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A new method for space-group determination is described. It is based on a

symmetry analysis of the structure-factor phases resulting from a structure

solution in space group P1. The output of the symmetry analysis is a list of all

symmetry operations compatible with the lattice. Each symmetry operation is

assigned a symmetry agreement factor that is used to select the symmetry

operations that are the elements of the space group of the structure. On the basis

of the list of the selected operations the complete space group of the structure is

constructed. The method is independent of the number of dimensions, and can

also be used in solution of aperiodic structures. A number of cases are described

where this method is particularly advantageous compared with the traditional

symmetry analysis.

1. Introduction

The determination of the correct space-group symmetry is one

of the steps in the complete structural analysis of a crystalline

material by diffraction techniques. Usually different methods

are combined in order to reduce the number of different space

groups that are compatible with the experimental data; firstly

the experimental Laue symmetry of the intensity-weighted

reciprocal lattice reduces the number of possible space groups

to those of the Laue class. Secondly the existence or non-

existence of so-called systematic absences for certain reflec-

tion classes betrays the presence or absence of nonsym-

morphic symmetry operations. The combination of the

different systematic absences leads to the construction of the

extinction symbol; combined with the correct Laue symmetry

the diffraction symbol is obtained. The International Tables

for Crystallography (Hahn, 2002) can be used to look up to

which possible space group a certain diffraction symbol

corresponds. Only in 50 cases does a diffraction symbol

uniquely define a space group; in all other cases between two

and five different possibilities exist for the correct space group.

A further reduction of the possibilities can be made by

considering the ratio of the average observed intensity for

specific classes of reflections over that of general reflections to

indicate the presence of different symmorphic symmetry

elements. Alternatively, space-group frequency tables based

on the occurrence of space groups in databases such as the

Cambridge Structural Database (CSD) for organic and

organo-metallic compounds, the Inorganic Crystal Structure

Database (ICSD) for inorganic compounds, and the Protein

Data Bank (PDB) for protein structures are used to discri-

minate between the different possibilities. The statistics of

properly normalized structure factors can be used to discri-

minate between centrosymmetric and noncentrosymmetric

space groups with the same diffraction symbol. The space

group selected by the combination of these methods is

subsequently used for the structure-solution step and vali-

dated by a successful structure refinement.

Although in the majority of cases the determination of the

correct space group is relatively straightforward, problematic

cases can hamper structure solution occasionally. There are

different reasons why the standard methods may fail; espe-

cially in the case of weak data it may be difficult to discrimi-

nate between ‘observed’ and ‘non-observed’ reflections, so

that the presence of nonsymmorphic symmetry operations

may easily be overlooked. This is also the case if the data are

strong but a result of the presence of, for example, stacking

faults in the structure or if the Renninger effect diffraction

intensity is observed for ‘forbidden’ reflections. The methods

that are based on statistics have the obvious drawback that

they only give a certain probability for the correct choice. In

powder diffraction the correct choice of the space group is

nearly always problematic, because of the overlap of reflection

peaks. Several advanced space-group determination methods

have been proposed for powder data, all being probabilistic in

nature (Markvardsen et al., 2001; Altomare et al., 2004). For

incommensurate structures only JANA2006 (Petřı́ček et al.,

2006) has an option to guide the choice of the space group

based on an analysis of systematic extinction conditions. The

difficulties here are that satellite reflections are in general

rather weak, so that it is often difficult to decide between

‘observed’ and ‘non-observed’ reflection classes. Another

problem is that the range of the satellite index is usually very

small (1–4) so that the number of reflections on which the
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analysis is based is also very small, making the assessment of

what is extinct and non-extinct statistically not very reliable.

The difficulty in determination of the space group arises

from the simple fact that the space-group determination

precedes the structure solution. This is necessary if the

knowledge of the symmetry is used in the structure-solution

process. However, it has been mentioned several times in the

past that in some cases direct methods perform better if the

solution is attempted in P1 (Sheldrick & Gould, 1995; Burla et

al., 2000). Moreover, recently, powerful structure-solution

methods have appeared that make no use of the symmetry for

structure solution at all (Oszlányi & Süto��, 2004, 2007; Elser,
2003). In all such cases the symmetry determination can be

performed after the structure solution.

On the basis of the idea that the determination of the

symmetry from the phased structure factors is principally an

easier task than if only diffracted intensities are used, we

propose here a novel method for determining the correct

space-group symmetry. It relies on a symmetry analysis of the

phase set resulting from the structure solution in P1. It can

find in one step symmorphic and nonsymmorphic symmetry

operations, and detects as well the presence or absence of

inversion centers. It is noted that the algorithm was developed

for a program SUPERFLIP (Palatinus & Chapuis, 2007)

where it is used to determine the symmetry in a scattering

density obtained by the charge-flipping algorithm (Oszlányi &

Süto��, 2004), and charge flipping is thus the structure-solution

method used in this study. However, the method can be used

with any structure-solution method solving a higher-symme-

trical structure in P1. The new space-group determination

method can also be used for aperiodic structures described in

a (3+d)D-dimensional space.

Interestingly a method for locating the known space-group

symmetry in a scattering density has been devised several

times in the past in different contexts (Hendrixson &

Jacobson, 1997; Burla et al., 2000; Palatinus, 2004), but to our

knowledge nobody has made the step towards reconstructing

the complete space group without any a priori assumptions.

We first outline in detail the symmetry-searching procedure

before presenting a number of examples that illustrate the

method. The method is compared with a number of other

space-group determination methods.

2. Symmetry determination in electron-density maps

In this section we present an algorithm for an automatic

detection of the most probable space group of a crystal

structure represented by its scattering density. The input to the

symmetry-searching algorithm is a scattering density � in one

unit cell, or, equivalently, a list of phased structure factors

obtained by a Fourier transform of the scattering density. � is

typically an electron density, but it can also be a neutron

scattering density or a potential density; positivity is not

required. It is further assumed that the scattering density

represents a structure solution in P1, i.e. without any

assumptions on its symmetry. As a result, the true symmetry of

the structure is present in the scattering density only

approximately, and the origin of the space group is randomly

positioned in the unit cell.

The algorithm can be decomposed into the following steps:

(i) Determine the lattice centering

(ii) Generate the complete list of possible symmetry

operations compatible with the lattice

(iii) Assign a figure of merit to each symmetry operation,

and select the symmetry operations that belong to the space

group of the structure

(iv) Complete and validate the space group

(v) Shift the position of the symmetry operations to a

conventional origin

Conceptually the algorithm is not complicated, but each

step can be implemented in several ways differing in details.

What follows is a description of the algorithm, as it is imple-

mented in the computer program SUPERFLIP. SUPERFLIP

has been from the beginning designed to work in arbitrary

dimensions in order to allow also for structure solution of two-

dimensional structures, modulated structures and quasicrys-

tals. Therefore, the symmetry-searching algorithm, as it is

described here, does not rely in any manner on the dimen-

sionality of the analyzed scattering density.

2.1. Lattice centering

Determination of the lattice centering must be the first step

of the symmetry determination for reasons to become clear in

x2.5. The easiest way to determine the lattice centering is to

analyze the autocorrelation function (Patterson function)

P ¼ �ðrÞ ? �ð�rÞ. If �ðrÞ ¼ �ðrþ mÞ, i.e. if � exactly contains a

nonzero centering vector m, then P will have a maximum at m
with a height equal to the origin peak. If the centering is only

approximate, the peak will be lower than the origin peak.

Once the candidates for a centering vector are found in the

Patterson function, we use the following value to evaluate the

significance of each candidate:

RðmÞ ¼

P

h;h�m¼integ:

jFðhÞj2
P

h

jFðhÞj2 ; ð1Þ

where the summation runs over all the structure factors

calculated from �. The value of RðmÞ depends only on the

amplitudes and not on the phases of the structure factors and

as such can be determined prior to the structure solution. In

practice the centering is often determined already at the data-

reduction stage, and very often the reflections extinct as a

result of the lattice centering are not included in the final data

set at all. Therefore we decided to set a relatively strict

acceptance limit for the centering vector. The vector m is

accepted as a centering vector of the space group if

RðmÞ> 0:98, which means that the sum of intensities of the

reflections extinct because of the centering must be less than

2% of the total sum of intensities. Setting a more relaxed limit

would increase the tolerance to the noise in the data, but at the

cost of accepting a false centering vector in cases of super-

structures, where the differences between individual subcells

are often very small.
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Using the Patterson function for detection of the lattice

centering is essentially equivalent to a search for systematic

absences, but it does not require a table of possible reflection

classes to test, and therefore detects also nonstandard

centering vectors and is applicable to structures in any

dimension.

2.2. List of symmetry operations

The second step in the symmetry determination is a deri-

vation of all the symmetry operations that are compatible with

the lattice parameters and lattice centering. A necessary and

sufficient condition for a matrix R to represent a rotational

part of potential symmetry operation S ¼ fRjsg is
RTG ¼ GR�1; ð2Þ

where the superscript T denotes the transpose of the matrix

and G is the metric tensor gij ¼ ai � aj.1 R is an integer matrix,

and, if the lattice basis is symmetry adapted, then R contains

only 0, �1 and 1. If the search for possible rotation matrices is

not limited to matrices with elements 0, �1 and 1, then the

algorithm will be able to detect symmetry even in a non-

canonical basis, for example, a hexagonal symmetry in a

structure described in a monoclinic basis. However, allowing

matrices with elements larger than 1 results in an increased list

of possible symmetry operations. In practice it is unlikely that

a higher-symmetrical lattice basis will be missed thanks to the

advanced algorithms in most of the data-reduction software.

Therefore, for the sake of saving computational time, the

search in SUPERFLIP is currently limited to matrices with

elements 0, �1 and 1.

Each potential rotational part R compatible with equation

(2) must be combined with all possible translation vectors s to
obtain complete symmetry operations. Because the position of

the symmetry element in the unit cell is to be determined later

and can be arbitrary, it makes sense to derive only the intrinsic

translation vectors sint. These vectors fulfill the equation

kXsint ¼ ksint ¼ mmod integer; ð3Þ
where k is the order of R, m is any lattice-centering vector

including the zero vector and X is the projection operator:

X ¼ ð1=kÞPk
i¼1 R

i. Using equation (3) it is an easy task to

generate a complete list of possible intrinsic translation

vectors sint for each of the potential rotational parts R. As a

result, a complete list of symmetry operations S ¼ fRjsintg
compatible with the lattice is obtained.

2.3. Finding the origin-dependent translation vector of a

symmetry operation

The method for determination of the position of a

symmetry element in the unit cell has been described in detail

elsewhere (Hendrixson & Jacobson, 1997; Palatinus &

Chapuis, 2007), but let us briefly review it here, adapted for the

present purpose. Let us assume that � is approximately

symmetrical according to a symmetry operation S ¼ fRjsg.
s can be located as a maximum in the correlation function

CðdÞ between � and its image transformed by R:

CðdÞ ¼ R
�ðrÞ �ðRrþ dÞ dr: ð4Þ

The translational part s has intrinsic and origin-dependent

components: s ¼ sint þ sor. Several symmetry operations can

have the same rotational part R but different intrinsic trans-

lational parts, and therefore it is not enough to locate the

absolute maximum of CðdÞ, because in such a case the trans-

lational part of only one of the whole family of symmetry

operations would be determined. To obtain the optimal

position of a symmetry operation with rotational part R and

intrinsic translational part sint, the maximum value of CðdÞ
must be searched only at such points d, where d� sint is a

purely origin-dependent translation vector for matrix R, i.e.

Xd ¼ sint.

2.4. Determination of the symmetry operations compatible

with the scattering density

This stage is the essential part of the symmetry-searching

algorithm. It is necessary to evaluate each potential symmetry

operation and decide if it belongs to the space group of the

structure or not. If � is perfectly symmetrical according to

S ¼ fRjsg, then the following relation between structure

factors is valid:

Fh ¼ FhR expð2�ihsÞ: ð5Þ
Thus, the phase difference between Fh and FhR can be used to

estimate how well the symmetry operation S is present in �.
The phase difference for reflection h and that related by S can

be defined as

�h;S ¼ j’ðhÞ � ’ðhRÞ � 2�h � sþ 2�nj; ð6Þ
where ’ denotes the phase of the structure factor and n is an

integer number such that �h;S has the smallest value. There

are many ways to combine �h;S of all reflections into a single

figure of merit, the most obvious being a simple average or

mean phase difference. Another possibility is to use directly

the value of CðdÞ. Burla et al. (2000) propose another criterion
(called S2), which is closely related to the value of CðdÞ. All

these criteria have in common that they are linear or close to

linear in at least a part of the interval of �h;S. However, our

tests show that criteria involving the first power of �h;S are

prone to noise, and it is not easy to find a quantitative limit

between a good and a bad value. Using a higher power of�h;S
appears more favorable in this respect, and therefore we chose

the following criterion, a weighted mean-square phase

difference, which we call the symmetry agreement factor �sym:

�symðSÞ ¼ C

P

h

jFhFhRj�2
h;S

P

h

jFhFhRj
: ð7Þ

The normalization constant C ¼ 3=�2 is selected so that a

completely random density will give �sym ¼ 1. A perfectly

symmetrical density will, of course, result in �sym ¼ 0. �symðSÞ
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1 For an introduction and discussion of the concepts used throughout this
section, such as metric tensors, intrinsic translation, projection operators etc.,
see Hahn (2002), especially ch. 8 by H. Wondratschek.
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must be calculated for every potential symmetry operation S
from the list. All operations with �symðSÞ below a certain

threshold are then considered to be elements of the space

group of the structure. The acceptance threshold is the second

and last parameter of the algorithm (the first being the

threshold for acceptance of the centering vector). Its value

strongly depends on the method used for the structure solu-

tion and on the quality of the data. If the method is charge

flipping or another dual-space iterative structure-solution

method, the data quality is good, and proper steps are

undertaken to improve the solution after the convergence

(Palatinus & Chapuis, 2007; Oszlányi & Sütö, 2008), then

according to our experience �sym for the correct symmetry

operations is most frequently below 0.1, and almost always

below 0.2, while �sym for the wrong symmetry operations is

usually above 0.5. In SUPERFLIP the default acceptance

threshold is 0.25, and this limit works very well in a vast

majority of cases, although it can fail occasionally in cases of

very noisy data, especially data extracted from powder

patterns or data from a twinned crystal.

2.5. Completing and validating the space group

At this stage we have produced a list of symmetry opera-

tions that are most likely the elements of the space group of

the structure. The main goal of the algorithm is completed,

and, indeed, often the list of symmetry operations with their

�sym suffices and the crystallographer can immediately judge

the correct space group. However, to make the space-group

determination completely automatic, the space group must

also be automatically validated and completed. In an ideal

case the list of accepted symmetry operations contains all the

elements of the space group and nothing else. In practice this

is most often the case. However, two mechanisms can break

this ideal situation. Firstly, if the quality of the data or solution

is low, some of the true symmetry elements can have �sym

above the acceptance threshold. In such a case it is necessary

to generate the missing operations to complete the space

group. Secondly, in the case of pseudosymmetry false

symmetry operations can occur with �sym only slightly above

the �sym of the correct operations. A general case of pseudo-

symmetry cannot be easily detected, but a specific type of

pseudosymmetry occurs if the structure consists of multiple

copies of a smaller subcell with small deviations between the

subcells. These cases are characteristic of pseudotranslations

relating the subcells of the true cell. In such cases pairs of

symmetry operations can exist, whose combination results in

such a pseudotranslation. It is thus advisable to eliminate the

symmetry operations that, if combined with other operations

with smaller �sym, result in a nonprimitive translation other

than the known centering vectors. It is for this reason that it

was necessary to determine the centering vectors in advance

(x2.1). This procedure is especially important for modulated

structures with weak modulations, where such pseudo-

translations along the additional dimensions are more a rule

than an exception.

With the above considerations in mind, the space-group

completion is quite straightforward. The procedure is initiated

by sorting the symmetry operations by ascending �sym and by

forming a trivial space group with one element – the identity.

Then one element at a time is taken from the sorted list and

added to the list of elements of the space group. This

augmented list of elements is then completed to form again a

space group by combining the new element with all other

space-group elements. If any of the newly generated symmetry

operations is a false nonprimitive translation, then all the

symmetry operations added to the space group based on the

last element are discarded. This procedure is repeated with all

symmetry operations in the list with �sym below the acceptance

threshold.

2.6. Shifting the origin

The output of the procedure described in the preceding

sections is a complete space group of the structure, and the

task of finding the space group is essentially completed.

However, the space group still has an arbitrary origin, and it is

convenient to shift the origin to a more conventional one.

Hahn (2002) defines conventional origins for all two- and

three-dimensional space groups, but in general there is no

unambiguous choice of origin of a space group. Thus, a

computer program implementing the algorithm can either

resort to a table of space groups to find the conventional origin

or use an algorithm to locate an origin using a small number of

explicit rules, which, however, is not guaranteed to be the

conventional one. For higher-dimensional space groups only

the second possibility is applicable, since no conventional

origins exist for dimensions higher than three. In any case this

issue is only a minor problem, because the position of the

origin is not essential for the description of the structure, and

most modern crystallographic programs can deal with space-

group settings with nonconventional origin.

3. Examples

3.1. Weak data

Weak data often thwart the determination of the space

group based on the analysis of systematic extinctions, since the

distinction between reflections with observable intensity [with

e.g. I> 3�ðIÞ] and those systematically absent [and thus

necessarily I< 3�ðIÞ] becomes less clear. From our experience

it was observed that problems of this nature start to arise when

the mean value of the ratio of the intensity and its estimated

standard deviation for a given resolution, hI=�ðIÞi, drops

below 10. The example in this section concerns a structure

flo19, an organic molecule, C62H46N14, Z= 1, that crystallizes in

a primitive orthorhombic space group with two short and one

very long axis, giving diffraction data with hI=�ðIÞi ¼ 6:81.
The analysis of the relevant systematic absences is summar-

ized in Table 1.

The systematic absences suggest P–2121=n as diffraction

symbol, but this is a non-existing symbol in Laue class mmm

[Rint(mmm) = 0.06]. Taking possible combinations of the
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symmetry elements either P––n or P–2121 can thus be

proposed as possible diffraction symbol. It appears, however,

that it is impossible to solve the structure with the direct

method programs SIR2004 (Burla et al., 2005) and SHELXS

or SHELXD (Sheldrick, 2008) starting from the space groups

compatible with the diffraction symbols, viz. Pmmn, Pm21n,

P21mn and P22121. The structure solution with SUPERFLIP

proceeds smoothly, since the structure is solved in P1; inten-

sities were averaged according to Laue symmetry mmm and

subsequently expanded to P1. No a priori assumptions were

made concerning systematic absences, i.e. all reflections were

included in the data set. The subsequent symmetry analysis

shows that the correct space group is actually P21221, which is

confirmed by the structural refinement that follows. A control

using PLATON’s ADDSYM option (Spek, 2003) does not

show any additional symmetry. Interestingly, the nc-glide,

which clearly shows up in the list of systematic absences, is

absent in the final structure with a symmetry agreement factor

of only 0.72. An inspection of the refined structure shows that

in the projection of the structure onto the ab plane a large part

of the atoms are related by the centering vector (12,
1
2 ), which in

combination with the generally low intensities leads to the

pseudoextinction effect in the hk0 plane. It is now interesting

to compare the calculated hk0 squared structure factors

resulting from the final refinement using the structural model

without the nc-glide with the observed squared structure

factors that suggested the presence of an nc-glide. Table 2

shows that the reflections hk0: hþ k ¼ 2nþ 1 are indeed

correctly calculated. A detailed description of the structure

will be published elsewhere (Dimutru et al., 2008).

3.2. Faulty data

The second case concerns data sets where a considerable

amount of intensity is found on reciprocal space points that

should have zero intensity according to the space-group

symmetry. This can be due to the Renninger effect, overlap of

systematically extinct reflections with non-extinct reflections

of a minor twin component, or alternatively due to stacking or

other structural faults. A first example is given by the data set

of the organo-metallic complex flo2, C169H152B8F32Fe4N25O14,

Z = 4, whose correct space group is P41, although this is

overlooked by XPREP (Bruker, 1997) and GRAL (Oxford

Diffraction, 2008). It should be noted that PLATON’s module

SPGRfromEx does detect the 41 screw axis, but it is flagged as

doubtful. Table 3 compiles the relevant statistics for this case

and shows that the presence of the 41 screw axis is indeed

doubtful, since hI=�ðIÞi = 9.55 for the 00l: l ¼ 4nþ 1 reflec-

tions. The presence of an ab-glide perpendicular to the a axis

seems more probable, based on hI=�ðIÞi = 7.41 alone. The

ratio of the mean intensity between reflections satisfying the

reflection criterion and those not satisfying it (t/f), seems

therefore a better indicator of the presence of a reflection

condition, although even then it is not clear where to put the

threshold for deciding whether the reflection condition exists

or not. The ba-glide is ranked second, with t/f = 4.90, just

behind the 4c1 screw axis, with t/f = 8.20; it is not possible to

argue whether the threshold should be placed at t/f = 5.0 or

another value. SUPERFLIP solves this structure of 1008 non-

H atoms in the P1 unit cell in 277 iterations using data merged

according to 4/m Laue symmetry and keeping all reflections.

The presence of the 4c1 and 2
c
1 screw axes shows up very clearly

from the symmetry analysis of the resulting electron density

map, the agreement factors showing a large gap between the
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Table 2
Squared structure-factor amplitudes for hk0 reflections.

hkl jFj2meas jFj2calc �ðjFj2measÞ hkl jFj2meas jFj2calc �ðjFj2measÞ
200 462.72 321.36 146.48 210 500.43 365.23 98.41
110 74943.42 77477.83 349.31 310 450.69 499.72 157.19
020 110818.00 110601.12 1084.62 120 37.73 24.56 250.69
220 1731.50 1684.83 116.41 320 1892.20 2045.95 168.87
130 4679.84 3748.31 133.46 030 3040.15 2542.88 278.63
330 1253.49 1297.54 261.51 230 184.02 87.63 116.20
040 729.12 363.94 328.70 140 143.34 69.77 126.21
240 242.35 215.45 185.16 050 189.41 112.32 411.52
150 95.48 241.93 528.03 250 234.98 54.57 554.50

Table 1
Systematic absences for crystal flo19†.

The column ‘t /f ’ gives the ratio of columns 3 and 4. The column ‘True’ for �sym

indicates the symmetry agreement for the nonsymmorphic symmetry element
corresponding to the fulfilled reflection condition, and the column ‘False’ that
for the corresponding symmorphic symmetry element. �sym = 0.72 for the
inversion center. Bold values indicate �sym lower than 0.25.

hI=�ðIÞi No. of reflections �sym

Class Condition True False True False t /f True False

h00 h ¼ 2n 1.84 0.35 3 5 5.23 0.09 0.41
0k0 k ¼ 2n 52.20 5.69 2 2 9.18 0.40 0.10
00l l ¼ 2n 8.93 1.04 41 43 8.61 0.04 0.88
0kl l ¼ 2n 8.04 5.73 428 428 1.40 0.99 0.61
0kl k ¼ 2n 6.19 7.68 458 398 0.81 1.32 0.61
0kl kþ l ¼ 2n 7.20 6.57 426 430 1.10 0.92 0.61
h0l l ¼ 2n 8.92 8.15 230 231 1.09 0.75 0.80
h0l h ¼ 2n 6.05 10.50 204 257 0.58 1.22 0.80
h0l hþ l ¼ 2n 9.27 7.81 229 232 1.19 0.67 0.80
hk0 k ¼ 2n 4.72 16.24 41 38 0.29 0.81 0.70
hk0 h ¼ 2n 5.43 13.91 34 45 0.39 0.91 0.70
hk0 hþ k ¼ 2n 19.49 1.71 38 41 11.43 0.72 0.70

† Cell parameters: a = 3.91, b = 6.17, c = 51.22 Å, � = 90, � = 90, � = 90�, V = 1236.4 Å3;
hI=�ðIÞi = 6.81 for all data.

Table 3
Systematic absences for crystal flo2†.

hI=�ðIÞi No. of reflections

Class Condition True False True False t /f

0k0 k ¼ 2n 32.20 14.74 12 13 2.18
00l l ¼ 2n 39.53 13.04 37 37 3.03
00l l ¼ 4n 78.35 9.55 18 56 8.20
0kl l ¼ 2n 20.67 22.11 1525 1516 0.93
0kl k ¼ 2n 36.30 7.41 1471 1570 4.90
0kl kþ l ¼ 2n 20.73 22.05 1525 1516 0.94
hk0 hþ k ¼ 2n 30.77 26.28 228 226 1.17
hhl l ¼ 2n 20.12 21.29 1032 1038 0.95

† Cell parameters: a = 19.12, b = 19.12, c = 43.3 Å, � = 90, � = 90, � = 90� , V = 15829 Å3,
hI=�ðIÞi = 15.36 for all data. �sym = 0.08 (4c1); 0.13 (2

c
1); 0.68 (�44

c); 0.70 (�11); 0.76 (2a�b); 0.79
(mc); 0.80 (ba); 0.82 (ma); 0.86 (2a1); 0.86 (m

aþb); 0.87 (2c); 0.88 (4c); 0.88 (na�b); 0.90 (nc);
0.90 (2a); 0.97 (na); 1.04 (ca). Bold values indicate �sym lower than 0.25.
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symmetry operations present and those that are absent in the

electron density map.

It is interesting to note that the presence of the 4c1 screw axis

would have been immediately obvious by looking at a simu-

lated precession image of the a*c* plane. Fig. 1 shows the h0l

reciprocal plane reconstructed from the data collection

frames; the first space-group choice for structure solution

using direct methods would be P41. A detailed description of

the structure will be published elsewhere (Dimutru et al.,

2008).

The data set of structure 2 of Legrand et al. (2008)

(C14H17N5O, a = 9.39, b = 11.44, c = 27.42 Å, � = 90, � = 90, � =
90�, V = 2944.6 Å3) presents a similar case, the true space

group being Pcab (before transformation), but the reflection

condition corresponding to the ca-glide, i.e. 0kl: l ¼ 2nþ 1,

being polluted by spurious intensity, giving a fairly large value

for hI=�ðIÞi (6.8). Again, PLATON sorts out the correct space

group but it is flagged as doubtful, whereas XPREP does not

give any proposition, and GRAL gives an incorrect space

group, Pmab. The structure solution by SUPERFLIP runs

smoothly and the correct space group is proposed without any

ambiguity, with the seven nontrivial symmetry operations

having agreement factors �sym between 0.03 and 0.12 and all

other symmetry operations compatible with the lattice having

values of higher than 0.68.

3.3. Centrosymmetric/noncentrosymmetric ambiguity

In many cases there is no doubt about the correctness of the

extinction conditions, but a choice has to be made between a

centrosymmetric and a noncentrosymmetric space group.

Additional physical tests can be performed to ascertain

whether the inversion center is present or not, and also a

calculation of the mean value of jE2 � 1j can be helpful, where
E is a normalized structure-factor amplitude. For noncentro-

symmetric structures the theoretical value is 0.736, whereas for

centrosymmetric structures it is 0.968. Alternatively, the

complete experimental probability distribution of normalized

amplitudes can be compared with the theoretical ones, which

show marked differences, or the intensities of Friedel-related

reflection differences can be compared. The use of statistical

values is, however, not always reliable (Hargreaves, 1955;

Marsh, 1981).

For organic molecules and metallo-organic complexes a

simple count of the expected non-H atoms compared with the

volume of the unit cell can be helpful to distinguish the

centrosymmetric and noncentrosymmetric space groups, as

long as the molecules are not on symmetry elements. For

inorganic compounds this is less useful, since very often the

chemical formula is known only approximately, if at all.

We present here two cases: a trivial one for an inorganic

compound with an uncertain starting composition, and a

metallo-organic complex with hjE2 � 1ji = 0.904, hjE2 � 1j2i ¼
2.15 and hjE2 � 1j3i ¼ 14:75 all clearly in favor of a centro-

symmetric space group, whereas the correct space group is

noncentrosymmetric.

The inorganic compound, K3Ga2(PO4)3 (Beaurain et al.,

2008), was synthesized from 85 wt% K2MoO4 and 15 wt%

�-GaPO4 by a flux method; the resulting stoichiometry and

even the elements in the final phase cannot be easily guessed.

The extinction conditions point to either P21nb or Pmnb as

possible space-group symmetries. The value of jE2 � 1j is

0.752, leaving not much doubt about the absence of the center

of inversion. All space-group determination programs select

the correct space group. The analysis of the electron density

map obtained by SUPERFLIP yielded symmetry agreement

factors 0.10, 0.03 and 0.07 for the 2a1 screw axis, the nb-glide

and the bc-glide, respectively, and 0.37 and 0.45 for the ma

mirror plane and the inversion center, respectively. The map

interpretation was performed by EDMA (van Smaalen et al.,

2003) using the ‘unknown stoichiometry’ option with possible

element types Ga, K, P and O; out of the two Ga atoms, three

K atoms, three P atoms and 12 O atoms in the asymmetric unit

only one O atom was missed.

The second compound, C8H12ClCuN4O4, Z = 12, was

described by Csöregh et al. (1975) in the noncentrosymmetric

space group Pna21. We happened to synthesize the same

compound and used these data for the present analysis. The

space-group determination modules of GRAL and XPREP

propose Pnam as the correct space group, probably because

the E statistics are in favor of a centrosymmetric space group,

whereas PLATON suggests Pnaa, with Pna21 as a second

choice. Analysis of the SUPERFLIP electron density map

gives symmetry agreement factors of 0.05, 0.04 and 0.08 for the

na-glide, the ab-glide and the 2c1 screw axis, respectively. The

ac-glide is clearly absent, with an agreement factor of only

0.49. All other non-matching symmetry elements have

agreement factors higher than 0.47 (0.52 for the inversion
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Figure 1
Reconstructed h0l reciprocal plane for data set flo2, showing clearly the
presence of a 41 screw axis.
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center). The structure turns out to be an inversion twin with

Flack parameter 0.405 (11).

3.4. Extinctionless cases

There are a number of cases in which the extinction symbol

is ––– and which correspond to several probable space groups.

The case that will be discussed here is that for a primitive

tetragonal crystal system with Laue symmetry 4=m. When

there are no systematic extinctions the possible space groups

are P4, P�44 and P4=m. The distinction between these space

groups can only be made on the basis of non-diffraction

methods, i.e. they are chiral, noncentrosymmetric and

centrosymmetric, respectively. Nowadays space-group deter-

mination routines make the distinction in these cases usually

on the basis of the value hjE2 � 1ji and of the space group

frequency found in the CSD or ICSD; they will favor therefore

P�44 when hjE2 � 1ji tends to the noncentrosymmetric theore-

tical value, since its occurrence is an order of magnitude

higher than that of P4.

In order to illustrate the problem we give here the deter-

mination of the space group of CSD refcode FOYTAO01

(Bolte, 2008), C12H20O6, Z = 8, with reported space group P4.

hjE2 � 1ji = 0.823 for the present data set, favoring slightly the

two noncentrosymmetric space groups. All three space-group

determination modules used in this study select P�44 as the most

probable space group, based mainly on the much higher

occurrence of P�44 than that of P4 and P4=m in the databases.

SUPERFLIP solves the structure smoothly and gives final

symmetry agreement factors of 0.069, 0.848 and 0.523 for the

presence of the 4c axis, the �44c axis and the inversion center,

respectively, which does not leave any doubt about the correct

space group.

3.5. Missing reflection classes

It may happen that certain reflection classes that are

necessary for a space-group determination based on

systematic extinctions are missing, because the crystal is

mounted along a crystal axis, creating a blind region. This may

be cured easily, of course, by mounting the crystal differently

or measuring a second differently mounted crystal. It is shown

in this section that the absence of one axial reflection row is

not a serious problem for space-group determination if the

algorithm of this study is used. We used the data deposited at

the PDB with code 1mfm, for which the reported space group

is P212121, a = 34.99, b = 48.11, c = 81.08 Å (Ferraroni et al.,

1999). If all 00l reflections were missing then there would be

an ambiguity between space group P212121 and P21212, since

no testing of the presence or absence of the 2c1 screw axis can

be performed. Knowing that the space-group frequency of

P212121 is about four times higher than that of P21212 (in the

PDB), the logical first choice would be to test P212121, but the

chance that this is not the correct space group is relatively

high. Using the symmetry-determination routine implemented

in SUPERFLIP the question is not important, since the

structure is solved in P1. All 00l reflections were deleted from

the deposited data and SUPERFLIP solved the structure

using default parameters for protein-sized structures in about

3500 iterations. The correct space group P212121 was proposed

with �sym values for the three screw axes below 0.20 and for all

other possible symmetry operations above 0.85.

3.6. Powder data

The ambiguity in symmetry determination from power data

is much more serious than that from single-crystal data. This is

especially true for structures with symmetry higher than

orthorhombic, where it is impossible to distinguish different

Laue classes within one crystal system. The systematic

absences are also often obscured by systematic as well as

random reflection overlap. An illustrative example is the low-

temperature structure of 4-methylpyridine-N-oxide. The

structure was originally solved by simulated annealing,

starting from the known structure of the room-temperature

phase (Damay et al., 2006). The authors performed a search of

subgroups of the room-temperature space group I41=amd

compatible with the observed cell doubling along two cell axes

and concluded that the only convergent solution was obtained

in P41.

The structure was solved ab initio using charge flipping

combined with histogram matching (Baerlocher et al., 2007)

and the published solution could be confirmed. We decided to

use the new symmetry-determination method to check the

symmetry of the structure. Surprisingly, the symmetry analysis

revealed that the structure has most probably the space group

P41212 with agreement factors of individual symmetry

operations given in Table 4. Inspection of the table shows that

the 41 axis has systematically lower agreement factors than the

perpendicular twofold axes and screw axes. This might suggest

a pseudosymmetry rather than true symmetry elements.

However, one should bear in mind that the histogram

matching procedure uses the expected Laue group to average

intensities of the symmetry-related reflections, and thus pairs

of equivalent reflections in the space group P41212 were

treated as independent in the procedure. This effect is likely to

make the symmetry fit less perfect. To further test the

hypothesis about the higher symmetry, the same symmetry

analysis was applied to an electron density generated from the

published structure. The density was obtained by Fourier
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Table 4
Agreement factors for symmetry operations of the space group P41212 in
the low-temperature structure of 4-methylpyridine-N-oxide.

The column ‘Charge flipping’ contains the range of agreement factors
obtained from ten structure-solution attempts using charge flipping with
histogram matching. The column ‘Published structure’ contains agreement
factors obtained from the electron density generated from the published
structure with declared space group P41.

Symmetry operation Charge flipping Published structure

4c1 0.03–0.05 0.00
4c3 0.03–0.05 0.00
2c1 0.05–0.09 0.00
2aþb 0.17–0.25 0.05
2a�b 0.14–0.22 0.05
2a1 0.15–0.23 0.05
2b1 0.16–0.24 0.05
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summation of calculated structure factors with sin �=	 � 0:6.
The resulting agreement factors are also listed in Table 4 and

confirm that the higher symmetry is present even in the

published structure, and it is thus not an artifact of the

structure solution by charge flipping. The higher symmetry

was then confirmed by structure refinement. A full structure

report in the correct symmetry will be published elsewhere

(Damay et al., 2008).

3.7. Incommensurate structure

PbBi2VO6 forms an incommensurately modulated phase

that can be described in the superspace group P21=mð0�0Þs0
(Roussel et al., 2008). The symmetry P21=m of the average

structure together with the modulation vector q = (0, 0.23, 0)

lead to two possible superspace groups: P21=mð0�0Þs0 and

P21=mð0�0Þ00. These two superspace groups differ in the

extinction condition for the reflection class 0k0m. The former

corresponds to a condition 0k0m: kþm ¼ 2n and the latter to

0k0m: k ¼ 2n. The two space groups can thus be distinguished

only from the intensity distribution of the satellites. In the

diffraction experiment only satellite reflections with m � 2

were observed. A detailed inspection of the diffraction data

shows that no satellite with significant intensity violates the

first reflection condition, and only one satellite with

I=�ðIÞ ¼ 3:48 violates the second condition. Obviously, it is

not possible to distinguish these two space groups based on

the reflection intensities alone.

The structure can be solved easily by SUPERFLIP. The

symmetry-determination algorithm proposes the correct

superspace group P21=mð0�0Þs0. The symmetry agreement

factors leave no doubt about the superspace group, with �sym

of the correct symmetry operation (21js) equal to 0.12 and �sym

of the incorrect (21j0) equal to 0.54.

3.8. Pseudosymmetry – a word of caution

The preceding examples represent cases where the new

symmetry determination algorithm performs better than the

traditional ones and where it gives the correct answer.

However, even the new algorithm can sometimes fail in the

automatic determination of the space group. It was described

in x2.5 that a symmetry operation is included in the list of

space-group elements if �sym is lower than a given threshold, in

the present case 0.25. Occasionally, however, a significant part

of the structure exhibits a higher symmetry than the rest of the

structure. This can be the case, for example, in organo-metallic

complexes, where the heavy atoms often respect a higher

symmetry than the organic ligands. If the pseudosymmetry is

strong, �sym of the pseudosymmetry elements can be quite low.

In such a case the automatic space-group determination will

result in a choice of a higher symmetry, often accompanied by

an apparent disorder of one or more functional groups. It is up

to the crystallographer to decide whether the disordered

model in the higher-symmetrical group is to be preferred or if

an ordered model in a lower-symmetrical space group should

be accepted with possibly twice as many refineable para-

meters. In many cases the high-symmetry space group should

be preferred (Marsh, 1986).

A careful inspection of the �sym factors for the possible

space-group operations may reveal these problems before the

refinement, especially in the case of high-quality data. Ng

(2005) re-refined the structure of a polymeric organo-metallic

complex, f½CoðC4H4N2ÞðH2OÞ4�ðC8H4O4Þgn, in the noncen-

trosymmetric space group Imm2 using a fully ordered model,

whereas it was originally refined using a disordered model

yielding a relatively high residual index (Yang et al., 2003) in

the centrosymmetric space group Immm. Processing of the

deposited observed structure factors by SUPERFLIP gives

�sym factors of 0.01, 0.04 and 0.13 for ma, mb and mc, respec-

tively. The 2a, 2b and 2c rotation axes have �sym equal to 0.17,

0.14 and 0.05, respectively. The inversion center gives

�sym ¼ 0:18. The �sym parameters of the symmetry operations

of Imm2 are consistently about three times lower than �sym of

the remaining symmetry operations of Immm, and thus Imm2

comes out as the best candidate. However, since the �sym

values of all symmetry operations of Immm are below 0.25,

SUPERFLIP will propose in automatic mode Immm as the

best space group.

Another example is given by the refinement of [Cu(C3H5N-

O5S)(C10H8N2)(H2O)]�2H2O by Li et al. (2007), presented in

P1 with two independent mononuclear complex molecules

and four uncoordinated water molecules in the unit cell (and

thus in the asymmetric unit). Although not referred to in the

text, the two molecules are nearly related to each other by an

inversion center. The SUPERFLIP run using the deposited

observed structure factor amplitudes indicates �symð�11Þ ¼ 0:17,
leaving indeed some doubts about the presence or absence of

the inversion center. Again, on the basis of the cut-off of 0.25,

SUPERFLIP would propose P�11 as the most likely space

group, which leads to a partially disordered structural model

with a relatively high residual agreement factor.

With high-quality data intermediate �sym values between

0.10 and 0.25 indicate potentially pseudosymmetric elements,

which thus may or may not be considered for determining the

space group and performing the refinement. The least SUPER-

FLIP does is to quantify the presence of these elements; it is

up to the crystallographer to decide about the best space group.

Obviously, the problem of pseudosymmetry is not unique to

the presented method but affects also other symmetry-deter-

mination and structure-solution methods. However, if the

pseudosymmetric symmetry operation is a nonsymmorphic

one, it can happen that �sym is low, but the deviation from the

perfect symmetry is sufficient to observably violate the

extinction conditions. Therefore it is advisable to pay

increased attention if the refined structure exhibits disorder

and if the space group derived using the symmetry agreement

factors corresponds to a different extinction symbol from that

derived directly from the integrated intensities.

4. Discussion

It should be emphasized that the presented method is not

merely an alternative to the established symmetry determi-
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nation methods. What we suggest is a change of paradigm: if

the structure solution in P1 is equally feasible or even easier

than the solution in the correct space group, then it is natural

that the determination of the symmetry follows the structure

solution rather than preceding it, removing thus one source of

ambiguity in the structure-solution process. Determination of

symmetry after the structure solution rather than before is a

much easier task. The difference is demonstrated on several

examples where space-group determination using the classical

methods is not possible or at least doubtful; the new

symmetry-finding routine presented in this paper is able to

make a clear distinction for these cases between symmetry

operations that are present in the structure and those which

are not.

It should also be mentioned that the space-group determi-

nation modules of contemporary crystallographic programs

perform well enough to select the correct space group in a

large majority of cases. In this study we highlighted cases that

could be problematic when the modules are used as black

boxes, but which probably would have been solved by most

experienced crystallographers after manual intervention.

However, an ambiguity in the space-group determination is

nowadays a bottleneck in an automated structure-solution

process, and we believe that the presented approach is an

important step towards more reliable and more straightfor-

ward structure solutions.

The computational efforts per trial to solve a structure scale

roughly with the number of independent atoms to be deter-

mined, giving in general a faster structure solution if symmetry

is employed than if it is not, at the condition that the number

of trials needed to solve the structure is identical. Interestingly

the number of trials is often lower when the structure is solved

in P1 than when symmetry is employed, thus giving, especially

for large structures, an advantage in total computational time

(Burla et al., 2000). The (mandatory) symmetry search after

the structure-solution step in P1 – being only marginal in

computational effort compared with the solution step – rein-

forces this advantage, since a wrong space-group decision

before the solution attempt will prevent the solution

completely, giving for large structures an important length-

ening of the time needed to solve the structure.

It is interesting to compare SUPERFLIP’s symmetry-

finding routine with the ADDSYM module in PLATON,

which aims at finding missed higher crystallographic symmetry

in a refined structure and is based on the original MISSYM

algorithm (LePage, 1987, 1988). ADDSYM was used to

recover the full space-group symmetry from the atom list

found by EDMA by analysis of the electron density map of

SUPERFLIP in P1. For flo2, ADDSYM is not able to propose

the correct space group, whereas for flo19 the correct one is

proposed. It may not be surprising that ADDSYM is some-

what less successful than the symmetry-finding routine in

SUPERFLIP at finding the correct space-group symmetry,

since ADDSYM works on refined atom lists, which supposes

that the imposed atomic model is – apart from some symmetry

elements – reasonably correct. The atom list found by EDMA

may still contain some errors or omissions and is not yet

refined. SUPERFLIP finds symmetry elements in an atom-less

mode, based on scattering density only.

Alternatively, SUPERFLIP may be used to find missed

higher crystallographic symmetry in refined structures. We

analyzed the nine structures in the C category of the paper of

Marsh et al. (2002), where the missing symmetry is a result of

overlooked systematic absences. The original CIF files were

used to generate electron density maps, which were subse-

quently analyzed by the symmetry-finding algorithm of

SUPERFLIP. The correct space group was found in all cases.

5. Conclusion

We have proposed a space-group determination algorithm

based on an analysis of the scattering density solved in P1. We

demonstrate the advantages of this approach on several

examples from various fields of crystal-structure determina-

tion. In the presented approach the symmetry is determined

after, and not before, the structure solution, thus eliminating

the need for the determination of the space groups only from

the diffracted intensities. We believe that, with the advent of

methods solving routinely crystal structures in P1; the

presented symmetry-determination method has the potential

to become a standard practice for routine structure solution.

The authors are grateful to Dr M. Barboiu (Montpellier)

and P. Roussel (Lille) for permitting the use of the diffraction

data for this methodological study prior to publication of the

structure–chemical results. We thank also V. Petřı́ček (Prague)
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