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Symmetry energy is an important part of the equation of state of isospin asymmetry matter.
However, the huge uncertainties of symmetry energy remain at suprasaturation densities, where
the phase transitions of strongly interacting matter and the quark matter symmetry energy are
likely to be taken into account. In this work, we investigate the properties of symmetry energy by
using a hybrid star with the hadron-quark phase transition. The interaction among strange quark
matter (SQM) in hybrid stars is based on a 3-flavor NJL model with different vector and isovector
channels, while the equation of state (EOS) of the nuclear matter is obtained by considering the
ImMDI-ST interaction by varying the parameters x, y, and z. Our results indicate that the various
parameters and coupling constants of the interactions from the ImMDI-ST and NJL model can lead
to widely different trends for the symmetry energy in the hadron-quark mixed phase and the different
onsets of the hadron-quark phase transition. In addition, it has been found that the radii and tidal
deformabilities of hybrid stars constrain mostly the density dependence of symmetry energy while
the observed maximum masses of hybrid stars constrain mostly the EOS of symmetric nuclear and
quark matter.

PACS numbers: 21.65.-f, 21.30.Fe, 51.20.+d

I. INTRODUCTION

Studying the nature and constraint the equation of
state (EOS) of isospin asymmetric matter is one of the
main scientific goals of nuclear physics. Researches based
on terrestrial nuclear experiments [1–6] and astrophysi-
cal observations of compact stars [7–12] have already led
to significant constraints on the EOS of symmetric nu-
clear matter (SNM) and the symmetry energy Esym(ρ)
around but mostly below the saturation density of nu-
clear matter (ρ0 ≈ 0.16 fm−3). However, our knowledge
on the symmetry energy at supra-saturation densities,
where the phase transitions of strongly interacting matter
and quark matter symmetry energy are likely to be taken
into account, is still limited. The EOS of nuclear matter
at densities 2ρ0 < ρ < 5ρ0 has also been constrained by
the measurements of collective flows [1] and subthreshold
kaon production [13] in relativistic heavy-ion collisions.
As pointed out in Refs. [1, 13, 14], remaining uncertain-
ties in the determination of the EOS of nuclear matter
are mainly related to those in density dependence of sym-
metry energy. In fact, the high-density Esym(ρ) has been
broadly recognized as the most uncertain part of the EOS
of isospin asymmetric matter [15–17].
Compact stars are the natural testing ground of the

isospin-dependence of strong interactions and the cor-
responding EOS of isospin asymmetric matter at high
densities and large isospin asymmetries. The radii of

∗Electronic address: liuhe@qut.edu.cn
†Electronic address: xujun@zjlab.org.cn
‡Electronic address: kyois@126.com

compact stars are known to be determined by the pres-
sure at densities around 2ρ0 [7, 18], which are thus
sensitive to the density dependence of symmetry en-
ergy in this density region. In recent reports, a radius
measurement based on Neutron Star Interior Composi-
tion Explorer (NICER) and X-ray Multi-Mirror (XMM-
Newton) found that the radius of PSR J0740+6620 is
13.7+2.6

−1.5 km (68% credibility) [19]. In particular, the
radius range that spans the ±1σ credible intervals of
all the radius estimates in the different frameworks is
12.45 ± 0.65 km for a 1.4M⊙ compact star [19]. The
x-ray bursts from accreting neutron stars in low-mass x-
ray binary systems also provide potential possibilities to
constrain the mass and radius simultaneously [20–22]. In
Ref. [20], the radius of compact stars with the canonical
mass M = 1.4M⊙ has been constrained to the range of
10.62 ≤ R1.4 ≤ 12.83 km. The mass of compact stars
is also the main astrophysical observable that can be
used to extract information on the EOS of strongly in-
teracting matter [23]. The measurement of PSR J1614-
2230 and PSR J0348+0432 a few years ago had led
to a precise determination of 1.97 ± 0.04M⊙ [24] and
2.01± 0.04M⊙ for their respective masses [25], while the
newly measured gravitational mass of PSR J0740+6620
is declared as 2.08± 0.07M⊙, which is considered as the
highest reliably determined compact star mass [26]. More
recently, the gravitational wave events GW170817 [27]
and GW190814 [28] have provided more additional con-
straints on the EOS of the compact star matter. The
analysis of GW170817 by the LIGO/Virgo Collaboration
has found with a 90% confidence that the tidal deforma-
bility of the merging neutron stars constrained as the
range 70 < Λ1.4 < 580 [29]. Many studies have used the
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measurement of the tidal deformability from GW170817
to derive new constraints on the nuclear symmetry en-
ergy [30–32]. Moreover, the newly discovered compact
binary merger GW190814 [28] which has a secondary
component of mass (2.50 ∼ 2.67)M⊙ at 90% credible
level has also aroused lots of debates on whether the can-
didate for the secondary component is a compact star or
a light black hole. The existence of such high-mass com-
pact stars indicates that the EOS of compact star mat-
ter is relatively stiff and it yields high pressures at a few
times saturation density ρ0. In the present study, we will
employ the above constraints on the compact star mass,
radius, and tidal deformability to extract information on
the properties of isospin asymmetric matter in compact
stars.

Although the EOS of a pure nucleonic matter can gen-
erally be stiff enough to support a two-solar-mass com-
pact star, hyperon as well as quark degrees of freedom
are expected to appear with the increasing baryon chem-
ical potential, forming the so-called hybrid stars. It has
been found that the high-mass constraint may be used
to understand the properties of the hadron-quark phase
transition as well as the EOS of the mixed phase in hy-
brid stars (see, e.g., Refs. [33–37]). Also, the radius
of compact stars has been shown to be closely related
to the isovector part of the EOS of quark matter [38].
In the present study, we consider a hybrid star with a
quark core at high densities, a hadron-quark phase transi-
tion (mixed phase) at moderate densities and a hadronic
phase at low densities. The hadron-quark phase transi-
tion is one of the most concerned topics, and some re-
cent evidences indicate quark-matter cores can appear in
massive compact stars [39]. Moreover, it is also an im-
portant topic to further explore the QCD phase structure
and search for the signal of the critical point in heavy-
ion collisions. The hybrid star with quark matter in the
inner core seems to have problems in describing massive
compact stars, which is due to a lack of sufficient repul-
sion of the quark matter effective interactions leading to
a soft EOS of quark phase at high densities. To solve
this problem, we investigate the properties of quark mat-
ter based on the 3-flavor NJL model with vector and
isovector couplings. Both the vector and isovector inter-
actions have been shown to have important impacts on
the quark matter EOS and the QCD phase structure [40–
47]. Meanwhile, we describe nuclear matter using an
improved isospin- and momentum-dependent interaction
(ImMDI) model, which is constructed from fitting cold
nuclear matter properties at saturation density and the
empirical nucleon optical potential [48]. And it has been
extensively used in intermediate energy heavy-ion reac-
tions to study the properties of asymmetric nuclear mat-
ter. The ImMDI interaction, in the present paper, will
be modified and used to study the equation of state of
nuclear matter and the properties of hybrid stars by in-
cluding the phase transition from nuclear matter to quark
matter.

II. THE THEORETICAL MODEL

Here we apply the 3-flavor NJL model and ImMDI
model to hybrid stars, with a quark core at high densi-
ties, a mixed phase of quarks and hadrons at moderate
densities, and a hadronic phase at low densities. The
possible appearance of hyperons is neglected, which is
due to the fact that there are still large uncertainties on
the hyperon-nucleon (YN ) and hyperon-hyperon (YY )
interactions in the nuclear medium [49, 50]. Besides, the
presence of new degrees of freedom, such as hyperons,
tends to soften the equation of state at high densities and
lower the maximum mass of compact stars [51]. Further-
more, following the results from Ref. [52], the EOS of
hybrid star matter is mostly dominated by the hadron-
quark phase transition because the fraction of hyperons
disappears quickly in mixed hadron-quark phase, which
means that the effect of hyperons on the symmetry en-
ergy, especially in the hadron-quark mixed phase, is ex-
pected to be small. Thus, in this work we mainly focus
on symmetry energy effects on the properties of hybrid
stars without hyperons.
In the high-density quark phase, the system consists of

a mixture of quarks (u, d, and s) and leptons (e and µ)
at charge neutrality

2

3
ρu −

1

3
(ρd + ρs)− ρe − ρµ = 0, (1)

and the β-equilibrium condition in quark phase. It is
given by µi = µBbi − µcqi with µB and µc being the
baryon and charge chemical potentials of quark phase, re-
spectively. qi and bi are, respectively, charge and baryon
numbers of the particles. The detailed β-equilibrium con-
ditions are given by

µs = µd = µu + µe, (2)

µµ = µe. (3)

For quark matter, the energy density (εQ) and the
pressure(PQ) can be obtained from the NJL model. In
the mean-field approximation, the energy density ǫQ of
quark matter from the NJL model with vector and isovec-
tor couplings in detail can be written as [47]

εQ = −2Nc

∑

i=u,d,s

∫ Λ

0

d3p

(2π)3
Ei(1− fi − f̄i)

−
∑

i=u,d,s

(µ̃i − µi)ρi +GS(σ
2
u + σ2

d + σ2
s )

− 4Kσuσdσs −GV (ρ
2
u + ρ2d + ρ2s)

+ GIS(σu − σd)
2 −GIV (ρu − ρd)

2 − ε0. (4)

In the above, the factor Nc = 3 represents the color de-
generacy of quark, as well as fi and f̄i are respectively
the Fermi distribution functions of quark and antiquark
with flavor i. σi and ρi stand for the quark condensate
and the net quark number density, respectively; µ̃i is the
effective chemical potential which depends on the vector
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and isovector interactions [47, 53]; Ei(p) =
√

p2 +M2
i

is the single quark energy; and ε0 is introduced to en-
sure εQ = 0 in vacuum. GS and GV are the strength
of the scalar and vector coupling, respectively; and the
K term represents the six-point Kobayashi-Maskawa-
t’Hooft (KMT) interaction that breaks the axial U(1)A
symmetry [54]. The additional GIS and GIV terms rep-
resent the scalar-isovector and the vector-isovector in-
teractions, respectively. For the ease of discussions, we
define the relative strength of the vector coupling, the
scalar-isovector coupling and the vector-isovector cou-
pling respectively as RV = GV /GS , RIS = GIS/GS

and RIV = GIV /GS . As is known, the position of
the critical point for the chiral phase transition is sen-
sitive to RV [40–42], which was later constrained within
0.5 < RV < 1.1 from the relative v2 splitting between
protons and antiprotons as well as between K+ and K−

in relativistic heavy-ion collisions [55]. Also, the strong
vector-isovector interaction seems to be needed to re-
produce the v2 difference between π+ and π− with the
same NJL transport approach at the same collision en-
ergies [56]. The strength of RIV also leads to the isospin
splittings of chiral phase transition boundaries and af-
fects the susceptibilities of conserved quantities [57]. It
is thus expected that the couplings RIV may affect the
equation of state of isospin asymmetric quark matter and
the properties of hybrid stars. For the scalar-isovector in-
teraction, it may result in a spinodal behavior in the EOS
of the hadron-quark mixed phase and the corresponding
hybrid star is unstable [47]. Thus, we will mainly investi-
gate, in this work, the role of vector and vector-isovector
interactions of the quark matter in hybrid stars.
In the present study, we employ the parameters

GSΛ
2 = 3.6, KΛ5 = 8.9, and the cutoff value in the mo-

mentum integral Λ = 750 MeV given in Refs. [42, 58]. In
the above expression, ε0 is introduced to ensure εNJL = 0
in vacuum. The pressure at zero temperature can be
given as

PQ =
∑

i=u,d,s

µiρi − εQ. (5)

For leptons, we include both electrons and muons with
their masses me = 0.511 MeV and mµ = 106 MeV, re-
spectively. The energy density and the pressure can be
given as

εL =
∑

i=e,µ

1

π2

∫ pi
f

0

√

p2 +m2
i p

2dp, (6)

PL =
∑

i=e,µ

µiρi − εL. (7)

where pif = (3π2ρi)
1

3 is the lepton Fermi momentum.
The total energy density and pressure including the con-
tributions from both quarks and leptons are given by

εQ = εQ + εL, (8)

PQ = PQ + PL. (9)

In the low-density hadronic phase, an improved
isospin- and momentum-dependent effective nuclear in-
teraction is used to describe the β-equilibrium and
charge-neutral neutron star matter. The potential en-
ergy density from the ImMDI model is then given by [48]

VImMDI =
Auρnρp

ρ0
+

Al

2ρ0
(ρ2n + ρ2p)

+
B

σ + 1

ρσ+1

ρσ0
× (1− xδ2) +

1

ρ0

∑

τ,τ ′

Cτ,τ ′

×

∫ ∫

d3~pd3~p′
fτ (~r, ~p)fτ ′(~r′, ~p′)

1 + (~p− ~p′)2/Λ2
, (10)

where ρn and ρp are the neutron and proton number
densities, respectively; ρ0 = 0.16 fm−3 is the saturation
density of nuclear matte; δ = (ρn − ρp)/ρ is the isospin
asymmetry of nuclear matter with ρ = ρn + ρp; fτ (~r, ~p)
is the nucleon phase-space distribution function from
the Wigner transformation of its density matrix with
τ = 1(−1) for neutrons (protons) being the isospin index.
The parameter set (Al, Au, B, Cl = Cτ,τ , Cu = Cτ,−τ ,
Λ, σ) can be fitted by seven empirical constraints, i.e.,
five isoscalar constraints of the saturation density ρ0, the
binding energyE0, the incompressibilityK0, the isoscalar
effective mass m⋆

s, and the single-particle potential U0,∞

at infinitely large nucleon momentum in symmetric nu-
clear matter, as well as two isovector constraints of the
symmetry energy Esym(ρ0) and the symmetry poten-
tial Usym,∞ at infinitely large nucleon momentum. In
Ref. [48], an optimized parameter set (A0, B, Cl0, Cu0,
Λ, σ, x, y, z) was introduced by using the following re-
lations

Al(x, y) = A0 + y + x
2B

σ + 1
,

Au(x, y) = A0 − y − x
2B

σ + 1
,

Cτ,τ (y) = Cl0 − 2(y − 2z)
p2f0

Λ2ln[(4p2f0 + Λ2)/Λ2]
,

Cτ,−τ (y) = Cu0 + 2(y − 2z)
p2f0

Λ2ln[(4p2f0 + Λ2)/Λ2]
,(11)

where pf0 is the nucleon Fermi momentum in symmetric
nuclear matter(SNM) at saturation density. In the above
relations, the parameters x, y and z are introduced to ad-
just the slope L(ρ) of symmetry energy, the momentum
dependence of the symmetry potential, and the symme-
try energy Esym(ρ0) at saturation density, respectively.
The values of x, y, and z only affect the isovector prop-
erties of nuclear matter but do not lead to the variation
of the isoscalar constraints [48]. For x = 0, y = 0, and
z = 0, we choose the following empirical values ρ0 = 0.16
fm−3, E0(ρ0) = −15.9 MeV, K0 = 250 MeV, m⋆

s = 0.7m,
Esym(ρ0) = 32.5 MeV, and U0,∞ = 75 MeV, which lead
to Al0 = Au0 = −25.9591MeV, B = 101.004MeV, Cl0 =
−60.4860 MeV, Cu0 = −99.7017 MeV, Λ = 2.42401pf0,
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and σ = 1.39521. It should be noted that the incompress-
ibility K0 = 250 MeV is a reasonably large value relative
to the constraint K0 = 230± 20 MeV [59, 60], which can
stiffen the EOS of SNM so as to support more massive
compact stars. And this new parametrization of the Im-
MDI model can be dubbed as ImMDI-ST. Recently, the
discovery of GW170817 has triggered many analyses of
neutron star observables, mostly the tidal deformability
and radii, to constrain nuclear symmetry energy. The
average value of the slope parameter of the symmetry
energy L(ρ0) from the 24 new analyses of neutron star
observables since GW170817 was about L(ρ0) = 57.7±19
MeV at a 68% confidence level [61], which is consistent
with the latest report of the slope parameter L(ρ0) be-
tween 42 and 117 MeV from studying the pion spectrum
ratio in heavy-ion collision in an experiment performed
at RIKEN [62]. However, the Lead Radius Experiment
(PREX-II) reported very recently new constraints on the
neutron radius of 208Pb, which implies a neutron skin

thickness of R
208Pb
skin = 0.283 ± 0.071 fm [63]. From this

measurement, Ref. [65] constrains the slope parameter
to L(ρ0) = 106 ± 37 MeV, which is much larger than
many previous constraints from microscopic calculations
or experimental measurements [61, 66, 67]. These new
constraints can be directly compared to the inferences
from gravitational wave observations of the binary com-
pact star merger inspiral [61].
In the mean-field approximation, Eq. (10) leads to the

following single-particle potential [48]

Uτ (ρ, δ, ~p) = Au
ρ−τ

ρ0
+Al

ρτ
ρ0

+ B
ρ

ρ0

σ
(1 − xδ2)− 4xτ

B

σ + 1

ρσ−1

ρσ0
δρ−τ

+
2Cl

ρ0

∫

d3~p′
fτ (~r, ~p)

1 + (~p− ~p′)2/Λ2

+
2Cu

ρ0

∫

d3~p′
f−τ (~r, ~p)

1 + (~p− ~p′)2/Λ2
. (12)

The chemical potential of neutrons and protons can be
calculated from

µτ =
√

m2 + pτ2f + Uτ (p
τ
f ), (13)

with the nucleon mass m and the Fermi momentum pτf =

(3π2ρτ )
1/3. The total energy density and pressure of the

hadron phase can be written as

εH = εH + εL, (14)

PH = PH + PL, (15)

where εH and PH , respectively, are energy density and
pressure of baryons. The detailed form can be written as

εH = VHP + VHK + VHM ,

PH =
∑

τ

µτρτ − εH , (16)

where VHP is the potential energy density of baryons cal-
culated from VImMDI , VHK and VHM are, respectively,
the kinetic energy and mass contributions given by

VHK =
∑

τ

pτ5f
10π2mτ

,

VHM =
∑

τ

ρτmτ . (17)

At moderate densities of hybrid stars, the hadron-
quark phase transition, which leads to a mixed phase
of hadronic and quark matter, can be described by the
Gibbs conditions [68, 69]

TH = TQ, PH = PQ,

µB = µH
B = µQ

B, µc = µH
c = µQ

c . (18)

Adding baryon number conservation, and charge neutral-
ity conditions, the dense matter enters the mixed phase,
in which the hadron phase and the quark phase need to
satisfy following equilibrium conditions:

µi = µBbi − µcqi, PH = PQ,

ρB = (1− Y )(ρn + ρp) +
Y

3
(ρu + ρd + ρs),

0 = (1− Y )ρp +
Y

3
(2ρu − ρd − ρs)− ρe − ρµ,(19)

where Y is the baryon number fraction of the quark
phase. The total energy density and pressure of the
mixed phase are calculated according to

εM = (1 − Y )εH + Y εQ + εL, (20)

PM = (1 − Y )PH + Y PQ + PL. (21)

Besides, in our calculations, the crust of hybrid stars
is considered to be divided into two parts: the inner and
the outer crust as in the previous treatment [70, 71]. In
the inner crust, a parametrized EOS of P = a+ bε4/3 is
used and the outer crust usually consists of heavy nuclei
and an electron gas, where we use the EOS in Ref. [72].
The whole EOS from low densities to high densities

is used to study the mass-radius relation of hybrid stars
through the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions and the analytical expression of TOV equations can
be written as

dP (r)

dr
= −

M(r)[ε(r) + P (r)]

r2
[1 +

4πP (r)r3

M(r)
]

× [1−
2M(r)

r
]−1, (22)

where ε(r) is the energy density and P (r) is the pressure
obtained from the equation of state. M(r) is the grav-
itational mass inside the radius r of the compact star
which can be obtained from the integral of the following
equation

dM(r)

dr
= 4πr2ε(r). (23)
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Coalescing binary compact stars is one of the most
promising sources of gravitational waves. One of the
most important features of binary mergers is the tidal
deformation, which is considered as another probe to
the EOS of dense matter [73, 74]. The tidal deforma-
bility Λ of compact stars during their merger is re-
lated to the Love number k2 through the relation k2 =
3/2Λβ5 [73, 75], which can be given by

k2 =
8

5
(1− 2β)2[2− yR + 2β(yR − 1)]

× {2β[6− 3yR + 3β(5yR − 8)]

+ 4β3[13− 11yR + β(3yR − 2) + 2β2(1 + yR)]

+ 3(1− 2β)2[2− yR + 2β(yR − 1)]ln(1 − 2β)}−1,(24)

where β ≡ M/R is the compactness of the compact star,
and yR ≡ y(R) is the solution at the compact star surface
to the first order differential equation

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (25)

with

F (r) =
r − 4πr3[ε(r) − P (r)]

r − 2M(r)
,

Q(r) =
4πr[5ε(r) + 9P (r) + ε(r)+P (r)

∂P (r)/∂ε(r) −
6

4πr2 ]

r − 2M(r)

− 4[
M(r) + 4πr3P (r)

r2(1− 2M(r)/r)
]2. (26)

For a given central density ρc and using the boundary
conditions in terms of y(0) = 2, P (0) = Pc, M(0) =
0 and ǫ(0) = 0, the mass M , radius R, and the tidal
deformability Λ can be obtained once an EOS is supplied.

III. RESULTS AND DISCUSSIONS

Before discussing the symmetry energy of hybrid star
matter, we first review the symmetry energy of nuclear
matter. It is well known that the binding energy of asym-
metric nucleonic matter (ANM) of isospin asymmetry δ
and density ρ can be written as

E(ρ, δ) = E0(ρ) + Esym(ρ)δ2 +O(δ4), (27)

where E0(ρ) and Esym(ρ) are the energy per nucleon in
symmetric nucleonic matter (SNM) and nuclear symme-
try energy, respectively. In Eq. (27), there are no odd-
order terms due to the exchange symmetry between pro-
tons and neutrons in nuclear matter. The higher-order
terms are generally negligibly small [76, 77], and the sym-
metry energy Esym(ρ) is expressed by definition as

Esym(ρ) =
1

2!

∂2E(ρ, δ)

∂δ2
|δ=0. (28)

As stated in the introduction, we describe nuclear
matter in the ImMDI model, which is constructed by

0.00 0.08 0.16 0.24 0.32
-20

-15
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E/
A(

M
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)

/

 EMBPT

 ImMDI-ST
 Sk m*

FIG. 1: (color online) The energy per nucleon as a function of
the reduced nucleon density for symmetric nuclear matter at
zero temperature from ImMDI-ST and Skχm∗ compared with
results from the SCGF approach and the χEMBPT approach.

fitting empirical nucleon optical potential and cold nu-
clear matter properties at saturation density. Again,
the ImMDI-ST model is also fitted to the empirical
properties of SNM, which is approximately reproduced
by the self-consistent Green¡¯s function (SCGF) ap-
proach [78, 79] or chiral effective many-body pertuba-
tion theory (χEMBPT) [80, 81]. As shown in Fig. 1,
the density dependence of the energy per nucleon for
SNM at zero temperature from the ImMDI-ST model is
compared with the results from the SCGF approach and
the χEMBPT approach. The result of red dash line is
from the Skyrme-Hartree-Fock (SHF) model [82, 83] us-
ing the Skχm∗ interaction. The two effective interactions
ImMDI-ST and Skχm∗ are both based on Hartree-Fock
calculations and constructed from fitting the properties
of cold nuclear matter. It is seen that the EOSs from
ImMDI-ST and Skχm∗ are almost identical for zero tem-
perature SNM at low densities, while the two lines start
to deviate around saturation density, which is due to the
enhancement of the incompressibility (K0 = 250 MeV) in
the ImMDI-ST interaction. Except for small deviations
at very low densities, the EOSs from these two effec-
tive interactions are within the SCGF uncertainty band,
which is caused by the different momentum cutoffs and
the phenomenology in three-body forces [78, 79]. Fig. 1
also displays the results from χEMBPT calculations us-
ing n3lo414 chiral forces, which are taken from Ref. [80].
Compared with the SCGF approach, the EOS of SNM
from the χEMBPT is seen to be better reproduced by
ImMDI-ST and Skχm∗.
For asymmetric nucleonic matter (ANM), as shown in

Eq. (27), symmetry energy is an important part of the
EOS of nuclear matter. In the ImMDI-ST interaction,
one can adjust flexibly three parameters (x, y, and z) to
change the isospin properties of nuclear matter. In fact,
the values of x, y, and z only affect the isovector prop-
erties of nuclear matter without leading to the variation
of properties of SNM. This phenomena is illustrated in
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FIG. 2: (color online) The nuclear symmetry energy Esym(ρ) (left) and its slope L(ρ) (right) as functions of the nucleon
density ρ from the ImMDI-ST interaction with varying parameters x, y and z. The constraints on Esym(ρ0) and L(ρ0) from
(1) the fiducial value of 53 analyses about nuclear experiments and astrophysical observations in 2016 [10], (2) studying the
pion spectrum ratio in heavy-ion collision in an experiment performed at RIKEN [62], (3) the PREX-II experiment based on
the relativistic mean-field (RMF) model calculations [63] are also shown for comparison.

Fig. 2 which displays the density dependence of nuclear
symmetry energy and its slope using the ImMDI-ST in-
teraction by varying the parameter x, y, and z. Different
values of x can lead to widely different trends for the
symmetry energy Esym(ρ) and the slope L(ρ) while the
magnitude of the symmetry energy remains unchanged at
saturation density. Qualitatively, both Esym(ρ) and L(ρ)
decrease with the increment of the parameter x at supra-
saturation density. On the other hand, it is also seen
that the density dependence of the symmetry energy and
its slope change with the parameter y as well, which is
due to that the parameter y can modify the momentum
dependence of the symmetry potential Usym(ρ, p) [8, 9].
In addition, the value of the symmetry energy at satura-
tion density can be adjusted by parameter z, which also
affects the behavior of the symmetry energy and its slope
at nonsaturation density. In Fig. 2, the fiducial value of
Esym(ρ0) = 31.7±3.2 MeV and L(ρ0) = 58.7±28.1 MeV
from the 2016 survey of 53 analyses about nuclear ex-
periments and astrophysical observations [10], the slope
parameter L(ρ0) between 42 and 117 MeV from studying
the pion spectrum ratio in heavy-ion collision in an ex-
periment performed at RIKEN [62], as well as the value
of L(ρ0) = 106 ± 37 MeV [63] based on the PREX-II
experiment are also shown for comparison. Except the
value of the slope with x = −2, the rest values of the nu-
clear symmetry energy and its slope at saturation density
are approaching these empirical constraints.

Although researches based on terrestrial nuclear ex-
periments and astrophysical observations have already
led to many significant constraints on the EOS of sym-
metric nuclear matter(SNM) and the symmetry energy
Esym(ρ) around the saturation density, huge uncertain-
ties remain at higher densities. The radii and tidal defor-
mations of compact stars are considered to be determined
by the pressure around the density 2ρ0, which provides
the possibility of constraining Esym(ρ) at higher densi-
ties. Moreover, many theories predict that at densities
higher than about (2 ∼ 5)ρ0 [39, 84–87], a hadron-quark
phase transition will occur. Since Esym(ρ) will lose its
physical meaning once the hadron-quark phase transition
happens, one thus has to redefine the symmetry energy
and the isospin asymmetry manifesting isospin proper-
ties of quark matter. In the present study, we investigate
the properties of symmetry energy at higher densities,
especially the density 2ρ0, in hybrid star matter with the
hadron-quark phase transition. The symmetry energy in
the hybrid star matter can be defined as

Esym(ρB, ρs) =
1

2!

∂2E(ρB, δ, ρs)

∂δ2
|δ=0, (29)

where E(ρB, δ, ρs) is the energy per baryon number for
isospin asymmetric matter, and one can obtain a similar
definition of the symmetry energy for quark matter in
Refs. [4, 64]. In the above, ρs stands for the strange
quark number density and ρB means the baryon number
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FIG. 3: (color online) The symmetry energy Esym(ρB) (left) and the corresponding isospin asymmetry δ (right) in hybrid stars
at β equilibrium as functions of the baryon density by varying the parameters x, y and z from ImMDI-ST interactions as well
as the couplings RV and RIV from NJL model. The two dashed lines with the same color indicate the range of the mixed
phase (the hadron-quark phase transition).

density defined by ρB = (1− Y )(ρn − ρp) +
Y
3 (ρu + ρd +

ρs), where Y is the baryon number fraction of the quark
phase. Similarly, the isospin asymmetry in the hybrid
star matter can be defined as

δ =
(1 − Y )(ρn − ρp) + Y (ρd − ρu)

ρB
. (30)

Isospin properties of quark matter in hybrid star mat-
ter can be obtained from 3-flavor NJL model with the
vector and vector-isovector interactions. As discussed in
the above, the position of the critical point for the chi-
ral phase transition is sensitive to the vector coupling
constants RV , which also helps to explain the elliptic
flow splittings between protons and antiprotons in RHIC-
BES experiments. The vector-isovector coupling con-
stant RIV leads to different potentials of u and d quarks
in isospin asymmetric quark matter and the isospin split-
tings of chiral phase transition boundaries [47, 88, 89].
They are thus expected to affect the symmetry energy
and the EOS of the hybrid star matter. In Fig. 3, we show
the symmetry energy Esym(ρB) (left panel) of the hybrid
star matter at β equilibrium as functions of the baryon
density by varying the parameters x, y, and z from the
ImMDI-ST model as well as the coupling constants RV

and RIV from the NJL model. The two dash lines with
the same color indicate the range of the mixed phase (the
hadron-quark phase transition). It can be seen that the
parameters x, y, and z affect the hadronic phase and the
mixed phase, but the coupling constants RV and RIV af-

fect the mixed phase and the quark phase. All of the pa-
rameters and coupling constants of the interactions from
the ImMDI-ST and NJL model can lead to widely differ-
ent trends for the symmetry energy in the mixed phase
and positions of the onset of the hadron-quark phase
transition. In detail, decreasing the value of x effectively
stiffens the symmetry energy in the mixed phase while
the results with the parameters y and z demonstrate op-
positely, which is similar to the results from the nuclear
symmetry energy. Furthermore, Esym(ρB) in the mixed
phase and the quark phase increases with the increment
of both the coupling constantsRV andRIV . On the other
hand, it is also seen that the stiffened symmetry energy
for the ImMDI-ST interaction can increase the baryon
density of the hadron-quark phase transition point, while
the stiffened symmetry energy for the interaction within
NJL model can decrease the onset to the lower baryon
densities. In addition, with various parameters and cou-
pling constants, the hadron-quark phase transition ap-
pears around 2ρ0 ∼ 6ρ0, where the radii, masses and
tidal deformations of compact stars are considered to are
sensitive to the density dependence of symmetry energy.
The right panel of the Fig. 3 displays the correspond-
ing isospin asymmetry δ in hybrid stars at β-equilibrium
with varying the parameters and the coupling constants.
It can be seen that a non-smooth local extremum ap-
pears at the onset of the hadron-quark phase transition
in all cases, which is due to the occurrence of the first-
order phase transition and the appearance of s quark
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that change the β-equilibrium conditions at zero temper-
ature. As the Esym(ρB) varies broadly with the different
parameters and coupling constants in the mixed phase,
one also can see that the value of the corresponding δ for
neutron-rich matter is obtained with the soft Esym(ρB)
and that for neutron-poor matter is obtained with the
stiff Esym(ρB).
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FIG. 4: (color online) Relative particle fractions of hadrons,
leptons and quarks as functions of baryon density in hybrid
stars for the different parameters x, y, and z from ImMDI-ST
interactions as well as coupling constants RV and RIV from
NJL model.

To better understand the properties of the hybrid star
matter, we show in Fig. 4 the relative particle fractions in
hybrid stars with the different parameters and coupling
constants. It can be observed in all cases that the frac-
tions of the neutrons and leptons both decrease while that
of the protons increases when the hadron-quark phase
transition occurs, so d and s quarks occupy a larger frac-
tion than u quarks in the mixed phase in order to main-
tain electrical neutrality. With the decrease of proton
fraction and the disappearance of electrons at high den-
sities, the isospin asymmetry of the d and u quark grad-
ually decreases to zero. For comparison, we choose the
following values x = −1, y = 115 MeV, z = 5 MeV,
RV = 1.1, and RIV = 1.0, which all cause the symme-
try energy to be stiffer. It is also observed that quarks
generally appear at lower densities for the ImMDI-ST
parameters x = −1, y = 115 MeV, and z = 5 MeV,

while it is the opposite for the quark coupling strengths
RV = 1.1 and RIV = 1.0. Then a fatal problem for the
hybrid star matter will occur here, that is, if the EOS
of nuclear matter is stiffer, the softer quark matter ap-
pears earlier, while if the EOS of quark matter is stiffer,
the nuclear matter will disappear later. Furthermore,
the mixed phase always seems to favor to be in a softer
equation of state,and that is the reason why it is diffi-
cult to reproduce a more massive hybrid star with the
β-equilibrium condition.
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FIG. 5: (color online) The square of the sound velocity as
a function of baryon density in hybrid stars for the different
parameters x, y, and z from ImMDI-ST interactions as well
as coupling constants RV and RIV from the NJL model.

The sound velocity cs, which can be calculated from
c2s = ∂P/∂ǫ, is another property of the hybrid star mat-
ter, and it can be used to check if the underlying EOS
satisfies the causality condition. As shown in Fig. 5, the
sound velocity is sensitive to the nuclear matter interac-
tions at low densities and to the quark matter interac-
tions at high densities. As expected, a stiffer symmetry
energy leads to a larger value of the sound velocity in
the hadron and quark phase. However, a step change
of the sound velocity occurs in the mixing phase where
the quarks appear and thus soften the EOS as a result
of more degrees of freedom, and it is restored with the
decrease of nucleon and lepton degrees of freedom in the
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high density quark phase. Also shown in Fig. 5 is the
sound velocity c2s = 1/3 in the conformal limit corre-
sponding to free massless fermions, and it is seen that
our results with a strong repulsive vector interaction for
quark matter are larger than this limit at higher den-
sities, indicating that the corresponding EOS is stiffer
than that of massless fermions. For the vector-isovector
interaction case, the result is quite different, which is due
to the contribution from the GIV (ρu − ρd)

2 term in Eq.
(4) (this term is obviously sensitive to the isospin asym-
metry at higher densities). Meanwhile, we note that for
all cases considered here the causality condition is safely
satisfied.

We present in Fig. 6 the EOS for hybrid stars with the
hadron-quark phase transition in their inner core. Again,
the results from the ImMDI-ST interactions for nuclear
matter with different parameters x, y, and z (left panel)
as well as those from the NJL model for quark mat-
ter with different coupling constants RV and RIV (right
panel) are shown. It can be seen in left panel that a stiff
symmetry energy for nuclear matter based on ImMDI-ST
model, i.e. x = −1, y = 115 MeV, and z = 5 MeV, leads
to a stiffer EOS in hadron phase at low densities and a
slower increase with increasing baryon density in the mix
phase, so that all curves represented different ImMDI-
ST interactions can enter the pure quark phase at same
density. These are understandable since the ImMDI-ST
interactions tend to increase the symmetry energy of nu-
clear matter and have no effects on pure quark matter.
Moreover, as shown in the right panel of Fig. 6, the EOS
is more sensitive to the strength of the vector interaction
through the GV (ρ

2
u + ρ2d + ρ2s) term in Eq.(4). With in-

creasing vector strength RV for the strange quark matter
the EOS of hybrid star becomes stiffer, which is consis-
tent with that observed in Ref. [90], and the onset of
the transition is moving to higher densities. The vector-
isovector interaction characterized by the coupling con-
stant RIV slightly stiffens the EOS at low densities in
the mixed phase, since its contribution is determined by
the GIV (ρu−ρd)

2 term in Eq.(4). Similar to the effect of
the ImMDI-ST interactions, the effect of vector-isovector
interaction also decreases gradually at high densities in
the mixed phase, which is due to the decrease of isospin
asymmetry as shown in Fig. 2.

Essentially all available EOSs can be used to predict
the mass-radius correlation of compact stars. Many of
the earlier studies have focused on exploring the effects
of the properties of SNM and symmetry energy near the
saturation density. Effects of varying the Esym in hy-
brid star matter will be studied extensively in this work.
We show in Fig. 7 the mass-radius relation of hybrid
stars based on the ImMDI-ST interactions for nuclear
matter and the NJL model for quark matter. The re-
sults shown in the left panel indicate that the observed
maximum mass of hybrid stars change slightly with the
different ImMDI-ST interactions. Except for the cases
x = 1 and y = −115 MeV, the maximum mass of all
other hybrid stars is very close to the detection result of

the MSR J0740+6620(2.14+0.20
−0.18M⊙ with 95.4% credibil-

ity) with the quark coupling constants fixed on RV = 1.1
and RIV = 2.0, which is slightly larger than the measure-
ment of PSR J0740+6620 with the gravitational mass
2.08 ± 0.07M⊙. This is due to that the maximum mass
of hybrid stars constrains mostly the EOS of symmet-
ric matter at 2 ∼ 5 times saturation density. As men-
tioned earlier, the different parameters x, y, and z in the
ImMDI-ST interactions will not lead to the variation of
properties of SNM, and thus have no significant effect on
the maximum mass of hybrid stars. However, it should
be noted that the hadron-quark transition in most cases
(except for x = 1 and y = −115 MeV) occurs at 2 ∼ 5
times saturation density, thus the properties of symmet-
ric quark matter will affect the maximum mass of hybrid
stars. This is illustrated in the right panel of Fig. 7 which
displays mass-radius relation of hybrid stars with differ-
ent quark coupling constants RV and RIV . Compared
to the vector-isovector interaction, the vector interaction
of quark matter plays an more important role in mass-
radius relations of hybrid stars. With increasing vector
interaction coupling RV in the quark matter hybrid stars
have larger maximum mass. This can be understandable
since the vector interaction affects the EOS of not only
asymmetric quark matter but also symmetric quark mat-
ter through the GV (ρ

2
u + ρ2d + ρ2s) term in Eq.(4).

On the other hand, it is clearly seen from Fig. 7 that
the radii are more sensitive to the parameters of ImMDI-
ST interactions, which is due to that the radii of hy-
brid stars constrain mostly the density dependence of
symmetry energy. This is also explained in Ref. [91] by
studying the relative contributions from the SNM EOS
and symmetry energy to the total pressure in neutron
stars at β-equilibrium. The results from Ref. [91] indi-
cate that in the density region around ρ0 ∼ 2.5ρ0, the
isospin dependent pressure Pasy dominates over the P0

from SNM, while the total pressure is dominated by the
P0 from SNM at higher densities. The radii of compact
stars are known to be determined by the pressure at den-
sities around ρ0 ∼ 2ρ0 [7, 18]. Thus, the radii of hybrid
stars constrain mostly the density dependence of sym-
metry energy while observed maximum mass of hybrid
stars constrain mostly the EOS of symmetric matter. In
recent reports, the x-ray bursts from accreting compact
stars in low-mass x-ray binary (LMXB) systems provide
potential possibilities to constrain the mass and radius
simultaneously. As summarized, several constraints on
the radii of neutron stars have been put forward in recent
years: 10.4 ≤ R1.4 ≤ 12.9 km [93], 10.62 ≤ R1.4 ≤ 12.83
km [20], 10.1 ≤ R1.4 ≤ 11.1 km [92], 10.6 ≤ R1.4 ≤ 14.2
km [94], 10 ≤ R1.4 ≤ 14.4 km [95]. For comparison,
the constraint of 10.62 ≤ R1.4 ≤ 12.83 km [20] is shown
in Fig. 7. Besides, the radius measurement 12.45± 0.65
km of PSR J0740+6620 for a 1.4M⊙ compact star based
on Neutron Star Interior Composition Explorer (NICER)
and X-ray Multi-Mirror (XMM-Newton) [19] as well as
the prediction of 11.5 ≤ R1.4 ≤ 13.6 km [38] from heavy-
ion collisions are also shown in the figure. Meanwhile,



10

0.0 0.5 1.0 1.5 2.0
0

100

200

300

400

500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

300

600

900

1200

1500

1800

P(
M

eV
)

B(fm
-3)

 x=0
 x=-1
 x=-2
 x=1
 y=115 MeV
 y=-115 MeV
 z=5 MeV
 z=-5 MeV

RV=0,RIV=0

 

 

P(
M

eV
)

B(fm
-3)

 RV=0,RIV=0
 RV=0,RIV=1.0
 RV=0,RIV=2.0
 RV=0.5,RIV=0
 RV=0.5,RIV=1.0
 RV=0.5,RIV=2.0
 RV=1.1,RIV=0
 RV=1.1,RIV=1.0
 RV=1.1,RIV=2.0

x=0,y=0,z=0
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FIG. 7: (color online) Mass-radius relation of hybrid stars based on the ImMDI-ST interactions for nuclear matter with different
parameters x, y and z (left) as well as the NJL model for quark matter with different coupling constants RV and RIV (right).
The constraints of 10.62 ≤ R1.4 ≤ 12.83 km from the x-ray bursts of accreting compact stars in low-mass x-ray binary (LMXB)
systems [20], 12.45 ± 0.65 km of PSR J0740+6620 for a 1.4 M⊙ compact star based on Neutron Star Interior Composition
Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton) [19] as well as the prediction of 11.5 ≤ R1.4 ≤ 13.6 km from
heavy-ion collisions [38] are also shown for comparison.

we also can see in the right panel of Fig. 7 that isospin
properties of quark matter have no effect on the radii
of 1.4M⊙ hybrid stars as a result of no quark matter at
densities around ρ0 ∼ 2ρ0.

After the GW170817 event, much efforts have been de-
voted to constraining the EOS or related model parame-
ters by comparing various calculations with the range of
tidal deformability 70 ≤ Λ ≤ 580 from the improved
analyses reported by LIGO and Virgo Collaborations.
A number of these studies have examined the effects
of symmetry energy [30–32]. Some of them have ex-
tracted constraints on the slope parameter L(ρ0), i.e.
L(ρ0) = 57.7 ± 19 MeV [61]. The measurements of
the tidal deformability of neutron stars constrain not
only the EOS of dense neutron-rich nuclear matter but
also the fundamental strong interactions of quark mat-

ter. Shown in Fig. 8 is the dimensionless tidal deforma-
bility as functions of radius calculated using the differ-
ent interactions from ImMDI-ST and NJL model. In
the left panel the small pink squares indicate the results
for hybrid stars with M = 1.4M⊙. For a given mass
M = 1.4M⊙, the deformability Λ1.4 increases with in-
creasing radius of hybrid star, as expected. The radii of
hybrid stars are known to be determined by the symme-
try energy, thus the deformability of hybrid stars can be
used to constrain the density dependence of symmetry
energy. For comparison, we display some constraints in
the left panel of Fig. 8 where the squared violet region
of 70 ≤ Λ1.4 ≤ 580 and 10.5 ≤ R1.4 ≤ 13.3 km cor-
responds to the constraints reported by the LIGO and
Virgo Collaborations [29], while the squared black region
of 292 ≤ Λ1.4 ≤ 680 and 11.5 ≤ R1.4 ≤ 13.6 km corre-
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FIG. 8: (color online) Relation between the dimensionless tidal deformability and the radius of hybrid star based on the ImMDI-
ST interactions for nuclear matter with different parameters x, y and z (left) as well as the NJL model for quark matter with
different coupling constants RV and RIV (right). The squared violet region of 70 ≤ Λ1.4 ≤ 580 and 10.5 ≤ R1.4 ≤ 13.3
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292 ≤ Λ1.4 ≤ 680 and 11.5 ≤ R1.4 ≤ 13.6 km corresponds to the constraints from heavy-ion collisions [38]. And the small pink
squares indicate the results for hybrid stars with M = 1.4M⊙.

sponds to the constraints from heavy-ion collisions [38].
Except for the cases x = −1, x = −2 and y = 115 MeV,
it can be seen that the Λ1.4 with various parameters of
ImMDI-ST interactions are approaching the overlapping
part of the two constraints. The relation between the
tidal deformability and the mass of hybrid stars using
NJL model by varying the coupling constants RV and
RIV is shown in the right panel. One can be seen that
the vector and vector-isovector interactions have slightly
effects on the minimum deformability which is related to
the difference in maximum mass of hybrid stars. Sim-
ilarly, these interactions have no effect on the Λ1.4 of
hybrid stars.

Meanwhile, we also show in Fig. 9 the relation between
the dimensionless tidal deformability and the mass of hy-
brid star. We see that Λ decreases rapidly as the mass of
the neutron star increases. This is due to the factor that
given the smaller range of allowed radii for larger massive
stars, the spread in the tidal deformability is also natu-
rally much tighter than for lower-mass neutron stars. The
error bar at 1.4M⊙ corresponds to the constraints on the
tidal deformability 70 ≤ Λ ≤ 580 based on the improved
analysis of GW170817 by LIGO and Virgo Collabora-
tions as well as the prediction of 292 ≤ Λ ≤ 680 from
heavy-ion collisions. It is seen that the main contribu-
tion to Λ1.4 is from the hadron phase and the upper limit
of Λ1.4 = 580 is an important constraint on the param-
eters x, y and z. It is also seen in Fig. 9 that the tidal
deformability is not sensitive to the vector and vector-
isovector interactions. Quark matter interactions have
effect on the EOS and symmetry energy of the hadron-
quark mixed phase transition and thus lead to the dif-
ference of the maximum mass of hybrid stars. For the
parameters x = y = z = 0, the maximum mass of hy-
brid stars can reach about 2.13M⊙ with RV = 1.1 and

RIV = 2.0. Furthermore, if quark matter would make
more contribution to the tidal deformability, the equa-
tion of state of nuclear matter need to be stiffer so that
the quark matter appears in the low-density region.

IV. SUMMARY AND OUTLOOK

The density dependence of symmetry energy is an im-
portant part of the equation of state of isospin symme-
try matter. However, the huge uncertainty of symmetry
energy remain at suprasaturation densities, where the
phase transitions of strong interaction matter and quark
matter symmetry energy are likely to be taken into ac-
count. In this work, we have investigated the proper-
ties of symmetry energy by using a hybrid star with the
hadron-quark phase transition. The quark matter inter-
actions in hybrid stars are described based on 3-flavor
NJL model with various vector and vector-isovector cou-
pling constants. The ImMDI-ST interaction is then used
to study the equation of state of nuclear matter by vary-
ing the parameters x, y, and z. In the present study, we
found that all parameters and coupling constants of the
interactions from the ImMDI-ST and NJL model can lead
to widely different trends for the symmetry energy in the
mixed phase and positions of the onset of the hadron-
quark phase transition. The maximum mass of hybrid
stars constrain mostly the EOS of symmetric matter (in-
cluding symmetric nuclear and quark matter) at 2 − 5
times saturation density. The different parameters x, y,
and z in the ImMDI-ST interactions will not lead to the
variation of properties of symmetric nuclear matter, and
thus have no significant effect on the maximum mass of
hybrid stars. Compared to the vector-isovector interac-
tion, the vector interaction of quark matter plays an more
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FIG. 9: (color online) Relation between the dimensionless tidal deformability and the mass of hybrid star based on the ImMDI-
ST interactions for nuclear matter with different parameters x, y and z (left) as well as the NJL model for quark matter
with different coupling constants RV and RIV (right). The error bar at 1.4M⊙ corresponds to the constraints on the tidal
deformability 70 ≤ Λ ≤ 580 based on the improved analysis of GW170817 by LIGO and Virgo Collaborations as well as the
prediction of 292 ≤ Λ ≤ 680 from heavy-ion collisions.

important role in mass-radius relations of hybrid stars.
With increasing vector interaction coupling RV hybrid
stars have larger maximum mass. This is due to that
the vector interaction affects the EOS of not only asym-
metric quark matter but also symmetric quark matter.
In addition, we also found that the radius and the tidal
deformability of hybrid stars constrain mostly the den-
sity dependence of symmetry energy. Thus, the radius
and formability of 1.4 M⊙ are important constraints of
the parameters x, y, and z in ImMDI-ST interactions.
However, the isospin properties of quark matter have no
effect on the radius and formability of hybrid stars with
a canonical mass 1.4 M⊙, since there is not quark matter
at densities from ρ0 to 2ρ0.
So far, the following observables and constrains have

been used for comparison: (1) the energy per nucleon
for symmetric nuclear matter from the SCGF approach
and the χEMBPT approach. (2) the nuclear sym-
metry energy Esym(ρ0) and its slope parameter L(ρ0)
from the analyses about nuclear experiments and astro-
physical observations; (3)the observed maximum mass
2.08 ± 0.07M⊙ for the two pulsars PSR J0740+6620;
(4) the radius inferred from the X-ray bursts of LMXB
10.62 ≤ R1.4 ≤ 12.83 km and the PSR J0740+6620 of
NICER and XMM-Newton R1.4 = 12.45 ± 0.65 km; (5)
the tidal deformability 70 ≤ Λ ≤ 580 extracted by the
LIGO and Virgo Collaborations. In addition, some of
the new discoveries and observations provide more rigor-
ous constraints on symmetric energy, or may also contain

some new physics. For an example, the newly discov-
ered compact binary merger GW190814 with a secondary
component of mass (2.50 ∼ 2.67)M⊙, which can be re-
produced by a super-fast pulsar [96] or quark star [97].
These constraints of massive compact stars can also be
used to understand the properties of the hadron-quark
phase transition. For example, the coupling constants
RV and RIV in the NJL model determine the EOS mat-
ter and also affect the critical point as well as the QCD
phase structure. To further explore the QCD phase struc-
ture and search for the signal of the critical point between
the crossover and the first-order transition, experimental
programs such as the beam-energy scan (BES) at RHIC
and the compressed baryonic matter (CBM) at Facilities
for Antiproton and Ion Research (FAIR) were proposed.
The promising results are available to provide more con-
straints on the EOSs of quark and nuclear matter, which
are helpful in the understanding of the QCD phase struc-
ture and isospin properties of compact stars.
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A 30, 23 (2006).
[60] J. Piekarewicz, J. Phys. G 37, 064038 (2010).
[61] B. A. Li, B. J. Cai, W. J. Xie, and N. B. Zhang, Universe

7, 182 (2021).
[62] J. Estee, et al. [SpRIT Collaboration]. Phys. Rev. Lett.

126, 162701 (2021).
[63] D. Adhikari et al. (PREX Collaboration), Phys. Rev.

Lett. 126, 172502 (2021).
[64] X. H. Li, W. J. Guo, B. A. Li, L. W. Chen, F. J. Fattoyev,

and W. G. Newton, Phys. Lett. B 743, 408 (2015).
[65] B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J.

Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021).
[66] M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).
[67] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).
[68] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[69] N. K. Glendenning, Phys. Rep. 342, 393 (2001).
[70] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Rev.

C 79, 035802 (2009).
[71] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Astrophys.

J. 697,1549 (2009).
[72] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J.

170, 299 (1971).
[73] T. Hinderer, Astrophys. J. 677, 1216 (2008); T. Hinderer,

Astrophys. J. 697, 964 (2009) (E).
[74] J. S. Read, C. Markakis, M. Shibata, K. B. O. Uryu, J.

D. E. Creighton, and J. L. Friedman, Phys. Rev. D 79,
124033 (2009).



14

[75] S. Postnikov, M. Prakash, and J. M. Lattimer, Phys. Rev.
D 82, 024016 (2010).

[76] I. E. Lagaris, and V. R. Pandharipande, Nucl. Phys. A
369 470 (1981).

[77] I. Bombaci, and U. Lombardo, Phys. Rev. C 44 1892
(1991).

[78] A. Carbone, A. Rios, and A. Polls, Phys. Rev. C 90,
054322 (2014).

[79] A. Carbone, A. Rios, and A. Polls, Phys. Rev. C 98,
025804 (2018).

[80] C. Wellenhofer, J. W. Holt, and N. Kaiser, Phys. Rev. C
92, 015801 (2015).

[81] C. Wellenhofer, J. W. Holt, and N. Kaiser, Phys. Rev. C
93, 055802 (2016).

[82] L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Phys. Rev.
C 82, 024321 (2010).

[83] M. Dutra, O. Lourenco, J. S. Sá Martins, A. Delfino, J.
R. Stone, and P. D. Stevenson, Phys. Rev. C 85, 035201
(2012).

[84] G. Y. Shao, M. Colonna, M. Di Toro, Y. X. Liu, and B.
Liu, Phys. Rev. D 87, 096012 (2013).

[85] M. Orsaria, H. Rodrigues, F. Weber, and G. A. Contrera,
Phys. Rev. D 87, 023001 (2013).

[86] X. H. Wu, and H. Shen, Phys. Rev. C 99, 065802 (2019).

[87] M. Ju, X. H. Wu, F. Ji, J. N. Hu, and H. Shen, Phys.
Rev. C 103, 025809 (2021).

[88] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562,
221 (2003).

[89] Z. Zhang, and H. P. Su, Phys. Rev. D 89, 054020 (2014).

[90] M. Hanauske, L. M. Satarov, I. N. Mishustin, H. StÖcker,
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