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We elaborate that single-layer graphene with periodic vacancies can have a band structure con-
taining nodal lines or nodal loops, opening the possibility of graphene-based electronic or spintronic
devices with novel functionalities. The principle is that by removing carbon atoms such that the
lattice becomes nonsymmorphic, every two sublattices in the unit cell will map to each other under
glide plane operation. This mapping yields degenerate eigenvalues for the glide plane operation,
which guarantees that the energy bands must stick together pairwise at a boundary of the Brillouin
zone. Moving away from the Brillouin zone boundary causes the symmetry-enforced nodal lines
to split, resulting in accidental nodal lines caused by the crossings of the split bands. Moreover,
the density of states at the Fermi level may be dramatically enhanced if the nodal lines crosses
the Fermi level. The nodal lines occur a variety of vacancy configurations even in the presence of
Rashba spin-orbit coupling. Finally, our theory also explains the nodal loops surrounding the entire
Brillouin zone of a chevron-type nanoporous graphene fabricated in a recent experiment.

I. INTRODUCTION

A nodal-line semimetal (NLSM) is a novel phase of
matter, characterized by band crossings along lines,
loops, or even circles in the Brillouin zone (BZ).1 Both
theoretical and experimental results have demonstrated
that NLSMs possess various interesting properties, such
as chiral anomaly,2 extremely large magnetoresistance,3

photo-induced anomalous Hall effects,4 high thermal con-
ductivity, giant intrinsic charge mobility, non-Abelian
statistics and superconductivity,5 which have strongly
motivated the research on NLSMs.4,6–8 Concerning the
mechanisms for the formation of these nodal lines and
nodal loops, they can be either accidental or symmetry-
enforced.1,9–11 The former are related to various spatial
or nonspatial symmetries, such as the Dirac nodal lines
protected by reflection, space-time inversion, or rotation
symmetry, and can be adiabatically destroyed by tun-
ing parameters of the material, such as spin-orbit cou-
pling (SOC). Symmetry enforced NLSM phases,1,11 on
the other hand, emerge in crystals with nonsymmorphic
symmetries, which warrants global stability to the asso-
ciated nodal lines.

A recent work proves a remarkable principle to engi-
neer nodal lines in two-dimensional (2D) materials: By
periodically removing atoms such that the lattice be-
comes nonsymmorphic, the material becomes a robust
NLSM.12,13 As a case study, it was shown that the band
structures of a number of vacancy-engineered borophenes
display nodal lines originated from a nonsymmorphic
glide-plane symmetry. In this paper, we demonstrate
that vacancy engineering can in fact be applied to an-
other important 2D material, namely the single-layer
graphene. As the first member of the 2D family, graphene
exhibits a variety of extraordinary properties with huge
impact to applied research, including unprecedented high

strength and flexibility, ultralow weight, ultrahigh car-
rier nobilities, high optical transparency and high ther-
mal conductivity.14 However, these physical properties
rely on the linear Dirac cones at low energy which are
rather frail to SOC, especially the Rashba SOC, which
may hinder its application in SOC-based devices. In
particular, Rashba SOC is known to be tunable by a
gate voltage in graphene/transition-metal dichalcogenide
heterostructures,17–23 which may be used to engineer a
variety of spintronic effects, such as the recently discov-
ered edge current, edge spin current, and bias-voltage
free spin torque in geometrically confined graphene.24 A
vacancy-engineered graphene that supports nodal lines
even in the presence of Rashba SOC could thus open up
new possible functionalities. Moreover, we find that the
density of states (DOS) near the Fermi level is dramat-
ically enlarged if the nodal lines passes the Fermi level,
which is expected to strongly impact the electronic and
magnetic properties of the proposed structures. This con-
nects with studies of twisted bilayer graphene which hosts
superconductivity when tuned to special “magic angles”
at which isolated and relatively flat bands appear.15

Besides nodal lines, here we demonstrate that vacancy-
engineering also allows to generate nodal loops sur-
rounding the entire boundary of the BZ. Interest-
ingly, the scheme additionally gives rise to acciden-
tal nodal lines and loops inside the BZ that are ro-
bust to Rashba SOC. Regarding the feasibility of our
proposal, various experimental techniques such as self-
aligned anisotropic etching,25 copolymer lithography,26

nano-network masking,27 nanosphere lithography,28

and nitrogenation29 have been employed to fabricate
graphene with vacancies, often called graphene nanomesh
or holey graphene. In particular, we will elaborate that
the nodal loops in fact have already been realized in
a recent experiment that fabricates a nonsymmorphic
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chevron-type nanoporous graphene,30 although this fea-
ture seems to be overlooked. Additionally, to further
illustrate the generality of our scheme, we show that
a vacancy-engineered square lattice also supports nodal
loops. Thus we anticipate that the proposed vacancy
engineering principle may be further exploited to design
Rashba SOC-active nodal-line spintronic or electronic de-
vices in a wide variety of 2D materials.

Naturally nonsymmorphic materials (i.e. that con-
tain glide-plane or screw-axis symmetries without lat-
tice engineering) are expected to possess symmetry-
enforced band degeneracies.31–34 Three-dimensional real-
izations of such materials have been predicted in hexag-
onal compounds.35 Our aim is to put forward a sim-
ple and practical method to create 2D nonsymmorphic
materials which contains multiple nodal-lines or nodal-
loops. We argue theoretically and illustrate numerically
that it can done simply by periodically removing atoms
from common monoatomic and nonmagnetic sheets, us-
ing graphene as a concrete example.

II. NLSM PHASES IN
VACANCY-ENGINEERED GRAPHENE

A. Vacancy-engineered graphene with a single
glide plane

The lattices engineered from graphene are denoted by
CN , where N is the number of sublattices in the rectan-
gular unit cell.We firstly consider a lattice that belongs
to the wallpaper group p2mg,16 which has a glide plane
going along ŷ, and a reflection plane along x̂, as shown in
Fig. 1 (a) for a C10 configuration. In this case, we demon-
strate that every two of the N bands must stick together
and form N/2 symmetry-enforced nodal lines at the BZ
boundary ky = ±π. In contrast to the previous works
about vacancy-engineered nodal lines that are based on
analyzing how the pairwise degenerate eigenvalues of the
nonsymmorphic symmetry operator constrain the band
structure,12,13 in this work we present a new formalism
based on a general feature of these nonsymmorphic va-
cancy configurations that enforces the nodal lines irre-
spective of the detail of the Hamiltonian. The general
feature is that every two sublattices form a pair that
map to each other under glide-plane operation, which we
call a glide pair. Denoting the position of the unit cell to
be (x, y) and each sublattice to be (A,B,C...), there are
two kinds of glide pairs that we call type-I and type-II.
The electron annihilation operators csubx,y for a type-I/II
glide pair (A,B)/(C,D) transform under glide-plane op-
eration as

Type I : cA−x,−y → cBx,−y, cB−x,−y → cAx,−y+1,

Type II : cC−x,−y → cDx−1,−y, cD−x,−y → cCx−1,−y+1. (1)

The above transformations convey that the glide plane
reflects the x-coordinate of a type-I pair, whereas in a

type-II pair the glide plane reflects the x-coordinate and
then translates to a neighboring unit cell along x. This
translation is due to a shift between the center of the
unit cell and the glide plane along the x-direction (c.f.
Fig. 1 (a)). In both type-I and type-II pairs, the reflection
of the x-coordinate is followed by a translation along y
which lands at the neighboring unit cell for the B →
A and D → C transformations. The presence of the
two orthogonal translations means that the glide plane
is, simultaneously, a nonsymmorphic and an off-centered
symmetry.12,36

With the transformations in Eq. (1) and arrangement
of the basis functions according to the N1 type-I and N2

type-II glide pairs, the N ×N glide-plane operator G(k)
of the whole system is block diagonal, with N1 + N2 =
N/2 blocks of 2× 2 matrices

G(k) = N1 g1(k)⊕N2 g2(k) mkx ,

g1(k) =

(
e−iky

1

)
, g2(k) =

(
e−ikx−iky

e−ikx

)
,

(2)

where mkx takes kx to −kx. The lattice de-
scribed by the Bloch Hamiltonian H(k) has
glide-plane symmetry if [H(k), G(k)] = 0. It
then follows that there are {N1, N1, N2, N2}-
fold degenerate glide plane symmetry eigenvalues{

+e−iky/2,−e−iky/2,+e−ikx−iky/2,−e−ikx−iky/2
}

. The
simultaneous eigenstates of G(k) and H(k) satisfy

G(k)|ψn1±(k)〉 = ±e−iky/2 mkx |ψn1±(k)〉,
G(k)|ψn2±(k)〉 = ±e−ikx−iky/2 mkx |ψn2±(k)〉,
H(k)|ψnI±(k)〉 = EnI±(kx, ky)|ψnI±(k)〉. (3)

where n = {1, 2...} is the band index, I = {1, 2} stems
from the two types of glide pairs. In Appendix A, we
elaborate that combining the appropriate transformation
properties of the eigenstate with the fact that ky = 0 and
ky = 2π are the same point, we arrive at a condition for
the eigenenergies

EnI−(kx, 2π) = EnI+(kx, 0),

EnI+(kx, 2π) = EnI−(kx, 0), (4)

meaning that at a given {kx, n, I}, the two bands with
energy EnI+(kx, ky) and EnI−(kx, ky) swap and hence
must cross each other somewhere in 0 ≤ ky ≤ 2π. Ap-
plying the same argument to the BZ boundary ky = ±π
further dictates that the band crossing must occur at the
BZ boundary

EnI+(kx, π) = EnI−(kx, π). (5)

Thus every two bands with parameters {nI+} and {nI−}
at any kx have to stick together at ky = π, yielding N/2
nodal-lines there.

The validity of the above analysis is further supported
by our first principles calculations for the band structure
of various nonsymmorphic configurations in the p2mg
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FIG. 1. Lattice of C10 (a) before and (b) after structural
optimization. There are 10 C atoms in the unit cell defined

by lattice vectors ~a and ~b. The lattices have two symme-

tries: symmorphic reflection plane R perpendicular to ~b and
nonsymmorphic glide plane G perpendicular to ~a. (c) Band
structure of C10 along the high-symmetry line Γ-X-V-Γ-Y-V,
with the Fermi level set at zero energy. The black arrow and
circles indicate the symmetry-enforced nodal lines and the
circles indicate accidental nodal lines, respectively. The cor-
responding density of states is shown to the right of the band
structure. (d) Contour plot of the two kinds of nodal-lines
by projecting them on the kx-ky plane, with the color bar in-
dicating the inter-band energy gap. The symmetry-enforced
nodal line is at the ky = ±π boundary of the Brillouin zone,
while the accidental one is inside.

group. The band structures are obtained using the
QUANTUM ESPRESSO package.37 The kinetic ener-
gies cutoff for wave function (ecutwfc) and for charge
density (ecutrho) are set to 500 and 45 Ry, respectively.
Perdew, Burke and Ernzerhof (PBE) form of the gener-
alized gradient approximation (GGA) is adopted for the
exchange-correlation energy.38 Numerical integrations in
the BZ are evaluated with the Monkhorst-Pack mesh of
10 × 10 × 1. All structures are relaxed until the to-
tal energy converges to within 10−4 eV during the self-
consistent loop, with forces converged to 0.1 eV/nm,
while employing the Methfessele-Paxton method with
a smearing of 0.2 eV width. With the optimized ge-
ometry of the graphene structure and the correspond-
ing self-consistent ground state computed with Quantum
ESPRESSO, we use Wannier9039 to map the ground-
state wave functions onto a maximally localized Wannier
function basis, and employ an adaptive k-mesh strat-
egy to extract the matrices to build the real-space tight-
binding model in the basis of the s, px, py and pz or-
bitals of C atoms. We find that although the vacancy-
engineered lattice distorts after the geometry optimiza-

tion process as shown in Fig. 1(b) for C10, the relaxed
lattice still belongs to the same p2mg group and satisfies
all the requirements in our argument.

Figure 1 (c) displays the band structure of C10 within
a 2.0 eV window centered at the Fermi energy, obtained
by density functional theory (DFT) calculation. Along
the Y-V direction which corresponds to ky = π, ev-
ery two pairs of bands stick together to form a nodal
line, as predicted. We note that, in the absence of spin-
orbit coupling, all bands are completely spin-degenerate
throughout the Brillouin zone (BZ). Hence, the nodal
lines formed along the Y-V BZ edge are four-fold degen-
erate, with a two-fold degeneracy from spin and a two-
fold degeneracy enforced by the glide-plane symmetry. In
addition, from the DOS shown in Figure 1 (c), we see
that the DOS no longer vanishes linearly near the chem-
ical potential as in pristine graphene,14 but has a finite
value due to the more complicated band structure. Fig-
ure 1(d) shows the contour plot on the kx-ky plane of the
glide-plane-enforced nodal lines indicated by the arrow
in Fig. 1(c), as well as of accidental nodal lines indicated
by the black circles. The latter arise from the acciden-
tal crossing of the splitting bands as they disperse from
the symmetry enforced nodal lines. Accidental nodal
lines have also been observed in holey graphene,40 but
the mechanism therein is unrelated to crystalline sym-
metry, and therefore the resulting nodal lines are un-
stable against SOC. In contrast, the accidental nodal
lines shown in the interior of the BZ in Fig. 1(d) arise
from splitting the symmetry enforced ones, and hence
are robust against SOC and any glide-plane symmetry-
preserving perturbations.

B. Vacancy-engineered graphene with two
orthogonal glide planes

We proceed to discuss vacancy-engineered graphene
that contain two orthogonal glide planes going along x̂
and ŷ directions, with the corresponding glide plane op-
erators Gx and Gy. Figure 2(a) shows the lattice struc-
ture of C44 which belongs to the wallpaper group p2gg.
Even after the lattice relaxation, C44 still hosts two or-
thogonal glide planes, as seen in Fig. 2(b). Because the
Hamiltonian commutes with both glide-plane operators,
[H(k), Gx,y(k)] = 0, we are able to label the common
eigenstates by the quantum numbers {n, α, β}, where n
is the band index, α = Ix± labels the eigenvalues of Gx,
and β = Iy± labels the eigenvalues of Gy. Through gen-
eralizing the argument for one glide plane to two orthog-
onal glide planes, as detailed in Appendix B, we arrive
at the condition

EnαIy−(kx, π) = EnαIy+(kx, π),

EnIx−β(π, ky) = EnIx+β(π, ky), (6)

where Enαβ(kx, ky) are the eigenenergies. Thus every
two bands are forced to stick together all around the BZ
boundary, forming N/2 symmetry enforced nodal loops.
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FIG. 2. Lattice of C44 (a) before and (b) after structural
optimization. There are 44 C atoms in the unit cell defined

by lattice vectors ~a and ~b. The lattices have two orthogonal
glide-planes Gx and Gy. (c) Band structure of C44 along
the path Γ-X-V-Γ-Y-V, where the black arrows and circles
indicate the symmetry-enforced and accidental nodal loops,
respectively. The corresponding density of states is shown to
the right of the band structure. (d) Contour plot of the two
kinds of nodal loops by projecting them on the kx-ky plane,
with the color bar indicating the inter-band energy gap. The
symmetry-enforced nodal loop surrounds the Brillouin zone
boundary, while the accidental one is inside.

The above assertion is verified in the DFT band struc-
ture of C44 in Fig. 2 (c) which clearly displays band cross-
ings for every two pairs of spin-degenerate bands along
the lines X-V and Y-V, yielding the outer four-fold de-
generate nodal loop shown in the contour plot of Fig. 2
(d), and an enlarged DOS near the Fermi level. The
band structure also exhibits accidental nodal loops in-
side the BZ, which are caused by crossings of bands as
they split from the symmetry-enforced nodal-loops at the
BZ boundary.

C. Effect of intrinsic and Rashba SOC on nodal
lines and nodal loops

In this section, we use C44 to elaborate that in the pres-
ence of Rashba SOC, even though the spin degeneracy of
the band structure is lifted, the glide plane symmetry
still forces every two spin-split bands to stick together at
the BZ boundary, ensuring the existence of nodal lines
and nodal loops, which are now two-fold degenerate. To
demonstrate this effect, we consider the nearest-neighbor
tight-binding model of graphene with Rashba SOC de-

scribed by the Hamiltonian

H = t
∑
〈ij〉,σ

c†iσcjσ + iλSOC
∑
〈ij〉,α,β

c†iα (σαβ × dij)
z
cjβ

+U
∑

i∈vac,σ
c†i,σciσ. (7)

Here ciσ is the electron annihilation operator of spin
σ on the lattice site i, t is the hopping amplitude be-
tween nearest neighbor lattice sites 〈ij〉, λSOC is the
coupling constant of Rashba SOC caused by breaking
the inversion symmetry in the out-of-plane direction ẑ,
σ = (σx, σy, σz) are the Pauli matrices, dij is the vector
connecting site i to site j. A very large on-site poten-
tial U ∼ 100t is applied on the vacancy sites i ∈ vac to
conveniently create the desired vacancy configuration.

FIG. 3. (a) The band structure of the C44 configuration in
Fig. 2 without Rashba SOC simulated by a nearest-neighbor
tight-binding model. The nodal loops in the BZ boundary
X − V and Y − V are four-fold degenerate. (b) The band
structure of C44 in the presence of Rashba SOC, which shows
that despite the spin-splitting of the bands inside the BZ,
every two bands still stick together at the BZ boundary to
form nodal loops. The nodal loops are two-fold degenerate in
this case due to the lifting of the spin degeneracy.

We will use this tight-binding model to examine the
effect of Rashba SOC on the C44 configuration in Fig. 2,
which has two orthogonal glide planes. In the pris-
tine C44 without Rashba SOC, the two orthogonal glide
planes cause every two bands to stick together at the BZ
boundary, and in addition there is spin degeneracy, so
the nodal loops in Fig. 2 (a) are in fact four-fold degen-
erate. In contrast, Fig. 3 (b) shows that at a finite Rashba
SOC, the spin degeneracy is lifted everywhere inside the
BZ as expected. Nevertheless, every two spin-split bands
still merge together to form a two-fold degenerate nodal
loop at the BZ boundary. In short, the Rashba SOC
splits the spin degeneracy of the nodal loops and hence
changes their degeneracy from four-fold to two-fold, but
the glide-plane symmetry still ensures the existence of
nodal loops at the BZ boundary.
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FIG. 4. (a) A vacancy configuration containing two orthogo-
nal glide planes Gx and Gy engineered from a square lattice,
and (b) its tight-binding band structure along high-symmetry
lines. The black arrows and circles indicate the symmetry-
enforced and accidental nodal loops, respectively.

D. Vacancy-engineered NLSM from a square
lattice

In this section, we elaborate that our proposal is in fact
a general principle not limited to graphene, but also ap-
plicable to other 2D materials with different lattice struc-
tures. Figure 4 (a) shows a crystal structure vacancy-
engineered from a square lattice, which belongs to wall-
paper group p4gm that contains two orthogonal glide
planes. The band structure obtained by tight-binding

model with nearest-neighbor hopping H =
∑
〈ij〉 t c

†
i cj

contains nodal-loops at BZ boundary just like C44, as
shown in Figure 4 (b). This result indicates that our
vacancy engineering principle can be generically applied
to any 2D lattices regardless the structural and chemi-
cal details of the host system, and it is based solely on
crystalline symmetries.

E. Experimental realization in nanoporous
graphene

Concerning the experimental realization of our pro-
posal, a particularly promising route is the so-called
bottom-up type of approach to nanoporous graphene. In
this type of approach, one starts from small clusters of
some precursor molecules, and choose a suitable chemi-
cal environment such that they self-assemble into lattice
structures with periodic vacancies. This technique has
been applied to grow graphene with periodic nanometer
size pores.30,41 In fact, the experimental vacancy configu-
ration realized in Ref. 30, called chevron-type nanoporous
graphene (C-NPG), is nonsymmorphic. The lattice be-
longs to wallpaper group p2gg that contains glide planes
in two orthogonal crystalline directions, similar to the
C44 example discussed in Sec. II B. Therefore, the C-
NPG should contain nodal loops surrounding the entire
BZ edge according to our theory, as have also been con-
firmed by DFT calculations (see Fig. 3 E of Ref. 30), al-
though this feature has not been emphasized. However,
this C-NPG contains a band gap ∼ eV at the Fermi level,

and all the nodal loops form outside the band gap. Thus
we anticipate that some experimental efforts is needed to
search for other nanoporous configurations that contain
nodal lines or loops crossing the Fermi level, such that
the DOS may be enhanced instead of reduced.

III. CONCLUSIONS

In summary, we elaborate that vacancy-engineered
nonsymmorphic graphene exhibits band structures with
multiple symmetry enforced nodal lines or nodal loops
at the BZ boundary. This mechanism is based on the
formation of glide pairs of the sublattices, which mani-
fests regardless the original material is semimetallic, like
graphene, or metallic, like a square lattice. In addition,
accidental nodal lines and nodal loops can also occur
inside the BZ. In fact, such a nonsymmorphic vacancy
configurations have been realized experimentally in a
nanoporous graphene,30 and the existence of nodal loops
in this configuration has been confirmed by DFT calcu-
lations, although it has not been emphasized. Our mech-
anism thus opens a new direction to explore vacancy-
triggered NLSMs which can coexist with other material
properties like Rashba SOC, and is even compatible with
other types of vacancy-engineered band structures such
as flat bands,42 hence may be exploited to fabricate novel
NLSM-based electronic or spintronic devices. Moreover,
shall the nodal lines cross the Fermi level, the finite DOS
at the Fermi level is expected to dramatically alter ther-
mal, electric and magnetic properties of the material
compared to those in pristine graphene. We anticipate
that this nonsymmorphic vacancy-engineering principle
can be widely applied to change the band structure of
a great variety of 2D materials, with the accompanying
change of physical properties that awaits to be explored.
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Appendix A: Nodal lines enforced by a single glide
plane

We now give a detailed formalism for the nodal lines
and nodal loops enforced by nonsymmorphic symme-
try of the vacancy engineered lattices, starting from the
nodal lines in the situation that the lattice contains only
one glide plane. We will consider the spinless situation
for simplicity, but the argument can be easily generalized
to include spin. First we elaborate why the eigenvalues of
G(k) in Eq. (3) contain the momentum-swapping opera-
tion mkx using a simple example. Consider the minimal
situation of N = 2 sublattice as an example, in which
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G(k) = g(ky) mkx , and we intend to diagonalize it to
obtain the eigenvalues λ±(k)

g(k)|φ±(k)〉 = λ±(k)|φ±(k)〉. (A1)

Denoting the eigenstate by

|φ±(k)〉 =

(
u±(kx, ky)
v±(kx, ky)

)
, (A2)

the eigenvalue problem leads to

g(k)|φ±(k)〉 =

(
e−iky

1

)
mkx

(
u±(kx, ky)
v±(kx, ky)

)
=

(
e−iky

1

)(
u±(−kx, ky)
v±(−kx, ky)

)
= λ±(kx, ky)

(
u±(kx, ky)
v±(kx, ky)

)
, (A3)

we see that this equation in general cannot be solved, be-
cause there needs not be a relation between u±(−kx, ky)
and u±(kx, ky), or between v±(−kx, ky) and v±(kx, ky).
Thus the correct way to diagonalize it is to maintain the
mkx in the eigenvalues

g(k)|φ±(k)〉 = λ±(k) mkx |φ±(k)〉, (A4)

such that the diagonalization leads to

g(k)|φ±(k)〉 =

(
e−iky

1

)
mkx

(
u±(kx, ky)
v±(kx, ky)

)
=

(
e−iky

1

)(
u±(−kx, ky)
v±(−kx, ky)

)
= λ±(kx, ky) mkx

(
u±(kx, ky)
v±(kx, ky)

)
= λ±(kx, ky)

(
u±(−kx, ky)
v±(−kx, ky)

)
, (A5)

and hence one can solve for the coefficients u±(−kx, ky)

and v±(−kx, ky) with eigenvalues λ± = ±e−iky/2. This
argument can be arbitrarily generalize to unit cells that
contain more glide pairs.

We then consider the fact that, at a fixed kx, the
Hamiltonian at ky = 0 and ky = 2π is the same,
H(kx, 0) = H(kx, 2π), and so is the glide-plane opera-
tor, G(kx, 0) = G(kx, 2π). At a fixed kx and band index
n, the symmetry eigenvalues at ky = 0 and ky = 2π are,

G(kx, 0)|ψn1±(kx, 0)〉 = ± mkx |ψn1±(kx, 0)〉,
G(kx, 2π)|ψn1±(kx, 2π)〉 = ∓ mkx |ψn1±(kx, 2π)〉,
G(kx, 0)|ψn2±(kx, 0)〉 = ±e−ikx mkx |ψn2±(kx, 0)〉,
G(kx, 2π)|ψn2±(kx, 2π)〉 = ∓e−ikx mkx |ψn2±(kx, 2π)〉,

(A6)

Combining this with G(kx, 0) = G(kx, 2π) implies that
one must be able to find a gauge in which

|ψnI+(kx, 0)〉 = |ψnI−(kx, 2π)〉,
|ψnI−(kx, 0)〉 = |ψnI+(kx, 2π)〉. (A7)

It then follows that the eigenenergies satisfy

H(kx, 0)|ψnI+(kx, 0)〉 = EnI+(kx, 0)|ψnI+(kx, 0)〉
= H(kx, 2π)|ψnI+(kx, 2π)〉 = EnI−(kx, 2π)|ψnI−(kx, 2π)〉
= EnI−(kx, 2π)|ψnI+(kx, 0)〉, (A8)

since H(kx, 0) = H(kx, 2π). This and a similar argument
leads to

EnI−(kx, 2π) = EnI+(kx, 0),

EnI+(kx, 2π) = EnI−(kx, 0). (A9)

Thus at given kx, n, and I the two bands EnI+(kx, ky)
and EnI−(kx, ky) must cross each other somewhere in
0 ≤ ky ≤ 2π.

We can apply the same argument to the BZ boundary
ky = ±π, which has symmetry eigenvalues

G(kx, π)|ψn1±(kx, π)〉 = ∓i mkx |ψn1±(kx, π)〉,
G(kx,−π)|ψn1±(kx,−π)〉 = ±i mkx |ψn1±(kx,−π)〉,

(A10)

and similarly for the eigenstate with index I = 2. Be-
causeG(kx, π) = G(kx,−π), there exists a gauge in which
the eigenstates satisfy

|ψnI+(kx, π)〉 = |ψnI−(kx,−π)〉,
|ψnI−(kx, π)〉 = |ψnI+(kx,−π)〉. (A11)

Using H(kx, π) = H(kx,−π), the same procedure in
Eq. (A8) leads to

EnI+(kx, π) = EnI−(kx,−π) = EnI−(kx, π), (A12)

where in the last equality we have used the fact that
ky = π and ky = −π are the same point on the boundary
of a rectangular BZ, thus completing the proof to Eq. (5).

To be more concrete about the notion of glide pairs,
using the numbering of sublattices and the glide vector
in Fig. 5 (a), the glide pairs defined with respect to the
glide plane G for the C10 configuration in Fig. 1 are

Type− I : (1, 6), (3, 8), (5, 10),

Type− II : (2, 7), (4, 9). (A13)

For each of the 3 type-I pairs, mapping from left to right
under G remains in the same unit cell, but mapping from
right to left under G moves to the next unit cell in +ŷ
direction; For each of the 2 type-II pairs, mapping from
left to right moves to the next unit cell in −x̂ direction
while from right to left moves to the next unit cell along
−x̂ + ŷ. As result, the glide plane operator is that in
Eq. (2) with N1 = 3 and N2 = 2, and so follows the
discussion in this section.

Appendix B: Nodal-loops enforced by two
orthogonal glide planes

We proceed to discuss vacancy engineered graphene
that belong to the wallpaper groups that have two or-
thogonal glide planes denoted by Gx and Gy. In these
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FIG. 5. The numbering of sublattices for (a) the C10 example
in Fig. 1 and (b) the C44 example in Fig. 2.

wallpaper groups, a specific sublattice A is mapped to
another one B under Gx, but it is mapped to a different
one C under Gy. In other words, the glide pair arrange-
ments are different for Gx and Gy. Thus if we arrange
the basis according to the glide pairs of Gy, then Gy will
take the block-diagonal form of Eq. (2), but Gx will not
be block-diagonal in this basis because it has a differ-
ent glide pair assignment. Nevertheless, Gx will have
{N1x, N1x, N2x, N2x} degenerate eigenvalues according
to the numbers of type I and type II glide pairs defined for
this glide plane, and Gy will have {N1y, N1y, N2y, N2y}
degenerate eigenvalues regardless how the basis is ar-
ranged. Because the Hamiltonian commutes with both
of them, [H(k), Gx(k)] = 0 and [H(k), Gy(k)] = 0, one
must be able to label the eigenstates by the quantum
numbers {n, α, β}, where n is the band index, α = Ix±
labels the eigenvalues of Gx, and β = Iy± labels the
eigenvalues of Gy. The eigenstates satisfy

Gx(k)|ψn1±β(k)〉 = ±e−ikx/2 mky |ψn1±β(k)〉,
Gx(k)|ψn2±β(k)〉 = ±e−ikx/2−iky mky |ψn2±β(k)〉,
Gy(k)|ψnα1±(k)〉 = ±e−iky/2 mkx |ψnα1±(k)〉,
Gy(k)|ψnα2±(k)〉 = ±e−ikx−iky/2 mkx |ψnα2±(k)〉,
H(k)|ψnαβ(k)〉 = Enαβ(k)|ψnαβ(k)〉. (B1)

Following the same argument for the p2mg group in the
previous section, we obtain

EnαIy∓(kx, 2π) = EnαIy±(kx, 0),

EnIx∓β(2π, ky) = EnIx±β(0, ky), (B2)

implying a band crossing in the range 0 ≤ kx ≤ 2π at
any fixed ky, and another band crossing in the range

0 ≤ ky ≤ 2π at any fixed kx. The argument applied to
the BZ boundary also leads to

EnαIy−(kx, π) = EnαIy+(kx,−π) = EnαIy+(kx, π),

EnIx−β(π, ky) = EnIx+β(−π, ky) = EnIx+β(π, ky).(B3)

Thus every two bands are forced to stick together at
the BZ boundary, forming N/2 symmetry enforced nodal
loops surrounding the BZ boundary.

For the C44 example in Fig. 2, using the numbering
of sublattices in Fig. 5 (b), the glide pairs defined with
respect to the glide plane Gx are

Type− I : (1, 10), (2, 11), (3, 12), (7, 4),

(8, 5), (9, 6),

Type− II : (13, 42), (14, 43), (15, 44), (40, 16),

(41, 17), (18, 38), (19, 39), (35, 20),

(36, 21), (37, 22), (23, 32), (24, 33),

(25, 34), (29, 26), (30, 27), (31, 28).

(B4)

For the 6 type-I pair, mapping from left to right under
Gx remains in the same unit cell, but from right to left
moves to the next unit cell in x̂ direction; For the 14 type-
II pairs, mapping from left to right moves to the next unit
cell in the −ŷ direction, whereas mapping from right to
left moves to the next unit cell in the x̂− ŷ direction. As
a result, the glide plane operator is that defined in Eq. (2)
with N1x = 6 and N2x = 14 and swapping {kx, ky} →
{ky, kx}. On the other hand, the glide pair assignment
is different for the glide plane Gy, which are

Type− I : (1, 26), (2, 25), (3, 24), (4, 23),

(7, 32), (8, 31), (9, 30), (10, 29),

(13, 38), (14, 37), (15, 36), (16, 35),

(18, 42), (19, 41), (20, 40),

Type− II : (5, 28), (6, 27), (11, 34), (12, 33),

(17, 39), (21, 44), (22, 43), (B5)

where the mapping follows that described after
Eq. (A13), yielding the glide plane operator Gy given
by Eq. (2) with N1y = 15 and N2y = 7, and so follows
the discussion in this section.
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