
����������
�������

Citation: Zhang, Y.; He, S.; Wa, S.;

Zong, Z.; Lin, J.; Fan, D.; Fu, J.; Lv, C.

Symmetry GAN Detection Network:

An Automatic One-Stage

High-Accuracy Detection Network

for Various Types of Lesions on CT

Images. Symmetry 2022, 14, 234.

https://doi.org/10.3390/

sym14020234

Academic Editor: Dumitru Baleanu

Received: 31 December 2021

Accepted: 18 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Symmetry GAN Detection Network: An Automatic One-Stage
High-Accuracy Detection Network for Various Types of Lesions
on CT Images

Yan Zhang † , Shupeng He †, Shiyun Wa † , Zhiqi Zong †, Jingxian Lin †, Dongchen Fan †, Junqi Fu †

and Chunli Lv *

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
2019308250102@cau.edu.cn (Y.Z.); 2019505430320@cau.edu.cn (S.H.); 2019308250126@cau.edu.cn (S.W.);
2021505030412@cau.edu.cn (Z.Z.); 2018314860117@cau.edu.cn (J.L.); 2018314860110@cau.edu.cn (D.F.);
2018314130321@cau.edu.cn (J.F.)
* Correspondence: lvcl@cau.edu.cn
† These authors contributed equally to this work.

Abstract: Computed tomography (CT) is the first modern slice-imaging modality. Recent years have
witnessed its widespread application and improvement in detecting and diagnosing related lesions.
Nonetheless, there are several difficulties in detecting lesions in CT images: (1) image quality degrades
as the radiation dose is reduced to decrease radiational injury to the human body; (2) image quality is
frequently hampered by noise interference; (3) because of the complicated circumstances of diseased
tissue, lesion pictures typically show complex shapes; (4) the difference between the orientated object
and the background is not discernible. This paper proposes a symmetry GAN detection network
based on a one-stage detection network to tackle the challenges mentioned above. This paper employs
the DeepLesion dataset, containing 10,594 CT scans (studies) of 4427 unique patients. The symmetry
GANs proposed in this research consist of two distinct GAN models that serve different functions.
A generative model is introduced ahead of the backbone to increase the input CT image series to
address the typical problem of small sample size in medical datasets. Afterward, GAN models are
added to the attention extraction module to generate attention masks. Furthermore, experimental
data indicate that this strategy has significantly improved the model’s robustness. Eventually, the
proposed method reaches 0.9720, 0.9858, and 0.9833 on P, R, and mAP, on the validation set. The
experimental outcome shows that the suggested model outperforms other comparison models. In
addition to this innovation, we are inspired by the innovation of the ResNet model in terms of
network depth. Thus, we propose parallel multi-activation functions, an optimization method in
the network width. It is theoretically proven that by adding coefficients to each base activation
function and performing a softmax function on all coefficients, parallel multi-activation functions can
express a single activation function, which is a unique ability compared to others. Ultimately, our
model outperforms all comparison models in terms of P, R, and mAP, achieving 0.9737, 0.9845, and
0.9841. In addition, we encapsulate the model and build a related iOS application to make the model
more applicable. The suggested model also won the second prize in the 2021 Chinese Collegiate
Computing Competition.

Keywords: CT images; object detection; symmetry GANs; one-stage network

1. Introduction

Lesions occur in body tissue due to various factors, including trauma, infection, or
cancer [1]. Take, for example, a brain tumor; this type of neoplasm arises in the brain and
has a considerable fatality probability. Brain tumors occupy the most intracranial space,
impacting brain function, severely impairing the patients’ central nerves, and overwhelm-
ing brain cells. Meanwhile, brain tumor varieties are numerous and distinct. Some tumors
are problematic to scrutinize, such as schwannoma [2]; others are challenging to locate,
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such as glioma and glioblastoma [3]. In addition, lung nodules, i.e., sarcoidosis, are a
multi-system and multi-organ granulomatous disease of unknown etiology. Lung nodules
often invade the eyes, lungs, skin, bilateral hilar lymph nodes, and other organs, with a
chest invasion rate of 80% to 90%. Furthermore, lymph nodes are distributed throughout
the body and are essential immune organs. The enlarged lymph node is caused by acute
and chronic inflammation caused by pathogenic microorganisms, such as acute cellulitis,
purulent tonsillitis, gingivitis, tuberculosis, etc. These types of lesions severely impair the
mechanisms and functionalities of the human body.

X-ray computed tomography (CT) is widely applied to visualize cross-sections in
clinical and industrial fields [4], especially providing explicit information for diagnosing
the lesions mentioned above. The wide application of CT is because of its ability to examine
the body’s interior structures without destroying organs’ or subjects’ surfaces [5]. Currently,
medical CT images are typically used in anatomical structure research, treatment planning,
tissue recognition, and gland volume measurement [6].

In clinical medicine, doctors generally need to determine the location of the lesion
before the diagnosis and operation [7]. Following confirmation of the location, clinicians
can collect basic information about the lesion, including the shape, position, and size.
Subsequently, they develop a proper and precise therapeutic scheme or surgery. Medical
imaging techniques are used to identify and depict lesions for further treatment, as men-
tioned above. Currently, these types of techniques for lesions include MRI [8], PET/CT [9],
and CT [4]. CT images can represent the anatomical structure of organs and tissues in the
human body, making them the exemplary medical imaging modality for numerous lesions.
Radiology doctors can manually observe and identify the situation of lesions based on
CT images. Size, shape, location, physiological trait, and metabolic status are the most
common factors they evaluate.

However, considerable impediments and challenges exist regarding lesion detection
in CT images.

1. The drastic growth in CT utilization leads to an upward trend in the total quantity of
radiation applied to patients [10]. Radiation damage to the body accumulates with
the number of times it is exposed to radiation. Therefore, each CT examination raises
the risk, which will eventually lead to a significant radiation dose after a while.

2. Assuming a reduction in the radiation dose to address the above issue, the image
quality drops if the scan and reconstruction variables remain unchanged. Such a dose
decrease and image quality degradation might jeopardize the assessment of specific
anatomic regions [11]. Moreover, it will also impact the diagnostic information in
particular body regions.

3. Most lesion images display complex tissue structures since diseased tissue usually
results from complex conditions, such as rupture, unclear boundaries, and external
factors such as noise [12]. Moreover, various structures and blood vessels are dis-
tributed in diseased organs [13]. These features make determining the extent of the
lesion difficult.

4. The image quality is frequently hampered by noise interference [14]. However, image
information details would be reduced while noise would be eliminated.

5. Lesion structure between individuals exhibits a vast difference. Furthermore, even
within the same human body, there is a considerable degree of variability in the
morphology of tissues, and similarities between lesion tissues and normal tissues can
be observed, easily leading to misdiagnosis and missed diagnosis [15].

6. Because of pathological variables and external noise interference, the contrast between
the targeted object and the background is minimal. Nonetheless, traditional detec-
tion necessitates a visible distinction of the object’s illumination in comparison to
the backdrop.

At present, a few clinicians still rely on manual and subjective lesion detection and
lesions’ and organ contours’ delineation in CT [16], which requires the doctors to have
extensive prior knowledge. Despite the fact that computer-aided detection/diagnosis
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(CADe/CADx) has been a thriving research topic and occupies a prominent position in
medical image processing [17], numerous lesion detection approaches are challenging to
undertake and difficult to implement in clinical diagnosis. In addition, at present, the
majority of research in lesion detection merely adopts a dataset that includes only one or a
few types of lesion. Given the clinical need and the medical value, establishing an accurate,
dependable, and fully automatic detection system for various lesion types is critical.

Inspired by the medical requirements and preceding research, this paper chooses a
dataset containing various lesion types, such as renal lesions, bone lesions, lung nodules,
and enlarged lymph nodes. This paper suggests a symmetry GAN detection network based
on the dataset, intending to address difficulties, promote technological development in
CADe/CADx, and contribute to clinical medical research. Additionally, the symmetry
GAN detection network proposed in this paper won the first prize in Beijing’s 2021 Chinese
Collegiate Computing Competition, while ranking second nationwide. The following are
the primary contributions of this paper:

1. The symmetry GAN models: Firstly, we add a generative model ahead of the backbone
to expand the input CT image series, aiming to address the typical challenge of small
sample size in medical datasets. Subsequently, we also add GAN models to the
attention extraction module to generate attention masks. By adding GAN models on
feature maps, this strategy can effectively make the model robust enough.

2. Effectiveness verification of multiple implementations of symmetry GANs: We use
DCGAN and CVAE-GAN to test the performance of GAN model A, and we adopt
Self-Attention Generative Adversarial Networks (SAGAN) and Spatial Attention
GAN (SPA-GAN) to test that of GAN model B. Experimental results show that the
combination of DCGAN + SPA-GAN performs the best, further improving the model’s
detection accuracy.

3. Parallel multi-activation functions: We utilize parallel multi-activation functions
to replace single activation functions. Theoretically, this optimization proves that
the performance of parallel multi-activation functions is superior to that of single
activation functions. Furthermore, we replace the IoU loss with a more reasonable
CIoU loss to enhance the detection task’s loss function.

4. An IOS application: Additionally, we encapsulate the symmetry GAN model and
establish an application based on the iOS platform, realizing the practical value of
the model.

The following shows the organization of the rest of this paper: Related Work demon-
strates preceding studies in the selected research area; the Materials and Methods section
introduces the dataset as well as design specifics; the Experiment section depicts the
experimental operation and platform; the Results section displays the outcomes of the
experiments and analyses; the Discussion section describes several ablation experiments to
validate the improved approach’s efficacy and our methodology’s drawbacks; the Conclu-
sions section summarizes the entire paper.

2. Related Work

Object detection is one of the most crucial research topics in the field of computer
vision. Along with the machine learning [18–20] and deep learning [21,22] booms in
image detection applications, several automated computer vision solutions have been
introduced to assess image object detection. Before 2012, the traditional machine learning
algorithm was generally adopted to conduct object detection. Afterward, CNN-based
models for object detection could be divided into two branches: two-stage models and
one-stage models. Two-stage models include Mask R-CNN [23] and Faster R-CNN [24].
The two-stage algorithm needs to generate proposals (a pre-selected box that could contain
potential objects to be detected) and then conduct fine-grained object detection. One-
stage models include the You Only Look Once (YOLO) [25–27] series, Single Shot multi-
box Detector (SSD) [28] series, and EfficientDet [29] series; in comparison, the one-stage
algorithm extracts features directly in the network to predict the object category and address.



Symmetry 2022, 14, 234 4 of 28

Hence, the two-stage algorithm is relatively slow because it needs to run the detection
and classification process several times. In contrast, the other one-stage object detection
algorithm predicts all the bounding boxes by feeding them into the network only once,
which is relatively fast and ideal for mobile applications. Due to the above, in this paper,
we select the one-stage detection network.

Nowadays, thanks to some researchers incorporating new modules and improvements
in related studies, such as agriculture, industry, and medicine, multiple new CNN methods
are being developed. In the agricultural field, for example, an optimized CNN model
was utilized to detect pear defects; more specifically, a deep convolutional adversarial
generation network was adopted to expand the diseased images [30]. Experimental results
showed that the detection accuracy of the presented method on the validation set reached
97.35%. Furthermore, the model worked satisfactorily on two untrained varieties of pears,
which reflected its robustness and generalization potential. Taking maize leaf disease
detection as another instance, Yan Zhang et al. [31] proposed a CNN enhanced by a multi-
activation function (MAF) module. This study adopted image preprocessing to expand
and augment the disease samples and adopted transfer learning and warm-up methods to
increase the training speed. The suggested method could detect three categories of maize
diseases efficiently and accurately, reaching an accuracy value of 97.41% in the validation
set, surpassing that of the traditional AI methods. In addition, a CNN-based detection
network model using a generative module and pruning inference was once proposed [32].
The presented pruning inference automatically deactivated part of the network structure in
terms of diverse situations, decreased parameters and operations, and improved network
speed. When detecting apple flowers, this model achieved values of 90.01%, 98.79%,
and 97.43% in precision, recall, and mAP, respectively. The inference speed reached 29
FPS. In medicine, an automatic brain tumor segmentation algorithm—GenU-Net++—was
suggested based on the BraTS 2018 dataset [7]. This study adopted the generative mask
sub-network to develop feature maps, and it utilized the BiCubic interpolation method for
upsampling to gain segmentation results. Meanwhile, this research applied an auto-pruning
mechanism according to the structural features of U-Net++, which could deactivate the
sub-network and automatically prune GenU-Net++ during the inference. This mechanism
accelerates inference and improves the network performance. This algorithm’s PA, MIoU,
P, and R reached 0.9737, 0.9745, 0.9646, and 0.9527, respectively.

Moreover, among the fields mentioned above, the medical industry is one of the most
vibrant research areas based on the application of CNNs, which has been developed, em-
ployed in computational biomedical domains, and significantly contributed [33]. Doctors
can effectively analyze medical images for lesion detection and diagnosis decision-making
using the CADe/CADx system. Automatic detection based on CNNs has lately gained
popularity. Image features can be automatically learned via automatic detection [34]. B.
Savelli et al. [35] proposed a new method for detecting small lesions in digital medical
images. This method was built on the basis of a multi-context ensemble of CNNs. The
innovative multiple-depth CNNs were trained on image patches of varying dimensions
before combination. As a result, the final ensemble could detect and pinpoint anomalies
on images by using the surrounding context and local features of a lesion. Statistically,
the suggested ensemble showed notably sounder detection performance, displaying its
efficacy in detecting minor abnormalities. Yang Liu et al. [36] proposed a novel privacy-
preserving Faster R-CNN framework (SecRCNN) for detecting medical image objects. They
created a set of interactive protocols to complete the three stages of Faster R-CNN: feature
map extraction, region proposal, and regression and classification. SecRCNN’s current
secure computation sub-protocols, such as division, exponentiation, and logarithm, were
upgraded to increase SecRCNN’s efficiency. The provided sub-protocols can remarkably
decrease the messages’ numbers that have been swapped in the iterative approximation.
Experimental results revealed that the communication overhead was reduced to 36.19%,
73.82%, and 43.37% in terms of computing division, logarithm, and exponentiation, respec-
tively. Dimpy Varshni et al. [37] established an automatic system for detecting pneumonia
without delay, especially in remote areas. Their study evaluated the pre-trained CNN
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model’s performance as feature extractors, followed by various classifiers to classify chest
X-rays. For this purpose, the best CNN model was determined analytically. Statistically,
the results of the experiments revealed that using pre-trained CNN models in conjunction
with supervised classifier algorithms might be highly advantageous in evaluating chest
X-ray images, particularly for detecting pneumonia.

Additionally, deep learning has wide application in the medical area due to its ex-
cellent accuracy and efficacy in image classification and biological applications [38]. The
generative adversarial network (GAN) is prevalent and significant among all the deep
learning architectures in the relative research topics. In the research on lesion detection,
previous specialists continued presenting advanced algorithms to optimize the preprocess-
ing, segmentation, and classification to enhance the detection accuracy and prepare for
the subsequent processing for multiple types of lesion images. AviBen-Cohen et al. [39],
for example, demonstrated a unique approach for generating virtual PET images from
CT scans. They merged a fully convolutional network (FCN) with a conditional GAN
to produce simulated PET data from supplied CT data. Encouragingly, the experimental
results demonstrated a 28% drop in the average false positive per case from 2.9 to 2.1. The
proposed solution can be extended to a variety of organs and modalities. Jin Zhu et al. [40]
proposed a novel SISR method to enhance the spatial resolution for brain tumor MRI im-
ages while avoiding the introduction of unrealistic textures. In addition, they proposed an
MOS that integrates experts’ domain knowledge to evaluate the medical image SR results.
According to the experimental results, the suggested method using MS-GAN accomplished
efficient SISR for brain tumor MRI images. Such models can be successfully employed for
a broader range of clinical applications. To detect brain abnormalities at diverse phases
on multi-sequence structural MRI, Leonardo Rundo et al. [41] suggested an unsupervised
medical anomaly detection generative adversarial network (MADGAN). The self-attention
MADGAN could detect AD at an early stage, with an area under the curve of 0.727, and
AD at a late stage with AUC 0.894, whereas it achieved AUC 0.921 for brain metastases de-
tection on T1c scans. Moreover, Maryam Hammami et al. [42] designed a combined Cycle
GAN and YOLO method for CT data augmentation. The experimental findings showed
that detection was speedy and accurate, with an average distance of 7.95 ± 6.2 mm, which
was particularly superior to detection without being augmented. The novel method outper-
formed state-of-the-art detection methods for medical images. Finck, Tom MD, et al. [43]
adopted a deep-learning technique to generate computationally generated DIR images and
compared their diagnostic performance to that of conventional sequences in patients with
multiple sclerosis (MS). The use of synthDIR enabled the detection of much more lesions.
This improvement primarily contributed to the better representation of juxtacortical lesions
(12.3 10.8 vs. 7.2 5.6, P 0.001). Zhiwei Qin et al. [44] used a data augmentation technique
based on GANs to classify skin lesions, allowing doctors to make more accurate diagnoses.
Finally, the suggested skin-lesion-based GANs’ synthetic images were incorporated into a
training set, helping to train a classifier for superior classification performance. When the
synthesized images were added to a training set, the primary classification indices, such
as accuracy, specificity, average precision, sensitivity, and balanced multiclass accuracy,
increased to 95.2%, 74.3%, 96.6%, 83.2%, and 83.1%, respectively.

3. Materials and Methods

The DeepLesion dataset [17] comprises 32,120 axial CT slices derived from 10,594 CT
scans of 4427 individual patients. Each image contains one to three lesions, with its own
bounding box and size information, for a total of 32,735 lesions. The lesion annotations
were extracted from the NIH’s picture archiving and communication system (PACS). There
were also some meta-data supplied.

DeepLesion, as stated by Ke Yan et al. [17], is a large-scale dataset comprising diverse
lesion types. This dataset can be widely adopted for applications including lesion detection,
classification, segmentation, retrieval, measurement, growth analysis, and relationship
mining among distinct lesions. Because the utilized dataset only contained the lesion’s
bounding box information, we built a Symmetry GAN detection network based on it.
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3.1. Dataset Analysis

This paper employs a dataset that includes eight types of CT images: abdomen (lesions
in the abdominal cavity that are not in the kidney or liver), soft tissue (various lesions in
the body wall, such as fat, head, muscle, limbs, neck, and skin), liver, lung, mediastinum,
bone, pelvis, and kidney. In Figure 1, it is demonstrated that the dataset has the following
characteristics.

Figure 1. Dataset visualization (the green box marks the location of the lesion). The following sample
lesions are displayed to demonstrate the tremendous diversity of the dataset: (A) is a lung nodule;
(B) is a lung cyst; (C) is costophrenic sulcus (lung) mass/fluid; (D) is a breast mass; (E) is a liver
lesion; (F) is a renal mass; (G) is a huge abdominal mass; (H) is a posterior thigh mass; (I) is an iliac
sclerotic lesion; (J) is a perirectal lymph node (LN); (K) is a pelvic mass; (L) is a periportal LN; (M) is
an omental mass; (N) is a peripancreatic lesion; (O) is a splenic lesion; (P) is a subcutaneous/skin
nodule; (Q) is opacity of ground glass; (R) is an axillary LN; (S) is a subcarinal LN; (T) is vertebral
body metastases; (U) is a thyroid nodule; (V) is a neck mass.

1. This dataset consists solely of 2D diameter measurements and lesion bounding boxes.
It lacks lesion segmentation masks, 3D bounding boxes, and fine-grained lesion types.
Hence, some processes—for example, lesion segmentation—might require additional
manual annotations.

2. In the images, not all lesions are annotated. Merely representative lesions are generally
marked in each study by radiologists. As a result, some lesions go unannotated.
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3. In terms of manual examination, while the majority of bookmarks represent aberrant
observations or lesions, a tiny bookmark fraction is a approach of classic structures—
for example, standard-sized lymph nodes.

Due to the above characteristics of this dataset, various data augmentation methods
are adopted in this paper to enhance the model’s detection performance.

3.2. Data Augmentation

Fewer samples are involved in medical image datasets, necessitating data augmen-
tation to raise the amount and complexity of training samples. This paper utilizes the
following data augmentation strategies to address the insufficient network training. Typ-
ically, this kind of insufficient network training is driven by performance degradation
induced by overfitting or due to an insufficient dataset.

3.2.1. Basic Augmentation

Conventional image geometry transformation, such as image cutting, rotation, transla-
tion, and other operations, can be used for simple data amplification. This research applied
the method presented by Alex et al. [45]. In the beginning, each original image is cut into
five subgraphs. Subsequently, we flip the five subgraphs horizontally and vertically. The
aforementioned process requires a scale operation on the image, which this paper imple-
ments by an affine transformation. The target image’s width and height are anticipated to
be wtarget and htarget, whereas those of the original image are worigin and horigin. Formula (1)
illustrates that when images are enlarged and shrunk, the Ω, which represents the scaling
factor, is first defined. At that moment, we split the width and height of the original image
through Ω. Afterward, after the target frame’s center point intersects with that of the
processed image, we take a fragment inside the target frame.

Ω = min{
htarget

horigin
,

wtarget

worigin
} (1)

The trimmed training set image was counted by outsourcing frames to avoid some
of the outsourcing frames being cut out, and then HSV channel color change was carried
out [46]. In this case, every original image generated 15 extended images.

3.2.2. Advanced Augmentation

We allude to a method demonstrated in the Mixup [47] and then present a series-
Mixup data augmentation method with CT image series, tackling the large memory loss
and the network’s inadequate sensitivity to symmetry GANs. Formulas (2)–(4) show the
method.

λ = Beta(α, β) (2)

mixed_seriesx = λ× seriesx1 + (1− λ)× seriesx2 (3)

mixed_seriesy = λ× seriesy1 + (1− λ)× seriesy2 (4)

seriesx1 is a series sample, and seriesy1 is the label matching the series sample. seriesx2 is
another series sample, seriesy2 denotes the label corresponding to the series sample, and λ
represents the mixing coefficient calculated through the Beta distribution of parameters
α and β. When this study implements the method, there is no restriction on seriesx1 and
seriesx2. When the series size is one, two images are mixed. When the series size is greater
than one, it means that two series image samples are mixed consequently. Additionally,
seriesx1 and seriesx2 can be either the identical series of samples or different series of
samples. When implementing this method, seriesx1 and seriesx2 adopt the same series of
samples. Among them, seriesx1 is the original series image sample, and seriesx2 is obtained
after shuffle processing of seriesx1 in the dimension of series size.

Furthermore, to prevent overfitting of the network, we undertake a random erase
operation on image data before they are sent to the backbone network. This method’s
function is similar to the dropout function [45]. Because the portion and location erased are



Symmetry 2022, 14, 234 8 of 28

random for every round of training, the network’s robustness can be improved, and the
erased section can be considered as the blocked or distorted portion. Filling pixels with a
predetermined color, such as black, or filling with the RGB channel mean of all pixels in the
erased region are the two options for processing the erased section. The above-mentioned
effects are depicted in Figure 2.

Figure 2. Examples of two types of CutOut fillings. (A) Filling with black pixels; (B) Filling with the
average of surrounding pixels in the erased portion.

CT images are sparse, while the lesions in each image are insufficient. In order
to maximize the backbone learning of lesion features, i.e., positive sample features, we
borrowed the idea of CutMix [48]—we cut and pasted the lesion area to other background
areas. Thus, the model learning of positive features in unbalanced samples can be enhanced,
and the model’s performance can also be improved.

In addition to the above, we also use the Mosaic [49] method. This method might
employ numerous images at the same time. The most notable merit of this method is that it
can embellish the discovered objects’ backgrounds. The above data augmentation methods
are used to maximize the robustness and detection performance of the model. Figure 3
shows the effect of applying these methods.

Figure 3. Illustration of different data augmentation methods. (A) series-Mixup; (B) Random-erase;
(C) CutMix; (D) Mosaic; (E) source images.

3.3. Symmetry GAN Detection Network

Mainstream one-stage object detection models, such as YOLO [25,26,50,51] and SSD [52],
have achieved excellent performance on the MS COCO [53] and Pascal VOC [54] datasets
and are widely used in target detection tasks. However, since the anchor parameters of
YOLO series do not match the actual CT images, the performance of the model obtained
by directly training YOLO series is not good. The main reasons are as follows: the YOLO
and SSD algorithms are mainly trained based on the MS COCO and Pascal VOC datasets,
so the anchor points in the algorithm are not universal, especially the low target detection
accuracy of small objects. Therefore, based on the idea of a one-stage network, a symmetry
GAN detection network was proposed, which has a network structure based on one-stage
detection networks and GAN and is mainly suitable for CT images.
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Compared with mainstream one-stage detection networks, the main differences of the
symmetry GAN detection network are as follows:

1. The GAN-based image generation network is added before the backbone network,
and the GAN-based attention extraction module is added to the attention module,
forming symmetric GANs.

2. The activation function is improved, and this paper replaces the single activation func-
tion with parallel multi-activation functions—for instance, LeakyReLU—improving
the model’s performance.

3. Using concepts from the feature fusion network (FPN) and the path aggregation
network (PANet) [55], this paper adds multi-scale feature fusion modules to the
backbone and improves the modules.

4. This paper optimizes the loss functions and develops specific loss functions for the
lesion and background image recognition modules.

5. This paper additionally adds a label smoothing function at the backbone network’s
output, preventing classification overfitting.

6. To estimate the confidence threshold of detecting frame discarding, this paper adopted
the out-of-fold (OOF) model cross-validation method [56].

Figure 4 illustrates the structure of the symmetry GAN detection network.

Figure 4. Flow chart of symmetry GAN detection network.

3.3.1. Symmetry GANs

Symmetry GANs comprise two GAN modules: the first one, the GAN model A in
Figure 4, is located ahead of the backbone, which is used for expanding CT images. There
are various ways to implement it. As an example, the algorithm flow of GAN model A is
illustrated in Algorithm 1.
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Algorithm 1 Algorithm flow of GAN Model A.

1: Input: dataset D
2: Output: dataset D′

3: Step 1: input the randomly generated data with Gaussian distribution to the Generator
4: Step 2: train Generator
5: Step 3a: input the data generated by Generator to Discriminator
6: Step 3b: input original data to Discriminator
7: Step 4: train Discriminator
8: Step 5: repeat the above steps until the discriminator cannot distinguish the generated

data from the real data
9: Step 6: output real data and generated data

The generator is employed to generate more feasible eigenvectors matching with
lesion images to improve the training. Consider DCGAN, which has two participants:
the discriminator D and generator G. Let pdata be the retrieved eigenvectors’ distribution.
The target of generator model G is to construct a probability distribution pg on the feature
map x. This distribution is the estimated value of pdata. Two deep neural networks
expound the discriminator and generator. Formula (5) expresses the DCGAN model’s
optimization purpose:

min
G

max
D

V(D, G) = E(x∼pdata)
[logD(x)] +E(z∼pz(z))

[log(1− D(G(z)))] (5)

In Formula (5), x is a prior value of an input noise variable. During the training
process, two deep neural network models are trained. The discriminative model is matched
against the generative model G. In other words, these models will improve their objective
functions by playing games. Nonetheless, in order to avoid the difficulties of identifying
the exact Nash balance in real-world cases, we take the accuracy of the data generated in
discriminator D as a stopping criterion. It specifies that if the misclassified probability of
the data generated by G reaches a predetermined level, the training will be discontinued.
Figure 5 displays the training process.

Figure 5. Flow chart of GAN model A.

The second GAN module, GAN model B in Figure 4, is located in the attention
mechanism module. Its primary role is to add a noise mask to the feature maps obtained
from the backbone to improve the model’s robustness. From the subsequent results—
shown in Section 5—it is observed that adding noise can significantly improve the model’s
performance. The GAN module of this section can also be implemented in various ways.
For example, SAGAN can be applied as shown in Figure 6.
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Figure 6. Flow chart of GAN Model B.

Figure 7 shows the visualization of the feature maps and attention feature maps.

Figure 7. Comparison of feature maps with attention feature maps. (A) Feature maps; (B) attention
feature maps.

3.3.2. Parallel Activation Functions

In the existing backbone networks, only the activation function layers are connected in
series between the layers in the network, dominated by ReLU and LeakReLU. The parallel
activation functions module proposed in this paper transforms the series activation function
layers into parallel multiple-activation function layers, in which each base activation is
preceded by a coefficient kn. We guarantee ∑n

i=1 ki = 1 so that the effect of ensembling
multiple CNN models can be simulated by this parallel structure.

This paper selects the following types of base activation functions to implement the
parallel activation functions module:

1. ReLU. The activation function employed in the above numerous backbone networks
uses the ReLU function by default, first applied in the AlexNet network.

2. Mish [57]. Mish, proposed by Diganta Misra, is an activation function built to take
the place of ReLU. It was reported that it surpassed a portion of the previous FastAI
global leaderboard accuracy score record.

3. Sigmoid. Sigmoid is a smooth step function; the function can be derived. Sigmoid
can change any value into [0, 1] probability, primarily adopted for binary classifica-
tion tasks.

CNNs have been developed for many years and produced numerous model structures,
which can be classified into three kinds: the network structure formed by repeatedly
stacking the convolutional layer–activation function layer–pooling layer represented by
AlexNet [45] and VGG series [58]; the residual network structure model represented by
ResNet series [59] and DenseNet series [60], and the multi-branch parallel network structure
represented by GoogLeNet [61]. Figure 4 shows how to apply the parallel activation
functions module to different kinds of backbones.
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3.4. Loss Function

The symmetry GAN detection network’s loss function is composed of three portions:
box coordinate error, CIoU error, and classification error, as shown in Formulas (6)–(9). The
box coordinate error (xi, yi) denotes the predicted box’s center position coordinate, and
(wi, hi) is its width and height. (x̂i, ŷi) and (ŵi, ĥi) denote the coordinates and size of the
labeled ground truth box, respectively. Furthermore, λcoord and λnoobj are constants. K× K
represents the grids’ amount. M expounds the predicted boxes’ overall amount. Moreover,
Iobj
ij is one when the ith grid detects a target and zero otherwise.

Loss = Lossbounding_box + Lossciou + Lossclassi f ication (6)

Lossbounding_box =λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)[(xi − x̂i)

2 + (yi − ŷi)
2]+

λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)[(wi − ŵi)

2 + (hi − ĥi)
2]

(7)

Lossciou =
K×K

∑
i=0

M

∑
j=0

Iobj
ij [Ĉilog(Ci) + (1− Ĉilog(1− Ci)]+

λnoobj

K×K

∑
i=0

M

∑
j=0

Inoobj
ij [Ĉilog(Ci) + (1− Ĉilog(1− Ci)]

(8)

Lossclassi f ication =
K×K

∑
i=0

Iobj
ij ∑

c∈classes
[ p̂i(c)log(pi(c)) + (1− p̂i(c)log(1− pi(c))] (9)

Zheng [62] suggested a more high-efficiency IoU calculation method, CIoU. Formula (10)
demonstrates CIoU’s calculation formula.

CIoU = 1− IoU +
ρ2(A, B)

c2 + αν (10)

The model’s classification categories are divided into two types: positive and negative.
The prediction box and its IoU are computed in every ground truth box. Specifically, the
greatest IoU is a positive class, whereas the others are negative.

3.4.1. Label Smoothing

The backbone network of the symmetry GAN detection network outputs a confidence
score for the current data corresponding to the foreground, i.e., wheat. The so f tmax
function normalizes these scores, and, ultimately, the probability of each category that the
current data belongs to is obtained. The calculation formula is shown in Formula (11).

qi =
exp(zi)

∑K
j=1 exp(zj)

(11)

Then, the cross-entropy cost is calculated:

Loss = −
K

∑
i=1

pilogqi (12)

where

pi =

{
1, i f (i = y)

0, i f (i 6= y)
(13)

The predicted probability should be adopted for the loss function to fit the true
probability. However, fitting the one-hot true probability function would bring problems
as follows:
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1. The generalization ability of the model cannot be ascertained, and it is likely to lead
to overfitting.

2. The gap of categories that encouragements of full probability and zero probability
belong to and other categories are as large as possible. Furthermore, the bounded
gradient indicates that this situation is challenging to fit. It would cause the model to
trust the predicted category heavily. In particular, it would contribute to the network
model’s overfitting so that the training data are not sufficient to represent all of the
sample features.

The regularization strategy of label smoothing is adopted to tackle the aforementioned
barriers. This strategy includes adding noise via soft one-hot and decreasing the weight
of the real sample label category in the loss function’s computation. It plays a role in
suppressing overfitting.

After label smoothing is added, the probability distribution changes from Formula (13)
to Formula (14):

pi =

 1− ε, i f (i = y)
ε

K− 1
, i f (i 6= y)

(14)

3.4.2. Out-of-Fold mAP Threshold Calculation

After the symmetry GAN detection network generates prediction boxes, it is necessary
to discard the boxes where the mAP score is below the confidence threshold before the non-
maximum suppression (NMS) algorithm. However, the setting of this threshold usually
depends on manual experience. This paper uses the out-of-fold to determine the mAP
threshold of the retention or discarding prediction box. The core idea of out-of-fold is to
calculate the mAP of the verification set by traversing different thresholds and then obtain
the optimal threshold value that maximizes the score of the mAP in the traversing process.

4. Experiment
4.1. Evaluation Metrics

To validate the model’s performance, four metrics are used for the evaluation in
this paper, namely mAP, precision (P), recall (R), and FPS. The Jaccard index, commonly
known as the intersection over union (IoU), is specified as the intersection of predicted
segmentation, which also divides the label. The value of this indicator ranges from 0 to 1:
0 indicates no overlap, and 1 represents complete overlap. It is a true situation when the
IoU ≥ is 0.5; otherwise, it is a false positive situation. The binary classification calculation
formula is:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(15)

where A denotes ground truth and B is the predicted segmentation.
Pixel accuracy (PA) is the percentage of an image’s accurately classified pixels, i.e., the

proportion of correctly classified pixels to entire pixels. The formula is as follows:

PA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
=

TP + TN
TP + TN + FP + FN

(16)

n indicates the total amount of categories; n + 1 represents the category amount, containing
backdrops. pii indicates the overall amount of real pixels, in which the label is i and
predicted to be class i, i.e., the entire amount of matched pixels for real pixels (class i). pij
expounds the overall amount of real pixels (label i) that are predicted to be class j, which
can be regarded as the amount of pixels (label i) that are classified into class j incorrectly.
Moreover, TP denotes the amount of true positives (positive in both labels and predicted
value). TN expounds the amount of true negatives (negative in both labels and predicted
value). FP is the amount of false positives (negative in label and positive in predicted
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value). FN describes the amount of false negatives (positive in label and negative in
predicted value). In addition, TP + TN + FP + FN specifies the overall amount of pixels,
and TP + TN specifies the amount of pixels that are correctly classified.

Mean pixel accuracy (mPA) is a straightforward improvement on PA. mPA computes
the percentage of pixels precisely recognized in every class and averages the outcomes, as
indicated in Formula (17).

mAP =
∑k

i=1(APi)

k
(17)

Precision (P) is the percentage of samples categorized as positive samples among the
accurately classified samples.

P =
TP

TP + FP
(18)

Recall (R) demonstrates the percentage of correctly categorized positive samples
among overall positive samples.

R =
TP

TP + FN
(19)

4.2. Experiment Setting

A personal computer (CPU: Intel(R) i9-10900KF; GPU: NVIDIA RTX 3080 10 GB; Mem-
ory: 16 GB; OS: Ubuntu 18.04, 64 bits) was used to carry out the entire model training and
validation process. We chose the Adam optimizer with an initial learning rate, a0 = 1× 10−4.
The learning rate increment was adjusted using the method specified in Section 4.3 and the
training speed was optimized.

4.3. Learning Rate

Warm-up [59] is a training strategy. During the pre-training phase, one trains certain
epochs or steps at a low learning rate, such as four epochs or 10,000 steps. Then, these
epochs are changed into a predefined learning rate for training. We randomly assign the
model weights when training starts, and the model’s “level of understanding” of the data
is set to zero. Assuming that a higher learning rate is utilized initially, the model may
fluctuate. Warm-up adopts a comparatively reduced learning speed for training to supply
the model with the data’s prior knowledge. Afterward, during training, we utilize the
predefined learning speed to enhance the model’s convergence rate and efficacy. Ultimately,
utilizing a low learning rate to continue with exploration avoids losing local best points. In
the training procedure, for instance, we set the learning speed as 0.01 to train the model
until the error was no more than 80%. Then, we set the learning speed to 0.1 for training.

The above warm-up is the constant warm-up. Its downside is that switching from a
low learning speed to a comparatively high one might induce the training error to skyrocket.
As a result, Facebook advocated for a gradual warm-up to address this issue in 2018. It
begins with a very low learning rate and gradually increases until it reaches the relatively
high, initially established learning rate, at which point it is used to conduct training.

The exp warm-up method is examined in this article, which involves linearly acceler-
ating the learning from a minuscule value to the predefined learning speed and then fading
in terms of the exp function law. Meanwhile, sin warm-up is explored, which increases
the learning rate linearly from a low value. It decays according to the sin function rule
once it reaches the predetermined value. Figure 8 depicts the changes between the two
pre-training methods.
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Figure 8. Warm-up learning rate schedule.

4.4. Pseudo-Label Training Enhancement

Because the size of the medical dataset is insufficient, the pseudo-label method is
adopted to fully utilize the test set data to improve training. Three pseudo-label methods
are tested, as shown in Figure 9. Among them, M represents a supervised model trained
with labeled data, and M′ denotes a model trained with labeled data and pseudo-labeled
data. Pseudo-label model B uses M′ to replace M and repeats until the model effect does
not improve, as shown in Figure 9.

Figure 9. Flow chart of two pseudo-label models.

5. Results
5.1. Validation Results

The experimental results presented in this section refer to the test set after randomly
segmenting the dataset into a training set and a test set with a ratio of 9:1. Table 1 contains
the experimental results. The best results of the index are given in bold. In Table 1,
YOLO v5 [27] demonstrates the best speed. The P, R, and mAP of Faster-RCNN [63] are
0.8022, 0.8519, and 0.8396, which show the worst performance of all models. These P, R,
and mAP values of YOLO v5 are superior to those of Faster-RCNN, Mask-RCNN [23], and
SDD series, whose values are 0.9446, 0.9718, and 0.9674, respectively. Although EfficientDet
outperforms YOLO v5 in terms of precision, it does not perform as satisfactorily as YOLO
v5 in terms of recall and mAP. This is probably due to the stronger performance of the
attention extraction module in EfficientDet than in YOLO v5. Overall, EfficientDet and
YOLO v5 are the two best models among the comparisons. We split the input into two
transmission SGDNs of 300 × 300 and 500 × 500 for testing, and the results show that
the latter has better performance, with the three parameters reaching 0.9720, 0.9858, and
0.9833, respectively, which are higher than those of YOLO v5 and EfficientDet. However,
our model ranks third in terms of the FPS index. This is caused by the complexity of
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the symmetry GAN module. As depicted above, SGDN 512 shows the best detection
performance on the DeepLesion dataset, according to the outcomes.

Table 1. Comparison of variant models and SGDN.

Method P R mAP FPS Batch Size Input Resolution

Faster-RCNN 0.8022 0.8519 0.8396 7 2 600 × 600
Mask-RCNN 0.9314 0.9499 0.9493 9 2 600 × 600
EfficientDet 0.9512 0.9688 0.9520 17 8 512 × 512
YOLO v3 0.9317 0.9513 0.9506 23 2 608 × 608
YOLO v4 0.9228 0.9497 0.9485 27 2 608 × 608
YOLO v5 0.9446 0.9718 0.9674 51 2 608 × 608
SSD 300 0.9281 0.9489 0.9460 32 8 300 × 300
SSD 512 0.9374 0.9672 0.9477 29 2 512 × 512
SGDN 300 0.9771 0.9839 0.9825 18 8 300 × 300
SGDN 512 0.9720 0.9858 0.9833 13 2 512 × 512
SGDN 512 0.9688 0.9840 0.9831 13 8 512 × 512

The model fusion method is then adopted to enhance the performance of our model.
The model fusion method is simple because it calculates the intersection of the results of
multiple models directly. In this paper, the model fusion method is adopted to incorporate
the different SGDT models, as shown in Table 2.

Table 2. Results of model fusion.

Models OOF NMS Method P R mAP

SGDT 300 soft NMS 0.9771 0.9839 0.9825
SGDT 512 NMS 0.9715 0.9763 0.9756
SGDT 512 + soft NMS 0.9720 0.9858 0.9833
SGDT 300 + SGDT 512 + WBF 0.9719 0.9883 0.9871

The experimental results show that the mAP obtained when fusing the SGDT 300 and
SGDT 512 models is 0.9871, which is already higher than that of other detection models.

5.2. Detection Results

For further comparison, we extracted six images from the CT image series of DeepLe-
sion. These images were taken from different sites of lesions and different areas of lesions,
showing the detection results of the comparison model as comprehensively as possible.
Figures 10–19 show the detection results. All green boxes represent ground truth; red boxes
denote predicted bounding boxes. It can be seen that Faster-RCNN performs very poorly
on small lesions and lesions that are not easy to identify, while YOLO v3, YOLO v4, and
SSD series perform relatively well. However, the aspect regression of the bounding box at
small lesion locations is still not accurate. On the other hand, EfficientDet, Mask-RCNN,
and YOLO v5 perform relatively well and detect lesions accurately. This may be related to
the attention extraction module in these networks.

Our model, especially SGDN 512, outperforms the previous models by detecting
lesions with high accuracy for non-minimal lesions. Although there is still room for
improvement, it has outperformed other models. On the one hand, we augment the image
with the GAN model before it is fed into the backbone. On the other hand, we add the GAN
model to the attention extraction module of the model, which can significantly improve the
model’s robustness.
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Figure 10. The detection results of YOLO v3 in the DeepLesion dataset. The green box marks the
location of the lesion.

Figure 11. The detection results of YOLO v4 in the DeepLesion dataset. The green box marks the
location of the lesion.
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Figure 12. The detection results of YOLO v5 in the DeepLesion dataset. The green box marks the
location of the lesion.

Figure 13. The detection results of Faster-RCNN in the DeepLesion dataset. The green box marks the
location of the lesion.
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Figure 14. The detection results of Mask-RCNN in the DeepLesion dataset. The green box marks the
location of the lesion.

Figure 15. The detection results of EfficientDet in the DeepLesion dataset. The green box marks the
location of the lesion.
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Figure 16. The detection results of SSD 300 in the DeepLesion dataset. The green box marks the
location of the lesion.

Figure 17. The detection results of SSD 512 in the DeepLesion dataset. The green box marks the
location of the lesion.
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Figure 18. The detection results of SGDN 300 in the DeepLesion dataset. The green box marks the
location of the lesion.

Figure 19. The detection results of SGDN 512 in the DeepLesion dataset. The green box marks the
location of the lesion.

According to Figures 10–19, the proposed model produces the most comprehensive
detection results compared to other models. However, there are still a few cases where the
shortcomings of SGDN can be seen: the arrows in Figure 19 show that our model is still not
accurate at the edge of the lesion. In addition, from these figures, we can see that all the
comparison models perform very poorly at the site of arrow A. The difference between the
predicted box and the ground truth given by our model at arrow A is the largest compared
to other recognition results.
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6. Discussion
6.1. Ablation Experiment of Symmetry GANs

This paper uses GAN modules in backbone and attention extraction modules, while
GAN models have many branches and foci. The primary purpose of the GAN module
in front of the backbone is to enhance the model input. In contrast, the GAN module
in the attention extraction module generates an attention mask to enhance the model’s
robustness. Therefore, for the two GAN modules with different purposes, different GAN
models are implemented in this paper, including DCGAN, CVAE-GAN, SAGAN, and
SPA-GAN. Several ablation experiments were conducted, and the experimental results are
illustrated in Table 3.

Table 3. Results of different implementations of symmetry GAN module on SGDN 512.

Method P R mAP FPS

No symmetry GANs (baseline) 0.8375 0.8749 0.8526 29
DCGAN + SAGAN 0.9720 0.9858 0.9833 13
CVAE-GAN + SAGAN 0.9691 0.9731 0.9603 11
DCGAN + SPA-GAN 0.9737 0.9845 0.9841 11
CVAE-GAN + SPA-GAN 0.9741 0.9745 0.9742 8

As Table 3 illustrates, using DCGAN and SPA-GAN to implement GAN model A and
GAN model B, respectively, can optimize the models’ performance, with the three primary
metrics reaching 0.9737 and 0.9845. As a comparison, DCGAN is better than CVAE-GAN in
the choice of GAN model A. Regardless of the implementation of GAN model B, this may
be due to the insufficient depth of the network in CGAN, resulting in ineffective training
of the generator and discriminator. By comparing the baseline model, it is apparent that
the symmetry GAN module, regardless of the implementation approach, can significantly
improve the model’s performance by 12.5% in terms of the mAP parameter.

6.2. Ablation Experiment of Data Augmentation Methods

Conventional data augmentation methods are utilized in computer vision applications,
including random crop, flip, and translation. However, this work employs sophisticated
data augmentation methods such as random erasure and image mixing. We conducted
ablation experiments to validate the improved efficacy of various strategies on model
performance. Because the four data augmentation methods, random-erase, CutMix, series-
MixUp, and Mosaic, entail higher computational complexity than affine transformation-
based methods, they exert a more significant effect on the model’s training and inference
speed. We evaluated the impacts of various incorporations to see if it was beneficial to
utilize these strategies. Furthermore, we investigated whether it was viable to employ
exclusively affine transformation-based augmentation approaches. Table 4 displays the
experimental results.

Table 4. Results of different data augmentation methods.

Random-Erase CutMix Series-MixUp Mosaic P R mAP FPS

X X X X 0.9720 0.9858 0.9833 13
X X X 0.9715 0.9861 0.9829 15

X X X 0.9711 0.9847 0.9834 13
X X X 0.9722 0.9861 0.9808 13
X X X 0.9718 0.9822 0.9817 13

0.9328 0.9356 0.9272 16

Table 4 shows that every data augmentation method can satisfactorily enhance the
model’s performance. In addition, by observing the variation in the FPS parameter, we can
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see that other data augmentation methods have almost no effect on the model speed, except
for the random-erase, which slightly affects the model speed. Moreover, when comparing
the model performance, the effects of the random-erase and Mosaic methods are similar,
since using one of them on the model can realize nearly identical effects. Meanwhile, when
merely adopting the affine transformation-based data augmentation method, although the
model can be accelerated to 16 FPS, it has little to no substantial effect on model speed
improvement. The model’s precision, recall, and mAP are only 0.9328, 0.9356, and 0.9272,
illustrating a significant downward trend. Hence, taking the model’s performance and
implementation speed characteristics into account, this paper uses CutMix, series-MixUp,
and Mosaic jointly to ascertain that the model performs the best comprehensively.

6.3. Ablation Experiment of Parallel Activation Functions

The base activation function coefficient k in the parallel activation functions suggested
module is heavily empirical. To investigate the model’s performance with different pa-
rameter configurations, we tried different combinations of k1, k2, k3. Table 5 depicts the
experimental results.

Table 5. Experimental results for different combinations of base activation functions. k1 represents
the coefficient of ReLU, k2 denotes the coefficient of Sigmoid, k3 indicates the coefficient of Mish.

Model k1 k2 k3 P R mAP

SGDN 300

1.0 0.0 0.0 0.9742 0.9783 0.9765
0.33 0.33 0.33 0.9771 0.9839 0.9825
0.6 0.2 0.2 0.9764 0.9855 0.9827
0.2 0.6 0.2 0.9693 0.9728 0.9714
0.2 0.2 0.6 0.9722 0.9810 0.9759

SGDN 512

1.0 0.0 0.0 0.9711 0.9724 0.9703
0.33 0.33 0.33 0.9726 0.9756 0.9733
0.6 0.2 0.2 0.9720 0.9858 0.9833
0.2 0.6 0.2 0.9729 0.9738 0.9730
0.2 0.2 0.6 0.9726 0.9756 0.9733

Through the experiment, we found that the effect of the parallel activation functions
module depends largely on the coefficient k before different activation functions; when k is
uniformly taken as 0.33 or sigmoid takes the dominant role, the model performance will be
seriously degraded; when k1, k2, k3 are taken as 0.2, 0.2, 0.6, i.e., when the Mish function
takes the dominant role, the performance of each model is improved.

6.4. CT Image Detection System on iOS

To achieve an end-to-end high-performance CT images model, an intelligent diagnosis
system based on our model was developed as an app for iOS using the programming
language Swift. The main functional modules of this application are as follows:

1. Section for searching and browsing patient information. Users can loop up patient
information as well as look over the historical records. To make it easier for clients to
access patient data, we utilize a remote server to connect. Moreover, primary patient
information and medical image data are maintained in a database on a remote server.

2. Detect CT images via iOS mobile device camera, suitable for practical application scenarios.
3. Import multiple CT images through the Photos application and detect all images

simultaneously.

The workflow of the detection function is shown in Figure 20.
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Figure 20. CT image detection system flow chart.

The procedure of detecting CT images by this app is as follows. First, a video stream of
CT images is obtained through the iPhone’s camera; take the realistic application scenario
as an example. Then, the representative frames are obtained and released to the server.
Next, the server transfers the received images to the trained model. Finally, the model’s
output is returned to the iOS end, and the iOS end draws a detection frame based on the
returned parameters. Some screenshots of the app in action are shown in Figure 21. The
app has been submitted to Apple’s App Store.

Figure 21. Screenshot on iPhone12 mini. From left to right: screenshot of the app launched on the
desktop; screenshot of the function selection after launching; screenshot of the test result, and image
used for testing.

Two functional modes were created for this app. The manual mode requires the user
to take a picture manually for detection. The automatic mode takes a frame from the video
stream every second for automatic detection and result archives. As Figure 20 shows, the
detection application is implemented by server arithmetic. Meanwhile, from Table 1, we
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can see that the FPS of our proposed model is 13. In Table 1, we can see that the FPS
of our proposed model is 13. In other words, it takes less than 0.1 s to process a single
image. Therefore, the detection speed of the application depends on the practical network
environment.

7. Conclusions
7.1. Analysis of Symmetry GAN Detection Network

Lesions arise in body tissues as a result of a variety of causes, having a devastating
impact on the human body’s vital functions. In recent years, computed tomography (CT)
has been dramatically enhanced and widely applied in biomedical research, particularly for
lesion detection. Nevertheless, lesion detection in CT images has the following challenges:
(1) the image quality drops when reducing the radiation dose to decrease radiational harm
to the human body, with the scan and reconstruction variables remaining unchanged;
(2) noise interference frequently hampers the image quality; (3) lesion images generally
exhibit complex structures due to the intricate conditions of diseased tissue; (4) lesion
structures vary from patient to patient; (5) due to pathological variables and external noise
interference, the contrast between the oriented object and the background is not sufficient.

Therefore, we present a symmetry GAN detection network (SGDN) based on a one-
stage detection network, aiming to address the above challenges. In this paper, we use by
far the largest CT medical image dataset—DeepLesion—to identify 22 types of lesions, as
shown in Figure 1.

In this paper, the original one-stage detection network has been optimized as follows:

1. Symmetry GAN models: First and foremost, a generative model is added in front of
the backbone to expand the input CT image series, which aims to alleviate the general
problem of small sample size in medical datasets. Second, GAN models are added to
the attention extraction module to generate attention masks. Figure 7 shows the effect
of adding GAN models on feature maps, and the results of the experimental part
also illustrate that this approach can effectively enhance the robustness of the model.
Eventually, on the validation set, the suggested method reaches values of 0.9720,
0.9858, and 0.9833 for P, R, and mAP, respectively. The statistical results demonstrate
that the presented model outperforms any other compared model.

2. In order to verify the effectiveness of various implementations of symmetry GANs,
in Section 6, we test the performance of GAN model A with DCGAN and CVAE-
GAN and that of GAN model B with SAGAN and SPA-GAN, respectively. The
experimental results demonstrate that the combination of DCGAN + SPA-GAN has
the best performance, reaching values of 0.9737, 0.9845, and 0.9841 for P, R, and mAP,
respectively, which further demonstrate the model’s improved detection accuracy.

3. This paper presents the use of parallel multi-activation functions to replace single
activation functions and theoretically proves that the performance is not inferior to
that of single activation functions, as shown in Section 6.3. By applying parallel
multi-activation functions, we have improved the performance of SGDN 512 by
nearly 1.4%.

4. Meanwhile, the loss function of the detection task is optimized by replacing the IoU
loss with a more reasonable CIoU loss.

5. In this study, we encapsulate the model and develop a related application based on
the iOS platform, highlighting this model’s practical significance in actual scenarios.

Although the suggested model has exceeded other compared models, limitations still
exist. Firstly, the model still does not perform satisfactorily in the detection masks at the
boundary. Second, the model’s utilization of the spatio-temporal information contained in
the CT image series still needs to be improved. These demerits will be addressed in the
future by the researchers of this paper.
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7.2. Future Work

The presented method still has a few flaws when the detecting lesion’s size is very
small, as shown in Figure 19. The dataset used in this paper is a series of CT images.
Nonetheless, the present model does not effectively utilize the spatio-temporal continuity
of image sequences. Therefore, in the future, the authors of this paper will optimize the
proposed model to extract image sequences with continuous features as much as possible
to further optimize the model. Additionally, the parameter k of the parallel activation
functions used in this paper is set empirically by a human. The authors will attempt to
involve this parameter in the network training in future optimization.
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