations (wave functions) as to cover the sensitive degrees

of freedom to the AM projection. Afterwards for each angular

momentum one calculates the AM-PAV energy with this set

of wave functions to determine the absolute minimum among

these states. This procedure provides different HFB wave

functions for unlike AM. In Refs. [24,25] the deformation

parameters (β, γ ) were considered as the additional degrees

of freedom since they are believed to provide the strongest

energy dependence of the nuclear interaction with the AM.

This method guarantees, at least, AM-VAP self-consistency

with respect to these relevant quantities. Notice that we obtain

approximate AM-VAP solutions for the projected mean-field

theory at the cost of performing AM-PAV in the (β, γ ) grid

for each angular momentum, see Figs. 2 and 3 below. Though

in this work we are not performing genuine projected mean-

field calculations we will see in the next section that this

feature has consequences for the SCCM calculations of this

work.

As mentioned above the SCCM aims to describe vibra-

tions associated to the shape parameters and toward this end

a superposition of wave functions with different (β, γ ) is

considered, see Eq. (13) below. In order to generate the wave

functions we solve the PN-VAP constrained equations on a

grid of (β, γ ) points:

E′[φ̃π ] = 〈φ̃π |Ĥ P̂ N |φ̃π 〉
〈φ̃π |P̂ N |φ̃π 〉 − 〈φ̃π |λq0

Q̂20 + λq2
Q̂22|φ̃π 〉,

(10)

2This argument is correct for a general Hamiltonian. For a density-

dependent interaction it works also but the demonstration is a bit

more elaborate.

with the Lagrange multiplier λq0
and λq2

being determined by

the constraints

〈φ̃π |Q̂20|φ̃π 〉 = q0, 〈φ̃π |Q̂22|φ̃π 〉 = q2. (11)

The relation between (β, γ ) and (q0, q2) is given by β =
√

20π (q2
0 + 2q2

2 )/3r2
0 A5/3, γ = arctan(

√
2q2/q0) with r0 =

1.2 fm and A the mass number. The solution of Eqs. (10),

(11) for a large number of (β, γ ) points determines the set of

states φ̃π (β, γ ) needed for the calculations.

The minimization of Eqs. (10)–(11) is performed with the

conjugated-gradient method [29]. The blocking structure of

the wave function of Eq. (6) is a self-consistent symmetry

and for a given blocking number we determine the lowest

solution in the blocked channel compatible with the imposed

constraints. Therefore, independently of which quasiparticle

state of the given isospin-parity-simplex channel was initially

blocked, at the end of the iteration process we always obtain

the same solution.

B. SCCM method

The next step is the simultaneous particle-number and

angular-momentum projection (PNAMP) of each state

|φ̃π (β, γ )〉 that conforms the (β, γ ) grid. The resulting states

are given by

|IMK,π,N, (β, γ )〉 = P NP I
MK |φ̃π (β, γ )〉. (12)

The final SCCM solution we are looking for is given by

∣

∣�
N,I,π
M,σ

〉

=
∑

K,β,γ

f I
Kσ (β, γ )|IMK,π,N, (β, γ )〉, (13)

where σ labels the states with the same quantum numbers

and different energies and the coefficients f I
Kσ (β, γ ) are vari-

ational parameters. They are determined by the energy min-

imization, which provides the Hill-Wheeler-Griffin (HWG)

[30] equation
∑

K ′β ′γ ′

(

HN,I,π
βγK,β ′γ ′K ′ − EN,I,π

σ NN,I,π
βγK,β ′γ ′K ′

)

f I
K ′σ (β ′, γ ′) = 0,

(14)

where HN,I,π
βγK,β ′γ ′K ′ and NN,I,π

βγK,β ′γ ′K ′ are the Hamiltonian and

norm overlaps defined by

HN,I,π
βγK,β ′γ ′K ′ = 〈IMK,π,N, (β, γ )|H |IMK ′, π,N, (β ′, γ ′)〉

NN,I,π
βγK,β ′γ ′K ′ = 〈IMK,π,N, (β, γ )|IMK ′, π,N, (β ′, γ ′)〉.

(15)

The presence of the norm matrix in Eq. (14) is due to the

nonorthogonality of the states |IMK,π,N, (β, γ )〉.
We have seen in the precedent subsection that considering

the (β, γ ) degrees of freedom within the framework of the

projected mean-field approach, i.e., statically, was equivalent

to an approximate AM-VAP at the mean-field level. In the

SCCM approach, Eq. (13), one performs AM-VAP with re-

spect to the mixing amplitudes, i.e., statical and dynamical

correlations are considered. It seems, therefore, that the AM

projection is to a very good approximation a full AM-VAP

[with respect to the (β, γ ) degrees of freedom] at all levels of
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the calculations. Notice that the particle number projection is

VAP at all levels of the calculations.

To solve the HWG equations one first introduces an or-

thonormal basis defined by the eigenvalues, nI
κ , and eigenvec-

tors, uIK
κ (β, γ ), of the norm overlap:

∑

β ′γ ′K ′
NNIπ

βγK,β ′γ ′K ′u
IK ′
κ (β ′γ ′) = nI

κu
IK
κ (β, γ ). (16)

This orthonormal basis is known as the natural basis and, for

nI
κ values such that nI

κ/nI
max > ζ , the natural states are defined

by:

|κI 〉 =
∑

βγK

uIK
κ (β, γ )√

nκI
|IMK,N, (β, γ )〉. (17)

Obviously, a cutoff ζ has to be introduced in the value of

the norm eigenvalues to avoid linear dependences [31]. Then,

the HWG equation is transformed into a normal eigenvalue

problem:
∑

κ ′
〈κI |Ĥ |κ ′I 〉gσI

κ ′ = EσIgσI
κ . (18)

In the natural basis the wave function of Eq. (13) is given

by
∣

∣�
N,I,π
M,σ

〉

=
∑

κ

gσI
κ |κI 〉. (19)

From the coefficients gσI
κ we can define the quantities

pσI
K (β, γ ) =

∑

κ

gσI
κ uIK

κ (β, γ ) (20)

that satisfy
∑

βγK

∣

∣pσI
K (β, γ )

∣

∣

2 = 1, ∀σ, (21)

and are equivalent to a probability amplitude. In terms of these

quantities we can define the collective wave function

PσI (β, γ ) =
∑

K

∣

∣pσI
K (β, γ )

∣

∣

2
, (22)

which gives the probability of finding the fixed deformation

parameters (β, γ ) for a given I in the (β, γ ) plane. The

collective wave function allows us to calculate the average

values of different observables. The probability distribution

of finding the projection K in the collective wave function is

obtained by summing over all possible deformations:

PσI
K =

∑

β,γ

∣

∣pσI
K (β, γ )

∣

∣

2
. (23)

The electromagnetic transition probabilities and the spec-

troscopic multipole moments for odd-A nuclei are calculated

with the same expression as used for the even-even ones, see

Refs. [3,5].

III. RESULTS: SINGLE-PARTICLE ENERGIES AND

POTENTIAL ENERGY SURFACES

As an application of our theory we chose the nucleus 25Mg,

which has been widely studied both experimentally [32–35]

and theoretically [23,36] and used as prime example in several

textbooks [37,38].

In the calculations the intrinsic many-body wave functions

|φ̃π (β, γ )〉 are expanded in a Cartesian harmonic oscillator

basis and the number of spherical shells included in this

basis is Nshells = 8 with an oscillator length of b = 1.01A1/6.

The (β, γ ) grid spans the sextant 0◦ � γ � 60◦ in the range

β � 1.1 (β � 1.5) and contains 190 (216) points for positive

(negative) parity.

The angular-momentum projection has been done with

the set of integration points in the Euler angles (Nα =
Nβ = Nγ = 32) in the intervals α ∈ [0, 2π ],β ∈ [0, π ], γ ∈
[0, 2π ]. The number of points to perform the integral of

the particle-number projection is 11. In the calculations we

use the Gogny interaction [39] with the D1S parametrization

[40]. We consider all exchange terms of the interaction, the

Coulomb force and the two-body correction of the kinetic

energy to avoid problems with the PNP [41,42]. Concerning

the density dependence of the force we adopt the projected

density prescription for the PNP and the mixed one for the

AMP. For further details see, for example, Refs. [3,5].

A. Single-particle levels

The neutron single-particle energy (spe) levels around the

Fermi level play a relevant role in the determination of the

blocked structure of the wave function, Eq. (6), of an odd

nucleus. Since the blocking breaks the axial symmetry, in

order to produce an ordinary Nilsson plot we have solved the

axially symmetric HFB equations without blocking but with

the constraint on the number of neutrons 〈N̂〉 = 13. These

energy levels are given by the solution of the HFB equation

for different β values and are shown in Fig. 1 for neutrons.

The proton single-particle energies for this light nucleus look

similar to the neutron ones. This plot allows us to guess the

quantum number of the lowest blocked state as a function of

the deformation. According to this plot and for positive parity

states the candidates to host the odd neutron for prolate shapes

are the [202 5/2] orbital for β � 0.52 and the [211 1/2] for

larger β values. For oblate shapes the lowest orbitals for the

blocked neutron correspond to the level [220 1/2] for small

deformations and the [211 3/2] for larger ones.

In the negative parity channel there are two ways to pro-

duce excited states of negative parity: making a hole in the

[101 1/2] orbital (1p1/2 subshell) or promoting a particle

to the [303 1/2] orbital for prolate ([303 7/2] for oblate)

shapes (1f7/2 subshell). The [101 1/2] orbital gets close to

the Fermi level at β ≈ −0.7 and the orbital [303 7/2] crosses

the Fermi level at very large deformations, β ≈ −0.9. The

Nilsson scheme is thought for orientation purposes and the

quoted β values are only approximate since, as mentioned

above, the blocking effect has not been taken into account in

this plot and our results are based on exact blocking and on

the PNVAP approach of Eq. (10).

B. Potential energy surfaces

One can obtain a great deal of information having a glance

at the calculations at different stages of our procedure. The
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first piece of information is provided by the solution of the

PNVAP equations, Eq. (10), which determine the intrinsic

wave functions φ̃π (β, γ ) for positive and negative parity.

The PNVAP equations have been solved in the (β, γ ) grid

mentioned above. The associated energies are given by

EN,π (β, γ ) = 〈φ̃π (β, γ )|Ĥ P̂ N |φ̃π (β, γ )〉
〈φ̃π (β, γ )|P̂ N |φ̃π (β, γ )〉 . (24)

For the positive parity case these energies are plotted in

Fig. 2(a) as a contour plot in the (β, γ ) plane. We observe

a well-defined axially symmetric nucleus (β ≈ 0.42), which

is rather soft in the γ degree of freedom. This softness is in

agreement with the down-sloping character of the 1d5/2 levels

seen in the oblate part of Fig. 1. The states that conform this

potential energy surface (PES) do have good parity and parti-

cle number but are not eigenstates of the angular momentum.

Starting with the wave function P̂ N |φ̃π (β, γ )〉 one can obtain

eigenvalues of 
I by

∣

∣�
N,I,π
M,σ (β, γ )

〉

=
∑

K

F I
KσP NP I

MK |φ̃π (β, γ )〉, (25)

with the variational coefficients F I
Kσ determined by the so-

lution of a reduced Hill-Wheeler-Griffin equation, obtained

from Eq. (14) just by omitting β and γ as running indices.

This equation must be solved at each point of the grid and for

each angular momentum, see Ref. [25] for further details. The

PN and AM projected PES is given by

EN,I,π
σ (β, γ ) =

〈

�
N,I,π
M,σ (β, γ )

∣

∣Ĥ
∣

∣�
N,I,π
M,σ (β, γ )

〉

〈

�
N,I,π
M,σ (β, γ )

∣

∣�
N,I,π
M,σ (β, γ )

〉 . (26)
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FIG. 1. Single-particle levels of 25Mg for neutrons in the HFB

approach. The thick dashed line represents the Fermi level. The Nils-

son quantum numbers [N, nz, ml,�] are indicated for the relevant

orbitals.
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FIG. 2. Contour plots of the potential energy surfaces as a func-

tion of (β, γ ) for positive parity. (a) stands for the PNVAP approach

(no angular momentum projection), see Eq. (24). (b)–(f) correspond

to the PNAMP approximation, see Eq. (26), for the angular momen-

tum I quoted in the insets. The solid black contour lines go from

1–10 MeV in steps of 1 MeV. The dashed white lines start at zero

and increase by 0.1 MeV. The zero-energy contour is only present if

the minimum is flat enough. The angle γ is given in degrees. In each

panel the energies are relative to the corresponding energy minimum.

For a given value of I the lowest energy corresponds to

σ = 1. The corresponding energies are plotted in Figs. 2(b)–

2(f). At this stage the absolute energy minimum corresponds

to I = 5/2+ and the relative energies of the other minima

are 0.637, 1.023, and 1.522 MeV for I = 1/2+, 3/2+, and

7/2+, respectively. In these plots we find that the angular-

momentum conservation shifts the minima to larger deforma-

tions. This is a well-known effect of the angular-momentum

projection observed long ago [43,44].

As a function of I we observe in Fig. 2 two different

regimes of the energy minima: for I � 5/2 h̄ we find smaller

deformations and larger triaxialities (β ≈ 0.51, γ ≈ 25◦)

than for I = 1/2 h̄ (β ≈ 0.55, γ ≈ 7.6◦) and 3/2 h̄ (β ≈
0.64, γ ≈ 6.6◦). We can get some insight into this comport-

ment looking at the F I
Kσ coefficients of Eq. (25) at the energy

minimum of each panel. For I � 5/2 h̄ we find that all these

states are K = 5/2 to a high degree of purity (at least 98%).

In contrast, for I = 1/2 h̄, 3/2 h̄ they are pure K = 1/2. The

fact that in the sd shells, and in particular in the magnesium

isotopes, K is practically a good quantum number even if

γ �= 0◦ has been observed in earlier publications [5,25]. This

seems to be a consequence of the low single-particle level

density in light nuclei, which prevents a larger K mixing.

Notice that in a low-level-density regime we are in the strong

coupling limit of the particle-plus-rotor model, where K = �

is a good quantum number. A glance at Fig. 1 reveals than for

β ≈ 0.52 a level crossing between the levels [202 5/2] and

[211 1/2] takes place. If K is a good quantum number an odd

neutron in the level [202 5/2] must have I � 5/2 h̄. After the

crossing the odd neutron sits in the orbital [211 1/2] and can

have any I value. These K = 1/2 states are higher in energy.

The smaller γ values of the K = 1/2 states are a consequence

of the fact that large deformations inhibit strong triaxialities.

044317-5



M. BORRAJO AND J. LUIS EGIDO PHYSICAL REVIEW C 98, 044317 (2018)

9

9

9

9
7

7

7

7

5

5

31 0

20

40
I=1/2-

0 0.3 0.6 0.9 1.2

0

0.3

0.6

0.9

1.2

9

9

9

7

7

531 0

20

40
I=3/2-

0 0.3 0.6 0.9 1.2

0

0.3

0.6

0.9

1.2

9

9

9
7

7

7

5

5

31 0

20

40
I=5/2-

0 0.3 0.6 0.9 1.2

0

0.3

0.6

0.9

1.2

9

9

9

7

7

531 0

20

40

PN-VAP(-)

0 0.3 0.6 0.9

0

0.3

0.6

0.9

9

9

7

7

531 0

20

40
I=7/2-

0 0.3 0.6 0.9 1.2

0

0.3

0.6

0.9

1.2

9

9

9

7

7

5

5

31 0

20

40
I=9/2-

0 0.3 0.6 0.9 1.2

0

0.3

0.6

0.9

1.2

60 6060(a) (b) (c)

60 60 60(d) (e) (f)

FIG. 3. The same as Fig. 2 but for negative parity.

In Fig. 3 we display the PES corresponding to the blocking

of a neutron orbital of negative parity. In Fig. 3(a) we show

the PNVAP results. The energy minimum is axially symmetric

and compared to its positive parity counterpart lies 4.237 MeV

higher in energy and has a larger deformation, β = 0.68. Both

results are to be expected if one considers the spe levels of

Fig. 1. In this channel there is a competition of hole and

particle states to host the odd neutron. These are the [101

1/2] orbital (1p1/2 subshell) and the [330 1/2] ([303 7/2]) in

the prolate (oblate) branch (1f7/2) subshell, respectively. The

dichotomy particle-hole allows a simple way to identify if a

particle or a hole is preferred in the variational process. The

intrinsic wave function |φ̃π 〉 of Eq. (6), solution of Eq. (10),

factorizes in the form |φ̃p+〉|φ̃p−〉|φ̃n+〉|φ̃n−〉. The expectation

values 〈φ̃n+ |N̂ |φ̃n+〉 and 〈φ̃n− |N̂ |φ̃n−〉 provide us the number

of neutrons with positive and negative parity. These quantities

are plotted in Figs. 4(a) and 4(b) respectively. In both panels

we observe two well differentiated regions. The one is a band

along the oblate axis including spherical shapes represented

by red (light gray) symbols in Fig. 4(a) and blue (dark gray)

symbols in Fig. 4(b). The other region corresponds to the rest

of the (β, γ ) plane. In the upper part the number of neutrons

with positive (negative) parity is 8 (5), i.e., the upper areas

correspond to configurations with a neutron hole in the [101

1/2] orbital. The lower parts with six (seven) neutrons with

positive (negative) parity correspond to configurations with a
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FIG. 4. The expectation value of the particle number operator

calculated with the intrinsic wave function of Eq. (6) for (a) positive-

parity and (b) negative-parity neutrons at each point of the (β, γ )

plane. See the text for details.

neutron particle in the [330 1/2] orbital. In the oblate area of

Fig. 4(b) we do not have states with seven particles. We there-

fore conclude that the orbital [303 7/2] is never populated in

the lowest configurations, i.e., it is more favorable to make a

hole in the [101 1/2] orbital. In the well prolate area, however,

it is easier to put a particle in the [330 1/2] orbital. Since the

blocking structure is not affected by the angular-momentum

projection, this picture provides a simple way to identify the

components of the different wave functions.

Resuming the discussion of Fig. 3 we find that the large β

deformation found in Fig. 3(a) inhibits considerably triaxial

softness. We nevertheless observe an opening of the contour

lines at β ≈ 0.5 on the oblate side. These shapes correspond

to configurations with a hole in the [101 1/2], see Figs. 1

and 4. The orbital [101 1/2] is preferred as compared to the

[303 7/2] because the former is up-sloping and gets closer

to the Fermi level with increasing deformation. In Figs. 3(b)–

3(d) we depict the angular-momentum PES of Eq. (26). As

compared with the PNVAP results here we observe, as in

the positive parity case, a shift to larger deformations and to

triaxial shapes. In this case, however, the shift towards triaxial

shapes is smaller owing to the fact that the β deformations are

larger than in the positive parity case. The energy minimum

remains in the same position, around β = 0.77, γ = 11◦ for

all I values. This location corresponds, see Fig. 4, to a particle

in the [330 1/2] orbital. The K composition of the minimum

wave function, i.e., the F I
Kσ coefficients of Eq. (25), indicates

that this assignment is correct since they have a very pure

K = 1/2, independently of their I value. From Figs. 3 and

4 we conclude that the oblate configurations corresponding to

holes in the [101 1/2] orbital (1p1/2 subshell) are very high

in energy. The relative energies of the minima referred to the

I = 5/2+ energy are 3.567 MeV for the I = 3/2− followed

by 4.228 MeV, 4.605 MeV, and 6.131 for I = 7/2−, 1/2−,

and 11/2− states, respectively.

We would like to remark that the plots of Figs. 2 and

3 correspond to the σ = 1 of the reduced HWG equation,

higher-lying (i.e., σ � 2) solutions may behave differently.

Notice also that in the solution of the general HWG equation

corresponding to the SCCM approach, Eq. (14), all σ states

are included.

IV. SYMMETRY CONSERVING CONFIGURATION

MIXING RESULTS

Once the basis states of the GCM wave function, Eq. (12),

are determined the next step is the solution of Eq. (14). The

mixing of the basis states includes the dynamical correlations

providing noncollective and collective states such as the β and

γ vibrations.

For the dynamical properties pairing correlations play a

crucial role. As a matter of fact it has been shown in Ref. [45]

that the PN-VAP treatment in the solution of Eq. (10) is

relevant to obtain the superfluid wave functions. In the HFB

plus PN projected approach, on the other hand, the pairing

collapse takes place in many points of the (β, γ ) grid. This

collapse happens in weak pairing situations, which is very

often encountered in odd-A nuclei due to the blocking effect.
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FIG. 5. The spectrum of 25Mg from theory (left) and experiment (right), Ref. [48].

The SCCM calculations are rather lengthy because the

configuration mixing implies the calculation of N (N + 1)/2

matrix overlaps, with N the number of grid points in the

(β, γ ) plane. To alleviate these calculations it is necessary to

restrict as much as possible the number of points. Taking into

account that the energies of the points forming the red color

areas of the PES’s of Figs. 2, 3 are energetically very high

with respect to the energy minimum, one can expect that they

will not mix very much with the lower-lying ones. Therefore

for the positive-parity case we restrict the calculations to 81

wave functions in the range 0 � β � 1.1, 0 � β sin γ � 0.45.

In the negative-parity calculations we extend the maximal β

value up to 1.4, which gives 95 grid points.

The solution of Eq. (14) provides the eigenvalues EN,I,π
σ

and eigenfunctions |�N,I,π
M,σ 〉. Properties such as transitions,

quadrupole moments, and so on, together with the collective

wave functions, Eq. (20), allow us to build up the excitation

spectrum as well as the interpretation of the different states.

We can clearly identify five bands of positive parity, namely

the ground band or 5/2+
1 band (which we will call band I),

the first excited 1/2+ or 1/2+
1 band (band II), the second

excited 1/2+ or 1/2+
2 band, (band III), the 9/2+ band (band

IV) and the 3/2+ band (band V). Additionally we identify

a negative-parity band (band VI), with a I = 3/2− state as

band head. These bands are displayed on the left-hand side

of Fig. 5 together with the corresponding experimental ones

(except band V) on the right-hand side.

Before discussing these results we would like to comment

on the weak and the strong points of our approach. We

have mentioned in Sec. II A that by considering the wave

functions of the (β, γ ) plane a good approximation to a

AM-VAP was reached with respect to these variables for

which the AM projected energy shows a strong dependence.

There is, however, a third variable, which also shows a strong

dependence, namely the alignment of pairs (or the cranking

frequency), which has not been considered. The lack of an

alignment dependence in the variational equations used to

determine the HFB wave function favors states with low

angular momentum I disfavoring thereby the higher ones

(the larger I the more). The result is a stretched spectrum

as compared with the experiment. Possible remedies to this

situation are the consideration of the angular frequency as an

additional generator coordinate as done in Refs. [10,11] or the

inclusion of additional one-quasiparticle states, Eq. (6) at each

(β, γ ) point of the grid in the SCCM ansatz of Eq. (13), see

Refs. [46,47]. Both procedures enable the inclusion of aligned

configurations at each (β, γ ) point. On the other hand, our col-

lective wave function, Eq. (13), allows the mixing of different

configurations, contrary to the Nilsson or particle-plus-rotor-

type calculations that necessarily assign a given orbital to each

band. As compared with shell-model calculations, our ansatz

allows us to identify very clearly collective bands such as β or

γ bands.

Looking at Fig. 5 we find an overall good qualitative

agreement between the two sets of bands. The similitude

between both spectra is specially good for bands I, II, and

VI. As we will see below these bands correspond to different

configurations. The theoretical results for bands III and V,

though providing the right level ordering, lie higher than the

experimental counterparts. In general our spectrum is a bit

stretched as compared with the experimental one. However,

as shown in Refs. [10,11] for even-even nuclei, it can be

corrected if one considers the cranking frequency as an ad-

ditional coordinate in the SCCM calculations. In particular,

bands III, IV, and V are of vibrational character, which in

terms of the QRPA involves the consideration of additional

quasiparticle excitations while in our calculation we only

consider the lowest blocked state at each (β, γ ) point. This

does not mean that we do not include these states. We do it at

other (β, γ ) values but they are higher in energy. The explicit

consideration of these states lowers considerably the energy

of the collective vibrations, see Refs. [46,47]. Theoretical

descriptions of bands in triaxial nuclei in the framework of

the collective model can be found in Refs. [49,50].

In Fig. 6 we display the collective wave functions

|pσI
K (β, γ )|2 of Eq. (20) for the band heads of the spectrum
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FIG. 6. Squared collective wave functions of the band heads of
25Mg in the (β, γ ) plane. The spin and parity of the different states

is given in the inset of each plot. In each plot the value of the outer

contour corresponds to one-tenth of the maximum value shown in the

corresponding palette. Each contour is incremented by this amount

up to the maximum value. The angle γ is given in degrees.

shown in Fig. 5. The wave functions of the excited states of

each band, not shown here, do not differ much from their

corresponding band heads.

For an interpretation of these bands we present in Table I

the K distributions of the different states calculated according

to Eq. (23). Interestingly there is little mixing and the quantum

number K is rather pure. As mentioned before this is due to

the low single-particle level density in light nuclei and to the

large β deformation of this nucleus, i.e., we are in the strong

coupling limit.

A. Ground band (band I)

The ground state of 25Mg has I = 5/2+ and the members

of the ground band, band I in Fig. 5, are nearly pure K = 5/2

(�95%), see Table I. In Table II we show the average β and γ

values, calculated with the help of Eq. (22), together with the

spectroscopic quadrupole moments. The β value of the ground

state is 0.505. A look at Fig. 1 indicates that this rotational

band is based on the [202 5/2] orbital. This assignment is

consistent with the ones found in the literature [32]. The

collective wave function of Eq. (22) is represented in Fig. 6(a).

If we compare this plot with the corresponding PES, i.e.,

Fig. 2(d), we can observe the dynamical effects introduced

by the configuration mixing. Thus, though the maximum of

the distribution is approximately at β = 0.45, i.e., similar

to the energy minimum of the PES, it is shifted to axially

symmetric shapes. For β > 0.6 we observe a sharp decrease

of the probability values. This is a clear indication that the

Hamiltonian matrix elements of the states P NP I
MK |φ̃π (β, γ )〉

of Eq. (12) based on the orbitals [211 1/2] and [202 5/2],

which cross at β ≈ 0.5 [see Fig. 1], are less attractive than

others inhibiting the mixing of the states based on the [211

1/2] configuration in the collective wave function.

TABLE I. K distribution of the different states.

Iπ
σ K = ±1/2 ±3/2 ±5/2 ±7/2 ±9/2 ±11/2

5/2+
1 1.6 1.4 97.0 − − −

7/2+
1 0.6 0.2 98.8 0.4 − −

9/2+
1 1.0 0.5 96.7 0.3 1.5 −

11/2+
1 3.6 0.3 94.8 0.4 0.6 0.3

1/2+
1 100 − − − − −

3/2+
1 99.6 0.4 − − − −

5/2+
2 99.4 0.1 0.4 − − −

7/2+
2 98.8 0.1 0.9 0.2 − −

9/2+
2 96.5 0.6 2.0 0.2 0.8 −

11/2+
2 95.5 0.3 3.2 0.1 0.6 0.3

1/2+
2 100 − − − − −

3/2+
2 96.5 3.5 − − − −

5/2+
3 91.3 6.1 2.6 − − −

7/2+
3 94.6 1.9 2.9 0.6 − −

9/2+
4 80.2 8.6 9.8 0.7 0.7 −

11/2+
4 87.6 3.2 8.0 0.3 0.5 0.3

9/2+
3 0.8 0.3 1.0 0.2 97.6 −

11/2+
3 0.7 0.1 1.5 0.1 97.6 0.1

3/2+
3 2.2 97.8 − − − −

5/2+
4 2.9 93.1 4.0 − − −

1/2−
1 100 − − − − −

3/2−
1 98.9 1.1 − − − −

5/2−
1 93.2 6.5 0.2 − − −

7/2−
1 96.5 3.5 0.0 0.0 − −

11/2−
1 94.6 5.3 0.1 0.0 0.0 0.0

In Fig. 7 we display the theoretical and experimental

reduced transition probabilities B(M1) and B(E2) along the

ground band (band I). In general there is a good overall

agreement between theory and experiment. The theoretical

B(E2) values are somewhat larger than the experimental ones

as it is also the case for even-even nuclei [5], while the

agreement for the magnetic transitions is much better. The

spectroscopic quadrupole moments of the ground band listed

in Table II are in good agreement with both the shell model

and the rotational model [36].

B. First excited 1/2+ band (band II)

The first excited band (band II in Fig. 5) is based on a state

with I = 1/2+. It is again a very pure band, see Table I, and

its average β value is 0.67, see Table II. For this value we find

from Fig. 1 that the only � = 1/2 orbital available around this

β value is [211 1/2]. Band II is a rotational band built on this

orbital. It cannot be a collective excitation of the ground band

because the transition probabilities connecting both bands are

very small, as a matter of fact the 1/2+ band head is an

isomeric state (T1/2 = 3.3 ns) [48]. The corresponding collec-

tive wave function is represented in Fig. 6(b). Its maximum

is located in the minimum of the PES plot [see Fig. 2(b)].

The wave function is rather concentrated around its maximum

indicating the noncollective character of the state. In this plot,
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TABLE II. Average deformation parameters β
Iπσ

and γ Iπσ

together with the spectroscopic quadrupole moment in e f m2 in

columns 4, 5, and 6 [this work, shell-model (SM), and rotational

model (RM), respectively] for the different states. The SM and RM

values are taken from Ref. [36].

Iπ
σ β

Iπσ
γ Iπσ Qspec. QSM

spec. QRM
spec.

5/2+
1 0.505 21.16 22.2 20 20

7/2+
1 0.523 18.96 3.8 3 3–7

9/2+
1 0.515 18.94 −6.8 9 −5

11/2+
1 0.542 18.73 −11.6 − −

1/2+
1 0.669 12.87 0.0 0 0

3/2+
1 0.687 12.42 −14.8 −13 −11

5/2+
2 0.674 11.92 −20.2 −15 −16

7/2+
2 0.708 9.39 −25.3 −21 −18

9/2+
2 0.666 11.75 −25.2 −17 −20

11/2+
2 0.728 8.28 −30.3 − −

1/2+
2 0.639 23.66 0.0 − −

3/2+
2 0.638 22.72 −14.0 −11 −11

5/2+
3 0.665 20.39 −16.8 −15 −16

7/2+
3 0.630 23.27 −23.0 −16 −18

9/2+
4 0.659 19.26 −18.6 − −

11/2+
4 0.630 20.83 −26.2 − −

9/2+
3 0.592 26.72 35.5 18 30

11/2+
3 0.604 24.88 15.7 − −

3/2+
3 0.699 22.65 14.8

5/2+
4 0.684 23.01 −5.3

obviously, we do not observe the drop in probability density

for β > 0.6 observed in the wave function of the ground state.

In Fig. 7 we display the theoretical and experimental

reduced transition probabilities B(E2) along the band. Since

this band is a K = 1/2 band the B(M1) transition prob-

abilities are smaller than for the ground band. The larger

deformation of this band provides a good rotational band,

which is somewhat distorted by the decoupling parameter

due to its K = 1/2 character. The theoretical B(E2) values

are, again, somewhat larger than the experimental ones. In

Fig. 7 the decay from the 1/2+
1 to the ground band is also

shown. The agreement between theory and experiment is very

good with the exception of the E2 transition 1/2+
1 → 5/2+

1 .

The experimental value is 2.44 e2f m4 and the theoretical

one 7.3 e2f m4. Notice that since the ground band is rather

pure K = 5/2 and the 1/2+
1 band pure K = 1/2, there are no

M1 transitions between the members of the two bands. The

spectroscopic quadrupole moments of this band, see Table II,

are also in good agreement with the SM and the rotational RM

[36].

C. Second excited 1/2+ band (band III)

The second excited band (band III in Fig. 5) has as band

head an I = 1/2+ state, its average deformation is β = 0.639.

It is also a very pure K = 1/2 band. If this band were based

on a pure particle-hole excitation, the next available � = 1/2

(a) (b)

FIG. 7. Transition probabilities of the two lowest bands. In (b)

the experimental values [48] are shown and in (a) the theoretical

ones. The numbers in blue (dark gray) color correspond to B(E2)

values, in e2f m4, and those in red (light gray) to B(M1) ones,

in µ2
N .

orbital would be the [200 1/2]. This assignment has been

made by some authors [37,51] but there are also collective

model studies, which assigned to this band a mixed character

of the [200 1/2] state and a (K − 2)γ vibration on the [202

5/2] state [32]. As we can see in Fig. 5, the theoretical values

for the energies of this band are a bit high as compared with

the experimental values. This is probably due to the fact that

with our blocking procedure we can only block the orbital

[200 1/2] through the pairing correlations, which provide a

given probability to populate this orbital, see Fig. 1, or through

mixing in the (β, γ ) plane.

The wave function of the band head is plotted in Fig. 6(c).

It has two peaks, one at β ≈ 0.7, γ = 0◦ and the other at

β ≈ 0.45, γ ≈ 50◦, the nodal line in between corresponds to

the nγ = 1 character of the vibration. The fact that the second

peak appears at a smaller β value is due to the energy rise

of the [211 1/2] and [200 1/2] orbitals on the oblate side for

large β values, see Fig. 1. To illustrate more clearly the nγ = 1

character of this band we have plotted in Fig. 8 directly the

collective wave function pσI
K (β, γ ) of Eq. (20), not its square

as in Fig. 6, for the I = 3/2+, 5/2+, and 7/2+ members

0.0

-0.08 0.00 0.08

0

20

40

60

I=3/2+
2

0 0.3 0.6 0.9

0

0.3

0.6

0.9

0.0

-0.08 0.00 0.08

0

20

40

60

I=5/2+
3

0 0.3 0.6 0.9

0

0.3

0.6

0.9

0.0

-0.08 0.00 0.08

0

20

40

60

I=7/2+
3

0 0.3 0.6 0.9

0

0.3

0.6

0.9

(a) (b) (c)

FIG. 8. Collective wave functions of the excited states of band

III of 25Mg in the (β, γ ) plane with their signs. The spin and parity

of the different states is given in the inset of each plot. The angle γ

is given in degrees.
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(a) (b)

FIG. 9. Branching ratios of the 1/22 band, (a) theory and (b)

experiment.

of this band, Figs. 6(a)–6(c), respectively. The three wave

functions are rather similar as expected for a rotational band.

Here we clearly see the nodal line separating the positive and

negative contours. Additional information on the nature of

the band is provided by the branching ratios for the decay

of its members. These branching ratios, normalized in each

case to the strongest branch, are shown in Fig. 9 where both

the experimental, Fig. 9(b), and theoretical values, Fig. 9(a),

are given. The theoretical branching ratios are evaluated using

the calculated reduced transition probabilities and the exper-

imental γ -ray energies. The agreement between theory and

experiment is good and as one can see the decay proceeds

almost exclusively to the first excited 1/2+
1 band with only

a small strength to the ground state. In particular, the 1/2+
2

level decays with a value of 100 to the band head of band

II, 24 to the 3/2+
2 level and 2 to the ground state, while

the corresponding experimental values are 100, 27, and 2,

indicating a very good agreement. Unfortunately there are no

separated experimental values for all magnetic and electric

transitions. For the particular case of the 1/2+
2 → 5/2+

1 E2

transition to the ground state, a value of 19 ± 13 e2f m4

has been measured which compares well with our theoretical

value of 13 e2f m4. For the other members of the band the

agreement with the experiment is not so good as for the band

head but the main features are correctly described. The fact

that the 1/2+
2 state decays mainly to the 1/2+

1 level suggests

the assignment of this band as a γ band, K = 0, nγ = 1, built

on the 1/2+
1 band. Notice that this assignment is only possible

because this nucleus is triaxial [49,50]

One could now ask about the mean-field interpretation

[37,51] of assuming the 1/2+
2 as a rotational band build on the

[200 1/2] orbital. First, they are based on axially symmetric

Nilsson calculations and second, that in the sd shells there is

a lot of mixing, and while for the 1/2+
1 band (band II) the

occupation probability is large for the orbital [211 1/2] and

small for the [200 1/2], for the 1/2+
2 band (band III) it is the

other way around. The spectroscopic quadrupole moments of

this band are also in good agreement with the results of SM

and the RM calculations see Table II.

0

1

2

3

4

5

6

7

8

9

E
 (

M
e

V
)

5/21
+

7/21
+

9/21
+

9/23
+

11/23
+

0

2

100

16

72

100

5/21
+

7/21
+

9/21
+

9/23
+

11/23
+

2
±.3

65
±2

100
±2

68
±3

100
±3

64
±3

 Theory  Experiment 

 I  IV 

 I  IV 

(a) (b)

FIG. 10. Branching ratios for the decay of band IV, in (a) the

theory and in (b) the experimental data according to the adopted

values of Ref. [48].

D. 9/2+ excited band (band IV)

The third excited band (band IV) has an I = 9/2+ band

head. It is a rather pure K = 9/2 band with average deforma-

tion parameters β = 0.592 and γ = 26.7◦. Since there is no

single-particle state of these characteristics around the Fermi

level it is clear that it has to be a collective band. In Ref. [37]

it has been interpreted as a (K + 2)γ vibration on the [202

5/2] orbital, i.e., on the ground state. In Fig. 5 we can see

that, as for the other excited bands, this band lies somewhat

higher than the experimental one. The wave function of the

band head is plotted in Fig. 6(d). From its extension and shape,

centered around γ = 27◦, it looks like a nγ = 0, (K + 2) γ

band. The decay of this band to other states is displayed in

Fig. 10. In the theoretical results, shown in Fig. 10(a), the band

head decays mainly via an E2 transition to the ground state.

Experimentally, Fig. 10(b), this is also the main branch though

it decays also strongly to the 7/2+ state at variance to the

theory. The 11/2+ level decays via E2 to the band head and to

the ground band. This is in agreement with the experimental

findings indicating clearly that the 9/2+ band is a (K + 2)γ
vibration on the [202 5/2] orbital in agreement with earlier

assignments.

The spectroscopic quadrupole moment of the 9/2+ state,

see Table II, is 18 ef m2 in the shell model approach and

30 ef m2 in the rotational model approximation. The RM

value is in a much better agreement with our result of

35.5 ef m2.

E. 3/2+ excited band (band V)

The band head of the fourth positive-parity excited band

(band V) is an I = 3/2+ state, again a rather pure K = 3/2

state, see Table I, and with large average values of β = 0.699

and γ = 22.7◦, see Table II. The K = 3/2 value can stem

either from an orbital with � = 3/2, as the result of putting

a particle in the [202 3/2] orbital or making a hole in the [211

3/2], see Fig. 1, or from the coupling of some collective K

(from the rotor in the particle plus rotor model) to a � = 1/2
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orbital, such as the [211 1/2]. In general it will be a combina-

tion of both.

The wave function of the band head, plotted in Fig. 6(e), is

very extended and rather soft in the oblate direction. A reason

for that is (as we can see in Fig. 1) that on the oblate side

the orbital [200 1/2] goes up and the [202 3/2] down, thus

favoring the occupation of the latter. The shape of the wave

function indicates a collective character and looks like a γ

vibration. We find connecting transitions to the ground state

and to several states of band II, which suggest a coupling to

a |K − 2|γ vibration on band I and/or a coupling of the [211

3/2] orbital to a (K − 2) vibration on the [211 1/2] orbital.

The latter assignment has also been made by Headly et al.

[32] to the I = 3/2+ state at 4360 keV excitation energy.

With respect to many aspects, such as the quadrupole moment

and the transition probabilities to band II, this level shows

similarities to the band head of band V. However, in our

calculations we find a strong transition to the ground state,

which has not been observed experimentally.

F. 1/2− negative parity band (band VI)

In the negative parity channel, the first excited state is

obtained by promoting the odd particle to the [330 1/2]

orbital. The states of the band are very pure K = 1/2. The

band has as expected a large average deformation of β =
0.779, since the first negative parity orbital crosses the Fermi

surface at a very large β value. This large value explains the

K = 1/2 purity. Experimentally and in our calculations the

band head of the lowest band of negative parity is a 3/2− state

indicating a large value of the decoupling parameter [37]. The

degree of agreement between theory and experiment is very

good, see Fig. 5, especially for the three lowest members of

the band. The wave function of the band head is provided in

Fig. 6(f). Since this band is the lowest one of negative parity

the maximum of the collective wave function coincides with

the minimum of the potential energy surface shown in Fig. 3.

To conclude this section we would like to remark that, as

mentioned above, in the present approach at each point of the

(β, γ ) plane we only consider one quasiparticle state in the

SCCM ansatz Eq. (13), namely the lowest one. In principle

one could add excited one- (and three-)quasiparticle states in

Eq. (13) as it has been done in Refs. [46,47] for even-even

nuclei. This generalization will improve the single-particle

degrees of freedom but influence very little the collective

ones. The pertinent question is whether this generalization

will modify considerably the present results. Of course the

definitive answer can only be given once the calculations have

been performed. However, with the information that we now

have at hand, i.e., from even-even nuclei [46,47], we can

conclude that the character of the collective bands will not

change dramatically. The main effect of the generalization

will be to lower the energies of the excited bands. Obviously

new rotational bands built on single-particle states may appear

at higher energies.

As mentioned in Sec. III the present calculations have

been performed with eight harmonic oscillator shells. To reach

absolute convergence of energy values the consideration of

larger spaces will be required. With respect to the relative

energies, we think that the negative-parity states will be more

sensitive to the size of the configuration space since the energy

minima are located at larger deformations, see Fig. 4. We

have calculated these potential energy surfaces with ten shells

and for deformations β � 1.2 the contour lines look similar

in both calculations. However, for larger β values, the PES

softens faster with ten than with eight shells. For the positive

parity states the relevant contours remain unchanged. We do

not expect that the enlargement of the configuration space will

significantly affect the properties of the levels belonging to

bands I, II, and VI. A larger effect, however, is to be expected

for the higher lying bands, i.e., the bands III, IV, and V.

V. CONCLUSION AND OUTLOOK

In conclusion, we have presented the extension of the

SCCM approach, which has been very successful in the

description of excited states in even-even nuclei and of

ground-state properties of odd-even nuclei in the past, to

the spectroscopy of odd-A nuclei. Our approach includes

exact blocking with conservation of angular momentum and

particle number as well as the fluctuations in the deformation

parameters (β, γ ). In the numerical application we have used

the finite range density-dependent Gogny force, which is well

known to properly reproduce bulk properties all over the

nuclear chart.

We have applied this theory to the description of excited

states in 25Mg. We find six rotational bands of which five

are clearly identified with the experimental counterparts. The

energies of the low-lying bands of positive parity (bands I and

II) are in very good agreement with the experimental data. The

excitation energies of bands III and IV are somewhat higher

than the experimental ones. We find a fifth collective band,

band V, which has no obvious experimental counterpart. We

also find a negative-parity band (band VI) whose energies

agree very well with the experimental ones. The transition

probabilities and spectroscopic quadrupole moments in gen-

eral agree well with the experimentally adopted values.

The results for odd-even nuclei with the SCCM theory

follow very closely the guidelines of the even-even ones. That

means that for a precise description of the highly excited

bands, either the cranking frequency must be considered as

an additional generator coordinate or more one-quasiparticle

states (and possibly three-quasiparticle states) should be in-

cluded in the calculation.
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