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1 Introduction

In recent years, concepts and methods coming from quantum information theory are play-
ing more and more important roles in both high-energy physics and condensed matter
theory. In a many-body system, entanglement is a powerful tool to characterize quan-
tum phase transition and by studying its universal features one can acquire knowledge
of the underlying conformal field theory (CFT). For reviews, see [1–4]. In high-energy
physics, entanglement is also the key concept to understand the information paradox of
black holes [5–7] through gauge/gravity duality [8, 9].

So far, most studies are focus on subsystem entanglement features of a single quantum
state. For some applications, the entanglement entropy for a given subsystem can not
provide enough information. One may wonder, how can we gain insight when giving two
different quantum states. It’s also important for us to distinguish between subsystems in
different states. In this respect, relative entropy is an important quantity [10]. Relative
entropy attracts a great deal of attention during the past few years and has been extensively
studied [11–20]. The reason is that relative entropy is relatively simple to calculate and is
free of divergence in quantum field theory. There also exist other quantities that can be used
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to distinguish reduced density matrices (RDMs). For example, the quantum fidelity [21]
and the trace distance [22, 23] is two very commonly used concepts.

For two given states with reduced density matrices (RDMs) ρ and σ, the so-called
relative entropy is defined as [24, 25]

S(ρ‖σ) = tr(ρ log ρ)− tr(ρ log σ), (1.1)

which can be viewed as a measure of “distance” between the two quantum states. In
quantum field theory, the relative entropy can be obtained by using the replica trick [12, 13]

S(ρ‖σ) = lim
n→1

Sn(ρ‖σ) = lim
n→1

1
1− n log tr(ρσn−1)

tr(ρn) , (1.2)

where we have defined the Rényi relative entropies as

Sn(ρ‖σ) = 1
1− n log tr(ρσn−1)

tr(ρn) . (1.3)

For a quantum many-body systems with global symmetry, one can decompose en-
tanglement into different symmetry sectors. In this respect, the authors of reference [26]
introduced a more refined notion of entanglement, the symmetry resolved entanglement
entropy. After this pioneering work, people have studied a lot about symmetry resolution
of entanglement properties for both pure states [27–33] and mixed states [34, 35]. More-
over, similar quantities have also been introduced in quantum field theories and in the
holographic settings [36–43].

In this paper, we will mainly focus on the symmetry resolution of relative entropies
in CFT. More explicitly, we will consider the U(1) symmetry decomposition of relative
entropy in free massless compact boson CFT using the twist operator method. We will
also check our universal CFT predictions numerically in the XX spin chain.

The remaining part of this paper is organized as follows. In section 2, we briefly
review the CFT approach to the Rényi relative entropies between the RDMs of two primary
excited states. In section 3, we discuss how relative entropies are distributed in different
charge sectors. In this section, we define all needed concepts concerning symmetry resolved
relative entropy and summarise the known results of the symmetry resolved entanglement
entropy which will be useful in the following sections. In section 4, we calculate various
symmetry resolved relative entropies between primary states in free compact boson CFT.
The CFT results are tested in section 5 against exact numerical computations in the XX
chain. Finally, we conclude in section 6 and some technical details for numerical calculation
are given in appendix A.

2 Relative entopy in CFT

In this section, let’s briefly review the replica trick to compute the relative entropies of two
reduced density matrices of excited states in 1+1 dimensional CFT. Consider a system
with one spatial dimension and a bipartition into two complementary regions A and Ā. We
take subsystem A given by the interval [u, v] with length l = v−u and Ā is its complement
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with length L− l. Here L is the total length of our periodic 1D system. Given two (pure)
states |Ψ〉 , |Φ〉 ∈ H = HA ⊗ HĀ, the reduced density matrices of subsystem A is defined
by tracing over the points not in A.

ρA,Ψ = trĀ |Ψ〉 〈Ψ| , ρA,Φ = trĀ |Φ〉 〈Φ| . (2.1)

The world sheet of the 1+1 dimensional CFT is an infinite cylinder with circumference L
which can be parameterized by introducing the complex coordinate w = x + iτ . In this
paper, we are only interested in the excited states in CFT that correspond to local primary
operators

|Ψ〉 = Ψ(−i∞) |0〉 , (2.2)

where |0〉 is the CFT vacuum state and corresponds to the identity operator I. Let us omit
the index A and denote the reduced density matrix of a state |Ψ〉 to the subsystem A by
ρΨ. Following the standard procedure [2, 44], tr(ρnI ) can be obtained by sewing cyclically
n copies of the above cylinders along with the interval [u, v]. In contrast to the ground
state case, the corresponding path-integral representation of the density matrix ρ = |Ψ〉 〈Ψ|
presents two additional insertions of Ψ(−i∞) and Ψ†(i∞). In this way, we end up with a
n-sheeted Riemann surface Rn and tr(ρnΨ) is given by a 2n-point function on Rn [45]

tr(ρnΨ) = Zn
Zn1

〈
∏n
k=1 Ψ(w−k )Ψ†(w+

k )〉Rn
〈Ψ(w−1 )Ψ†(w+

1 )〉nR1

, (2.3)

where Zn = 〈I〉Rn is the n-th moment of the reduced density matrix of the ground state
and w−k = −i∞, w+

k = i∞ are points where the operators are inserted in the k-th copy.
In order to obtain the Rényi relative entropies between ρΨ and ρΦ, we further need

to compute tr(ρΨρ
n−1
Φ ). Quite similar to the previous case, and taking the normalization

factor into account, we find

tr(ρΨρ
n−1
Φ ) = Zn

Zn1

〈Ψ(w−1 )Ψ†(w+
1 )
∏n
k=2 Φ(w−k )Φ†(w+

k )〉Rn
〈Ψ(w−1 )Ψ†(w+

1 )〉R1〈Φ(w−1 )Φ†(w+
1 )〉n−1
R1

, (2.4)

and the universal ratio

Gn(ρΨ‖ρΦ) ≡ tr(ρΨρ
n−1
Φ )

tr(ρnΨ) =
〈Ψ(w−1 )Ψ†(w+

1 )
∏n
k=2 Φ(w−k )Φ†(w+

k )〉Rn〈Ψ(w−1 )Ψ†(w+
1 )〉n−1
R1

〈
∏n
k=1 Ψ(w−k )Ψ†(w+

k )〉Rn〈Φ(w−1 )Φ†(w+
1 )〉n−1
R1

.

(2.5)
Knowing Gn, the Rényi relative entropy is simply given by

Sn(ρΨ‖ρΦ) = 1
1− n logGn(ρΨ‖ρΦ). (2.6)

We can apply the following sequence of conformal maps

w → z =
(

sin π(w−u)
L

sin π(w−u)
L

) 1
n

→ t = −i log z (2.7)
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to transform the n-sheet Riemann surface Rn into a single cylinder. The transformation
law of a primary field O is very simple

O(z, z̄) =
(
dz

dw

)−hO ( dz̄
dw̄

)−h̄O
O(w, w̄), (2.8)

with (hO, h̄O) the conformal weights of O. Applying the conformal maps in eq. (2.7), one
can easily express Gn(ρΨ‖ρΦ) in terms of correlation functions on the cylinder

Gn(ρΨ‖ρΦ) = n2(n−1)(hΨ+h̄Ψ−hΦ−h̄Φ) 〈Ψ(t−1 )Ψ†(t+1 )
∏n
k=2 Φ(t−k )Φ†(t+k )〉cy〈Ψ(t−1 )Ψ†(t+1 )〉n−1

cy

〈
∏n
k=1 Ψ(t−k )Ψ†(t+k )〉cy〈Φ(t−1 )Φ†(t+1 )〉n−1

cy
,

(2.9)
where t±k are the points corresponding to w±k through the map t(w)

t−k = π

n
(x+ 2(k − 1)), t+k = π

n
(−x+ 2(k − 1)), k = 1, 2, · · · , n. x = v − u

L
= l

L
.

(2.10)
In the following, we will mainly focus on the theory of free massless compact bosonic field
ϕ(z, z̄), with Euclidean action

A[ϕ] = 1
8π

∫
dzdz̄∂zϕ∂z̄ϕ. (2.11)

This is a CFT with central charge c = 1 and has two types of primary fields. The first
type is the vertex operators

Vα,ᾱ =: ei(αφ+ᾱφ̄) : (2.12)

where φ, φ̄ are chiral and anti-chiral parts of the bosonic field: ϕ(z, z̄) = φ(z) + φ̄(z̄). The
conformal weight of the vertex operator is (h, h̄) = (α2

2 ,
ᾱ2

2 ). For simplicity, we will consider
holomorphic field ᾱ = 0 only. The n-point function of vertex operators on the complex
plane is (zi,j ≡ zi − zj) [46]

〈
∏
k

Vαk(zk)〉 =
∏
i<j

(zi,j)αiαj . (2.13)

After the conformal map t = −i log z to the cylinder, this correlator becomes

〈
∏
k

Vαk(tk)〉cy =
∏
i<j

(
2 sin ti,j2

)αiαj
. (2.14)

The other type of primary field in this theory is the derivative operator i∂φ with conformal
dimension (h, h̄) = (1, 0). The 2n-point function on the complex plane is given by [46]

〈
2n∏
k=1

i∂φ(zk)〉 = Hf
[

1
z2
i,j

]
1≤i,j≤2n

, (2.15)

where Hf(A) is the Haffnian of the 2n× 2n matrix A

Hf(A) = 1
2nn!

∑
σ∈S2n

n∏
i=1

Aσ(2i−1),σ(2i). (2.16)
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The Haffian in eq. (2.15) can be written as a determinant

Hf
[

1
z2
i,j

]
1≤i,j≤2n

= det
[

1
zi,j

]
1≤i,j≤2n

. (2.17)

In a cylinder parametrized by t = −i log z, the correlator becomes

〈
2n∏
k=1

i∂φ(tk)〉cy = 1
4n det

[
1

sin(ti,j/2)

]
1≤i,j≤2n

. (2.18)

For this 2n-point correlator evaluated at the 2n-point list in eq. (2.10), the analytic con-
tinuation has been obtained in [47, 48] and is given by

〈
n∏
k=1

i∂φ(t−k )i∂φ(t+k )〉cy =
Γ2(1+n+n cscπx

2 )
Γ2(1−n+n cscπx

2 )
. (2.19)

Several relative entropies have been obtained in [13, 14], here we just report the results.
Firstly, the Rényi relative entropies between the ground state and the vertex operator are
given by

Sn(ρI‖ρVα) = Sn(ρVα‖ρI) = α2

1− n log sin πx
n sin πx

n

. (2.20)

By taking the replica limit n→ 1, the relative entropy is obtained as

S(ρI‖ρVα) = S(ρVα‖ρI) = α2(1− πx cot(πx)). (2.21)

The relative entropy between two vertex operators is given by

S(ρVα‖ρVβ ) = S(ρVβ‖ρVα) = (α− β)2(1− πx cot(πx)). (2.22)

The relative entropy between the derivative operator and the ground state is

S(ρi∂φ‖ρI) = 2 log(2 sin(πx)) + 2− 2πx cot(πx) + 2ψ
(csc(πx)

2

)
+ 2 sin(πx). (2.23)

Finally, the relative entropy between the derivative operator and the vertex operator is

S(ρi∂φ‖Vα) = S(ρi∂φ‖ρI) + S(ρI‖ρVα). (2.24)

3 Symmetry resolution of entanglement entropy and relative entropy

3.1 Entanglement entropy and relative entropy in charge sectors

Now assume that the system has an internal U(1) symmetry with conserved charge Q.
We also take a bipartition of our system into two subsystems, A and its complement Ā
as before. When the conserved charge Q is local, it splits as Q = QA + QĀ. We further
assume that both ρ and σ are eigenstate of Q, which imply [ρ,Q] = 0, [σ,Q] = 0. Tracing
out the degree of freedom in Ā, one obtains [ρA, QA] = 0, [σA, QA] = 0. Then the density
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matrix ρA and σA can be written as block diagonal forms, in which each block corresponds
to a different charge sector with eigenvalue q of QA

ρA = ⊕qΠqρA = ⊕qpρ(q)ρA(q), σA = ⊕qΠqσA = ⊕qpσ(q)σA(q), (3.1)

where Πq is the projector onto the eigenspace of QA with fixed eigenvalue q. We have

ρA(q) = ΠqρA
tr(ΠqρA) , σA(q) = ΠqσA

tr(ΠqσA) . (3.2)

The denominators in the above equations are introduced to keep the normalization
trρA(q) = 1, trσA(q) = 1, which imply

tr(ΠqρA) = pρ(q), tr(ΠqσA) = pσ(q). (3.3)

Here pρ(q) (or pσ(q), respectively) is the probability of finding q as the outcome of a
measurement of QA in state ρA (resp. σA).

Our goal is to understand how the relative entropy is distributed in different charged
sectors. Let’s start with the resolution of von Neumann entanglement entropy. The equa-
tion (3.1) implies the following decomposition of entanglement entropy

S(ρA) =
∑
q

pρ(q)S(ρA(q))−
∑
q

pρ(q) log pρ(q) ≡ Sc + Sf , (3.4)

where
S(ρA(q)) = −tr[ρA(q) log ρA(q)], (3.5)

is the symmetry resolved entanglement entropy associated to ρA(q). In eq. (3.4), we have
divided S(ρA) into two parts, Sc and Sf , which are called the configurational entanglement
entropy and the fluctuation entanglement entropy respectively. The configurational entan-
glement entropy Sc =

∑
q p

ρ(q)S(ρA(q)), measuring the total entropy of all the charged
sectors. The fluctuation entanglement entropy Sf = −

∑
q p

ρ(q) log pρ(q) takes into ac-
count the entropy due to fluctuations of the eigenvalues of the charge.

In a similar way, we define the symmetry resolved Rényi relative entropies as

Sn(ρA(q)‖σA(q)) = 1
1− n log tr(ρA(q)σA(q)n−1)

tr(ρA(q)n) . (3.6)

After substituting the expression of ρA(q) and σA(q) given in eq. (3.2) into the above
equation, we obtain

Sn(ρA(q)‖σA(q)) = 1
1− n log pρ(q)n

pσ(q)n−1pρ(q)
tr(ρAσn−1

A Πq)
tr(ρnAΠq)

(3.7)

= − log p
ρ(q)
pσ(q) + 1

1− n
[
log tr(ρAσn−1

A Πq)− log tr(ρnAΠq)
]
. (3.8)

Taking the limit n→ 1, we find

S(ρA(q)‖σA(q)) = − log p
ρ(q)
pσ(q) −

1
pρ(q)tr(ΠqρA log σA) + 1

pρ(q)tr(ΠqρA log ρA). (3.9)
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Multiplying both sides of the above equation with pρ(q) and summing over q, we get

S(ρA‖σA) = 〈S(ρA(q)‖σA(q))〉pρ +
〈

log p
ρ(q)
pσ(q)

〉
pρ
, (3.10)

where
〈S(ρA(q)‖σA(q))〉pρ =

∑
q

S(ρA(q)‖σA(q))pρ(q), (3.11)

is the averaged symmetry resolved relative entropy under the probability distribution pρ(q),
and 〈

log p
ρ(q)
pσ(q)

〉
pρ

=
∑
q

pρ(q) log p
ρ(q)
pσ(q) (3.12)

is the classical relative entropy or Kullback-Leibler divergence of probability distribution
pρ(q) and pσ(q). Here, for the relative entropy, we find the equation (3.10) looks quite
similar to eq. (3.4). You can call the two terms on the right-hand side of eq. (3.10) the
configuration relative entropy and the fluctuation relative entropy respectively if you will.

Let’s define the following generalized probability distributions

pρ|σn (q) = tr(ρAσn−1
A Πq)

tr(ρAσn−1
A )

, pρn(q) = tr(ρnAΠq)
tr(ρnA) , (3.13)

which are normalized as
∑
q p

ρ|σ
n (q) =

∑
q p

ρ
n(q) = 1. For n = 1, since pρ|σ1 (q) = pρ1(q) =

pρ(q), these generalized distributions are just the physical probability distribution of the
subsystem charge QA in the state ρA. Using these generalized probabilities, we can rewrite
the symmetry resolved Rényi relative entropy as

Sn(ρA(q)‖σA(q)) = − log p
ρ(q)
pσ(q) + 1

1− n log p
ρ|σ
n (q)
pρn(q) + Sn(ρA‖σA). (3.14)

Taking the limit n → 1 of the above equation, we obtain the symmetry resolved relative
entropy

S(ρA(q)‖σA(q)) = − log p
ρ(q)
pσ(q) −

1
pρ(q)∂n(pρ|σn (q)− pρn(q))

∣∣
n=1 + S(ρA‖σA). (3.15)

The average of the above equation over pρ(q) also gives the equation (3.10) using the fact
that

∑
q ∂n(pρ|σn (q)− pρn(q))

∣∣
n=1 = 0. It’s also useful to average equation (3.14) over pρ(q)

to give another expression of the decomposition of the Rényi relative entropy

Sn(ρA‖σA) = 〈Sn(ρA(q)‖σA(q))〉pρ +
〈

log p
ρ(q)
pσ(q)

〉
pρ

+ 1
1− n

∑
q

pρ(q) log p
ρ|σ
n (q)
pρn(q) . (3.16)

From eq. (3.14) and eq. (3.15), we see that to obtain the symmetry resolved Rényi
relative entropy and relative entropy, one needs to compute the generalized probabilities
p
ρ|σ
n (q) and pρn(q). However, this is very hard in general due to the non-local feature of the
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projector Πq. Similar to the case of computing symmetry resolved entanglement entropy,
we can bypass this difficulty by defining the following quantities

pρ|σn (µ) = tr(ρAσn−1
A eiµQA)

tr(ρAσn−1
A )

, pρn(µ) = tr(ρnAeiµQA)
tr(ρnA) , (3.17)

which turns out to be much easier to compute. From eq. (3.13), it’s easy to see that pρ|σn (q)
and pρn(q) can be obtained by Fourier transformations1

pρ|σn (q) =
∫ ∞
−∞

dµ

2πe
−iµqpρ|σn (µ), pρn(q) =

∫ ∞
−∞

dµ

2πe
−iµqpρn(µ). (3.18)

Here we have used the same notation but with a different argument to denote the Fourier
transform of the generalized probabilities pρ|σn (q) and pρn(q).

For future use, it’s also useful to define the following ratio

F ρ,σn (µ,A) ≡ p
ρ|σ
n (µ)
pρn(µ) = tr(ρAσn−1

A eiµQA)tr(ρnA)
tr(ρnAeiµQA)tr(ρAσn−1

A )
. (3.19)

3.2 Symmetry resolution of entanglement entropy in CFT

From the analysis in the last subsection, we see that to compute the symmetry resolved
relative entropy, the first step is the calculation of Fourier transformed generalized proba-
bilities pρ|σn (µ) and pρn(µ). In the free compact boson CFT, the later (pρn(µ), cf. (3.17)) has
already been studied in the context of symmetry resolution of entanglement entropy [49],
where people called it the (normalized) charged moments. In this subsection, we briefly
review the results and fix some notations that will be useful in the following sections.

Let’s first consider the ground state case. When ρ is the ground state of a CFT,
tr(ρnAeiµQA) can be seen as a partition function in the n-sheet Riemann surface Rn with
an inserted Aharonov-Bohm flux µ. In two-dimensional CFT, the insertion of a flux cor-
responds to a twisted boundary condition, which can be implemented by some local fields
acting on the boundary of subsystem A. This operator can be seen as the composition of
the branch point twist field Tn and the U(1) twist field Vµ and we denote it by Tn,µ [26, 50].
The form factors and vacuum expectation values (VEVs) of the composite twist field in in-
tegrable field theories have been obtained in [51, 52] recently. If subsystem A is an interval
[u, v], then one can identify

eiµQA = Vµ(u, 0)V−µ(v, 0). (3.20)

More precisely, we have the following relations

tr(ρnI,AeiµQA) = 〈eiµQA〉Rn = 〈Vµ(u, 0)V−µ(v, 0)〉Rn = 〈Tn,µ(u, 0)T̃n,µ(v, 0)〉R1 , (3.21)

where T̃n,µ is the anti-twist field. The conformal weight of Tn,µ and T̃n,µ are the same and
are given by

hn,µ = hn + hµ
n
, hn = c

24

(
n− 1

n

)
, (3.22)

1Here we have assumed that the eigenvalues of QA are continuous. If the eigenvalues are integers, one
needs to change the range of the integral to [−π, π].
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where c is the central charge of the CFT. Then, on the cylinder of circumference L, the
two-point function of Tn,µ in eq. (3.21) is immediately obtained

tr(ρnI,AeiµQA) = sn,µ

(
L

π
sin πl

L

)− c6 (n− 1
n

)−2hµ+h̄µ
n

, (3.23)

where sn,µ is the unknown non-universal normalization of the composite twist field. The
charged moments of the ground state are

pIn(µ) =
tr(ρnI,AeiµQA)

tr(ρnI,A) = 〈Tn,µ(u, 0)T̃n,µ(v, 0)〉R1

〈Tn(u, 0)T̃n(v, 0)〉R1

= sn,µ
sn,0

(
L

π
sin πl

L

)− 2
n

(hµ+h̄µ)
. (3.24)

In the free compact bosonic field theory defined by the action eq. (2.11), the U(1) twist
field Vµ can be implemented by the vertex operator

Vµ = V µ
2π

= e
iµ
2πφ (3.25)

with conformal weight (hµ, h̄µ) = (1
2( µ2π )2, 1

2( µ2π )2). Then the charged moments of the
ground state or the Fourier transformed generalized probabilities are

pIn(µ) ∼
(
L

π
sin πl

L

)− µ2

2nπ2
, (3.26)

which are Gaussian distributions and as a consequence, pIn(q) are also Gaussian distribu-
tions. In terms of its variance, we can write pIn(q) as

pIn(q) = 1√
2π〈∆q2〉In

exp
(
− ∆q2

2〈∆q2〉In

)
, (3.27)

where ∆q2 = (q − q̄)2 and at large L the variance scales as

〈∆q2〉In =
∫ ∞
−∞

dq∆q2pIn(q) = 1
nπ2 log

(
L

π
sin πx

)
+ γn + o(1), (3.28)

where γn is a non-universal constant related to sn,µ and q̄ is the mean value of q under the
probability distribution pIn(q) also cannot be fixed by CFT.2 Since pIn(µ) is Gaussian, we
can rewrite it as

pIn(µ) = exp
{
−1

2〈∆q
2〉Inµ2 + iµq̄

}
. (3.29)

For a excited state |Ψ〉, it’s useful to define the ratio

fΨ
n (µ, x) ≡ pΨ

n (µ)
pIn(µ) = 〈Vµ(i∞)V−µ(−i∞)

∏n
k=1 Ψ(t−k )Ψ(t+k )〉cy

〈Vµ(i∞)V−µ(−i∞)〉cy〈
∏n
k=1 Ψ(t−k )Ψ(t+k )〉cy

. (3.30)

When the excitation is induced by the vertex operator Ψ = Vα = eiαφ, the computation of
eq. (3.30) is straightforward and the final result is rather simple [49]

fVαn (µ, x) = eiµαx. (3.31)
2In the XX spin chain, the exact values of γn and q̄ have been derived in [27].
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Then the charged moments of the vertex operator are

pVαn (µ) = fVαn (µ, x)pIn(µ) = eiµαxpIn(µ). (3.32)

The generalized probability distributions pVαn (q) are obtained by Fourier transformation

pVαn (q) = pIn(q − αx). (3.33)

From the above equation, we conclude that the generalized probability distribution of
vertex operators pVαn (q) is also Gaussian and having the same variance with the ground
state distribution pIn(q).

However, when the excitation is induced by the derivative operators Ψ = i∂φ, the
computation of eq. (3.30) is more complicated and we briefly mention the details here. In
this calculation, the most involved correlator is

〈Vµ(i∞)V−µ(−i∞)
n∏
k=1

i∂φ(t−k )i∂φ(t+k )〉cy. (3.34)

In the paper [49], the authors conjectured a formula for this correlator

〈V µ
2π

(i∞)V− µ
2π

(−i∞)
n∏
k=1

i∂φ(t−k )i∂φ(t+k )〉cy = 〈V µ
2π

(i∞)V− µ
2π

(−i∞)〉cyPM
(
iµ

2π

)
, (3.35)

where PM (λ) = det(M − λ) is the characteristic polynomial of the 2n× 2n matrix M

M = 1
2

(
A B

−BT A

)
, (3.36)

where the matrix elements are (i, j = 1, 2, · · · , n)

Aij =

0 if i = j
1

sin[π(j−i)/n] else
, Bij = 1

sin[π(j − i− x)/n] . (3.37)

The analytic continuation of PM (λ) is given by

PM (λ) = Γ(an(λ) + n+ 1)Γ(ān(λ) + n+ 1)
Γ(an(λ) + 1)Γ(ān(λ) + 1) , (3.38)

where
an(λ) = 1

2

(
n

sin πx − n− 1
)

+ iλ. (3.39)

Then after pluging eq. (3.35), eq. (3.38) and eq. (2.19) into eq. (3.30), we obtain

f i∂φn (µ, x) =
Γ(an( iµ2π ) + n+ 1)Γ(ān( iµ2π ) + n+ 1)

Γ(an( iµ2π ) + 1)Γ(ān( iµ2π ) + 1)
Γ2(an(0) + 1)

Γ2(an(0) + n+ 1) . (3.40)

We can expand f i∂φn (µ, x) in µ

f i∂φn (µ, x) =
∞∑
k=0

(−1)k

(2k)! bn,2kµ
2k (3.41)
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where bn,2k is the coefficient of µ2k and the first two values are

bn,0 = 1, bn,2 = 1
2π2

[
ψ(1)(an(0) + 1)− ψ(1)(an(0) + n+ 1)

]
. (3.42)

Here ψ(n)(z) is the polygamma function. For integer n, the infinite series in eq. (3.41)
terminate at k = n and as n → 1, all coefficients except bn,0, bn,2 vanish. Then we can
write

pi∂φn (q) =
∞∑
k=0

(−1)k

(2k)! bn,2k
∫ ∞
∞

dµ

2πe
−iµ∆q exp

{
−1

2〈∆q
2〉Inµ2

}
µ2k

= pIn(q)
∞∑
k=0

bn,2k
(2k)!H2k

 ∆q√
2〈∆q2〉In

 [2〈∆q2〉In]−k,
(3.43)

where H2k(z) is the 2k-th Hermite polynomial with argument z.
For n = 1, we have a very simple result

pi∂φ(q) =
(

1− c1(q)
π2 sin2 πx

)
pI(q) =

(
1− c1(q)

π2 sin2 πx

) 1√
2π〈∆q2〉I

exp
(
− ∆q2

2〈∆q2〉I

)
,

(3.44)
where 〈∆q2〉I ≡ 〈∆q2〉I1 and we have defined

cn(q) ≡ 〈∆q
2〉In −∆q2

[〈∆q2〉In]2 . (3.45)

Clearly, pi∂φ(q) is non-Gaussian.

4 Symmetry resolution of relative entropy in CFT

In this section, we will focus on the computation of the symmetry resolved relative en-
tropies between RDMs of excited states induced by primary operators in the free massless
compact boson CFT. According to the analysis in section 3, in order to calculate the
symmetry resolved relative entropy S(ρΨ(q)‖ρΦ(q)) (see eq. (3.15)), we have to compute
the generalized probability distribution pΨ

n (q) and pΨ|Φ
n (q). Let’s first compute the Fourier

transform of pΨ
n (q) and pΨ|Φ

n (q)

pΨ
n (µ) = tr(ρnΨeiµQA)

tr(ρnΨ) = 〈Vµ(u1)V−µ(v1)
∏n
k=1 Ψ(w−k )Ψ†(w+

k )〉Rn
〈
∏n
k=1 Ψ(w−k )Ψ†(w+

k )〉Rn
, (4.1)

and

pΨ|Φ
n (µ) = tr(ρΨρ

n−1
Φ eiµQA)

tr(ρΨρ
n−1
Φ )

= 〈Vµ(u1)V−µ(v1)Ψ(w−1 )Ψ†(w+
1 )
∏n
k=2 Φ(w−k )Φ†(w+

k )〉Rn
〈Ψ(w−1 )Ψ†(w+

1 )
∏n
k=2 Φ(w−k )Φ†(w+

k )〉Rn
.

(4.2)
Thus their ratio FΨ,Φ

n (µ, x) is given by

FΨ,Φ
n (µ,x) = 〈Vµ(u1)V−µ(v1)Ψ(w−1 )Ψ†(w+

1 )
∏n
k=2 Φ(w−k )Φ†(w+

k )〉Rn〈
∏n
k=1 Ψ(w−k )Ψ†(w+

k )〉Rn
〈Ψ(w−1 )Ψ†(w+

1 )
∏n
k=2 Φ(w−k )Φ†(w+

k )〉Rn〈Vµ(u1)V−µ(v1)
∏n
k=1 Ψ(w−k )Ψ†(w+

k )〉Rn
.

(4.3)
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One could apply the conformal transformation defined in eq. (2.7) to map the correlators
in eq. (4.3) onto the cylinder. In this mapping, all factors proportional to dt

dw coming from
the transformation law of primary fields canceled out, leaving us with

FΨ,Φ
n (µ, x) = 〈Vµ(i∞)V−µ(−i∞)Ψ(t−1 )Ψ†(t+1 )

∏n
k=2 Φ(t−k )Φ†(t+k )〉cy〈

∏n
k=1 Ψ(t−k )Ψ†(t+k )〉cy

〈Ψ(t−1 )Ψ†(t+1 )
∏n
k=2 Φ(t−k )Φ†(t+k )〉cy〈Vµ(i∞)V−µ(−i∞)

∏n
k=1 Ψ(t−k )Ψ†(t+k )〉cy

.

(4.4)
If one of the two states is the ground state |0〉, the above generic formula simplifies to

F I,Φn (µ, x) = 〈Vµ(i∞)V−µ(−i∞)
∏n
k=2 Φ(t−k )Φ†(t+k )〉cy

〈
∏n
k=2 Φ(t−k )Φ†(t+k )〉cy〈Vµ(i∞)V−µ(−i∞)〉cy

, (4.5)

and
FΨ,I
n (µ, x) = 〈Vµ(i∞)V−µ(−i∞)Ψ(t−1 )Ψ†(t+1 )〉cy〈

∏n
k=1 Ψ(t−k )Ψ†(t+k )〉cy

〈Ψ(t−1 )Ψ†(t+1 )〉cy〈Vµ(i∞)V−µ(−i∞)
∏n
k=1 Ψ(t−k )Ψ†(t+k )〉cy

. (4.6)

4.1 Resolution of relative entropy between the ground state and the vertex
operator

The first case we will consider is the symmetry decomposition of relative entropy between
the ground state and the excited state generated by a vertex operator. Firstly, let’s compute

F I,Vαn (µ, x) =
〈V µ

2π
(i∞)V− µ

2π
(−i∞)

∏n
k=2 Vα(t−k )V−α(t+k )〉cy

〈
∏n
k=2 Vα(t−k )V−α(t+k )〉cy〈V µ

2π
(i∞)V µ

2π
(−i∞)〉cy

=
n∏
k=2
〈V µ

2π
(i∞)Vα(t−k )〉cy

n∏
k=2
〈V− µ

2π
(−i∞)Vα(t−k )〉cy×

×
n∏
k=2
〈V µ

2π
(i∞)V−α(t+k )〉cy

n∏
k=2
〈V− µ

2π
(−i∞)V−α(t+k )〉cy

= lim
Λ→∞

n∏
k=2

(
sin 1

2(πx+2(k−1)
n )− iΛ

sin 1
2(πx+2(k−1)

n ) + iΛ

)αµ
2π n∏

k=2

(
sin 1

2(−πx+2(k−1)
n )− iΛ

sin 1
2(−πx+2(k−1)

n ) + iΛ

)−αµ2π

= eiµαx(1− 1
n

).

(4.7)

Then we find
pI|Vαn (µ) = F I,Vαn (µ, x)pIn(µ) = eiµαx(1− 1

n
)pIn(µ). (4.8)

Since pIn(µ) is a Gaussian distribution, we conclude pI|Vαn (q) is also a Gaussian with the
same variance of pIn(q). After Fourier transformation, we find

pI|Vαn (q) = pIn(q − αx(1− 1/n)). (4.9)

Then the symmetry resolved Rényi relative entropies can be easily derived

Sn(ρI(q)‖ρVα(q)) = − log pI(q)
pVα(q) + 1

1− n log p
I|Vα
n (q)
pIn(q) + Sn(ρI‖ρVα)

= − log pI(q)
pI(q − αx) + 1

1− n log p
I
n(q − (1− 1/n)αx)

pIn(q) + Sn(ρI‖ρVα).

(4.10)
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After substituting the expression of pIn(q) in eq. (3.27) and Rényi relative entropy in
eq. (2.21) into the above equation, we obtain

Sn(ρI(q)‖ρVα(q)) = 2αx∆q−α2x2

2〈∆q2〉I
− 2nαx∆q+(1−n)α2x2

2n2〈∆q2〉In
+ α2

1−n log sinπx
nsin πx

n

. (4.11)

The symmetry resolved relative entropy is obtained by taking the limit n→ 1

S(ρI(q)‖ρVα(q)) = α2(1− πx cot(πx))− α2x2

2〈∆q2〉I
, (4.12)

which is q independent up to order (logL)−1.
After a very similar calculation with eq. (4.7), we find

〈
∏n
k=1 Vα(t−k )V−α(t+k )〉cy〈V µ

2π
(i∞)V µ

2π
(−i∞)〉cy

〈V µ
2π

(i∞)V− µ
2π

(−i∞)
∏n
k=1 Vα(t−k )V−α(t+k )〉cy

= e−iµαx. (4.13)

Then we have

F Vα,In (µ, x) =
〈V µ

2π
(i∞)V− µ

2π
(−i∞)Vα(t−1 )V−α(t+1 )〉cy〈

∏n
k=1 Vα(t−k )V−α(t+k )〉cy

〈Vα(t−1 )V−α(t+1 )〉cy〈V µ
2π

(i∞)V− µ
2π

(−i∞)
∏n
k=1 Vα(t−k )V−α(t+k )〉cy

= e−iµαx〈V µ
2π

(i∞)Vα(t−1 )〉cy〈V− µ
2π

(−i∞)V−α(t+1 )〉cy×

× 〈V µ
2π

(i∞)V−α(t+1 )〉cy〈V− µ
2π

(−i∞)Vα(t−1 )〉cy

= e−iµαx lim
Λ→∞

(
−

sin 1
2(πxn − iΛ)

sin 1
2(πxn + iΛ)

)µα
2π
(
−

sin 1
2(πxn − iΛ)

sin 1
2(πxn + iΛ)

)µα
2π

= e−iµαx(1− 1
n

).

(4.14)

Thus the corresponding Fourier transformed generalized probability distributions can be
found as

pVα|In (µ) = F Vα,In (µ, x)pVαn (µ) = F Vα,In (µ, x)fVαn (µ, x)pIn(µ) = e
iαµx
n pIn(µ). (4.15)

Then we get
pVα|In (q) = pIn(q − αx/n). (4.16)

Now the symmetry resolved Rényi relative entropies are easily obtained

Sn(ρVα(q)‖ρI(q)) =− log p
Vα(q)
pI(q) + 1

1−n log p
Vα|I
n (q)
pVαn (q)

+Sn(ρVα‖ρI)

= α2x2−2αx∆q
2〈∆q2〉I

+ 2nαx∆q−(1+n)α2x2

2n2〈∆q2〉In
+ α2

1−n log sinπx
nsin πx

n

.

(4.17)

Taking the limit n→ 1, the symmetry resolved relative entropy is given by

S(ρVα(q)‖ρI(q)) = α2(1− πx cot(πx))− α2x2

2〈∆q2〉I
= S(ρI(q)‖ρVα(q)). (4.18)
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Finally, let’s compute the symmetry resolved relative entropy between two vertex op-
erators. As before, we begin with

F
Vα,Vβ
n (µ, x) = 〈Vµ(i∞)V−µ(−i∞)Vα(t−1 )V−α(t+1 )

∏n
k=2 Vβ(t−k )V−β(t+k )

〈Vα(t−1 )V−α(t+1 )
∏n
k=2 Vβ(t−k )V−β(t+k )〉cy〈Vµ(i∞)V−µ(−i∞)〉cy

[fVαn (µ, x)]−1

= eiµαx(µ, x)F Vα,In (µ, x)F I,Vβn (µ, x)[fVαn (µ, x)]−1

= eiµ(α−β)( 1
n
−1)x, (4.19)

which implies
p
Vα|Vβ
n (q) = pIn(q − (α− β)(1− 1/n)x− αx). (4.20)

The symmetry resolved relative entropy can be derived in a similar way, and the final
result is

S(ρVα(q)‖ρVβ (q)) = (α− β)2(1− πx cot(πx))− (α− β)2x2

2〈∆q2〉I
, (4.21)

which is also q independent up to order 1/ logL.
In this subsection, we find that all the symmetry resolved relative entropies did not

depend on the charge eigenvalue up to order (logL)−1, which means the relative entropies
are the same in the different charge sectors. We must mention that the equipartition of
relative entropy may be broken at higher order in 1/ logL.

4.2 Resolution of relative entropy between the derivative operator and the
ground state

In this subsection, we will consider a more complicated case, which is the symmetry reso-
lution of the relative entropy between the excited state generated by a derivative operator
and the ground state. Let’s start with

F i∂φ,In (µ, x) =
〈V µ

2π
(i∞)V− µ

2π
(−i∞)i∂φ(t−1 )i∂φ(t+1 )〉cy〈

∏n
k=1 i∂φ(t−k )i∂φ(t+k )〉cy

〈i∂φ(t−1 )i∂φ(t+1 )〉cy〈V µ
2π

(i∞)V− µ
2π

(−i∞)
∏n
k=1 i∂φ(t−k )i∂φ(t+k )〉cy

=
〈V µ

2π
(i∞)V− µ

2π
(−i∞)i∂φ(t−1 )i∂φ(t+1 )〉cy

〈i∂φ(t−1 )i∂φ(t+1 )〉cy〈V µ
2π

(i∞)V− µ
2π

(−i∞)〉cy
[f i∂φn (µ, x)]−1

=
(

1− µ2

π2 sin2 πx

n

)
[f i∂φn (µ, x)]−1.

(4.22)

Then we obtain

pi∂φ|In (µ) = F i∂φ,In (µ, x)pi∂φn (µ) = F i∂φ,In (µ, x)f i∂φn (µ, x)pIn(µ)

=
(

1− µ2

π2 sin2 πx

n

)
pIn(µ).

(4.23)

After Fourier transformation, we find

pi∂φ|In (q) =
(

1− cn(q)
π2 sin2 πx

n

)
pIn(q). (4.24)
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The symmetry resolved Rényi relative entropies can be derived straightforwardly from the
following equation

Sn(ρi∂φ(q)‖ρI(q)) = − log p
i∂φ(q)
pI(q) + 1

1− n log p
i∂φ|I
n (q)
pi∂φn (q)

+ Sn(ρi∂φ‖ρI). (4.25)

In this case, to see whether equipartition of relative entropy hold at order 1/ logL, we can
keep only the first order µ2 in the expansion of f i∂φn (µ, x), i.e. to approximate pi∂φn (q) as

pi∂φn (q) '
(

1− 1
2bn,2cn(q)

)
pIn(q). (4.26)

Then in the physical regime ∆q of order 1, we have

Sn(ρi∂φ(q)‖ρI(q)) =Sn(ρi∂φ‖ρI)+ c1(q)
π2 sin2πx+ cn(q)

1−n

(1
2bn,2−

1
π2 sin2 πx

n

)
+O((logL)−2).

(4.27)
The symmetry resolved relative entropy is obtained after taking the limit n→ 1

S(ρi∂φ(q)‖ρI(q)) = 2 log(2 sin(πx)) + 2− 2πx cot(πx) + 2ψ
(csc(πx)

2

)
+ 2 sin(πx)

+ c1(q)
4π2

(
ψ(2)

(csc(πx)
2

)
+ 12 sin2(πx) + 8 sin3(πx)− 4πx sin(2πx)

)
+O((logL)−2). (4.28)

From the above equation, in contrast to the previous case, we find that the equipartition
of relative entropy breaks down at order 1/ logL.

4.3 Resolution of relative entropy between the derivative operators and the
vertex operators

In this subsection, we finally study the symmetry resolved relative entropy between two
excited states, generated by a derivative operator and a vertex operator respectively. As
usual, we first compute

F i∂φ,Vαn (µ, x)

=
〈V µ

2π
(i∞)V− µ

2π
(−i∞)i∂φ(t−1 )i∂φ(t+1 )

∏n
k=2 Vα(t−k )V−α(t+k )〉cy〈

∏n
k=1 i∂φ(t−k )i∂φ(t+k )〉cy

〈i∂φ(t−1 )i∂φ(t+1 )
∏n
k=2 Vα(t−k )V−α(t+k )〉cy〈V µ

2π
(i∞)V− µ

2π
(−i∞)

∏n
k=1 i∂φ(t−k )i∂φ(t+k )〉cy

=
〈V µ

2π
(i∞)V− µ

2π
(−i∞)i∂φ(t−1 )i∂φ(t+1 )

∏n
k=2 Vα(t−k )V−α(t+k )〉cy

〈i∂φ(t−1 )i∂φ(t+1 )
∏n
k=2 Vα(t−k )V−α(t+k )〉cy〈V µ

2π
(i∞)V− µ

2π
(−i∞)〉cy

[f i∂φn (µ, x)]−1.

(4.29)

To calculate the complicated correlators in the above equation, it’s useful to introduce

Fn(µ, x) =
〈V µ

2π
(i∞)V− µ

2π
(−i∞)i∂φ(t−1 )i∂φ(t+1 )

∏n
k=2 Vα(t−k )V−α(t+k )〉cy

〈V µ
2π

(i∞)V− µ
2π

(−i∞)〉cy〈
∏n
k=2 Vα(t−k )V−α(t+k )〉cy

. (4.30)
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Then one can rewrite F i∂φ,Vαn (µ, x) as

F i∂φ,Vαn (µ, x) = Fn(µ, x)
Fn(0, x) [f i∂φn (µ, x)]−1 (4.31)

Noticing that
i∂φ(t) = 1

ε

∂

∂t
Vε(t)

∣∣∣
ε=0

, (4.32)

we have [15, 53]

〈V µ
2π

(i∞)V− µ
2π

(−i∞)i∂φ(t−1 )i∂φ(t+1 )
n∏
k=2

Vα(t−k )V−α(t+k )〉cy

= − 1
ε2

∂

∂t+1

∂

∂t−1
〈V µ

2π
(i∞)V− µ

2π
(−i∞)Vε(t−1 )V−ε(t+1 )

n∏
k=2

Vα(t−k )V−α(t+k )〉cy
∣∣∣
ε=0

= 〈V µ
2π

(i∞)V− µ
2π

(−i∞)
n∏
k=2

Vα(t−k )V−α(t+k )〉cyCε=0,α(n, x).

(4.33)

Then we can write

F(µ, x) = F I,Vα(µ, x)Cε=0,α(n, x) = eiµαx(1− 1
n

)Cε=0,α(n, x) (4.34)

where
Cε,α(n, x) = − 1

ε2
∂t+1

∂t−1
C̃ε,α(n, x), (4.35)

and

C̃ε,α(n, x) = 〈Vε(t−1 )V−ε(t+1 )〉cy
× 〈V µ

2π
(i∞)Vε(t−1 )〉cy〈V µ

2π
(i∞)V−ε(t+1 )〉cy〈V− µ

2π
(−i∞)Vε(t−1 )〉cy〈V− µ

2π
(−i∞)V−ε(t+1 )〉cy

×
n∏
k=2
〈Vε(t−1 )Vα(t−k )〉cy〈Vε(t−1 )V−α(t+k )〉cy〈V−ε(t+1 )Vα(t−k )〉cy〈V−ε(t+1 )V−α(t+k )〉cy.

(4.36)

After taking derivatives of C̃ε,α(n, x) and taking ε = 0, one find

Fn(µ,x) = eiµαx(1− 1
n

)

4

(
csc2 πx

n
+α2

(
ncotπx−cot πx

n

)2
− 2iαµ

π

(
ncotπx−cot πx

n

)
−µ

2

π2

)
.

(4.37)
It follows that

pi∂φ|Vαn (µ) = F i∂φ,Vαn (µ, x)pi∂φn (µ) = Fn(µ, x)
Fn(0, x) p

I
n(µ)

=
(

1− 2iµdn + µ2

π2 csc2 πx
n + d2

n

)
eiµαx(1− 1

n
)pIn(µ),

(4.38)

where we have defined
dn ≡ πα(n cotπx− cot πx

n
). (4.39)
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After Fourier transformation, we obtain

pi∂φ|Vαn (q) =
(

1− 2dn∆q̃ + cn(q̃)〈∆q2〉In
(π2 csc2 πx

n + d2
n)〈∆q2〉In

)
pIn(q̃), q̃ ≡ q − αx(1− 1

n
). (4.40)

The symmetry resolved Rényi relative entropies are given by

Sn(ρi∂φ(q)‖ρVα(q)) = − log p
i∂φ(q)
pVα(q) + 1

1− n log p
i∂φ|Vα
n (q)
pi∂φn (q)

+ Sn(ρi∂φ‖ρVα). (4.41)

Similar to the previous calculation, in the physical regime ∆q of order 1, we have

Sn(ρi∂φ(q)‖ρVα(q)) = Sn(ρi∂φ‖ρVα) + 2αx∆q − α2x2

2〈∆q2〉I
− 2nαx∆q + (1− n)α2x2

2n2〈∆q2〉In

+ c1(q)
π2 sin2 πx+ 1

1− n

(
cn(q)

2 bn,2 −
2dn∆q̃ + cn(q̃)〈∆q2〉In

(π2 csc2 πx
n + d2

n)〈∆q2〉In

)
+O((logL)−2). (4.42)

The symmetry resolved relative entropy is obtained after taking the limit n→ 1

S(ρi∂φ(q)‖ρVα(q))

= (2+α2)(1−πxcot(πx))+2log(2sin(πx))+2ψ
(csc(πx)

2

)
+2sin(πx)

+ c1(q)
4π2

(
ψ(2)

(csc(πx)
2

)
+12sin2(πx)+8sin3(πx)−4πxsin(2πx)

)
− α2x2

2〈∆q2〉I

+α∆q(2xsin2πx+(π sin2πx−2π2x)〈∆q2〉I)
π2[〈∆q2〉I ]2 +O((logL)−2).

(4.43)

From the above equation we know that the equipartition of relative entropy also breaks
down at order 1/ logL.

5 Numerical tests

We now make some numerical tests of the universal CFT results obtained in the previous
section. In this section, we will use the XX spin chain model as a concrete lattice model
to check our CFT predictions. The Hamiltonian of the XX spin chain is given by

H = −1
4

L∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 − hσ

z
j

)
, (5.1)

where σx,y,zj are the Pauli matrices acting on the j-th site and we impose periodic boundary
conditions. For simplicity, we assume that h = 0 and the length of chain L multiples of 4.
We are only interested in the spatial bipartition of the system where subsystem A is given
by l continuous lattice sites.

We did not manage to compute symmetry resolved relative entropies numerically. In-
stead, we numerically calculate the Fourier transformed generalized probabilities pρ|σn (µ)
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Figure 1. Numerical data of |pV1|I
n (µ)| in the XX spin chain. The full lines are the CFT predictions,

eq. (4.15) with eq. (3.29). Here we consider n = 1, 2, 3 and x = 1/18, 1/6, 1/2 with L = 1800. The
agreement is very well for small µ, but it worsens as µ gets closer to ±π and as n get larger.
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Figure 2. Numerical data of |pi∂φ|V1
n (µ)| in the XX spin chain. The full lines are the CFT

predictions, eq. (4.38) with eq. (3.29). Here we consider n = 1, 2, 3 and x = 1/20, 1/10, 1/5 with
L = 1000. The agreement is very well for small µ, but it worsens as µ gets closer to ±π and as n
get larger.

for integer n, which are the key integrant in the computation of symmetry resolved Rényi
relative entropies. They are defined as

pρ|σn (µ) = tr(ρAσn−1
A eiµQA)

tr(ρAσn−1
A )

(5.2)

In the limit L → ∞ with x = l/L kept fixed, our numerical results should converge to
the CFT computations for pρ|σn (µ) calculated from eq. (4.2). The technical details of the
numerical computation are discussed in appendix A.

The numerical results for the function |pV1|I
n (µ)| are reported in figure 1 for different n

and different subsystem sizes l, where we have used the exact results for the ground state
variance given in [27]. As shown in the figure, the agreement between numerical data and
CFT prediction is excellent for small µ, while it gets worse for larger values of µ and n.

In figure 2, we report the numerical data for the quantities |pi∂φ|V1
n (µ)| for various n

and l. From eq. (4.38), it’s clear that |pi∂φ|V1
n (µ)| is non-Gaussian although it’s not easy to

see this from the figure. In this case, the numerical results and the CFT predictions also
match very well for small values of µ and n.

In figure 3, we show the numerical results of the ratio pi∂φ|In (µ)/pIn(µ) for different n
and l. From eq. (4.23), it’s easy to see that pi∂φ|In (µ) is also non-Gaussian. This figure
shows the non-Gaussian feature clearly and the agreement between the numerical data and
CFT results is perfect for small values of µ and n.
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Figure 3. Numerical data of pi∂φ|I
n (µ)/pIn(µ) in the XX spin chain. The full lines are the CFT

predictions, eq. (4.23). Here we consider n = 1, 2, 3 and x = 1/10, 1/4, 1/2 with L = 2000. Again,
the agreement is very well for small µ, but it worsens as µ gets closer to ±π and as n get larger.

6 Conclusion

In this paper, we study the U(1) symmetry resolution of relative entropies between primary
states in the free massless compact boson CFT and its concrete lattice realization, the XX
spin chain. We obtain various exact results from the CFT calculation using the replica
method. We also carefully test our CFT predictions with the exact lattice calculations in
the XX spin chain and find perfect agreements.

We must mention that the symmetry resolved relative entropies cannot be obtained
directly by our numerical method. Instead, we just compute the Fourier transformed
generalized probabilities numerically. It would be very interesting to further numerically
confirm our CFT results of symmetry resolved relative entropies by other methods.

Several generalizations of this paper would be worth investigating. For example, one
can consider the U(1) symmetry resolved relative entropies in other CFTs (such as Ising and
other minimal models) and the corresponding lattice models or consider the extension to
Wess-Zuminon-Witten models which have non-abelian symmetries. One can also work out
the symmetry resolution of other entanglement-related quantities. For example, a natural
extension could be to consider the mutual information or the trace distance.
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A Correlation matrices and RDMs in XX spin chain

The Hamiltonian of the XX spin chain is given by

H = −1
4

L∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 − hσ

z
j

)
, (A.1)
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where σx,y,zj are the Pauli matrices acting on the j-th site and we impose periodic boundary
conditions. After a Jordan-Wigner transformation

cj =

j−1∏
k=1

σzk

 σxj − iσ
y
j

2 , c†j =

j−1∏
k=1

σzk

 σxj + iσyj
2 , (A.2)

the spin chain Hamiltonian is mapped into a free fermion Hamiltonian on the lattice

H = −1
2

L∑
j=1

[
c†jcj+1 + c†j+1 − 2h(c†jcj −

1
2)
]
, (A.3)

where cj , c†j are fermionic annihilation and creation operators, satisfying {ci, c†j} = δij . We
will impose anti-periodic boundary conditions to the fermions cL+1 = −c1, c

†
L+1 = −c†1. For

simplicity, we assume that h = 0 and the length of chain L multiples of 4. The Hamiltonian
eq. (A.3) can be diagonalized by Fourier transformation

bk = 1√
L

L∑
l=1

cle
iφkl, b†k = 1√

L

L∑
l=1

c†l e
−iφkl, φk = 2πk

L
(A.4)

Then
H =

∑
k∈Ω

εk

(
b†kbk −

1
2

)
, (A.5)

where εk = − cos k and the corresponding Ω is

Ω =
{
±1

2 ,±
3
2 , · · · ±

L− 1
2

}
. (A.6)

The eigenstates of the Hamiltonian can be characterized by a set of momenta K, |K〉 =∏
k∈K b

†
k |0〉. The ground state is a Fermi sea with Fermi momentum kF = π/2 and is half-

filling with fermion number nF = L/2, characterized by the set of momenta: {±1
2 ,±

3
2 , · · ·±

nF−1
2 }. Low-lying excited states are obtained by removing/adding particles in momentum

space close to the Fermi surface. The correspondence between low-lying excitations in XX
chain and primary excited states in CFT is described in detail in [45]. This model has a
U(1) symmetry with the conserved charge Q =

∑L
j=1 c

†
jcj .

We are interested in the spatial bipartition of the system where subsystem A is given
by l contiguous lattice sites. The reduced density matrix of the pure state |K〉 can be
written as

ρA = detCKA exp

∑
i,j

log
[
((CKA )−1 − 1)

]
ij
c†icj

 , (A.7)

where the l × l matrix [CKA ]m,n = 〈K| c†mcn |K〉 is the correlation matrix restricted in A.
The element of CKA is given by

[CKA ]mn = 1
L

∑
k∈K

eiφk(m−n). (A.8)
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It useful to introduce 2L Majorana modes

a2m−1 = cm + c†m, a2m = i(c†m − cm). (A.9)

For an interval with l sites of the spin chain in a state |K〉, one defines the Majorana
correlation matrix

〈aras〉K = δrs + ΓKrs (A.10)
with Γ ∈M2N (C):

ΓK =


TK0 TK1 · · · TKl−1
TK−1 TK0 · · · TKl−2
...

... . . . ...
TK1−l T

K
2−l · · · TK0

 , TKm−n =
(
fKm−n gKm−n
−gKn−m fKm−n

)
, (A.11)

and

fKm−n = [CKA ]mn − [CKA ]nm = 1
L

∑
k∈K

eiφk(m−n) − 1
L

∑
k∈K

e−iφk(m−n),

gKm−n = −i[CKA ]mn − i[CKA ]nm + δmn = − i
L

∑
k∈K

e−iφk(m−n) + i

L

∑
k/∈K

eiφk(m−n).
(A.12)

The 2l × 2l RDM are completely determined by the correlation matrix ΓK .

ρΓ1ρΓ2 = tr(ρΓ1ρΓ2)ρΓ1×Γ2 , (A.13)

where

tr(ρΓ1ρΓ2) =
√∣∣∣∣1 + Γ1Γ2

2

∣∣∣∣, (A.14)

and one defines the product rule [54]

Γ1 × Γ2 = 1− (1− Γ2)(1 + Γ1Γ2)−1(1− Γ1). (A.15)

Now, by associativity, one can obtain the trace of the product of arbitrary number of RDMs

tr(ρΓ1ρΓ2 · · · ) = tr(ρΓ1ρΓ2)tr(ρΓ1×Γ2 · · · ). (A.16)

Then the above formula is rather useful to calculate the Rényi relative entropy. However,
when we want to know the symmetry resolution of relative entropy, we need to calculate

pρ|σn (µ) = tr(ρAσn−1
A eiµQA)

tr(ρAσn−1
A )

. (A.17)

We can also view eiµQA as some RDM with Majorana correlation matrix Γµ since

eiµQA = e
iµ
∑l

j=1 c
†
jcj =

l∏
j=1

(
eiµc†jcj + cjc

†
j

)

= (1 + eiµ)l
l∏

j=1

[
pjcjc

†
j + (1− pj)c†jcj

]
,

(A.18)

where pj = 1
1+eiµ . The Majorana correlation matrix Γµ have the same structure with ΓK

(cf. (A.11)) but with different block matrices

fµm−n = 0, gµm−n = i(1− eiµ)
eiµ + 1 δmn. (A.19)
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