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The variational quantum-classical algo-
rithms are the most promising approach for
achieving quantum advantage on near-term
quantum simulators. Among these methods,
the variational quantum eigensolver has at-
tracted a lot of attention in recent years.
While it is very effective for simulating the
ground state of many-body systems, its gen-
eralization to excited states becomes very re-
source demanding. Here, we show that this
issue can significantly be improved by exploit-
ing the symmetries of the Hamiltonian. The
improvement is even more effective for higher
energy eigenstates. We introduce two methods
for incorporating the symmetries. In the first
approach, called hardware symmetry preserv-
ing, all the symmetries are included in the de-
sign of the circuit. In the second approach, the
cost function is updated to include the sym-
metries. The hardware symmetry preserving
approach indeed outperforms the second ap-
proach. However, integrating all symmetries
in the design of the circuit could be extremely
challenging. Therefore, we introduce hybrid
symmetry preserving method in which symme-
tries are divided between the circuit and the
classical cost function. This allows to harness
the advantage of symmetries while preventing
sophisticated circuit design.

1 Introduction
The computation power provided by the emerging
quantum simulators and computers will fundamen-
tally transform our technology across different disci-
plines, including condensed matter physics [1], chem-
istry [2], material design [3] and finance [4–6]. Thanks
to recent advancements in quantum technologies,
quantum simulators are rapidly emerging in various
physical platforms [7–17]. However, the current Noisy
Intermediate Scale Quantum (NISQ) simulators suf-
fer from imperfect initialization, noisy operations and
faulty readout [18]. Thus, developing novel algo-
rithms which are friendly to imperfect NISQ simu-
lators and capable of achieving quantum advantage
Abolfazl Bayat: abolfazl.bayat@uestc.edu.cn

has attracted a lot of attention in recent years [19].
An important class of these algorithms are varia-
tional methods which are performed on a hybrid of
NISQ simulators and classical optimizers [20–24]. In
such algorithms, a cost function is measured on a
parameterized quantum circuit. Then the result is
fed into a classical optimizer to update the param-
eters of the circuit. The loop is repeated until the
cost function is minimized. Therefore, all variational
quantum-classical algorithms demand two types of re-
sources: (i) quantum resources which is quantified
through either the circuit depth or equivalently the
number of gates; and (ii) classical resources which
is quantified through the convergence speed. So
far, these variational algorithms have been developed
for addressing problems in quantum machine learn-
ing [25–30], combinatorial optimization [31, 32], dy-
namical simulations in closed [23, 33–36] and open [23,
37–40] systems, quantum sensing [41–47], computa-
tional chemistry [16, 20, 48–50] and condensed matter
physics [51–54].

The most popular application of variational quan-
tum algorithms is to find the ground state of complex
many-body systems. For fulfilling this task, the Vari-
ational Quantum Eigensolver (VQE) algorithm has
been designed to target the ground state of a many-
body system through minimizing the average en-
ergy [20, 22]. The VQE has been extensively applied
to quantum chemistry problems [16, 48–50] and exper-
imentally realized on superconducting [16, 49, 55, 56]
and ion trap [1, 10, 57] quantum simulators. Several
attempts have been made to enhance the VQE per-
formance, including: minimizing the number of re-
quired measurements [58–63], improving the initial-
ization [52, 64, 65], speeding up the classical opti-
mization [66–68] and designing better circuits [69–
74]. Several important phenomena in physics, such as
topological phases [75], are described by the knowl-
edge of a few low-energy eigenstates and not just
the ground state. Therefore, the generalization of
VQE to higher energy eigenstates is of high impor-
tance. However, the existing VQE protocols for sim-
ulating excited states [76–79] are very resource de-
manding which makes their scalability and practical-
ity in doubt. Therefore, improving the performance
of VQE in terms of feasibility for simulating large sys-
tems is a key milestone to achieve quantum advantage
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with NISQ devices.
Symmetry is one of the most profound concepts in

physics, especially in quantum mechanics [80]. Most
physical systems reveal various forms of symmetries
for which a precise mathematical description has been
developed [81]. Symmetries have been exploited to
improve data mitigation [82], quantum machine learn-
ing [83], quantum state representation [84] and vari-
ational quantum optimization [32] in NISQ devices.
In addition, the VQE algorithm can also hugely ben-
efit from the incorporation of symmetries. There are
two ways to incorporate symmetries in the VQE algo-
rithms for simulating the ground state: (i) design-
ing the circuit to naturally generate the quantum
states with the relevant symmetry [52, 85–91]; and
(ii) adding extra terms to the cost function to pe-
nalize the quantum states without the relevant sym-
metry [22, 92]. Two key open problems still exist.
Firstly, whether the symmetries can also be exploited
for efficiently simulating the excited states. Secondly,
which of the above methods, or a hybrid combination
of them, are more effective for incorporating symme-
tries in the VQE algorithm for enhancing its perfor-
mance.

In this paper, we show that symmetries can in-
deed significantly improve the VQE for simultane-
ously simulating several low-energy eigenstates. The
improvement becomes even more pronounced for ex-
cited states. We introduce two different approaches
for incorporating symmetries. First, in hardware sym-
metry preserving method, we include all the symme-
tries in the circuit. Second, we add symmetries as
proper penalization terms to the cost function. Inter-
estingly, our analysis shows that the first method is
more effective with respect to both quantum and clas-
sical resources. However, designing a circuit which
can integrate all the symmetries can be notoriously
difficult. Hence, we introduce hybrid symmetry pre-
serving method in which the two approaches are com-
bined in order to harness the symmetries while keep-
ing the circuit simple. Thanks to significant enhance-
ment in resource efficiency, our proposal paves the
way for achieving quantum advantage. In addition,
it is very timely and can be implemented on existing
quantum simulators.

2 Ground state VQE
In this section we provide a brief review on the VQE
algorithm for preparing the ground state of a given
Hamiltonian using a shallow quantum circuit [20]. In
the VQE algorithm, a parameterized quantum circuit,
represented by unitary operator U(~θ), is used to pre-
pare a quantum state |ψ(~θ)〉 = U(~θ)|ψ0〉 for a given
N qubits. This parameterized quantum circuit is of-
ten referred to as the ansatz, with ~θ = (θ1, θ2, . . . , θL)
being some tunable parameters in the circuit and |ψ0〉
is the input state. By varying ~θ one can explore some

part of the Hilbert space, which is called reachable set.
In very deep circuits, and thus large number of param-
eters L, one may generate any possible quantum state
of N qubits and thus the reachable set will be the en-
tire Hilbert space. However, we would like to keep the
circuit as shallow as possible and restrict ourselves to
the most relevant part of the Hilbert space. In partic-
ular, in VQE algorithms we are interested in a fairly
shallow ansatz for which the reachable set contains
the ground state of the Hamiltonian of interest H. So
far, several choices of the ansatz with different levels
of complexity have been proposed [22, 31, 49, 93–96].
After choosing the ansatz, one can measure the av-
erage energy 〈H〉 = 〈ψ(~θ)|H|ψ(~θ)〉 through some ap-
propriate measurements on the quantum device. This
measured average energy will then be fed into a clas-
sical optimizer to be minimized through adaptively
updating the parameters ~θ in the quantum circuit.
Eventually, the optimization will be finished by ob-
taining the optimal parameters ~θ∗. If the reachable
set contains the ground state then the output of the
circuit |ψ(~θ∗)〉 will be the ground state of H.

The conjecture behind the VQE is that a shallow
circuit is enough to realize the ground state of the
Hamiltonian. The price for keeping the circuit shal-
low, i.e. saving quantum resources, is to add a classi-
cal optimizer which demands extra classical resources.
In this paper, we use L-BFGS algorithm as the classi-
cal optimizer [97]. If the optimization landscape suf-
fers from Barren plateau [98, 99] or the presence of
significant number of local minima then the classical
optimization may converge very slowly or even never
reach the right quantum state. Therefore, in any VQE
algorithm it is crucial to quantify both quantum and
classical resources. Since single qubit operations are
almost perfect, we use the number of two-qubit en-
tangling gates (e.g. controlled-not) in our circuit as
a quantification of quantum resources. On the other
hand, for classical resources one has to notice that L
parameters have to be optimized iteratively. There-
fore, a logical definition for Classical Resources (CR)
can be the multiplication of the number of parame-
ters L and the number of optimization iterations nI ,
namely

CR = L× nI (1)

The choice of ansatz is very crucial in all varia-
tional quantum algorithms. Perhaps the most widely
used quantum circuit in the literature is the hardware
efficient circuit [49] which is schematically shown in
Fig. 1(a). In this circuit the single qubit rotations are
defined as

Rα(θ) = eiθσα (2)

where σα is the Pauli operator with α=x, y, z. In
this paper, we use Controlled-Not (CNOT) gate as
the two-qubit entangling gate in our circuits which is
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defined as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3)

Although, the hardware efficient circuit has been
heavily used for solving various problems, it suffers
from Barren plateau [98, 99] which makes its training
extremely difficult, in particular, when the number of
layers increases. In addition, hardware efficient circuit
does not conserve any symmetry. Therefore, as an
alternative, one can use a more complex entangling
gate with tunable parameters such as [100]

N (θx, θy, θz) = ei(θxσ
1
xσ

2
x+θyσ1

yσ
2
y+θzσ1

zσ
2
z) (4)

where σjx,y,z are the Pauli matrices acting on qubit
j. The circuit of this unitary operation is depicted
in Fig. 1(b). For the special case of θx=θy=θz this
unitary operator conserves the number of excitations
as well as the total spin. By combining these two

qubit gates and phase shift gates P (θ) =
(

1 0
0 eiθ

)
,

as shown in Fig. 1(c), one can make a quantum cir-
cuit U(~θ) which conserves the number of excitation,
namely [U(~θ), Sz] = 0, where Sα = 1

2
∑
i σ

i
α(α =

x, y, z). In the absence of phase shift gates, see
Fig. 1(d), this quantum circuit can also preserve the
total spin, namely [U(~θ), S2

tot] = 0, where S2
tot =

S2
x + S2

y + S2
z .

Note that, the convergence of the VQE would be
successful only when the energy gap between the
ground state and first excited state is larger than the
standard deviation of the Hamiltonian with respect
to state of the simulator, namely√
〈ψ(~θ∗)|H2|ψ(~θ∗)〉 − 〈ψ(~θ∗)|H|ψ(~θ∗)〉

2
≤ ∆E (5)

where ∆E = E2 − E1 is the energy gap between
the ground state (with energy E1) and the first ex-
cited state (with energy E2). The situation becomes
even more serious when there are degenerate eigen-
states. In these cases, VQE algorithm may converge
to an arbitrary superposition of the degenerate eigen-
vectors. The superposition may vary from one VQE
implementation to another depending on the choice
of the initial state or the circuit parameters. How-
ever, degeneracy among the eigenvectors is usually
a consequence of the presence of some symmetries
in the system. Indeed, degenerate eigenstates, de-
spite having the same energy, have different eigenval-
ues with respect to the symmetry operators. Despite
some attempts for exploiting the symmetry proper-
ties either through updating the cost function [22], or
incorporating the symmetries into the design of the
circuit [88], a systematic analysis in this issue is still
missing. In addition, a few existing proposals [76, 77],

its generalization for higher energy excited states is
very challenging. In the following sections, we try to
address these two major issues through exploiting the
inherent symmetries in the target Hamiltonian.

3 Excited state VQE
The most natural generalization of the VQE is to
go beyond the ground state and target higher en-
ergy eigenstates. This can be very important in some
topological systems in which the topologically rele-
vant states are typically not the ground state [75].
In addition, in some physical phenomena, e.g. inte-
ger and fractional quantum Hall effects, the physics
is fully described by low energy spectrum and not
just the ground state. In order to realize higher en-
ergy eigenstates via VQE algorithms, two main meth-
ods have been developed: (i) penalty approach [77];
(ii) subspace-search VQE (SSVQE) algorithm [76]. In
this section we briefly review these two methods and
discuss their pros and cons.

In the penalty method, we assume that the first
k − 1 lowest energy eigenstates are known through
different VQE circuits. Then one can generate the
k-th eigenstate of the Hamiltonian by penalizing the
k− 1 lowest energy eigenstates in the cost function of
VQE [77]. In order to target the k-th eigenstate of
the system one can update the desired Hamiltonian

H ′ = H +
k−1∑
i=1

βi|Ei〉〈Ei| (6)

where βi are some sufficiently large positive scalar for
i-th eigenstate. By minimizing the cost function 〈H ′〉,
VQE yields the k-th eigenstate. This method pro-
vides a general and systematic excited state prepa-
ration algorithm. Nevertheless, the measurement of
the projector terms requires calculating the overlaps
|〈ψ(~θ)|Ei〉|2 (for i = 1, · · · , k − 1), which are diffi-
cult to realize. So far, two methods have been pro-
posed for computing the overlap between two quan-
tum states. The first method requires an extended
circuit in which the depth is increased by a factor
of ∼ 2 [101]. The second approach utilizes the swap
test [102, 103] which demands doubling the number
of qubits and requires complex many-body controlled
gates. Considering the limitations in NISQ devices
the penalty approach is unlikely to be beneficial in
practice.

The weighted SSVQE provides an alternative
method to generate all the k lowest energy eigen-
states of a given Hamiltonian H [76]. In this algo-
rithm, one uses a set of {|φi〉}ki=1 orthogonal initial
states (namely, 〈φi|φj〉 = δij) as the input of a single
parameterized quantum circuit, described by the uni-
tary operator U(~θ). Since the initial states are orthog-
onal, the outputs U(~θ)|φj〉, generated by the same
circuit, are orthogonal too. In the weighted SSVQE
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Figure 1: (a) The hardware-efficient ansatz circuit for system size N = 4. By repeating the circuits shown in yellow, the
expressibility of the variational circuit increases. (b) Circuit for realizing N (θx, θy, θz) as the entangling gate between two
qubits. (c) A single layer circuit of Sz-conserving ansatz for Heisenberg Hamiltonian of system size N = 4. (d) A single layer
circuit of Stot-conserving ansatz is shown in the yellow box. The initialization circuit, shown in blue box, varies for every choice
of total spin s. Here, the circuit represents the initial state |ψ0〉 = ⊗N/2|ψ−〉 for s = 0.

algorithm, one has to minimize the cost function [76]

cost =
k∑
i=1

wi〈φi|U†(~θ)HU(~θ)|φi〉 (7)

where w1 > w2 > · · · > wk are real positive num-
bers. Minimizing the cost function in Eq. (7) pro-
duces all the k lowest energy eigenstates such that
|Ei〉 = U(~θ∗)|φi〉. The major advantage of the
weighted SSVQE is that it provides all the k low-
est energy eigenstates in one single optimization pro-
cedure, without requiring any overlap of quantum
states. However, the algorithm becomes more re-
source demanding as the number of target eigenstates
increases.

4 Hardware symmetry preserving
ground state simulation
In this section, we show how the exploitation of sym-
metries in the design of the circuit hardware can im-
prove the VQE algorithm for simulating the ground
state. We consider a 1-dimension chain of N spin-1/2
particle interacting via Heisenberg Hamiltonian

H0 = J

N−1∑
i=1

σi · σi+1 (8)

where J = 1 sets the unit of energy and σi =
(σix, σiy, σiz) is the vector of Pauli operators at site
i. The Heisenberg Hamiltonian in Eq. (8) repre-
sents a model of interacting system which cannot be
mapped to free fermions and supports several sym-
metries including the conservation of the total spin,
i.e. [H0, S

2
tot] = 0, as well as its components in all

directions, namely [H0, Sα] = 0. The first symme-
try implies that every eigenstate |Ek〉 of the system

Figure 2: The VQE simulation of the ground state of the
Heisenberg model with N = 16 qubits. The average en-
ergy, shown in panel (a), and the corresponding obtainable
fidelities, shown in panel (b), as a function of optimization
iteration nI for three different circuits. The expressibility of
the circuit, quantified through the average von Neumann en-
tropy Sav

V , is compared for two different ansatzes versus: (c)
the number of CNOT gates, and (d) the number of param-
eters L. The crosses represent the circuit which can achieve
fidelity F > 0.95.

has a specific total spin s which is an integer num-
ber for even N or half-integer for odd N , such that
〈Ek|S2

tot|Ek〉 = s(s + 1). The second symmetry also
guarantees that each eigenstate conserves the z com-
ponent of the total spin such that 〈Ek|Sz|Ek〉 = sz,
with −s ≤ sz ≤ s. In particular, for even N , the
ground state |E1〉 is a global singlet with both s = 0
and sz = 0. Thus we represent it as |ES1〉 = |E1〉.
The first excited state is a global triplet state with to-
tal spin s = 1 and triply degenerate with sz = 0,±1.
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For the sake of simplicity we use |E(0)
T1
〉 = |E2〉,

|E(−1)
T1
〉 = |E3〉 and |E(+1)

T1
〉 = |E4〉. The second ex-

cited state is another triplet state with s = 1 for which
we similarly define |E(0)

T2
〉 = |E5〉, |E(−1)

T2
〉 = |E6〉 and

|E(+1)
T2
〉 = |E7〉. The fourth eigenstate is a global

singlet with s = 0 which we will represent it as
|ES2〉 = |E8〉.

We consider the VQE simulation of the ground
state of H0 using two different ansatzes, namely: (i)
the hardware efficient circuit, shown in Fig. 1(a),
which conserves no symmetry; and (ii) the Sz-
conserving circuit, shown in Fig. 1(c), which conserves
the number of excitation but do not preserve the to-
tal spin. Later, we will also consider circuits which
can realize both Sz and Stot symmetries. In both
ansatzes, we initialize the circuit in the quantum state
|0, 1, 0, · · · , 0, 1〉. While in the hardware efficient cir-
cuit the choice of the initial state does not matter, in
the case of Sz-conserving circuit this choice is crucial
and should have similar sz as the ground state |ES1〉.
To see the importance of exploiting the symmetry in
the design of the circuit, we perform VQE for a sys-
tem N = 16 qubits on both ansatzes. In Figs. 2(a)-(b)
we plot the average energy and the obtainable fidelity
as a function of optimization iteration, respectively.
The error bars are computed for ∼ 100 repetitions
of random samples. Interestingly, while only 5 layers
of excitation conserving circuit is enough for a fast
(∼ 300 iteration) convergence to F > 0.95, the hard-
ware efficient circuit with the same depth can only
reach F ' 0.4. In fact, the hardware efficient circuit
can only reach fidelities above 0.95 when it contains at
least 15 layers. Even for such a circuit, the optimiza-
tion needs ∼ 2000 iterations to converge. This means
that the hardware efficient circuit demands way more
classical resources (CR = 870400 for F = 0.95) than
the Sz-conserving circuit (CR = 77500 for F = 0.95).

To better understand the difference between the
performances of the two circuits one can determine
the entangling power of the two circuits in terms of
the number of CNOTs, as a quantum resource, as well
as the number of parameters L, as a quantifier of clas-
sical resources (see Eq. (1)). To measure the entan-
gling power, one can compute the average entangle-
ment, quantified through von Neumann entropy, be-
tween the two halves of the system. For any quantum
state |ψ(~θ)〉 at the output of circuit, one can com-
pute the reduced density matrix of the left side of the
system by tracing out the N/2 qubits on the right
side, namely ρL(~θ) = TrR

[
|ψ(~θ)〉〈ψ(~θ)|

]
. The en-

tanglement between the left and the right side of the
system is then quantified by SV (~θ) = −Tr [ρL log ρL].
The average entangling power of the circuit is then
defined as

SavV =
∫
d~θ SV (~θ) (9)

where the integration is performed over the whole pa-

rameter space. For the numerical simulation, we ap-
proximate SavV by averaging SV (~θ) over 500 random
samples of ~θ. In Fig. 2(c) we plot SavV versus the
number of CNOT gates when the number of layers
vary from 1 to 120. Note that, for the same num-
ber of CNOTs the hardware efficient circuit has many
more layers than the Sz-conserving circuit. Interest-
ingly, the two ansatzes reach the fidelity F = 0.95
when their number of CNOTs are equal to 225. How-
ever, as the figure shows, for this number of CNOTs
the hardware efficient have slightly more entangling
power than the Sz-conserving circuit. Both circuits
can reach this fidelity only when their SavV is ∼ 3
times more than the entanglement in the real ground
state. This is due to the fact that both circuits re-
quire similar number of CNOTs to reach the same
fidelity. It is very insightful to consider the average
entangling power SavV versus the number of parame-
ters L as an indicator of required classical resources.
In Fig. 2(d) we plot SavV as a function of L for the two
circuits when the layers vary from 1 to 120. Remark-
ably, the Sz-conserving circuit demands much less pa-
rameters for reaching the fidelity F = 0.95 as it de-
mands a circuit with L = 155 (5 layers) in contrast
to L = 512 (15 layers) for the hardware efficient cir-
cuit. This clearly shows that for the VQE simulation
of the ground state while implementing the symmetry
in the hardware may not reduce quantum resources,
it significantly enhances classical resource efficiency.

5 Hybrid symmetry preserving excited
state simulation
In this section, we focus on the effect of symmetry for
the simulation of excited states using the weighted
SSVQE. In particular, we consider generating the
first 8 energy eigenstates of the Heisenberg Hamil-
tonian H0, namely |ES1,2〉, |E

(0,±1)
T1

〉 and |E(0,±1)
T2

〉.
We first use the hardware-efficient ansatz, shown in
Fig. 1(a), which supports no symmetry. Three dif-
ferent hardware efficient circuits are trained to target
1 (i.e. |ES1〉), 4 (i.e. |ES1〉, |E

(0,±1)
T1

〉) and 8 (i.e.
|ES1,2〉, |E

(0,±1)
T1

〉, |E(0,±1)
T2

〉) different eigenstates. In
Figs. 3(a)-(c) we present the average energy 〈H0〉 as a
function of circuit layer for targeting 1, 4 and 8 eigen-
states, respectively. For each case, the procedure is
repeated for ∼ 100 random initial samples over which
the results are averaged to be statistically meaning-
ful. As the number of target eigenstates increases, the
circuit needs more layers in order to converge for all
the corresponding eigenstates. Importantly, as shown
in Fig. 3(c), the eigenstates |E5〉 to |E8〉 do not con-
verge properly even with 25 layers. In addition to
the circuit layer, i.e. quantum resources, the clas-
sical optimization also gets more demanding as the
number of target eigenstates increases. To quantify
the required classical resources, in Fig. 3(d) we plot
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Figure 3: The VQE simulation of low-energy eigenstates of
the Heisenberg model with system size N = 10 using hard-
ware efficient ansatz with no symmetry. Different number of
eigenstates can simultaneously be targeted in a single circuit
using SSVQE. The results for average energy 〈H0〉 as a func-
tion of circuit layer are shown for different cases: (a) only the
ground state |ES1〉 is targeted; (b) four eigenstates including
the ground and the three degenerate excited states |ES1〉 and
|E(0,±1)

T1
〉 are targeted; (c) eight eigenstates including |ES1〉,

|E(0,±1)
T1

〉, |E(0,±1)
T2

〉 and |ES2〉 are targeted. (d) The required
optimization iteration corresponding the three previous pan-
els, average over 100 samples, as a function of circuit layer
for various cases in which different number of eigenstates are
targeted.

the number of iterations nI needed for the conver-
gence of the VQE circuit as a function of circuit layer
for various number of target eigenstates. In order to
see how the required resource varies as the number
of target eigenstates increases, in Table. 1 we show
the minimum required quantum resources and opti-
mization resources for SSVQE simulation of k eigen-
states using hardware efficient ansatz. The number
of circuit layers and the number of optimization iter-
ations are chosen such that the energy precision for
all the k eigenvectors becomes less than 0.5J , namely
max{|〈H0〉i − Ei|}ki=1 ≤ 0.5J . These results clearly
show that targeting more eigenstates makes optimiza-
tion slower and demands more iterations. Thus, one
may wonder whether the exploitation of symmetries
can help to make the SSVQE more resource efficient.

Considering one symmetry is not enough to truly
distinguish different eigenstates. For instance, |ES1,2〉
and |E(0)

T1,2
〉 all have sz = 0. In order to further dis-

criminate the global singlets from the global triplets,
one has to also take the total spin s into account. In
this section, we use a hybrid approach for implement-
ing the symmetries. Namely, we use the Sz-conserving
circuit to target quantum states with specific sz and
update the cost function to target quantum states

k 1 4 8
Quantum
Resources

Layer 7 18 24
CNOT 63 162 216

Optimization
Resources

nI 1304 3407 4205

CR 208640 1294660 2102500

Table 1: The minimum required quantum resources (namely,
the number of layers and the number of CNOT gates), and
optimization resources (namely, the number of iterations nI

and the classical resource CR) for SSVQE simulation of k
eigenstates using hardware efficient ansatz. The number of
circuit layers and optimization iterations are chosen such that
the absolute difference between the average energy and the
actual energy becomes less than 0.5J (i.e. max{|〈H0〉i −
Ei|}k

i=1 ≤ 0.5J).

with the right total spin s.
By using the Sz-conserving circuit in the SSVQE

algorithm one can only target the eigenstates with
a given sz. For instance, four eigenstates, namely
|ES1,2〉 and |E(0)

T1,2
〉, with sz = 0 can be imple-

mented in the same circuit with initial states satisfy-
ing sz = 0. Similarly, |E(+1)

T1
〉 and |E(+1)

T2
〉 (or equiv-

alently |E(−1)
T1
〉 and |E(−1)

T2
〉) can be targeted on the

same Sz-conserving circuit with initial states satisfy-
ing sz = +1 (sz = −1). This division of eigenstates
between different quantum circuits can significantly
reduce the circuit complexity in terms of the required
number of CNOTs.

In order to even further simplify the SSVQE cir-
cuit one can exploit the total spin symmetry as well.
Implementing total spin symmetry in the hardware
requires extra CNOT gates, which will be discussed
later. Here, we take a hybrid approach and include
the total spin symmetry in the cost function. In par-
ticular, for the preparation of |ES1〉 and |ES2〉 via
SSVQE, one can adopt the Sz-conserving circuit with
two orthogonal initial states |φ1〉 = |0, 1, 0, · · · , 1〉 and
|φ2〉 = |1, 0, 1 · · · , 0〉 and the following cost function

cost =
∑
i=1,2

wi(〈H0〉i + β〈S2
tot〉

2
i ) (10)

where β = 1000 is a positive constant which is taken
to be sufficiently large as in this type of penalty terms
the final error in estimation of the cost function is of
the order O(1/β) [104]. In Figs. 4(a)-(b), we plot the
average energy 〈H0〉 and fidelity as a function of opti-
mization iteration, respectively, in a circuit of system
size N = 14 with 18 layers. The error bars in the fig-
ure are computed through averaging over 100 random
initial samples. Remarkably, both eigenstates can be
generated with fidelity above 0.95 after only ∼ 500
iterations. This is much better performance than the
hardware efficient circuit, see Fig. 3(c), in which the
output did not even converge properly to |ES2〉 for a
smaller system of size N = 10 with even 25 layers and
∼ 5000 iterations.
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Figure 4: The SSVQE simulation for simultaneously gen-
erating two eigenstates |ES1〉 and |ES2〉 using 18 layers of
N = 14 Sz-conserving circuit. The average energy, shown in
panel (a), and the corresponding obtainable fidelity, shown
in panel (b), as a function of optimization iteration nI . The
error bars are computed through averaging over 100 random
initial samples.

For the preparation of |E(0)
T1
〉 and |E(0)

T2
〉 via SSVQE,

the cost function is updated as

cost =
∑
i

wi(〈H0〉i + β〈(S2
tot − 2)2〉i) (11)

where, again, β is a sufficiently large positive scalar.
This type of cost functions are different from the one
used for the singlets, see Eq. (10), as the operator in
the penalty term requires four point correlation func-
tions. In Ref. [104], it is shown that β for these type
of cost function can be chosen to be smaller, lower
bounded by the energy gap. In fact, for our triplet
cost function in Eq. (11), choosing β = 2 is enough
for convergence. In Figs. 5(a)-(b), we plot the average
energy 〈H0〉 and the obtainable fidelity as a function
of optimization iteration, respectively, for a circuit of
system size N = 14 with 20 layers. Similar to the
previous case, the results are repeated for 100 ran-
dom samples over which the error bars are estimated.
In the numerical simulation, we set β = 2. Indeed,
the SSVQE successfully generates |E(0)

T1
〉 and |E(0)

T2
〉,

simultaneously, achieving the fidelity F > 0.95. It is
worth emphasizing that in comparison with the prepa-
ration of |ES1〉 and |ES2〉, targeting the triplet eigen-
states is more difficult in terms of required circuit lay-
ers. However, thanks to a stronger penalization term
in the cost function, the error bars for triplets are
smaller than their singlet counterparts, in particular
at initial iterations, see Fig. 4. Our procedure shows
significant improvement over the results without sym-
metry, shown in Fig. 3(c), in which |ET2〉 fails to be
generated for a fairly small system size of N = 10
with even 25 layers of hardware-efficient ansatz and
∼ 5000 iterations. Similarly, one can target |E(+1)

T1
〉

and |E(+1)
T2
〉 (or equivalently |E(−1)

T1
〉 and |E(−1)

T2
〉) us-

ing the same circuit with proper choice of initial states
with sz = +1 (sz = −1). For the sake of brevity, we
do not present the results of these simulations.

Figure 5: The SSVQE simulation for simultaneously gener-
ating two eigenstates |E(0)

T1
〉 and |E(0)

T2
〉 using 20 layers of

N = 14 Sz-conserving circuit. The average energy, shown in
panel (a), and the corresponding obtainable fidelity, shown
in panel (b), as a function of optimization iteration nI . The
error bars are computed through averaging over 100 random
initial samples.

6 Hybrid versus Hardware symmetry
preserving
In the previous section, we showed how hybrid
symmetry preserving method can enhance the per-
formance of VQE through a combination of Sz-
conserving circuit and updated cost function. In this
section, we introduce hardware symmetry preserv-
ing approach in which both of the symmetries are
included in the design of the circuit and thus the
cost function only minimizes the average energy. In
Fig. 1(d), we present one layer of a quantum circuit
which conserves the Stot. This ansatz is very simi-
lar to Sz-conserving circuit except phase gates which
are removed. As mentioned before, this circuit not
only conserves the z component of the spin, namely
sz, but also preserves the total spin s as well. Thus,
by choosing a proper initial state with a specific total
spin s and a given spin component sz one can guar-
antee the preservation of these symmetries in the out-
put state |ψ(~θ)〉. For the case of global singlets, i.e.
s = 0, one simple initial state is |ψ0〉 = ⊗N/2|ψ−〉,
where |ψ−〉 = (|01〉 − |10〉)/

√
2 is a two qubit sin-

glet state. To generate this initial state, one has to
use at least N/2 extra CNOTs at the beginning of
the quantum circuit. In the SSVQE, if one wants to
target two global singlets, i.e. |ES1〉 and |ES2〉 simul-
taneously, one has to generate another global singlet
initial state which demands extra CNOTs. In fact, by
increasing the number of target eigenstates, generat-
ing proper initial states which are all orthogonal and
satisfy s = 0 become more complex and demand extra
CNOT gates. In the case of global triplet with s = 1,
the situation is simpler. For instance, by taking the
quantum state ⊗N/2|ψ−〉 and locally converting one
of the two-qubit singlets |ψ−〉 into a two-qubit triplet
(with a desire sz), one can generate N/2 different or-
thogonal global triplet initial states. For higher total
spins (i.e. s > 1), the simple converting of two-qubit
singlets into triplets does not create an initial state
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with a given s. Therefore, Stot-conserving symmetry
circuits become more complex, see Ref. [88] for more
detailed discussion.

To better understand the impact of symmetry on
VQE simulation, we compare the performance of the
hybrid symmetry preserving approach, which uses Sz-
conserving circuit, and the hardware symmetry pre-
serving approach, which utilizes Stot-conserving cir-
cuits. As an example, we focus on generating the
ground and the first excited state of the Heisenberg
Hamiltonian, namely |ES1〉 (with s = 0 and sz = 0)
and |E(0)

T1
〉 (with s = 1 and sz = 0), with the size of

N = 14. In Fig. 6(a), we plot the obtainable fidelity
for targeting the ground state |ES1〉 as a function of
circuit layers for the two circuits. As the figure shows,
the hardware symmetry preserving approach reaches
the fidelity F > 0.95 with less layers. Despite re-
quiring extra CNOTs for preparing its initial global
singlet state |ψ0〉 = ⊗N/2|ψ−〉, the hardware symme-
try preserving method is still more efficient in terms of
two-qubit entangling gates, using 117 CNOTs versus
156 CNOTs in hybrid preserving symmetry method.
In Fig. 6(b), we plot the classical resources, defined
in Eq. (1), as a function of layers which shows signifi-
cant advantage for the hardware symmetry preserving
method. The superiority of the hardware symmetry
preserving method becomes more evident when one
targets the first excited state |E(0)

T1
〉. In Fig. 6(c), we

plot the fidelity as a function of layers for both quan-
tum circuits. The hardware symmetry preserving
method shows significant advantage as it reaches the
fidelity F > 0.95 only after 4 layers (with 156 CNOTs)
in comparison with 7 layers of hybrid symmetry pre-
serving method (with 273 CNOTs). In Fig. 6(d), the
corresponding classical resources are compared. Inter-
estingly, the hardware symmetry preserving method
not only demands much less classical resources, but
also benefits from less fluctuations.

For the sake of completeness, we also compare the
performance of hybrid and hardware symmetry pre-
serving methods using SSVQE for targeting |ES1〉 and
|ES2〉 as well as |E(0)

T1
〉 and |E(0)

T2
〉 with the system

size N = 14. The results are given in Table. 2.
As the results show, hardware symmetry preserving
method outperforms the hybrid symmetry preserving
approach.

This analysis shows that the hardware symmetry
preserving approach is the most efficient way for ex-
ploiting symmetries in SSVQE in terms of both quan-
tum and classical resources. However, the price that
one has to pay is the more complex circuit design. In
particular, for total spin s > 1 the initialization may
indeed need complex quantum circuits [88].

(a) (b)

(d)(c)

Figure 6: Comparison between hardware and hybrid symme-
try preserving methods for simulating the ground state |ES1〉
and the first excited state |E(0)

T1
〉 of a Heisenberg chain of sys-

tem size N = 14. For the simulation of |ES1〉, the fidelity,
shown in panel (a), and the average classical resources CR,
shown in panel (b), are plotted as a function of circuit layer
using Sz- and Stot-conserving circuits. Similarly, for the sim-
ulation of |E(0)

T1
〉, the fidelity, shown in panel (c), and the av-

erage classical resources CR, shown in panel (d), are plotted
as a function of circuit layer using Sz- and Stot-conserving
circuits. The error bars are computed through averaging over
50 random initial samples.

7 Generality of symmetry method
So far, we have focused on Heisenberg Hamiltonian for
which we exploit Sz and Stot symmetry for preparing
several low-energy eigenstates. Here, we show that
symmetry method can be generalized to other Hamil-
tonians with different symmetries. In particular, we
will show that exploiting symmetries can also enhance
the VQE performance for simulating free fermionic
systems. For example, we consider the Ising Hamilto-
nian with transverse field

HI = Jz

N−1∑
i=1

σizσ
i+1
z + hx

N∑
i=1

σix (12)

where Jz is the exchange coupling and hx is the
strength of the transverse magnetic field. It is well
known that this Hamiltonian has a quantum phase
transition at Jz/hx = 1. At the critical point where
the quantum phase transition takes place, the ground
state is highly entangled and has a complex form.
Indeed, it has been shown that at the critical point
the convergence of VQE requires more quantum and
classical resources [105]. In other words, one needs
a deeper quantum circuit as well as more iterations
to reach the target state. Therefore, we focus at the
critical point, as the most complex point in the phase
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Hybrid Symmetry Preserving Hardware symmetry preserving
Layer 16 17 18 19 20 16 17 18 19 20
F|ES1 〉 0.96±0.16 0.96±0.16 0.96±0.16 0.98±0.11 0.98±0.09 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
F|ES2 〉 0.91±0.21 0.95±0.19 0.95±0.15 0.97±0.14 0.97±0.13 0.95±0.03 0.96±0.02 0.98±0.02 0.99±0.01 0.99±0.01
F|E(0)

T1
〉 0.97±0.06 0.97±0.06 0.98±0.03 0.99±0.03 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

F|E(0)
T2
〉 0.91±0.12 0.95±0.07 0.97±0.07 0.97±0.05 0.99±0.02 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Table 2: The achievable fidelity as a function of circuit layer for both hybrid and hardware symmetry preserving methods using
SSVQE for simultaneously targeting |ES1〉 and |ES2〉, as well as |E

(0)
T1
〉 and |E(0)

T2
〉. The table shows that hardware symmetry

preserving method outperforms the hybrid symmetry preserving approach as higher fidelities can be achieved for the same
number of layers.

diagram, for generating the first two eigenstates of the
Hamiltonian. The Ising Hamiltonian commutes with
the total spin flip operator S̃x =

∏N
i=1 σ

i
x, namely

[HI , S̃x] = 0. This implies that the HIsing and S̃x
have common eigenvectors |Ek〉. Since the eigenval-
ues of S̃x are ±1, then 〈Ek|S̃x|Ek〉 = ±1 for every
eigenstate |Ek〉. In particular, for even N , one can
verify that the ground state and the first excited state
satisfy 〈E1|S̃x|E1〉 = 1 and 〈E2|S̃x|E2〉 = −1, respec-
tively.

Since the symmetry operator S̃x is a global action,
designing a quantum circuit that implements this
symmetry is very difficult. Therefore, hardware sym-
metry preserving approach becomes infeasible. Con-
sequently, we use updated cost function for generating
the first two eigenstates of the Hamiltonian. We use
the circuit shown in Fig. 7(a). For starting the state
preparation, we initialize the circuit in the quantum
state ⊗N |+〉, where |+〉 = (|0〉 + |1〉)/

√
2. While for

generating |E1〉 a simple cost function 〈HI〉 is enough,
for preparation of |E2〉 one can simply update the cost
function as

cost = 〈HI〉+ β(〈S̃x〉+ 1)2 (13)

where β is a positive scalar to make the two terms of
the same order (here, we put β = 1). In Figs. 7(b)-
(c), we plot the average energy 〈HI〉 and the aver-
age fidelity over 50 random samples as a function of
optimization iterations, respectively, for a system of
size N = 8 with 4 layers of ansatz. As shown in
the plot, as optimization iteration increases, the VQE
successfully generate |E2〉 with fidelity F > 0.99. For
generating more eigenstates one has to combine the
symmetries with SSVQE algorithm as we did above
for the Heisenberg Hamiltonian.

8 Conclusion
The VQE has emerged as one of the leading NISQ
algorithms with the potential of achieving quantum
advantage. So far, it has been successfully applied
for simulating the ground state of condensed matter
systems and several chemical materials. Nonetheless,

(b)

(a)

(c)

Figure 7: VQE simulation of the Ising model in transverse
field. (a) A single layer circuit of the ansatz for Ising Hamil-
tonian of system size N = 4. (b) The average energy as
a function of optimization iteration nI for the ground state
|E1〉 and the first excited state |E2〉 for a system of size
N = 8 on a circuit with 4 layers. (c) The corresponding av-
erage fidelity for |E1〉 and |E2〉 as a function of optimization
iteration nI .

generalization of the VQE to higher energy eigen-
states is very resource consuming, demanding deep
circuits and lengthy classical optimizations. In this
paper, we address this problem by exploiting symme-
tries to enhance both quantum and classical resource
efficiencies of the VQE algorithm. The symmetry en-
hanced resource efficiency becomes even more effec-
tive when higher energy eigenstates are targeted. In-
deed, some of the excited states cannot be reached
without including symmetries in the VQE algorithm.
We have considered two ways for incorporating sym-
metries. In the first approach, which we call it hard-
ware symmetry preserving method, all the symmetries
are included in the circuit. In the second method, the
symmetries are integrated in the cost function. Our
results show that the hardware symmetry preserving
method significantly outperforms the penalization of
the cost function. However, implementing all symme-
tries in the design of the circuit may not be practical.
Therefore, we have introduced the hybrid symmetry
preserving method in which some of the symmetries
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are included in the circuit and the rest are incorpo-
rated in the cost function. This allows to simulta-
neously improve the resource efficiency and keep the
circuit design simple. Our proposal achieves signif-
icant resource efficiency and thus paves the way for
achieving quantum advantage on NISQ simulators. In
addition, it is very timely and can be adopted in ex-
isting quantum simulators.

Note that our method is applicable only we have
prior knowledge about the symmetries of the system.
For any given Hamiltonian, in order to investigate the
symmetries of the system, one can use a small system
as symmetries are not length dependent. In addition,
usually the symmetry values of the low energy eigen-
states can also be determined for small sizes and di-
rectly be used for large systems. In other words, the
fact that symmetries are not length dependent can
be very beneficial in specifying the symmetries and
incorporating them in VQE algorithms.

Data availability
All the source codes for generating the data is avail-
able [106]. In addition, the data which have been for
generating plots can be provided upon reasonable re-
quest from the authors.
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A Ansatz symmetry proof
Here, we prove the ansatzes shown in Fig. 1(c) and Fig. 1(d) conserve Sz symmetry and Stot symmetry,
respectively. We note that, σ1

xσ
2
x + σ1

yσ
2
y + σ1

zσ
2
z = 2P1,2 − I, where P1,2 is the swap gate, which is defined

between any two qubits m and n as Pm,n|ψmφn〉 = |φmψn〉. Thus, we have

N1,2(θ) = eiθ(σ1
xσ

2
x+σ1

yσ
2
y+σ1

zσ
2
z)

= eiθ(2P1,2−I)

= ei2θP1,2e−iθI

= e−iθ(cos 2θI + i sin 2θP1,2). (14)
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Notice that, for any global spin operator Sα = 1
2
∑
i σ

i
α(α = x, y, z), one can easily show Pm,nSα = Sα for

every choice of m and n. This immediately implies that [Pm,n, S2
α] = 0. Therefore, it is straight forward to

show that [Nm,n(θ), S2
tot] = 0. Consequently, the ansatz shown in Fig. 1(d), which is a combination of several

Nm,n(θ)’s, is Stot symmetry conserving. On the other hand, the phase shift gate P (θ) commutes with σz,
namely [P (θ), σz] = 0, but do not commute with σx and σy ([P (θ), σx] 6= 0, [P (θ), σy] 6= 0). Therefore, The
ansatz shown in Fig. 1(c) is only Sz symmetry conserving.
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