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Abstract

In this review, we present a symmetry-guided strategy that utilizes exact as well as partial
symmetries for enabling a deeper understanding of and advancing ab initio studies for determining
the microscopic structure of atomic nuclei. These symmetries expose physically relevant degrees of
freedom that, for large-scale calculations with QCD-inspired interactions, allow the model space size
to be reduced through a very structured selection of the basis states to physically relevant subspaces.
This can guide explorations of simple patterns in nuclei and how they emerge from first principles,
as well as extensions of the theory beyond current limitations toward heavier nuclei and larger model
spaces. This is illustrated for the ab initio symmetry-adapted no-core shell model (SA-NCSM) and
two significant underlying symmetries, the symplectic Sp(3, R) group and its deformation-related
SU(3) subgroup. We review the broad scope of nuclei, where these symmetries have been found to
play a key role – from the light p-shell systems, such as 6Li, 8B, 8Be, 12C, and 16O, and sd-shell
nuclei exemplified by 20Ne, based on first-principle explorations; through the Hoyle state in 12C and
enhanced collectivity in intermediate-mass nuclei, within a no-core shell-model perspective; up to
strongly deformed species of the rare-earth and actinide regions, as investigated in earlier studies. A
complementary picture, driven by symmetries dual to Sp(3, R), is also discussed. We briefly review
symmetry-guided techniques that prove useful in various nuclear-theory models, such as Elliott
model, ab initio SA-NCSM, symplectic model, pseudo-SU(3) and pseudo-symplectic models, ab

initio hyperspherical harmonics method, ab initio lattice effective field theory, exact pairing -plus-
shell model approaches, and cluster models, including the resonating-group method. Important
implications of these approaches that have deepened our understanding of emergent phenomena in
nuclei, such as enhanced collectivity, giant resonances, pairing, halo, and clustering, are discussed,
with a focus on emergent patterns in the framework of the ab initio SA-NCSM with no a priori

assumptions.
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1 Introduction

Major progress in the development of realistic inter-nucleon interactions [1–4] along with the utilization
of massively parallel computing resources (e.g., see [5]) have placed ab initio large-scale simulations
at the frontier of nuclear structure explorations. Several ab initio nuclear-theory approaches have
been recently advanced, including Green’s function Monte Carlo (GFMC) [6, 7], no-core shell model
(NCSM) [8–12] together with NCSM with a core [13] and importance truncation NCSM [14], coupled-
cluster method (CC) [15, 16], lattice effective field theory [17], in-medium SRG [18, 19], symmetry-
adapted no-core shell model (SA-NCSM) [20], Monte Carlo NCSM [21], and self-consistent Green’s
function [22]. Ab initio approaches build upon a ‘first principles’ foundation. They provide a long-
missing link that bridges from the many-particle nucleus down to the fundamental blocks, namely, the
properties of only two or three nucleons often tied to chiral symmetry-breaking patterns dictated by the
underlying Quantum Chromodynamics (QCD). And while this bridge transforms the nuclear problem
into a computational- and data-intensive challenge, it empowers ab initio models with two invaluable
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features: (1) a universal character essential for modeling the coexistence of diverse nuclear substructures
and (2) predictive capabilities vital for descriptions of experimentally inaccessible nuclear species far
off the valley of stability. As such nuclei are often found key to understanding processes in extreme
environments, from stellar explosions to the interior of nuclear reactors or fusion capsules, first-principle
nuclear models have been and will be demonstrating a tremendous impact for advancing the frontiers
in multiple branches of physics such as astrophysics, neutrino physics, and applied physics [22–32].

While the predictive capability is an essential feature of ab initio theories, especially in regions
inaccessible to experiment, the need for such theories goes beyond solely achieving accurate results.
Their main purpose is to advance our understanding of strongly interacting systems based on the
nature of the strong force and of the way this force governs the complex nuclear dynamics that often
displays striking simplicities. Indeed, models restricted in their interactions and model spaces can mimic
simple patterns and can be misleading. One of the most striking recent examples is related to the low-
lying 0+ nuclear states in experimental excitation spectra that for a long time have been regarded, and
hence, modeled, as vibrations, and only recently the different mechanism of shape coexistence has been
suggested [33–35]. Shape coexistence has been found to occur in many nuclei across the entire mass
surface [36] – it has been argued that it probably occurs in nearly all nuclei [37]. And while vibrational
spectra are often associated with spherical nuclei, the fact that a nucleus has a zero quadrupole moment
in its 0+ ground state does not imply that it is spherical in its intrinsic frame; for quantum mechanical
reasons, it appears spherical in lab frame. With an expanding body of experimental evidence, it is
becoming evident that non-zero deformation is far more widespread than zero deformation and that
even nuclei that are spherical (in their ground states) have low-lying deformed excited states [36]. In
fact, first-principle calculations in the SA-NCSM [20] (see also Sec. 5.2) have unveiled that even the
lightest of nuclei, exemplified by 6Li, in their ground state exhibit considerable collectivity, as seen
by the dominance of prolate deformed configurations in the 6Li wave function. At the same time,
these calculations closely reproduce the nearly vanishing 6Li ground-state (gs) quadrupole moment of
Q(1+

gs) = −0.0818(17) efm2 [38]. This quadrupole moment, an L = 2 operator, is in fact attributed to
the considerable contribution of L = 0 configurations (∼ 87%) to the ground state. Hence, ab initio
theory opens the path to explain from first principles simple patterns, revealed amidst experimental
data, while providing deeper understanding of emergent phenomena, such as enhanced collectivity, giant
resonances, pairing, halo, and clustering, in a plethora of nuclei from stable to unstable, without a priori
assumptions.

In this review, we present a symmetry-guided strategy that utilizes exact as well as partial sym-
metries for enabling a deeper understanding of and advancing ab initio studies for determining the
microscopic structure of atomic nuclei. These symmetries naturally provide a physically relevant basis
that, for large-scale calculations, allows the model space size to be reduced through a very structured
selection of the basis states to physically relevant subspaces and can guide extensions of the theory
beyond current limitations. This is crucial, as model space dimensionality and associated computa-
tional resource demands grow combinatorially with the number of particles and the spaces in which
they primarily reside (so-called, “scale explosion”), thereby limiting the number of active particles that
could be handled or precluding microscopic descriptions of largely deformed spatial structures.

We focus on the symplectic Sp(3,R) symmetry and its deformation-related SU(3) subgroup, which
underpins the Elliott model [39,40], the symplectic model [41,42] and the ab initio SA-NCSM [20], and
review the broad scope of nuclei, where these symmetries have been found to play a key role – from
the lightest p-shell systems of 6Li and 8Be, through sd-shell intermediate-mass nuclei, up to strongly
deformed nuclei of the rare-earth and actinide regions (see also the review Ref. [43]). That SU(3) plays a
key role tracks with the seminal work of Elliott [39,40], and is further reinforced by the fact that SU(3)
underpins the microscopic symplectic model [41, 42], which provides a theoretical framework for un-
derstanding deformation-dominated collective phenomena in atomic nuclei [42,44] and which naturally
contains low-energy shape coexisting excitations [35]. We also discuss complementary symmetries that
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provide alternative reorganization (classification) of the model space. We review important applications
of various microscopic approaches built upon these classification schemes, with a focus on open-core
shell-model theory (for a major class of valence shell models and their significant role for heavy nuclei,
see the reviews [45–48]). While many of these approaches have adopted simple inter-nucleon inter-
actions, their expansion to manage realistic interactions and large-scale model spaces is feasible with
current massively parallel computing resources. The convergence of results with larger model space
sizes in such ab initio theory tracks with the symmetry of choice. For a near symmetry, convergence is
fast and nuclear states can be described by a small number of symmetry-adapted basis states. If the
symmetry is largely broken, the eigensolutions converge slowly and require many basis states.

Symmetries underpin orderly patterns in nuclear dynamics. As mentioned above, experimental ev-
idence supports formation of deformation and rotational patterns, including the dominance of large
deformation in low-lying nuclear states, as suggested by enhanced E2 transitions and large quadrupole
moments. As shown in the reviews [42, 49], the dominance of large deformation and, by duality, low
spin (see Sec. 4.1 and 4.2) has been demonstrated by symmetry-guided theoretical studies, with further
recognition of a new simple structure in nuclei, associated with Sp(3,R) symplectic symmetry (see Sec.
4.3). In this review, we discuss how such highly structured orderly patterns emerge from first-principle
investigations [50,51] starting with bare nucleon-nucleon (NN) interactions. Remarkably, the outcome
of these studies has revealed that typically only one or two symplectic irreducible representations (ir-
reps), also referred to as “vertical cones” of many-particle basis states, suffice to represent a large
fraction of each of the ab initio wave functions of 12C and 16O, typically in excess of about 80% of
the physics. Such a symplectic pattern has been also observed in ab initio SA-NCSM results for light
and intermediate-mass nuclei using symmetry-adapted SU(3)-scheme basis states [20]. Implications of
these studies to understanding the nature of nuclear dynamics and symmetry-guided applications are
reviewed in Sec. 5.

2 Shell-model theory

In its most general form, the nuclear shell model (SM) [9, 46, 52, 53], a many-body “configuration
interaction” (CI) method, solves the many-body Schrödinger equation for A particles,

HΨ(~r1, ~r2, . . . , ~rA) = EΨ(~r1, ~r2, . . . , ~rA), (1)

for which the interaction and basis configurations are adopted as follows.

Interaction The intrinsic non-relativistic nuclear plus Coulomb interaction Hamiltonian is defined as:

H = Trel + VNN + V3N + . . .+ VCoulomb, (2)

where Trel is the relative kinetic energy Trel = 1
A

∑

i<j

(~pi−~pj)
2

2m
(m is the nucleon mass), the VNN

is the nucleon-nucleon interaction, VNN =
∑A

i<j(VNN)ij (and possibly, V3N =
∑A

i<j<k(VNNN)ijk,
V4N , ... interactions) included along with the Coulomb interaction between the protons. The
Hamiltonian may include additional terms, e.g., higher-order electromagnetic interactions such as
magnetic dipole-dipole terms.

Basis configurations A complete orthonormal basis ψi is adopted, such that the expansion Ψ(~r1, ~r2, . . . , ~rA)
in terms of unknown coefficients ci, Ψ(~r1, ~r2, . . . , ~rA) =

∑

k ckψk(~r1, ~r2, . . . , ~rA), rendes Eq. (1) into
a matrix eigenvalue equation,

∑

k′

Hkk′ck′ = Eck, (3)
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where the many-particle Hamiltonian matrix elements are Hkk′ = 〈ψk|H|ψk′〉 and are calculated
for the given interaction (2). Typically, the basis is a finite set of antisymmetrized products
of single-particle states (Slater determinants), referred to as a “model space”, where the single-
particle states of a three-dimensional spherical harmonic oscillator (HO) are used, φηljmtz(~r; b),
where η = 2nr + l, l is coupled to spin-1

2
to j, tz distinguishes between protons and neutrons, and

the oscillator length b =
√

~

mΩ
with oscillator frequency Ω. Such a basis allows for preservation

of translational invariance of the nuclear self-bound system and provides solutions in terms of
single-particle wave functions that are analytically known. With larger model spaces utilized in
the shell-model theory, the eigensolutions converge to the exact values.

Depending on the interaction used and the model space adopted, there are various nuclear shell-
model approaches. In particular, the ab initio shell model uses high-precision NN (NNN) potentials
fitted to two-body (three-body) data, in particular, to scattering phase shifts and properties of the
deuteron (and triton) (see, e.g., [2, 54]). The NN potentials include AV18 [1], CD-Bonn [2], and
N3LO [3,4]. Another high-precision NN interaction is JISP16 [55] based on J-matrix version of inverse
scattering theory that is adjusted, in addition, to binding energies up to A = 16 and typically leads
to rapid convergence in large-scale shell-model evaluations, describes NN data to high accuracy and
minimizes the contribution of the NNN forces. Various renormalization techniques, such as Okubo-Lee-
Suzuki (OLS) [56], Similarity Renormalization Group (SRG) [57], and Unitary Correlation Operator
Method (UCOM) [58], aim to achieve a softer (renormalized or effective) interaction that enables the use
of smaller manageable model spaces. Phenomenological interactions, including schematic interactions
(adopting a simple spatial form, such as the δ interaction) and empirical interactions (adjusting matrix
elements of the residual interaction to nuclear data), are fitted to many-body nuclear properties, e.g.,
binding energies, excitation spectra, and possibly other spectral properties. Furthermore, the no-core
shell model (NCSM) [8, 9] treats all A particles active, while the valence shell model [45,46] assumes a
core of inactive particles and a subset of valence particles within the valence partially-filled shell, which
takes all the burden to account for particle correlations.

In the nuclear shell model, two principal limitations are encountered: (i) the number of configurations
necessary to describe a nuclear state is typically huge and grows combinatorially with the number of
particles and the size of the space they occupy, and (ii) phenomenological interactions typically yield
predictions of nuclear properties that highly diverge outside the nuclear region they were fitted; present
high-precision potentials hold predictive power, however, they generate strong – to some degree or
another – short-range correlations (coupling to high momenta), and these together with long-range
correlations responsible for enhanced collectivity, large spatial deformation and α-cluster substructures
(wave function tail spreading to large distances) require ultra-large shell-model spaces, often inaccessible
on the best of modern-day supercomputers. An approach that addresses these limitations invokes
symmetries and is related to the fact that the wave functions of a quantum mechanical system can
be characterized by their invariance properties under certain group transformations. In addition, if
one can recognize near symmetries that survive within the nuclear dynamics, they can be used to help
reduce the dimensionality of a model space to tractable sizes. This approach constitutes a major class
of group-theoretical fermion models [59].
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3 Symmetries of strongly interacting particles – organization

of the shell-model space

3.1 Conventional coupling schemes

We briefly review the jj-coupling scheme, together with M scheme and J scheme used in NCSM
calculations [8, 9], as well as the LS-coupling scheme, which underpins the SA-NCSM.

In the 1950s, two simple models of nuclear structure, complementary in nature, were advanced, and
eventually merit a Nobel prize. These are the independent-particle model of Mayer and Jensen [60–62],
and the collective model of Bohr and Mottelson [63, 64]. The first of these, which is microscopic in
nature, recognizes that nuclei can be described by particles independently moving in a mean field,
with the harmonic oscillator (HO) potential being a very good first approximation to the average
potential experienced by each nucleon in a nucleus. This is augmented by a spin-orbit l · s term and
an orbit-orbit l2 force (that shifts higher-l levels downward) that lead to a successful reproduction of
the “magic numbers” pattern. For a strong spin-orbit splitting, as the one observed for heavy nuclei,
l · s energetically separates orbits with the same l but different j, yielding the jj-coupling scheme with
single-particle states labeled by η(ls)jmtz, or simply ηljmtz for s = 1

2
.

The second of these models, the collective model of Bohr and Mottelson recognizes that deformed
shapes dominate the nuclear dynamics. While enhanced deformation has been evident in heavy nuclei
and those away from closed shells, deformed configurations are found to be important even in a nucleus
such as 16O, which is commonly treated as spherical in its ground state, but about 40% of the latter
is governed by deformed shapes [65]; in addition, the lowest-lying excited 0+ states in 16O and their
rotational bands are dominated by large deformation (see, e.g., [33]). Bohr & Mottelson offered a
simple but important description of nuclei in terms of the deformation of the nuclear surface and
associated vibrations and rotations. While this model was not microscopic, it discussed spatial degrees
of the combined many-particle system (spatial deformation and rotations of “shapes”), which suggested
a relevant LS-coupling scheme, with single-particle states labeled by ηlmlsmstz, for which, e.g., a
two-particle basis state looks like, {a†ηlstz

× a†η′l′s′t′z
}(LS)JM |0〉, where a† is the usual particle creation

operator. Indeed, the microscopic Elliott model [39,40,66] and its multi-shell expansion, the symplectic
shell model [41,42] that provides a microscopic formulation of the Bohr-Mottelson collective model, have
soon after confirmed the relevance of the LS-coupling scheme, while providing a unique and physically
relevant organization of the shell-model space, as discussed in Secs. 3.2 and 3.3.

Following the success of the independent-particle model of Mayer and Jensen, many valence shell
models and the no-core shell model utilize the jj-coupling scheme, together with an important exact
symmetry of the nuclear Hamiltonian, that is, it is invariant under rotation or a scalar with respect
to the SO(3) group. This implies that J and M are good quantum numbers in nuclear states and
those can be used to enumerate shell-model spaces (parity and, sometimes, isospin are also adopted as
good quantum numbers for the basis states, but they are mixed by comparatively weaker parity and
isospin nonconserving inter-nucleon interactions and, in the case of isospin, the Coulomb potential).
In particular, individual particle j’s can be coupled to a good total angular momentum J , leading to
basis states with good J , which is the J scheme. A basis state for two particles looks like, {a†ηljtz

×
a†η′l′j′t′z

}JM |0〉. Alternatively, one can simply construct Slater determinants with fixed total z-component

M , called an M scheme – e.g., for A = 2, a†ηljmtz
a†η′l′j′m′t′z

|0〉, with m +m′ = M . The M -scheme basis
states are easy to work with, but each of them is an admixture of states of different total angular
momentum J . Compared to the M scheme, the J-scheme dimensionality is typically an order of
magnitude smaller (see Fig. 18 of Sec. 5), however, the Hamiltonian matrices are denser and computing
matrix elements is more time-consuming.
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3.2 SU(3) scheme

In place of the spherical quantum numbers |ηlml〉, the single-particle HO basis can be specified by
|ηzηxηy〉, the HO quanta in the three Cartesian directions, z, x, and y, with ηx + ηy + ηz = η (η =
0, 1, 2, . . . for s, p, sd, ... shells ). For a given HO major shell, the complete shell-model space is then
specified by all distinguishable distributions of ηz, ηx and ηy. E.g., for η = 2, there are 6 different
distributions, (ηz, ηx, ηy) = (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1) and (0, 0, 2). The number of these
configurations is Ωη = (η + 1)(η + 2)/2 (spatial degeneracy) and the associated symmetry is described
by the U(Ωη) unitary group. Each of these (ηz, ηx, ηy) configurations can be either unoccupied or has
maximum of two particles with spins ↑↓.

As a simple example for an SU(3)-scheme basis state, consider A = 2 protons in the sd shell (η = 2)
with a particle in the (2, 0, 0) level with spin ↑ and another in the (1, 1, 0) level with spins ↑. The to-
tal number of quanta in each direction is (ηtot

z , ηtot
x , ηtot

y , ) = (3, 1, 0), or equivalently, ηtot(λµ) = 4(2 1),
where ηtot = ηtot

x +ηtot
y +ηtot

z , together with λ = ηtot
z −ηtot

x and µ = ηtot
x −ηtot

y labeling an SU(3) irrep, in ad-
dition to the total intrinsic spin and its projection SMS. For given (λµ), the quantum numbers κ, L and

ML are given by Elliott [39, 40], according to the SU(3)
κ⊃ SO(3)L⊃SO(2)ML

, where the label κ distin-
guishes multiple occurrences of the same orbital momentum L in the parent irrep (λµ). For our example,
(λµ) = (2 1) with κ = 1, L = 1, 2, 3, and ML = −L,−L+ 1, . . . , L. Hence, the set {ηA(λµ)κ(LS)JM}
completely labels a 2-proton SU(3)-scheme basis state (with ηtot = Aη). A basis state in this scheme
for a 2-particle system looks like, {a†(η 0)stz

×a†(η′0)s′t′z
}(λ µ)κ(LS)JM |0〉, which is an SU(3)-coupled product,

provided that a† is a proper SU(3) tensor; incidentally, the SU(3) tensor a† of rank (λµ) = (η 0) coin-
cides with the familiar particle creation operator, a†(η 0)lmsσtz

≡ a†ηlmsσtz
, while the particle annihilation

SU(3) tensor of rank (λµ) = (0 η) is given as ã(0 η)l−ms−σtz = (−1)η+l−m+s−σaηlmsσtz . Note that for
η = η′ = 2, e.g., there are only a few 2-proton configurations (λµ)L = (4 0)L = 0, 2, 4, (2 1)L = 1, 2, 3,
and (0 2)L = 0, 2. Furthermore, these basis states are related to LS-coupled basis states (similarly,
to jj-coupled basis states) via a simple unitary transformation, {a†(η 0)stz

× a†(η′0)s′t′z
}(λ µ)κ(LS)JM |0〉 =

∑

l,l′〈(η 0)l; (η′0)l′‖(λµ)κL〉{a†ηlstz
× a†η′l′s′t′z

}(LS)JM |0〉, where 〈. . . ; . . . ‖ . . . 〉 is the SU(3) analog of the
familiar reduced Clebsch-Gordan coefficient (note that there is no dependence on the particle orbital
momenta, l and l′, in the SU(3)-scheme basis states).

An important feature of the SU(3) scheme is that all possible configurations within a major HO
shell η (for protons or neutrons) are not constructed using the tedious procedure of coupling of creation
operators referenced above, but are readily available based on the U(Ωη) unitary group of the many-
body three-dimensional HO. In particular, the basis construction is implemented according to the
reduction [67]

U(Ωη) × SU(2)
[

f1, f2, . . . fΩη

]

Sη

∪ αη

SU(3)
(λη µη)

, (4)

with SU(3)(λη µη)

κη⊃ SO(3)Lη
⊃SO(2)MLη

[39, 40], where a multiplicity index αη distinguishes multi-
ple occurrences of an SU(3) irrep (λη µη) in a given U(Ωη) irrep labeled by Young tableaux, [f ] =
[f1, f2, . . . , fΩη

], with f1 ≥ f2 ≥ . . . fΩη
and fi = 0 (unoccupied), 1 (occupied by a particle), or 2 (occu-

pied by 2 particles of spins ↑↓). An illustrative example for 4 particles in the pf shell (η = 3) is shown
in Table 1.

We note that the SU(3) scheme provides a classification of the complete shell-model space (in
a single shell as illustrated above and in multiple shells as described in Sec. 3.2.2) and is related
to the LS-coupling and jj-coupling schemes via a unitary transformation. It divides the space into
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Spatial d.o.f. Spin d.o.f.
U(10) ⊃ SU(3) SU(2)
[f1f2 . . . f10] (λµ) S

(8 2), (7 1), (4 4)2, (5 2), (0 6), (6 0), (3 3)

[22] (1 4), (4 1), (2 2)2, (1 1) S = 0

(9 0), (6 3), (7 1), (4 4), (2 5), (5 2)2, (3 3)2

[212] (1 4)2, (4 1)2, (2 2), (0 3), (3 0)2, (1 1) S = 1

(5 2), (0 6), (3 3), (2 2), (3 0)

[14] S = 2

Table 1: SU(3)×SU(2)S configurations for 4 protons (neutrons) in the pf shell (η = 3 with Ωη = 10).
Note that a spatial symmetry represented by a Young tableau

[

f1, . . . , fΩη

]

is uniquely determined by
its complementary spin symmetry of a given intrinsic spin Sη (conjugate Young tableaux) ensuring
the overall antisymmetrization of each U(Ωη)×SU(2)Sη

configuration with respect to spatial and spin
degrees of freedom (d.o.f.) [67].

basis states of definite (λµ) quantum numbers of SU(3) that are linked to the intrinsic quadrupole
deformation according to the established mapping [68–70]. For example, the simplest cases, (0 0), (λ 0),
and (0µ), describe spherical, prolate, and oblate deformation, respectively1, while a general nuclear
state is typically a superposition of several hundred various triaxially deformed configurations. Note
that, in this respect, basis states can have little to no deformation, and, e.g., about 60% of the ground
state of the closed-shell 16O is described by a single SU(3) basis state, the spherical (0 0) (see Table 3
of Sec. 4.1).

3.2.1 Elliott model

The seminal work of Elliott [39, 40, 66] focused on the key role of SU(3), the exact symmetry of the
three-dimensional spherical HO (see also Refs. [71–73]). Within a shell-model framework, Elliott’s
model utilizes an SU(3)-scheme basis that is related via a unitary transformation to the basis used in
the conventional shell model. For SU(3)-symmetric interactions, the model can be solved analytically.
But regardless whether a simple SU(3)-preserving interaction is used (see Figs. 5.1-5.6 of Ref. [74]), or
an SU(3)-symmetry breaking interaction (see Fig. 1 of Ref. [66]), the results have revealed a striking
feature, namely, the dominance of a few most deformed configurations. This has been shown for sd-shell
nuclei, such as 18Ne, 20Ne, 22Ne, 22Mg, 24Mg, and 28Si, that have been known to possess a clear collective
rotational structure in their low-lying states [39, 40, 66]. It has been also observed in heavier nuclei,
where pseudo-spin symmetry [75, 76] and its pseudo-SU(3) complement [77] have been shown to play
a similar role in accounting for deformation in the upper pf and lower sdg shells, and in particular,

1Following this mapping, quadrupole moments of (0 0), (λ 0), and (0µ) configurations – in a simple classical analogy
to rotating spherical, prolate, and oblate spheroids in the lab frame [35] – are zero, negative, and positive, respectively.
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in strongly deformed nuclei of the rare-earth and actinide regions [78, 79] (see Sec. 3.4). In this mass
region, an approximate “quasi-SU(3)” symmetry has been also suggested [80]. Furthermore, the pairing
interaction has been microscopically incorporated into the Elliott model where it breaks the SU(3)
symmetry and mixes different (λµ) configurations. It has been shown in Ref. [81] that using an SU(3)-
symmetric interaction-plus-pairing yields results close to experiment and to the energies obtained using
shell-model calculations in the full sd shell [82] (Fig. 1). It is remarkable that, even in the presence of
pairing, comparable results have been obtained in a truncated model space that includes only about 10
most deformed configurations.

22Ne	  

Truncated basis, 
in decreasing deformation 

Exp Shell 

Model 

Full 

SU(3) 

E
 (

M
eV

) 

12.5(5) 
12.7 

11.4 

17.5(4) 14.3 16.2 

13.7(17) 

14.4 
12.1 

0.13 0.12 >0.26 

Figure 1: Elliott’s model with an SU(3)-preserving interaction + pairing in the sd valence shell for
22Ne. B(E2) transitions strengths (W.u.) are calculated for proton eeff = 1.3 effective charge. Figure
adapted from [81].

Two other complementary models, that are not based on the fermion shell models but have fig-
ured prominently in informing the importance of deformation and pairing, are the Geometric Collective
Model [83, 84] advanced by Greiner and collaborators, and the Interacting Boson Model (IBM) of
Iachello and associates [85, 86]. The latter has offered a bosonic realization of these phenomena, suit-
able for systematic classifications of the large nuclear data, in terms of a common overarching U(6)
algebraic structure and its physical subgroups, U(5) for pairing modes, SU(3)⊃SO(3) for rotations and
O(6)⊃SO(3) for triaxial systems.

3.2.2 Ab initio symmetry-adapted no-core shell model (SA-NCSM)

The symmetry-adapted no-core shell model (SA-NCSM) [20] is a multi-shell generalization of the SU(3)
scheme used in the Elliott model. It adopts the first-principle concept and is a no-core shell model
(NCSM) carried forward in an SU(3) scheme. The many-nucleon basis states of the SA-NCSM are
constructed using efficient group-theoretical algorithms based on SU(3)×SU(2)S configurations (irreps)
labeled by (λµ) quantum numbers and the intrinsic spin S [20, 87].

In particular, the many-particle basis states of the SA-NCSM are nuclear configurations of fixed
parity, consistent with the Pauli principle, and truncated by a cutoff Nmax. The Nmax cutoff is defined
as the maximum number of HO quanta allowed in a many-particle state above the minimum for a given
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nucleus. For a given Nmax, the SA-NCSM many-particle basis states (Fig. 2) are constructed in the
proton-neutron formalism, that is, we treat neutron and proton orbitals independently so total isospin is
not conserved. For all possible distributions of protons {Z0, Z1, Z2, . . . } and neutrons {N0, N1, N2, . . . }
over the major HO shells η (η = 0, 1, 2, . . . for the s, p, ds,. . . HO shell), limited by the number of
HO quantum excitations up through Nmax, the SU(3)η×SU(2)Sη

configurations are first enumerated
for every major HO shell, following the U(Ωη) ⊃ SU(3) reduction (4). This is followed by an inter-
shell SU(3)×SU(2)S coupling of the in-shell configurations. Finally, the resulting proton and neutron
configurations are coupled to good quantum numbers (λµ)κL of the SU(3)(λ µ) ⊃

κ
SO(3)L group chain,

together with proton, neutron, and total intrinsic spins Sp, Sn, and S of the complementary SU(2) spin
group. The orbital angular momentum L is coupled with S to the total angular momentum J with a
projection M . Each basis state in this scheme is labeled schematically as |~γ N(λµ)κL; (SpSn)S; JM〉,
where N is the total number of HO excitation quanta and ~γ denotes additional quantum numbers
needed to distinguish among configurations carrying the same N(λµ) and (SpSn)S labels. In this way,
a complete shell-model basis is classified.

J (M) 

protons 

neutrons 

Figure 2: Example for an SU(3)-scheme basis state of good (λµ)S and J . All additional quantum
numbers needed to specify the basis state are shown in the illustration. The dashed line divides single-
shell (left) and inter-shell (right) quantum numbers.

There are two major advantages that follow from the use of an SU(3)-scheme basis that empower
the SA-NCSM with two unique and important features:

1. The organization of the model space allows the complete Nmax space to be down-selected to the
physically relevant subspace.

2. Within the space down-selected to a subset of (λµ) irreps and intrinsic spins (SpSnS), the spurious
center-of-mass (CM) motion can be factored out exactly [88–90]. This ensures the translational
invariance of the SA-NCSM wave functions.

The underlying principle behind the SA-NCSM kernel is an SU(3)-type Wigner-Eckhart theorem,
which factorizes Hamiltonian matrix elements into the product of SU(3) reduced matrix elements and
the associated SU(3) coupling coefficients. To compute the Hamiltonian matrix elements, the compu-
tational realization of the SA-NCSM, dubbed LSU3shell [91], adopts state-of-the-art group-theoretical
methods [67] and optimized numerical subroutines [92] for computing SU(3) coupling/recoupling coeffi-
cients. Recent developments and applications in the framework of the ab initio SA-NCSM are reviewed
in Sec. 5.
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3.3 Symplectic Sp(3,R) scheme

For A particles in three-dimensional space, the complete basis for the shell model is described by
Sp(3A,R)×U(4) [49], where Sp(3A,R) is the group of all linear canonical transformations of the 3A-
particle phase space and Wigner’s supermultiplet group U(4) describes the complementary spin-isospin
space (see Sec. 3.6). A complete translationally invariant shell-model basis is classified according to
(see, e.g., [42, 49]),

Sp(3(A− 1),R) × U(4)
∪ ∪

Sp(3,R) × O(A− 1) SU(2)S × SU(2)T
. (5)

The Sp(3,R) scheme utilizes the symplectic group Sp(3,R), which consists of all particle-independent
linear canonical transformations of the single-particle phase-space observables, xiα →∑

β aαβxiβ+bαβpiβ

and piα →∑

β cαβxiβ +dαβpiβ (i = 1, . . . , A and α, β = x, y, z), that preserve the commutation relations
[xiα, pjβ] = i~δijδαβ [93]. The Sp(3,R) scheme further utilizes the group reduction to classify many-
particle basis states |σnρωκLM〉 of a symplectic irrep,

Sp(3,R) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
σ nρ ω κ L M

, (6)

where σ ≡ Nσ (λσ µσ) labels the Sp(3,R) irrep, n ≡ Nn (λn µn), ω ≡ N (λω µω), and N = Nσ + Nn is
the total number of HO quanta (ρ and κ are multiplicity labels) [42]. The relation of these symplectic
basis states to M -scheme states of the NCSM is provided in Ref. [94]. The classification of basis states
based on the dual O(A− 1) of the reduction (5) is briefly discussed in Sec. 3.5.

The key importance of the symplectic Sp(3,R) group for a microscopic description of a quantum
many-body system of interacting particles emerges from the physical relevance of its 21 generators, which
are directly related to the particle momentum and position coordinate and realize important observables,
as shown below. Namely, the many-particle kinetic energy, the HO potential (or equivalently, the
monopole operator), the mass quadrupole moment, and angular momentum operators are all generators
of Sp(3,R) and preserve the symplectic symmetry. In addition, the model includes multi-shell collective
vibrations and vorticity degrees of freedom for a description from irrotational to rigid rotor flows.
Briefly, the translationally invariant (intrinsic) symplectic Sp(3,R) generators can be written as SU(3)

tensor operators in terms of the harmonic oscillator raising, b
†(1 0)
iα = 1√

2
(Xiα − iPiα), and lowering

b(0 1) dimensionless operators (with X and P the lab-frame position and momentum coordinates and
α = 1, 2, 3 for the three spatial directions),

A
(2 0)
LM =

1√
2

A
∑

i=1

{b†i × b†i}
(2 0)
LM − 1√

2A

A
∑

s,t=1

{b†s × b†t}(2 0)
LM (7)

C
(1 1)
LM =

√
2

A
∑

i=1

{b†i × bi}(1 1)
LM −

√
2

A

A
∑

s,t=1

{b†s × bt}(1 1)
LM , (8)

together with B
(0 2)
LM = (−)L−M(A

(2 0)
L−M)† (L = 0, 2) and H

(00)
00 =

√
3
∑

i{b
†
i ×bi}

(00)
00 −

√
3

A

∑

s,t{b†s×bt}
(0 0)
00 +

3
2
(A− 1), where the sums run over all A particles of the system.

Equivalently, the symplectic generators, being one-body-plus-two-body operators can be expressed
in terms of the creation operator a†(η 0) = a†η and its SU(3)-conjugate annihilation operator, ã(0 η). This
is achieved by using the known matrix elements of the position and momentum operators in a HO basis,

and hence, e.g., the first sum of A
(2 0)
LM in Eq. (7) becomes,

∑

η

√

(η+1)(η+2)(η+3)(η+4)
12

{

a†(η+20) × ã(0 η)

}(2 0)

LM
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[95]. Note that this operator describes excitations of a nucleon from the η shell to the η+2 shell, which
corresponds to creating two single-particle HO excitation quanta, as manifested in the first term of Eq.
(7).

The eight 0~Ω operators C
(1 1)
L,M (L = 1, 2) generate the SU(3) subgroup of Sp(3,R). They realize the

angular momentum operator:
L1M = C

(1 1)
1M , M = 0,±1, (9)

and the Elliott “algebraic” quadrupole moment tensor Qa
2M =

√
3C

(1 1)
2M , M = 0,±1,±2.

It is important to note that, in addition to the orbital angular momentum L, operators of a physical
significance are Sp(3,R)-preserving and can be constructed in terms of the symplectic generators:

1. Mass quadrupole moment:
Q2M =

√
3(A

(2 0)
2M + C

(1 1)
2M +B

(0 2)
2M ); (10)

2. Many-particle kinetic energy:

T

~Ω
=

1

~Ω

∑

i

p2
i

2m
=

1

2
H

(00)
00 −

√

3

8
(A

(2 0)
00 +B

(0 2)
00 ); (11)

3. HO potential (monopole operator):

VHO

~Ω
=

1

~Ω

∑

i

mΩ2r2
i

2
=

1

2
H

(00)
00 +

√

3

8
(A

(2 0)
00 +B

(0 2)
00 ). (12)

Therefore, none of these operators mixes symplectic irreps.
The symplectic structure accommodates relevant particle-hole (p-h) configurations: 2~Ω 1p-1h

monopole excitations (one particle raised by two shells) are driven by the monopole operator (12),

while 2~Ω 1p-1h quadrupole excitations are driven by the Q operator (10), or equally, by A
(2 0)
LM with

L = 0 (L = 2) for the monopole (quadrupole) excitations. Hence, the basis states of an Sp(3,R) irrep
(vertical cone) are built over a bandhead |σ〉 (Fig. 3, Set. I) by 2~Ω 1p-1h monopole or quadrupole

excitations (Fig. 3, Set. II), realized by the first term in A
(2 0)
LM of Eq. (7), together with a smaller

2~Ω 2p-2h correction for eliminating the spurious center-of-mass (CM) motion, realized by the second

term in A
(2 0)
LM :

|σnρωκLML〉 = {{A(2 0) × A(2 0) · · · × A(2 0)}n × |σ〉}ρω
κLML

. (13)

Remarkably, these Sp(3,R) basis states are in one-to-one correspondence with a coupled product of the
states of the Bohr vibrational model (realized in terms of giant monopole-quadrupole resonance states
with irrotational flows), {{A(2 0) ×A(2 0) · · · ×A(2 0)}n × |Nσ(0 0)〉}(λn µn), and (λσ µσ) deformed states of
an SU(3) model [93].

Including spin degrees of freedom, Sp(3,R) × SU(2)S, the many-particle basis states become,

|σnρωκ(LSσ)JM〉 =
∑

MLMS

〈LML;SσMS| JM〉|σnρωκLMLSσMS〉. (14)

States within a symplectic irrep have the same spin value, which are given by the spin Sσ of the bandhead
|σ;Sσ〉. Symplectic basis states span the entire shell-mode space. A complete set of labels includes
additional quantum numbers |{α}σ〉 that distinguish different bandheads with the same Nσ (λσ µσ).

The symplectic bandhead |σ〉 is defined by the usual requirement that the symplectic lowering

operators B
(0 2)
LM annihilate it. The bandhead, |σ;κσLσMσ〉, is an SU(3)-coupled many-particle state

with a given nucleon distribution over the HO shells and while not utilized in the Sp(3,R) scheme, can
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0ħΩ	  
(N=0)	  

2ħΩ	  
(N=2)	  

4ħΩ	  
(N=4)	  

6ħΩ	  
(N=6)	  

8ħΩ	  
(N=8)	  

(8	  2),	  (7	  1),	  (6	  3),	  

(6	  0),	  (5	  2),	  (4	  4)	  

…	  

...	  

(14	  0),	  (12	  1),(10	  2)	  

...	  

(2	  4),	  (1	  3),	  (0	  2)	  

(4	  4),	  (3	  3),	  (2	  2),	  (1	  4),	  

(1	  1),	  (0	  6),	  (0	  0)	  

...	  

...	  

Set	  II.	  

Set	  I.	  

ħΩ	  

0ħΩ	  0p-‐0h	  	  

(λσ	  	  μσ)	  =	  (0	  4)	  

2ħΩ	  2p-‐2h	  	  

(λσ	  	  μσ)	  =	  (6	  2)	  

4ħΩ	  4p-‐4h	  	  

(λσ	  	  μσ)	  =	  (12	  0)	  
(3	  2),	  (2	  1),	  	  

(1	  3),	  (1	  0)	  

(5	  2),	  (4	  1),	  (3	  3),	  	  

(3	  0),	  (1	  4),	  (1	  1),	  (0	  3)	  

...	  

...	  

0ħΩ	  0p-‐0h	  	  

(λσ	  	  μσ)	  =	  (1	  2)	  

Figure 3: Four Sp(3,R) irreps (vertical cones) that dominate low-lying states in 12C. Basis states of an
irrep that have good (λµ) are built by 2~Ω 1p-1h monopole or quadrupole excitation (Set II) over a
bandhead. The symplectic bandhead (Set I) is an SU(3)-coupled many-body state with a given nucleon
distribution over the HO shells.

be obtained in terms of the particle creation operators. For example, for a 0~Ω bandhead, the nucleon
distribution is a single configuration,

{

a†(η1 0) × a†(η2 0) × · · · × a†(ηA 0)

}(λσ µσ)

κσLσMσ

|0〉 (15)

with Nσ = η1 + η2 + · · · + ηA + 3
2
(A− 1), such that Nσ~Ω includes the HO zero-point energy and 3/2

is subtracted to ensure a proper treatment of the center-of-mass.
An example for the symplectic basis states follows for 24Mg. Its lowest HO-energy configuration is

given by Nσ = 62.5 or 0~Ω, while the 4~Ω (20 0) symplectic irrep includes:

1. A bandhead (Nn = 0) with Nσ = 66.5 (or 4~Ω) and (λσ µσ) = (20 0);

2. Nn = 2 states with N=68.5 and (λω µω) = (22 0), (20 1), and (18 2);

3. Nn = 4 states with N=70.5 and (λω µω) = (24 0), (22 1), (20 2)2, (19 1), (18 3), (18 0) and (16 4);
there are two occurrences of (λω µω) = (20 2), one of which results from the coupling of (λσ µσ) =
(20 0) to (λn µn) = (4 0) and the other from the coupling of (20 0) to (λn µn) = (0 2).

4. and so forth for higher Nn.

For each (λω µω), the quantum numbers κ, L and M are given by Elliott [39, 40], as discussed in Sec.
3.2 and in Ref. [93]. For example, for (20 0), κ = 0, L = 0, 2, 4, . . . , 20, and M = −L,−L+ 1, . . . , L.

3.3.1 Symplectic model

A significant breakthrough for the nuclear modeling is the microscopic symplectic model, developed
by Rosensteel and Rowe [41,42]. It provides a microscopic framework for understanding deformation-
dominated collective phenomena in atomic nuclei [42] and accommodates particle-hole excitations across
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multiple shells. Indeed, the symplectic Sp(3,R) symmetry underpins the symplectic shell model that
provides a microscopic formulation of the Bohr-Mottelson collective model and is a multiple-shell gen-
eralization of the successful Elliott SU(3) model. The classical realization of this symmetry underpins
the dynamics of rotating bodies and has been used, for example, to describe the rotation of deformed
stars and galaxies [96].

In its simplest depiction [33], the symplectic shell model is based on nucleons occupying HO shells
with important correlations within each shell and between shells differing by ±2~Ω. The in-shell
correlations are dominated by interactions of the quadrupole-quadrupole type, as first introduced by
Elliott [39, 40], while the inter-shell correlations are of the giant monopole and giant quadrupole type.
The inter-shell correlations enhance the electric quadrupole collectivity in such a way as to eliminate the
need for effective charges. It is found that in many strongly deformed heavy nuclei the SU(3) quantum
numbers, λ and µ, possess very large values, e.g., λ ∼ 100 and µ ∼ 10 [97]. This naturally leads to
contraction of the SU(3) model to a rotor model [49,93].

The symplectic model with Sp(3,R)-preserving interactions have achieved a remarkable reproduction
of rotational bands and transition rates without the need for introducing effective charges, while only
a single Sp(3,R) irrep is used [42, 98]. The model of Ref. [98] adopts a Davidson potential, V (Q) =
χ(Q · Q + ε/Q · Q) [99], used to describe diatomic molecules [100]. The symplectic model is used to
construct rotational states for a rare-earth nucleus with microscopic wave functions. Analysis of the
states in terms of their SU(3) content shows that SU(3) is a very poor dynamical symmetry (mixing
of many irreps) but an excellent quasi-dynamical symmetry for the model (the same SU(3) irreps and
their contribution propagates for different L’s).

Another successful extension to multiple shells has been achieved and applied to the 24Mg ground-
state rotational band [101], where an interaction given as a polynomial in Q up through (Q · Q)2 was
employed. Furthermore, a shell-model study in a symplectic basis that allows for mixing of Sp(3,R)
irreps due to pairing and non-degenerate single-particle energies above a 16O core [44] has found that
using only seven Sp(3,R) irreps, which extend up through 15 HO shells, is sufficient to achieve a
remarkable reproduction of the 20Ne energy spectrum, as well as of E2 transition rates without effective
charges (Fig. 4a). Recently, an Sp(3,R)-based study using self-consistent arguments has been successful
to give further insight into the cluster states of 16O and shape-coexistence [33].

Electron scattering form factors for transitions between low-lying states of 24Mg have been calculated
in the symplectic shell model using up to 4-body Q- and L-dependent interactions [104]. Parameters of
the Hamiltonian have been fitted to reproduce measured energies and reduced transition probabilities in
up to Nmax = 20 model spaces, and no further adjustments have been made in obtaining the predicted
form factors. The symplectic form factors demonstrate excellent agreement with the available data (Fig.
4b), indicating that larger-Nmax spaces and associated correlations play a substantial role in describing
nuclear current and charge densities.

3.3.2 No-core symplectic shell model (NCSpM) and the elusive Hoyle state

Using the Sp(3,R) scheme, the no-core symplectic shell model (NCSpM) [105] offers Nmax = 12 − 24
shell-model descriptions of low-lying states in deformed sd-shell nuclei (20O, 20,22Ne, and 20,22,24Mg) [106]
and of phenomena tied to giant monopole and quadrupole resonances [107], as well as to collectivity
and alpha-clustering in 12Be [108] and 12C, and in particular, the challenging Hoyle state and its
first 2+ and 4+ excitations [105, 109]. While such ultra-large model spaces remain inaccessible by ab
initio shell models, the NCSpM addresses a long-standing challenge [110–112], namely, understanding
highly-deformed spatial configurations from a shell-model perspective. Our present-day knowledge of
various phenomena of astrophysical significance, such as nucleosynthesis, the evolution of primordial
stars in the Universe, and X-ray bursts depends on reaction rates for the stellar triple-α process,
which can considerably affect, e.g., results of core-collapse supernovae simulations and stellar evolution
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Figure 4: (a) Microscopic symplectic model with a set of effective single-particle energies, a Q ·Q-type
interaction+pairing for 20Ne. Left: Calculated B(E2 ↓) transition strengths without effective charges fall
within the uncertainties of the corresponding experimental measurements. Right: Calculated energy
spectrum for 20Ne as compared to the experiment. Figure adapted from Ref. [44]. (b) Transverse
0+

1 → 2+
1 electron scattering form factors for 24Mg in the symplectic model for Nmax = 2 and 4 with

no effective charges, as compared to valence-shell calculations with bare and effective charges [102] and
experiment [102,103]. Form factors are corrected for the center-of-mass motion and the finite-size effect
of the nucleon. Figure adapted from Ref. [104].

models, predictions regarding X-ray bursts, as well as estimates of carbon production in asymptotic giant
branch (AGB) stars [113]. These rates, in turn, are greatly influenced by accurate measurements and
theoretical predictions of several important low-lying states in 12C, including the second 0+

2 (Hoyle) state
and its 2+ excitation that has fostered long-lasting debate in experimental studies [114–120]. Further
challenges relate to the α-cluster substructure of these states that has been explored within cluster-
tailored [121–126] or self-consistent [127,128] framework, but has hitherto precluded a fully microscopic
ab initio no-core shell-model description [129] (see, e.g., detailed reviews on the topic [130,131]). Only
recently, first ab initio state-of-the-art calculations have been attempted using lattice effective field
theory (EFT) [17,132].

With the goal to inform key features of nuclear structure and the interaction, enhanced collectivity
and cluster substructures are studied in the NCSpM by down-selecting, first, to the most physically
relevant nuclear configurations and, second, to pieces of the nucleon-nucleon (NN) interaction that enter
in commonly used nuclear potentials [39,40,63,74,121]. Specifically, the physically relevant symplectic
irreps are chosen among all possible symplectic Sp(3,R) irreps within an Nmax model space (e.g., 4
irreps for 12C extended up to Nmax = 20 of dimensionality of 6.6 × 103, shown in Fig. 3). For the
interaction, the long-range part of the central NN force and a spin-orbit term are considered (better
accounting of the symplectic symmetry mixing has been explored in Ref. [109] with preliminary results
that use the bare JISP16 NN instead of the spin-orbit term). The interaction is augmented by e−γQ·Q,
with a single adjustable parameter γ that controls the contribution of the many-nucleon forces [144].
While short-range and tensor forces are indispensable for accurate descriptions, they appear to be of
secondary importance to the primary physics responsible for the formation of clusters and the emergence

15



4.65(26) 4.3  

4.0 

63 
35 

90 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

E
n

e
rg

y
 (

M
e

V
) 

Expt.  NCSpM      Expt.  NCSpM 

Hoyle Hoyle 

0+ 

2+ 

4+ 

0+ 
2+ 

4+ 

0+ 

0p-0h (0 4)+(1 2) 
4p-4h (12 0) 2p-2h (6 2) 

0+ 

Expt.            NCSpM          

0+ 

2+ 

+0.1 

–0.2 

+0.1 

–0.2 

+2 

–4 
+4 

–6 

+5 

–9 

Expt.  NCSpM      Expt.  NCSpM 
0+ 

Expt.            NCSpM          

�4 �2 0 2 4
�4

�2

0

2

4

�4 �2 0 2 4
�4

�2

0

2

4

�4 �2 0 2 4

�4

�2

0

2

4

12C ground state, (0 4) 12C Hoyle state, (12 0) 20Ne ground state, (8 0) 

(0 4) 

(2 4) 

(0 2) (4 4) 

(2 2) 

(6 4) 

(7 2) 

(1 2) 

(3 2) 
(5 2) 

(1 4) 

0 

10 

20 

30 

40 

50 

0 2 4 6 

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
(%

) 

N 

NCSpM, Nmax=6   

SpSnS=000 

SpSnS=011 

SpSnS=101 

Others 

(0 4) 

(0 2) 

(2 4) (4 4) 

(2 2) 

(1 2) (1 0) 

(3 2) 

(1 3) 

0 

10 

20 

30 

40 

50 

0 2 4 6 

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
(%

) 

N 

ab inito SA-NCSM, Nmax=6  

(a) (b)

Figure 5: (a) Nmax = 20 NCSpM energy spectrum of 12C. Experimental data is from [133], except the
latest results for 0+

3 [116] and the states above the Hoyle state, 4+ [134] and 2+ [119] (with a shaded area
showing the energy range from [114–118]). B(E2) transition rates are in W.u.; theoretical uncertainties
are estimated for a ±60% deviation of the Hoyle state energy. One-body density profiles in the intrinsic
frame are shown for the 0+

gs (for the most dominant symplectic irrep) and the Hoyle state in 12C, and the
ground state in 20Ne. Note the torus-like shape for the 12C 0+

gs (a dip in the middle), and the overlapping
clusters in the 12C Hoyle state. Figure adapted from Ref. [105]. (b) Probability distribution for the 12C
ground state vs. the N total excitations, as calculated by NCSpM (top) and SA-NCSM (bottom) for
Nmax = 6 and ~Ω = 18 MeV. The dominant SU(3) modes (with probability amplitude ≥ 1%), specified
by (λµ), are also shown. Very similar results are obtained for 2+

1 and 4+
1 [107].

of collectivity, as suggested by the reasonably close agreement of the model outcome with experiment
and ab initio results in smaller spaces (Fig. 5).

Once the γ parameter is fixed by the order of the three low-lying 0+ states in 12C, excitation energies
and other observables such as matter rms radii, electric quadrupole moments and E2 transition rates for
various p- and sd-shell nuclei are found, with no parameter adjustment, to be in a remarkable agreement
with the experiment [105, 106, 108] (see also Fig. 5 and Table 2). For 12C, the NCSpM realizes a very
reasonable rrms for the g.st., and the Hoyle-state rrms is found to lie close to a recent value deduced
from experiment [139], and as well tracks with the ab initio lattice EFT results at a leading order [17],
but differs considerably from predictions of cluster models, e.g., 3.4-4.3 fm [122–124]. Furthermore, the
model yields a positive Q2+

1
very close to the experimental value, and a large negative one for the 2+

and 4+ states above the Hoyle state (Table 2), which as mentioned above, indicates oblate (prolate)
deformation for the ground-state (Hoyle-state) rotational band. This, together with the dominance
of prolate (λµ) configurations in the Hoyle state, (12 0), (14 0), (16 0), (18 0), and (20 0) (Fig. 6a)
and the 2+ and 4+ states above it, indicates a substantial prolate deformation for these states. Such
a deformation, albeit not so pronounced, has been also suggested by the ab initio lattice EFT [17].
Indeed, the one-body density profile for the Hoyle state very clearly supports an underlying α-particle,
cluster-like picture for its structure (Fig. 5a). We emphasize that this cluster structure is essentially
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Table 2: NCSpM point-particle rms matter radii and electric quadrupole moments for 12C (for Nmax =
20) and sd-shell nuclei (for Nmax = 12) [105, 106] compared to experimental (experimentally deduced)
data. See text for a comparison to rrms predictions of other models. Experimentally deduced matter
radii are summarized in Ref. [135] and each of the original references is provided in the table; measured
Q moments are taken from Refs. [136,137] for A = 20 and 22, respectively.

matter rrms, fm Q, e fm2

Expt. NCSpM Expt. NCSpM
12C 0+

gs 2.43(2)a 2.43(1)
2+

1 2.36(4)b∗ 2.42(1) +6(3)d +5.9(1)
4+

1 – 2.41(1) – +8.0(3)
0+

2 (Hoyle) 2.89(4)b∗ 2.93(5)
2+ above 0+

2 3.07(13)c∗ 2.93(5) – −21(1)
4+ above 0+

2 – 2.93(5) – −26(1)
0+

3 – 2.78(4)
20O 0+

gs 2.69(3)e 2.73
2+

1 [4+

1 ] – −8.45 [−11.11]
20Ne 0+

gs 2.87(3)e 2.79
2+

1 [4+

1 , 6+

1 ] −23(3) −15.69 [−19.69, −21.05]
22Ne 0+

gs – 2.82
2+

1 [ 4+

1 , 6+

1 ] −17(3) −14.90 [−19.22, −21.61]
20Mg 0+

gs 2.88(4)e 2.73
2+

1 [4+

1 ] – −12.67 [−16.67]
22Mg 0+

gs 2.89(6)f 2.82
2+

1 [4+

1 , 6+

1 ] – −17.88 [−23.07, −25.93]
24Mg 0+

gs 2.97(12)g 3.03
2+

1 −16.6(6)d −22.7
aRef. [138]; bRef. [139]; cRef. [140]; dRef. [133], eRef. [141]; and fRef. [142]; and gRef. [143].

*Experimentally deduced, based on model-dependent analyses of diffraction scattering; 0+
gs rrms = 2.34 fm.

very different from a simple α chain suggested by cluster models, as the clusters partially overlap.

For intermediate-mass nuclei, we find that it is imperative that model spaces be expanded well
beyond the current limits up through 15 major shells to accommodate particle excitations, which appear
critical to highly deformed spatial structures (Figs. 5a and 6b) and the convergence of associated
observables, as detailed in Ref. [106].

3.4 Pseudo-spin symmetry for heavy nuclei

For heavy nuclei (A & 100), the discovery of the pseudo-spin symmetry [75, 76] together wtih its
fundamental nature [78,79,145] has established the pseudo-SU(3) model [77]. In particular, the micro-
scopic origin of the pseudo-spin symmetry has been unveiled in Ref. [145], which has identified that the
many-particle p-helicity operator generates a transformation to the pseudo-spin basis in heavy nuclei,
while satisfying all other global symmetry requirements. Both mean-field and many-particle estimates
demonstrate that in the helicity-transformed representation, the nucleons move in a finite-depth non-
local potential with a reduced spin-orbit strength. Furthermore, the approximate independence of the
single-nucleon spectrum in an infinite medium on the helicity transformation and the consistency of
the microscopic estimates for the single-particle nuclear potentials with the Dirac-Brueckner calcula-
tions, allow one to connect the pseudo-spin symmetry to the one boson-exchange (OBEP) nature of the
nucleon-nucleon NN interaction. Based on this link and because of the close relation (coincidence in
the chiral symmetry limit) of the helicity and chirality operations, the goodness of pseudo-spin symme-
try may be expected to increase with rising densities (or energy per particle) in hadronic systems, and
actually yield to the chiral symmetry of massless hadrons in the high energy region [145].
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Figure 6: NCSpM amplitudes of relevant symplectic basis states (horizontal axis) labeled by N(λω µω)
for the 0+ (blue) and the excited 2+ (red) and 4+ (green) states in the rotational band for (a) the Hoyle
state in 12C and (b) the ground state of 22Mg [106,108]. Multiplicities to distinguish repeated N(λω µω)
labels are not shown. Note that the Hoyle-state probability distribution peaks at 8~Ω.

Pseudo-spin scheme is an excellent starting point for a many-particle description of heavy nuclei,
whether or not they are deformed. As for the SU(3) shell model, in many cases leading-irrep calculations
(e.g., see [146]) or mixed-irrep calculations (e.g., see [147]) achieve good agreement with experimental
data. The pseudo-SU(3) shell model provides a further understanding of the M1 transitions in nuclei
such as the even-even 160−164Dy and 156−160Gd isotopes, specifically it reflects on the scissors and twist
modes as well as the observed fragmentation (Fig. 7), that is, the break-up of the M1 strength among
several levels closely clustered around a few strong transition peaks in the 2-4 MeV energy region [148]
(and references therein; for a detailed review on magnetic dipole excitations in nuclei, see Ref. [149]).
In medium-mass and heavy nuclei, where the pseudo-spin valence space is intruded by the highest-j
orbit from the shell above, a major step towards understanding the significance of the intruder level is
achieved by the pseudo-SU(3) plus intruder level shell model [151].

Furthermore, the advantages of the symplectic Sp(3,R) extension of the SU(3) model can be em-
ployed beyond the light nuclei domain towards a description of heavy nuclei in the framework of the
pseudo-Sp(3,R) shell model. For example, this model with a symmetry-preserving (in terms of the
pseudo-Q and pseudo-L) two-, three-, and four-body interaction has been applied to 238U with a focus
on the energy spectrum and B(E2) transition strengths from Ji = 2, 4, 6, 8, 10, and 12 to Ji − 2 within
the ground-state rotational band [152]. In this study, the experimental B(E2) values are remarkably
well reproduced without the need of an effective charge. The results are comparable to a valence-shell
pseudo-SU(3) model with effective charges, however, larger discrepancies have been observed for the
higher-lying states [152]. While a pioneer work has revealed the power of this model for heavy nuclear
systems, it still remains not fully explored.

3.5 O(A− 1) scheme and ab initio hyperspherical harmonics method

As shown in Eq. (5) of Sec. 3.3, the complete translationally invariant shell-model basis is classified
according to a reduction chain of Sp(3(A−1),R)×U(4), which for the spatial degrees of freedom, invokes
Sp(3,R)×O(A− 1). While the Sp(3,R) scheme utilizes the Sp(3,R) group (transformations acting on
x, y, and z components), one can organize the A-particle model space according to the complementary
group O(A−1), with O(A) ⊃ O(A−1) ⊃ SA. The O(A) is the group of orthogonal transformations that
act on the “particle-index” space (transformations of nucleon coordinates, xiα →∑A

j=1 xjαωji, that leave

the O(A) scalars xα · xβ =
∑A

i=1 xiαxiβ invariant for α, β = x, y, z). This scheme is reviewed in detail in
Ref. [42,49]. O(A− 1) is the subgroup of O(A) which leaves center-of-mass coordinates invariant (note
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Figure 7: Comparison of experimental (crosshatched bars) [150] and theoretical (solid bars)M1 strength
distributions. In each case the eigenstates were determined by fitting parameters in the Hamiltonian to
the experimental energy spectrum and associated B(E2) transitions. Figure adapted from Ref. [148].

that center-of-mass coordinates are symmetric with respect to nucleon indices and, therefore, invariant
under SA permutations) and has as a subgroup the permutation group SA, which permutes the spatial
coordinates of a system of A particles.

This scheme underpins the Hyperspherical Harmonics (HH) method. The HH method is a variational
method where the trial function is written as an expansion on the HH basis [153], which was first
applied to the Helium atom [154] and to the 3H ground state [155] with central and tensor forces, and
further advances have been developed in Refs. [156,157]. The hyperspherical harmonics are the A-body
generalization of the spherical harmonics Ylm, and nuclear orbital wave functions can be expressed as
products of functions of a global radius (hyper-radius) ρ2 =

∑

iα η
2
iα [~ηi are the A−1 Jacobi coordinates]

and O(3A−3) hyperspherical harmonics. The symmetrization of the hyperspherical harmonics presents
one of the main difficulties of the method. For A > 4 systems, a direct symmetrization becomes
impractical and more sophisticated approaches are adopted, such as the construction of HH based on
O(3A − 3) ⊃ SO(3) × O(A − 1) (e.g., see [158, 159] and the extensive reviews of the O(A − 1)-based
theories [160,161]). An efficient technique has been developed in Ref. [162] to solve the reduction problem
from O(A− 1) ⊃ SA. Using central NN interactions, this technique has allowed applications of the HH
method for more than four fermions, namely, for the binding energies of 6Li, 8Be, and 12C [163], while
an alternative non-recursive approach, based on an HH expansion in terms of the Slater-determinant
basis of the HO shell model, has been applied to 3−7H and 4−10He isotopes [164, 165]. Similarly to
the NCSM with effective interactions, the Effective Interaction for Hyperspherical Harmonics (EIHH)
method has been developed [166], with the unitary transformation applied with realistic potentials
at the two-/three-body level. The complications with the antisymmetrization problem for the HH
functions, however, have limited the model applications to A < 8 [167]. A fully converged ab initio
result, achieved in the framework of the hyperspherical harmonics method, of 24.23 MeV for the 4He
binding energy with the realistic AV14 potential [168] has been reported in Ref. [169]. Further details
on the HH method and its applications can be found in the review [167].
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As discussed in Ref. [49], although the Sp(3,R) and O(A − 1) approaches to a shell-model theory
are complementary and compatible with one another, they play fundamentally different roles. The
groups O(A− 1) ⊃ SA are symmetry groups. They provide good quantum numbers, which, by duality,
define an Sp(3,R) irrep, and which are shared by every state within an Sp(3,R) irrep. The O(A − 1)
describes the intrinsic component of the many-particle wave function (particle distribution), while the
complementary Sp(3,R) wave function describes the collective component (deformation of the nuclear
system) [42]. In addition, while a general O(A − 1) transformation does not leave the nuclear Hilbert
space invariant (the nuclear Hilbert space contains only part of an O(A− 1) representation space, the
part with the correct permutation symmetry), the Sp(3,R) representation space lies completely within
the nuclear Hilbert space [49].

3.6 Wigner SU(4) supermultiplet and alpha-clustering in nuclei

The spin-isospin degrees of freedom of A nucleons, complementary to the 3-dimensional coordinate
space degrees of freedom as shown in the classification (5), are described by SU(4), called the Wigner
supermultiplet group [170], with U(4)=SU(4)× U(1)A. It “rotates” the four nucleon degrees of freedom
as four components of an SU(4) multiplet, |1〉 = |p ↑〉, |2〉 = |n ↑〉, |3〉 = |p ↓〉, and |4〉 = |n ↓〉. The
supermultiplet classification is detailed in Ref. [171], with basis states further labelled by the spin (S)
and isospin (T) quantum numbers of the reduction chain, SU(4) ⊃ SU(2)S × SU(2)T . Isospin is not
exactly conserved in nuclei but is only slightly broken and can be treated as an exact symmetry.

As discussed in the review article [172], SU(4) symmetry arises naturally in the limit of large num-
ber of colors [173–175]. In this limit, one can view the symmetry as arising from a combinatorial
enhancement of interaction terms which are spin and flavor independent [173,175]. Furthermore, recent
lattice QCD simulations have shown that SU(4) symmetry becomes increasingly accurate at heavier
quark masses [176, 177]. The low-energy nuclear interactions show an approximate SU(4) symmetry
in the S-wave scattering channels. While the Coulomb interaction and one-pion exchange interaction
break this SU(4) symmetry, the short-distance part of the S-wave nucleon-nucleon interactions obey
the symmetry rather well [178,179].

For nuclear systems, early applications have identified cases where the SU(4) symmetry is approxi-
mately valid (e.g., see [180]). In Ref. [181], an important measure for the goodness/symmetry-breaking
of the Wigner supermultiplet symmetry has been introduced, based on spectral distribution theory
(SDT, discussed in Sec. 4.4) [182–184]. In this study, the SU(4) symmetry-breaking has been investi-
gated for the A = 25 sd-shell nuclei, which by the complementary nature of the space and spin-isospin
symmetries, has provided a simple measure of the amount of mixing to be expected between states of
different space symmetry. This study has pointed to the dominance of the highest spatial symmetry,
while mixing of a few other irreps have been suggested to be linked to collective degrees of freedom.
Namely, a dominant SU(3) irrep can belong to different U(Ωη) irreps (see Table 1), which as a result
mix [181]. Similarly, some SU(4) fragmentation has been recently observed for 11B within the ab initio
no-core shell model framework [185]. Medium- to heavy-mass nuclei are found to exhibit significant
fragmentation of the wave function over many SU(4) irreps (e.g., [186, 187]), with results suggesting
evidence of coherent quasi-dynamical symmetry within a rotational band [185].

3.6.1 Symmetry-guided techniques in the ab initio lattice effective field theory

The importance of an approximate SU(4) symmetry of the low-energy nucleon-nucleon interactions
is explored in ab initio lattice simulations for nuclear systems using chiral effective field theory [17].
While these simulations are not based on the shell-model theory, we briefly review the symmetry-guided
techniques used in this approach.
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Indeed, there is experimental evidence that some predictions that one can derive from SU(4) sym-
metry are well satisfied by the spectrum of light nuclei [188,189] (for an extensive review, see [172]). In
Ref. [189], a general theorem on spectral convexity with respect to particle number A for 2k degenerate
components of fermions has been derived that only assumes that the interactions are governed by an
SU(2k)-invariant two-body potential with negative-definite Fourier transform. It shows that the ground
state of any fermionic system with such potentials is in a 2k-particle clustering phase [for SU(4), it im-
plies an α clustering phase] and obeys a set of spectral convexity bounds. Indeed, as shown in [189],
all of the SU(4) convexity constraints are satisfied for nuclei up to A = 20. Furthermore, recent lat-
tice simulations have also shown alpha cluster structures consistent with an SU(4)-clustering phase in
12C [17,132,190], 16O [30], and other sd-shell alpha-like nuclei [191]. These results give further evidence
that an approximate description of light nuclei may be possible using an attractive SU(4)-symmetric
potential. As noted in [189], these results do not imply that Monte Carlo simulations of nucleons using
chiral effective theory can be performed without sign or phase oscillations, but they suggest that the
simulations are possible with only relatively mild cancelations, given the approximate SU(4) symmetry
and attractive interactions at low energies.

The projection Monte Carlo method with auxiliary fields has been used to study low-energy nucleons
in chiral effective field theory [192, 193]. A two-step approach is used: a pionless SU(4)-symmetric
transfer matrix acts as an approximate and inexpensive low-energy filter at the beginning and end time
steps; for time steps in the midsection, the full leading-order (LO) transfer matrix is used and next-
to-leading-order (NLO) operators are evaluated perturbatively by insertion at the middle time step.
The pionless SU(4)-symmetric transfer matrix is computationally inexpensive because it requires only
one auxiliary field and, more importantly, the path integral is strictly positive for any even number of
nucleons [194]. Although there is no positivity guarantee for odd numbers of nucleons, sign oscillations
are suppressed in odd-A systems when they are only one particle or one hole away from an even
system with no sign oscillations. Recently a technique called symmetry-sign extrapolation (similar to
an extrapolation technique used in shell model Monte Carlo calculations [47,195]) has been developed,
which uses the approximate SU(4) symmetry of the nuclear interaction to control the sign oscillations
without introducing uncontrolled systematic errors [196]. For further details and applications of the
method, see the reviews [172,197].

3.6.2 Cluster model

Cluster models, which can offer a unified theory of structure and reactions [198], assume a formation of
substructure systems, typically, α clusters. The latter figure prominently in the decay of heavy nuclei
or low-lying 0+ states in A = 4, 8, 12, 16, 20, . . . nuclei. The physical significance of α-cluster models
is related to the fact that the α-particle is tightly bound. Indeed, in its lowest-energy configuration, it
is a [4] spatial configuration, corresponding to an SU(3) scalar, (λµ) = (0 0) (spherical deformation)
and an SU(4) scalar, a single (0 0 0) SU(4) irrep, with S = 0 and T = 0. As discussed above, these
simple 2p-2n localized configurations have been shown to emerge in nuclear modeling in the framework
of the ab initio lattice EFT [17, 30, 132, 190] (Sec. 3.6.1) and in the NCSpM no-core symplectic shell
model [105] with no a priori cluster assumption (Sec. 3.3.2). Another interesting approach, e.g., the
stochastic variational method with a correlated Gaussian basis makes it possible to describe, with no a
priori cluster ansatz, both localized cluster states and shell-model like states [199,200].

While the cluster model has been mainly applied to the two-cluster case with a cluster ansatz,
the extensions of the model to incorporate microscopic clusters and multi-clusters have considerably
advanced over the last two decades (for applications, including studies of light exotic nuclei, see the
book [201]). Remarkable progress has been made in recent years in the development of approaches
from first principles to scattering and nuclear reactions (see, e.g., [11,202–204]). In particular, the shell-
model based NN -informed NCSM/RGM [11,205] has achieved successful descriptions with applications
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to fusion reactions and astrophysics [26,29,31]. The method combines a microscopic cluster technique,
the resonating-group method (RGM) [198], with the ab initio NCSM [8] – it empowers the NCSM
with the capability to simultaneously describe both bound and scattering states in light nuclei, while
preserving the Pauli exclusion principle and translational invariance; it also extends the RGM to utilize
realistic interactions and first-principle NCSM wave functions. The latest developments in cluster
physics are thoroughly reviewed in Ref. [130]. Here, we focus on the use of symmetry-adapted schemes
in microscopic cluster models, as discussed next.

3.6.3 Resonating-group method (RGM) in the SU(3) and symplectic schemes

The nuclear wave function of the cluster model consists of “cluster-internal” and “cluster-relative” parts.
In the framework of the microscopic resonating-group method (RGM) [198], the internal cluster wave
functions can be expressed in terms of the HO shell-model basis assuming a common oscillator constant
~Ω for all the clusters. For a relative motion between the clusters that is very spatially extended, a
shell-model representation of clustering may require ultra-large model spaces. This makes the use of
symmetry-based schemes advantageous.
SU(3)-scheme RGM. The wave functions of the cluster system are obtained by solving the many-body
Schrödinger equation via an R-matrix coupled-channel method [198,206]. This requires calculations of
Hamiltonian (Ô = AĤA) and norm (Ô = AA) kernels, which involve computations of overlaps of the
type 〈Ψ′| Ô |Ψ〉 (A properly takes into account antisymmetrization). In the SU(3)-based RGM frame-
work of Hecht [207], the “localized” part of the kernels is reduced to calculating norm and Hamiltonian
overlaps between the SU(3)-scheme RGM basis, which, e.g., for two fragments of mass number f and
A− f can be written as,

A{{φ(λ1 µ1)S1T1

f × φ
(λ2 µ2)S2T2

A−f }(λc µc)ScTc × χ(Q 0)}(λ µ)
κ(LS)JMTMT

, (16)

where the φf and φA−f are the microscopic wave functions of the fragments and Q is the number of
HO quanta of their relative motion. This defers the dependence on angular momentum to the very
last step in the calculations, and, in turn, facilitates quick calculations. As emphasized and shown
in Refs. [207, 208], the main advantage arises from the fact that the norm overlaps (both direct and
exchange terms) are diagonal in this basis and that one can avoid the complications of embedding
the angular momentum. Another important feature is that once the overlaps are calculated in lab-
frame coordinates, the translationally-invariant overlaps can be straightforwardly calculated using an
U(A)× U(3) approach, which is especially suitable for the SU(3)-coupled wave functions [207]. Appli-
cations of the model to the intermediate-mass region typically employ leading SU(3) configurations in
the cluster wave functions and Gaussian-like interactions, and have successfully calculated α and 8Be
cluster amplitudes, spectroscopic amplitudes for heavy-fragment clusters, and sub-Coulomb 12C+12C
resonances [209–211].
Sp(3,R)-scheme RGM. The first calculations of the “no-core shell model with continuum” type with
simple NN potentials have been carried forward by Suzuki and Hecht [112] for 8Be with a Gaussian-
like interaction. The model utilizes a mixed symplectic Sp(3,R) and microscopic cluster-model basis.
This unified framework has been made possible by developing methods for calculating overlaps between
Sp(3,R)-scheme basis states and cluster states, and for evaluating matrix elements of a general transla-
tionally invariant two-body interaction [112,212,213]. Even though first applications have been carried
in limited model spaces, consisting of a restricted single Sp(3,R) irrep up through Nmax = 8, and assum-
ing no excitations of the alpha particles, the results have indicated that the mixed symplectic-cluster
model leads only to slight improvement to the cluster model in the description of the α + α system.
Furthermore, calculations in the pure symplectic basis have also provided a good description of 8Be.
This is not surprising since the overlaps between the two bases for the low-lying states of p and sd-shell
nuclei have been found to be comparatively large in the low-N~Ω subspaces [212]. This approach
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has been further applied to study the monopole and quadrupole strengths in light nuclei [214, 215].
It has been also applied to the α+12C cluster system and found to contain the important shell-model
configurations needed to describe low-lying spectrum of 16O [216,217].

The mixed symplectic-cluster basis approach has provided important insight for symmetry-guided
large-scale shell models that aim to achieve faster convergence of states that are influenced by the
continuum. In particular, some of the most important shell-model configurations can be expressed
by exciting the relative-motion degree of freedom of the clusters. For example, the large overlaps
between the first excitation (2~Ω) indicate that the α+12C cluster basis significantly contains the
quadrupole collectivity. A careful comparison with experiment, however, indicates that the cluster
model, if the clusters are frozen to their ground states, tends to miss some states with simple core
excitations, overestimates cluster decay widths, and underestimates E2 transition rates [201]. But in
the cases where clusters have little overlap, the corresponding cluster state strongly deviates from the
usual “shell-model”-like configurations and project onto ultra-large shell-model spaces. As overlaps
between the microscopic cluster and symplectic bases decrease in higher-N~Ω subspaces, the mixed-
bases approach prove to be advantageous, in which both bases play a complementary role [210].

Recent ab initio large-scale applications that utilize a mixed shell-model and RGM basis to achieve a
faster convergence have been carried forward in the framework of the no-core shell model with continuum
(NCSMC) [12]. This study focuses on the unbound 7He nucleus and its controversial 1/2− resonance.
The approach and other successful applications to light nuclei are detailed in Ref. [218].

3.7 Seniority scheme and exact pairing theory

With an expanding body of experimental evidence that exposed prominent systematic features of nuclei,
such as pairing gaps in energy spectra and even-odd mass difference, pairing correlations have been the
focus of various models, including the early algebraic pairing models [219–222] and exact pairing models
for a shell-model framework [223–230].

The pairing problem, which was suggested by Racah [219] in atomic physics as a seniority scheme to
describe coupling of identical electrons, was introduced first to nuclear structure by Jahn and Flowers
[221, 231] to completely classify the states of the jn nuclear configurations. Similar type of correlation
effects, based on coupling of identical nucleons, were then suggested by Bohr, Mottelson and Pines [232]
to explain the energy gap observed in the spectra of even-even nuclei and the concept was soon after
applied by Belyaev in the first detailed (mean-field) study of pairing in nuclei in terms of independent
quasi-particles [233]. Along with approximate mean field solutions (for a review see, e.g., [234]), the
pairing problem was approached by various group theoretical methods, e.g., the like-pair SU(2) seniority
model (see, e.g., [222, 235]), the SO(5)/Sp(4) model for isovector (pp,pn, and nn) pairing (see, e.g.,
[236–240]), and the SO(8) model with the additional isoscalar pn channel (see, e.g., [241,242]). We note
that the notation of Sp(4) corresponds to a notation of Sp(6,R) for the symplectic scheme of Sec. 3.3,
and is the one typically adopted for pairing models.

The seniority scheme focuses on a single-j level with dimension 4Ωj = 2(2j+1). In the conventional
seniority scheme of Racah and Flowers [219,221], states of a simple configuration jn comprised of both
protons and neutrons are completely classified according to the reduction chain,

U(4Ωj) ⊃ U(2Ωj) ⊃ Sp(2Ωj) ⊃ SO(3) ⊃ SO(2)
jn T b (w, t) a J M

, (17)

where an irrep of U(4Ωj) is formed by the n-particle antisymmetric wave functions with total isospin
T , (w, t) label Sp(2Ωj) irreps (t is the isospin of non-paired particles), and b and a are multiplicity
labels [219,221,238,239].

The “quasi-spin” approach of Helmers [236], on other hand, yields a classification scheme with the
same quantum numbers as in (17) based on two parallel group chains starting with a different and
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ingenious group decomposition of U(4Ωj), namely

U(4Ωj) ⊃ Sp(2Ωj) × SO(5),
jn jν (w ↔ ν, t;n, b, T )

∪ a
SO(3)
J

(18)

where the dependence on n, b and T is transferred solely to SO(5), locally isomorphic to Sp(4). The
group chain of Sp(2Ωj) is the one associated with conventional seniority but now is completely specified
by the simple configuration jν , where ν is the total seniority number that counts particles not coupled
in a J = 0 pair and is related to the maximum number w as w = 4Ω − ν. A detailed comparison
that reveals the power of the Sp(4) method versus the conventional seniority spectroscopy can be found
in the literature [236–239]. In general, for the complete shell-model space, coupling of U(4Ωj) irreps
should be considered.

Partial conservation of seniority has been recently examined in many-body systems for identical
particles in a single-j level [243]. Racah’s seniority scheme, however, is badly broken by single-particle
energies [244]. Nonetheless, for non-degenerate single-particle energies exact solutions to the pairing
problem have been derived by Richardson and Gaudin [223–225], with further extensions based on
the algebraic Bethe ansatz [227, 228, 235, 245–248]. For all these algebraic Bethe ansatz approaches,
the solutions are provided by a set of highly non-linear Bethe Ansatz Equations (BAEs). While these
applications demonstrate that the pairing problem is exactly solvable, solutions of these BAEs are not
easy and typically require extensive numerical work, especially for a large number of levels and valence
pairs [247]. This limits the applicability of the methodology to relatively small systems. However, it
has been shown recently that the set of Gaudin-Richardson equations for the standard pairing case can
be solved relatively easily by using the extended Heine-Stieltjes polynomial approach [229, 249]. Since
solutions of the standard pairing model can be obtained from zeros of the associated extended Heine-
Stieltjes polynomials, the approach can be applied to study the model with more pairs over a larger
number of single-particle levels. In particular, in the studies of Refs. [229,249], the pairing Hamiltonian
includes non-degenerate single-particle energies plus standard pairing and is exactly solvable. It has been
shown that the method provides solutions for the ground states of Ca, Ni, and Sn isotopes that closely
reproduce experimentally observed pairing gaps. Such models can be essential in incorporating exact
pairing correlations into a general theory of self-consistent mean-field type, such as density functional
theory (DFT) framework. The DFT approach generally yields an excellent accounting of binding
energies as well as near ground state phenomena across much of the nuclear landscape (see, e.g., the
review [250]). It can link to an ab initio foundation to achieve better predictive capabilities across most
of the chart of the nuclides.

4 Highly structured orderly patterns from first principles

4.1 Low intrinsic spin

Realistic inter-nucleon interactions break SU(2) spin symmetry. Consequently, in nuclear states all
possible intrinsic spin values for a given nucleus may mix. To investigate the spin pattern in low-
lying states, we have studied NCSM eigenstates by projection to spin components [50] and SA-NCSM
eigenstates, which, as discussed in Sec. 3.2, are expressed in terms of basis states that by construction
have definite proton Sp, neutron Sn, and total S spin values [20].

For NCSM eigenstates, the spin components and the corresponding spin probability amplitudes can
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Figure 8: Probability distribution of the S = 0 (blue), S = 1 (red) and S = 2 (yellow) components of
the 12C 0+

gs, 2+
1 and 4+

1 states and the 16O ground state, calculated with the effective JISP16 interaction
for different ~Ω oscillator strengths and with the bare JISP16 interaction for ~Ω = 15 MeV. Figure
adapted from Ref. [65].

be determined by the projection operator P (smin),

P (smin) =
Smax
∏

k=smin

(

1 − Ŝ2

k (k + 1)

)

, (19)

where Ŝ is the spin operator. To calculate the spin-zero component of an eigenstate, the opera-
tor P (smin =1) is first applied. The resulting S = 0 component is then removed from the original
wave function. The operator P (smin=2) is then applied to yield the S = 1 component. Eventually, the
complete spin decomposition is achieved.

Utilizing this procedure, we have studied the spin decomposition of well-converged NCSM eigenstates
in 12C and 16O [50, 65]. The NCSM eigenstates employed in this study are obtained with effective
interactions (using the Okubo-Lee-Suzuki procedure) derived from the realistic JISP16 and N3LO NN
potentials in the Nmax = 6 model space and are reasonably well converged. In addition, calculated
binding energies as well as other observables for 12C such as B(E2; 2+

1 → 0+
gs), B(M1; 1+

1 → 0+
gs),

ground-state proton rms radii and the 2+
1 quadrupole moment all lie reasonably close to the measured

values [8,251]. The analysis of the spin probability amplitudes for various ~Ω oscillator strengths (Fig.
8) reveals that spin mixing follows almost exactly the same pattern in all the low-lying 0+

gs, 2+
1 and 4+

1

states, which we will clearly identify as belonging to a rotational band in Sec. 4.2. The predominance
of the S = 0 component is striking, regardless if effective or bare interactions were used.

Considering further the proton and neutron spins [51], we have found that only four configurations
with the lowest intrinsic spins (spin-zero and spin-one) in the proton and neutron sector contribute
98% to the states shown in Fig. 9, for both the JISP16 and N3LO interactions. The remaining 44 spin
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J = 0 J = 2 J = 4 

J = 0 J = 2 J = 4 

Figure 9: Intrinsic spin structure of the J = 0+
gs, 2

+
1 , and 4+

1 NCSM states in 12C obtained using: (a)
JISP16, and (b) N3LO effective interactions in the Nmax = 6 model space with ~Ω = 15 MeV.

combinations contribute typically less than 2%. Qualitatively, similar results are obtained for the 1+
1

state, with 4 lowest-spin configurations describing about 95% of the wave function (Fig. 10). If the
Nmax = 6 model space is restricted to the wave functions with good total angular momentum J and
Sp ≤ 1 and Sn ≤ 1, the size of the basis drops by a factor of three relative to the basis which does not
impose any restrictions on intrinsic spins. This reduction further improves, albeit slowly, for heavier
nuclei and larger model spaces.

Low-spin dominance is further confirmed by ab initio SA-NCSM calculations with bare JISP16,
N3LO, and NNLOopt [252] interactions [20, 253]. Table 3 shows the spin component having the largest
contribution to the ground state, which is more than 50% up to ∼ 90% for various p-shell and sd-
shell nuclei. In addition, supporting the results above, we have found that the SA-NCSM calculated

J = 1 

Remaining 38 spin 
components 

Figure 10: Intrinsic spin structure of the J = 1+
1 NCSM state in 12C obtained using: (a) JISP16 and

(b) N3LO effective interactions in the Nmax = 6 model space with ~Ω = 15 MeV.
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eigenstates project at a 99% level onto a comparatively small subset of intrinsic spin combinations.
For instance, the lowest-lying eigenstates in 6Li are almost entirely realized in terms of configurations
characterized by the following intrinsic spin (SpSnS) triplets: (3

2
3
2
3), (1

2
3
2
2), (3

2
1
2
2), and (1

2
1
2
1), with the

last one carrying over 90% of each eigenstate [20] (see also Fig. 11 discussed in the next two sections).
Likewise, the same spin components as in the case of 6Li are found to dominate the ground state and
the lowest 1+, 3+, and 0+ excited states of 8B. The ground state, 2+

1 and 4+
1 of 8Be, 6He, 12C, 16O and

20Ne are all found to be dominated by spin-zero and spin-one proton and neutron spins, with the largest
contributions arising from the (SpSnS)=(000) configurations.

Nucleus (Sp Sn S) Probability, % (λ0 µ0) Probability, % Probability, %
(λ0 µ0) (λµ)*

6Li (1
2

1
2
1) 93.24 (2 0) 57.36 93.11

8B (1
2

1
2
1) 85.58 (2 1) 56.50 82.32

8Be (0 0 0) 85.21 (4 0) 55.92 85.06
12C (0 0 0) 55.60 (0 4) 44.10 49.03

[(0 1 1), (1 0 1)] [29.19] [(1 2)] [18.63] [22.52]
16O (0 0 0) 78.42 (0 0) 60.59 77.33
20Ne (0 0 0) 79.73 (8 0) 43.93 79.30

*All (λµ) built over (λ0 µ0) according to the rule of Eq. (20).

Table 3: Probability amplitudes of the dominant (Sp Sn S) spin configurations and the corresponding
dominant nuclear deformation (λ0 µ0) for the ground state of selected nuclei calculated in the ab initio
Nmax = 8− 14 SA-NCSM with the bare JISP16 interaction (NNLOoptis used for 20Ne) for ~Ω=20 MeV.
The second most important contribution is shown for 12C – note that the combined (0 0 0), (0 1 1), (1 0 1)
contribution for 12C yields 84.79% for the third column, as well as 62.73% and 71.55% for the last two
columns. Note that the SA-NCSM calculations for 20Ne are performed in the challenging 〈2〉10 model
space of 13 shells of, e.g., 51 × 106 basis states for 6+ – compare to the inaccessible NCSM space of
4.4 × 1011 dimensionality required for the corresponding Nmax = 10 fixed-J calculations or of 1 × 1012

for the conventional M scheme.

A more recent study [254] using SRG effective interactions in the NCSM has arrived at the same
conclusions, while, in addition, it points to a similar spin pattern in odd-A p-shell nuclei.

All of these studies support the dominance of the lowest proton/neutron intrinsic spins in light and
intermediate-mass nuclei, followed by low-spin configurations, as evident from first principles.

4.2 Large quadrupole deformation

Within the ab initio SA-NCSM framework, it is possible to explore the microscopic nature of the most
important collective configurations. In Refs. [20,50,253], we have analyzed the probability distribution
across Pauli-allowed (SpSnS) and (λµ) configurations of the four lowest-lying isospin-zero 1+

gs, 3+
1 , 2+

1 ,
and 1+

2 states of 6Li; 0+
gs, 2+

1 and 4+
1 of 8Be, 6He and 12C; the lowest 1+, 3+, and 0+ excited states of

8B; and the ground state of 16O. Results for the ground state of 6Li and 8Be, obtained with the bare
JISP16 and chiral N3LO interactions, respectively, are shown in Fig. 11.

The results show that the mixing of (λµ) quantum numbers, induced by the SU(3) symmetry
breaking terms of realistic interactions, exhibits a remarkably simple pattern. One of its key features is
the preponderance of a single 0~Ω SU(3) irrep. This so-called leading irrep, according to the established
geometrical interpretation of SU(3) labels (λµ) [68–70], is characterized by the largest value of the
intrinsic quadrupole deformation. For instance, the low-lying states of 6Li, 1+

gs, 3+
1 , 2+

1 , and 1+
2 , project

predominantly onto the prolate 0~Ω SU(3) irrep (2 0), as illustrated in Fig. 11 for the ground state.
Furthermore, the dominance of the same dominant deformation within these states clearly identifies
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Figure 11: Probability distributions for proton, neutron, and total intrinsic spin components (SpSnS)
across the Pauli-allowed (λµ) values (horizontal axis) for the calculated 1+ ground state of 6Li obtained
for Nmax = 10 and ~Ω = 20 MeV with the JISP16 bare interaction (left) and the 0+ ground state of 8Be
obtained for Nmax = 8 and ~Ω = 25 MeV with the N3LO bare interaction (right). The total probability
for each N~Ω subspace is given in the upper left-hand corner of each histogram. The concentration
of strengths to the far right within the histograms demonstrates the dominance of collectivity in the
calculated eigenstates – this supports a symmetry-guided concept (detailed in Sec. 5.1), which implies
inclusion of the complete space up through N⊥

max, and a subset of deformation/spin configurations
beyond this, up through N⊤

max (for the example illustrated in the figure, a selected space includes all
possible configurations within N⊥

max = 6 and only selected configurations in the 8~Ω, 10~Ω, etc., up to
an N⊤

max cutoff). The projection onto symplectic vertical slices (with probability ≥ 1%) is schematically
illustrated for 6Li by arrows and clearly reveals the preponderance of a single symplectic irrep (vertical
cone). Figure adapted from Ref. [20].

them as members of a rotational band, that is, different rotations of the same deformation (we will
come back to this feature, as illustrated in Table 4 for 12C). Indeed, according to Elliott’s rule, for (2 0),
L = 0 and 2, which couples with spin-1 to yield J = 12, 2, 3. In addition to 6Li, Table 3 shows the
leading 0~Ω SU(3) irrep for the ground-state rotational-band states in 8B, 8Be, 12C, and 16O, which is
(2 1), (4 0), (0 4), and (0 0), respectively (associated with triaxial, prolate, oblate, and spherical shapes,
respectively). The clear dominance of the most deformed 0~Ω configuration within low-lying states of
light and intermediate-mass nuclei (Table 3) indicates that the quadrupole-quadrupole interaction of
the Elliott SU(3) model of nuclear rotations [39,40] is realized naturally within an ab initio framework.

These results corroborate earlier observations [255] based on a simple but useful guide, which involves
counting of the number of interacting pairs in different spin-isospin states for a given spatial symmetry
and provides an estimate for the overall binding due to one-pion exchange. The ordering of states,
estimated in this way, has been found to closely agree with the results of ab initio Variational Monte
Carlo (VMC) [256] calculations. The outcomes have revealed that the lowest-energy configuration for
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Figure 12: Probability amplitudes of the most important (λµ) SpSnS configurations within various ~Ω
components of the 6Li ground state, which is calculated in the SA-NCSM for increasing Nmax model
space cutoffs, and for the bare JISP16 and ~Ω=20 MeV. (a) 4~Ω configurations, (b) 6~Ω configurations,
(c) the 8~Ω configurations, and (d) 10~Ω configurations. For Nmax = 10, these amplitudes are the ones
shown in Fig. 11, left. Note that the SpSnS = 1

2
1
2
1 (6 0), (8 0), (10 0), and (12 0) (red) are the stretched

states over the most dominant 0~Ω (2 0) SU(3) irrep and they exhibit a comparatively substantial
increase in larger model spaces.

p-shell nuclei with nucleons in the s and p shells is of the highest spatial symmetry. This, indeed, as
discussed in Sec. 3.2, contains the largest deformation. For example, in the study of Ref. [255], for
6Li, the four states referenced in the previous paragraph, have been identified as dominated by 3S[4 2]
(1+

gs) and 3D[4 2] (3+
1 , 2+

1 , and 1+
2 ), where [4 2] contains the SU(3) (2 0) (see Sec. 3.2), the preponderant

configuration revealed in the corresponding SA-NCSM wave functions with ∼ 87% of the 1+
gs state in

L = 0 [20].

4.3 Symplectic symmetry from first principles

In the studies referenced above [20] and [50], the existence of a new approximate symmetry in light nuclei,
the symplectic Sp(3,R) symmetry, and hence their propensity towards development of collectivity, has
been confirmed from first principles with no a priori symmetry assumptions.

The symplectic symmetry structure was identified in well-converged ab initio wave functions for 6Li
(odd-odd), 8Be (even-even), 6He (halo), 12C (oblate), and 16O (spherical) nuclei using realistic nucleon-
nucleon (NN) interactions, the bare JISP16 and N3LO potentials, as well as their effective counterparts.
Indeed, the SA-NCSM framework exposes a remarkably simple physical feature that is typically masked
in other ab initio approaches; in particular, the emergence, without a priori constraints, of simple orderly
patterns that favor spatial configurations with strong quadrupole deformation and low intrinsic spin
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values (Fig. 11; see also Fig. 5b for the ab initio 12C ground state). This figure illustrates a feature
common to all the low-energy solutions considered; namely, a highly structured and regular mix of
intrinsic spins and SU(3) spatial quantum numbers that, furthermore, does not seem to depend on the
particular choice of a realistic NN potential. This feature, once exposed and understood, can in turn
be used to guide a truncation and augmentation of model spaces to ensure that important properties
of atomic nuclei, like enhanced B(E2) strengths, nucleon cluster substructures, and others important
in reactions, are appropriately accommodated in future ab initio studies.

Moreover, the analysis reveals the preponderance of only a few symplectic Sp(3,R) irreps (see arrows
in Fig. 11 that schematically represent symplectic irreps). E.g., for 6Li, the dominant SU(3) basis
states belong to a single (2 0) symplectic irrep, which comprises more than 80% of the ground-state
wave function, with total of only 5 Sp(3,R) irreps realizing more than 90% of the state. This clearly
reflects the presence of an underlying symplectic Sp(3,R) symmetry of microscopic nuclear collective
motion [41,42].

In addition, the dominant SU(3) basis states at each N~Ω subspace (N = 0, 2, 4, . . . ) are typically
those with (λµ) quantum numbers given by

λ+ 2µ = λ0 + 2µ0 +N (20)

where λ0 and µ0 denote labels of the leading SU(3) irrep in the 0~Ω (N = 0) subspace [in general,
this implies λ + 2µ = λσ + 2µσ + N − Nσ, for a (λσ µσ) leading irrep in an Nσ subspace]. Clearly,
this regular pattern of SU(3) configurations, which contribute largely to the low-lying states (Table 3),
further supports the presence of symplectic Sp(3,R) symmetry. This can be seen from the fact that (λµ)
configurations that satisfy condition (20) can be determined from the leading SU(3) irrep (λ0 µ0) through
a successive application of a specific subset of the Sp(3,R) symplectic 2~Ω raising operators, Eq. (7).
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Figure 13: Probability distribution over 0~Ω (blue, lowest) to 6~Ω (green, highest) subspaces for the
Nmax = 6 NCSM ground state (right bars) of (a) 12C and (b) 16O, or equally all Nmax = 6 symplectic
irreps, and for the case of the most dominant 0p-0h + 2~Ω 2p-2h Sp(3,R) irreps (left bars) together with
the leading Sp(3,R) irrep contribution (black diamonds), (0 4) for 12C and (0 0) for 16O, as a function
of the ~Ω oscillator strength. (c) For comparison, the same results without the 2p-2h contribution,
that is, for the three 0p-0h Sp(3,R) irreps for 12C are shown (similarly for the 2+

1 and 4+
1 states [65]).

Note that a “2~Ω 2p-2h Sp(3,R) irrep” refers to an irrep that consists of symplectic excitations, driven
by A(2 0) as described in Sec. 3.3, over a 2~Ω 2p-2h bandhead of two particles up a shell (e.g., see Fig.
3, 3d vertical cone), and includes configurations that are inaccessible by symplectic excitations built on
the 0p-0h bandheads (e.g., see Fig. 3, 1st and 2nd vertical cones). Figure adapted from Refs. [50,65].
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This subset is composed of the three operators, Azz, Azx, and Axx (expressed in Cartesian coordinates),
that distribute two oscillator quanta in z and x directions, but none in y direction, thereby inducing
SU(3) configurations with ever-increasing intrinsic quadrupole deformation. These three operators are
the generators of the Sp(2,R) subgroup [101], according to Sp(3,R) ⊃ Sp(2,R), and give rise to deformed
configurations that are energetically favored by an attractive quadrupole-quadrupole interaction [42].

Furthermore, there is an apparent hierarchy among states that fulfill condition (20). In particular,
the N~Ω configurations with (λ0 +N µ0), the so-called stretched states, carry a noticeably higher
probability than the others. For instance, the (2+N 0) stretched states contribute at the 85% level to
the ground state of 6Li, as can be readily seen in Fig. 11. Moreover, the dominance of the stretched
states is rapidly increasing with increasing Nmax, as illustrated in Fig 12. The sequence of the stretched
states is formed by consecutive applications of Âzz over the leading SU(3) irrep. The Âzz operator is
the generator of Sp(1,R) subgroup according to Sp(3,R) ⊃ Sp(2,R) ⊃ Sp(1,R). This translates into
distributing N oscillator quanta along the direction of the z-axis only and hence rendering the largest
possible deformation. The important role of the stretched configurations for the description of the
rotational bands in N = Z even-even nuclei has been recognized heretofore using a simple microscopic
Hamiltonian [257].

This is consistent with our earlier findings of a clear symplectic Sp(3,R) structure with the same

Table 4: Probability distribution of ab initio eigenstates for 12C and 16O across the dominant 0p-0h and
2~Ω 2p-2h Sp(3,R) irreps, ~Ω=15 MeV, as compared to the complete Nmax = 6 space (“All”).

0~Ω 2~Ω 4~Ω 6~Ω Total
12C, 0+

gs

(0 4)S = 0 46.26 12.58 4.76 1.24 64.84
(1 2)S = 1 4.80 2.02 0.92 0.38 8.12
(1 2)S = 1 4.72 1.99 0.91 0.37 7.99
2~Ω 2p-2h 3.46 1.02 0.35 4.83

Total selected 55.78 20.05 7.61 2.34 85.78
All 56.18 22.40 12.81 7.00 98.38

12C, 2+
1

(0 4)S = 0 46.80 12.41 4.55 1.19 64.95
(1 2)S = 1 4.84 1.77 0.78 0.30 7.69
(1 2)S = 1 4.69 1.72 0.76 0.30 7.47
2~Ω 2p-2h 3.28 1.04 0.38 4.70

Total selected 56.33 19.18 7.13 2.17 84.81
All 56.18 21.79 12.73 7.28 98.43

12C, 4+
1

(0 4)S = 0 51.45 12.11 4.18 1.04 68.78
(1 2)S = 1 3.04 0.95 0.40 0.15 4.54
(1 2)S = 1 3.01 0.94 0.39 0.15 4.49
2~Ω 2p-2h 3.23 1.16 0.39 4.78

Total selected 57.50 17.23 6.13 1.73 82.59
All 57.64 20.34 12.59 7.66 98.23

16O, 0+
gs

(0 0)S = 0 50.53 15.87 6.32 2.30 75.02
2~Ω 2p-2h 5.99 2.52 1.32 9.83

Total selected 50.53 21.86 8.84 3.62 84.85
All 50.53 22.58 14.91 10.81 98.83
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pattern (20), as unveiled in ab initio eigensolutions for 12C and 16O [50]. These eigenstates, determined
within the framework of the no-core shell model using the JISP16 realistic interaction, have been found
to typically project at the 85-90% level onto a few symplectic vertical slices, starting at the most
deformed 0p-0h and 2~Ω 2p-2h configurations, that span only a small fraction of the complete model
space (Fig. 13a&b and Table 4). The results are nearly independent of whether the bare or renormalized
effective interactions are used in the analysis and reveal a clear dominance, for any ~Ω, of the 0p-0h
Sp(3,R) irreps (Fig. 13c and Table 4). In particular, for the 0+

gs and the lowest 2+ and 4+ states
in 12C, there are nonnegligible overlaps for only 3 of the 13 0p-0h Sp(3,R) irreps. Moreover, these 3
irreps are the same for these states with nearly J-independent contributions, thereby pointing to a clear
rotational structure. In addition, the largest contribution comes from the Sp(3,R) irrep built on the
most deformed 0~Ω configuration (Fig. 13, black diamonds).

A striking property of the low-lying eigenstates is revealed when their spin-0 and spin-1 components
are examined, namely, the Sp(3,R) symmetry within each spin component and hence the geometry of
the nucleon system being described is nearly independent of the ~Ω oscillator strength and regardless of
whether the bare or the effective interactions are used (Fig. 14). The symplectic structure is preserved,
only the Sp(3,R) irrep contributions change, as illustrated in Fig. 13, because the S = 0 (S = 1) part
of the NCSM eigenstates decrease (increase) towards higher ~Ω frequencies, as shown in Fig. 8. This
suggests that the Okubo-Lee-Suzuki transformation, which effectively compensates for the finite space
truncation by renormalization of the bare interaction, does not affect the Sp(3,R) symmetry structure
of the spatial part of the wave functions. Hence, the symplectic structure detected in the analysis for
smaller model spaces is what would emerge in NSCM evaluations with a sufficiently large model space
to justify use of the bare interaction.

The typical dimension of a symplectic irrep in the Nmax = 6 space is on the order of 102 as compared
to 107 for the complete NCSM M -scheme basis space. As Nmax increases the dimension of the J = 0, 2,
and 4 Sp(3,R)-scheme model space built on the 0p-0h Sp(3,R) irreps for 12C grows very slowly and
remains a small fraction of the complete model space even when the most dominant 2~Ω 2p-2h Sp(3,R)
irreps are included (Fig. 15a). The space reduction is even more dramatic in the case of 16O (Fig. 15b).
This means that a space spanned by a set of symplectic basis states is computationally manageable
even when they extend to large Nmax.

4.4 Dominant SU(3) modes in bare and effective NN interactions

The nucleon-nucleon interaction itself possesses a remarkable SU(3) structure [43]. This is observed in
the decomposition of the NN interaction into SU(3)×SU(2)S0

×SU(2)T0
tensors (isoscalar interactions

will be henceforth considered). This is analogous to the unitary transformation of a VNN two-body
interaction represented in an M -scheme HO basis to a JT -scheme basis, which renders VNN as only one
SU(2)J0

×SU(2)T0
tensor of rank J0 = 0 and T0 = 0 (a scalar with respect to rotations in coordinate and

isospin space). For SU(3) interaction tensors, the (λ0 µ0) = (0 0) scalar does not mix nuclear deformation
in analogy to the isoscalar part of an interaction that does not mix isospin values. In addition, the
(λ0 µ0) interaction components with λ0 = µ0 are almost diagonal, that is, connect configurations within
a few shells, while interaction components with a large difference |λ0 − µ0| typically couple to high
momenta.

To study the dominant pieces of various NN interactions and their similarity, we utilize tools
developed in spectral distribution theory (SDT) [181–184]. Specifically, we employ second-order energy
moments widely used as measures of the overall strength of an interaction (norm of a many-body
Hamiltonian matrix H) and its similarity to other interactions (inner product of two Hamiltonian
matrices H and H ′). As is well-known, the smaller the norm, the weaker the interaction (the more
compressed the energy spectrum of H), while a zero inner product indicates lack of any overlap between
H and H ′ or no similarity [183]. It is worth noting that, while not utilized in this study, SDT is
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Figure 14: Projection of the most dominant 0p-0h+2p-2h S = 0 (blue, left bars) and S = 1 (red,
right bars) Sp(3,R) irreps onto the corresponding spin components of the NSCM wave functions for
(a) 0+

gs, (b) 2+
1 , and (c) 4+

1 in 12C and (d) 0+
gs in 16O, for the effective JISP16 interaction for different

~Ω oscillator strengths and for the bare JISP16 interaction (for ~Ω = 15 MeV). Figure adapted from
Ref. [50].

actually a many-body microscopic approach. It originated as an alternative microscopic approach to
the conventional shell model technique. The efficacy of the theory stems from the fact that typically
low-order energy moments dominate the many-particle spectroscopy as a result of leading surviving
features of the underlying microscopic interaction. Convergence to the shell-model results improves as
higher-order energy moments are taken into account or toward the limit of many particles occupying
a much larger available single-particle space. The theory provides the means to calculate important
average contributions, nuclear level densities, degree of symmetry violation such as parity/time-reversal
violation, nuclear structure and reactions, quantum chaos measures, as well as to understand dominant
features of realistic NN interactions (see, e.g., [258]) and the effect of SRG-induced three-body forces
[259] (see the book [260] on SDT and its applications).

By examining the norm of each SU(3) component of VNN , we find a dominance of the (0 0) scalar
part, independent of the NN realistic interaction (Fig. 16). It is followed by spin-zero (0 2), and its
conjugate (2 0), and by (0 4) + (4 0). These SU(3) modes are the ones that also appear in the kinetic
energy, the monopole operator, as well as the Q ·Q interaction. Other dominant modes are the spin-2
(0 2) + (2 0), as well as (1 1), which can be linked to the tensor force. Additional important tensors
include (1 1), (2 2), (3 3), and etc., which typically dominate for the pairing interaction or contact term.
These features, we find, repeat for various realistic bare interactions (Fig. 16a and c) and, more notably,
are further enhanced for their renormalized counterparts (Fig. 16b and d) [43].
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Figure 15: NCSM model space dimension as a function of the Nmax cutoff, as compared to that of the
Sp(3,R) subspace considered in Fig. 13: (a) J = 0, 2, and 4 for 12C, and (b) J = 0 for 16O. Figure
adapted from Ref. [50].

5 Understanding emergent collectivity from first principles

with SA-NCSM

5.1 Symmetry-guided concept

As discussed above, the low-lying states in light nuclei exhibit orderly patterns, as illustrated in Fig. 11,
that favor spatial configurations with strong quadrupole deformation and complementary low intrinsic
spin values, a picture that is consistent with the nuclear symplectic model. This suggests a symmetry-
guided basis selection philosophy that allows the SA-NCSM to obtain results in much smaller spaces that
are nearly indistinguishable from the complete basis counterparts. Specifically, the outcome supports
a symmetry-guided concept [20], a key feature of the SA-NCSM, namely, the relevant model space can
be systematically selected, using a quantified cutoff, starting from the largest deformation/lowest spin
within a low-N~Ω subspace and associated symplectic excitations thereof (right sector of Fig. 11), and
including ever smaller deformation until convergence of results is achieved. Specifically, one can take
advantage of dominant symmetries to relax and refine the definition of the SA-NCSM model space,
which for the NCSM is fixed by simply specifying the Nmax cutoff. SA-NCSM model spaces can be
characterized by a pair of numbers, 〈N⊥

max〉N⊤
max (schematically illustrated in Fig. 11), which implies

inclusion of the full space up through N⊥
max, and a subset of deformation/spin configurations beyond

this, up through N⊤
max. The validity of the symmetry-guided concept can be illustrated with SA-NCSM

results for p-shell nuclei obtained in model spaces, which are expanded beyond a complete N⊥
max space

(N⊥
max = 2, 4, . . . , 10) by using a relatively few dominant intrinsic spin and deformation components up

through N⊤
max = 12 (Fig. 17). Clearly, the results indicate that the observables obtained in the much

smaller symmetry-guided selected spaces are excellent approximations to the corresponding Nmax = 12
complete-space counterparts. A crucial advantage of this symmetry-guided concept is that SA-NCSM
can carry out investigations beyond the current Nmax NCSM limits. Within this context, it is important
to emphasize again that for model spaces truncated according to (λµ) irreps and spins (SpSnS), the
spurious center-of-mass motion is factored out exactly [88–90], which represents an important advantage
of this scheme.

The number of basis states used, e.g., for each 6Li state, is only about 10-12% for 〈2〉12, 〈4〉12, 〈6〉12,
14% for 〈8〉12, and 30% for 〈10〉12 as compared to the number for the complete Nmax = 12 SA-NCSM
model space. To add a degree of computational specificity to this, the runtime of the SA-NCSM code
exhibits a quadratic dependence on the number of (λµ) and (SpSnS) irreps – there are 1.74 × 106
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such irreps for the complete Nmax = 12 model space of 6Li (see Fig. 18 for selected nuclei), while only
8%-30% of these are retained in the selected space. The net result is that calculations in the selected
spaces require one to two orders of magnitude less computational time than SA-NCSM calculations
for the complete Nmax = 12 space. (Going into detail, which undoubtedly depends on the current
code implementation and available computational resources, model spaces up to 15 active HO shells for
intermediate-mass nuclei with dimensions ranging to 108 basis states presently require several hours,
while utilizing 22,425 Cray XE6 compute nodes on the Blue Waters system.) Indeed, with the help of
HPC resources, the use of such basis spaces in ab initio studies is manageable as well as expandable;
that is, one expects to be able to extend the reach of our SA-NCSM scheme from applications that are
doable today to the larger spaces and heavier nuclear systems of tomorrow, utilizing at each stage the
accuracy and predictive power of the ab initio approach.

5.2 Spectral properties of light and intermediate-mass nuclei

In Ref. [20], ab initio SA-NCSM spectral properties of p-shell nuclei are presented for selected model
spaces that expand up to Nmax = 12. Energies and physical observables are calculated with a Coulomb
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Figure 16: Relative strengths of the T = 1 (left half) and T = 0 (right half) interaction tensors labeled
by (λ0 µ0)S0 for Nmax = 6 for p-shell nuclei. The contributions of the conjugate (µ0 λ0) tensors are not
shown, but are equal to the ones of their (λ0 µ0) counterparts. (a) Bare N3LO interaction [3] for ~Ω = 11
MeV, and (b) its renormalized counterpart using Similarity Renormalization Group (SRG) [57] with
a cutoff of λc = 2 fm−1. (c) Bare JISP16 interaction [55] for ~Ω = 15 MeV. (d) Effective interaction,
based on the bare CD-Bonn interaction [2] for ~Ω = 15 MeV and using the Okubo-Lee-Suzuki (OLS)
renormalization technique [56].
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Figure 17: Ground-state and excited energies of 6Li and 6He, (a)-(d), together with (e) E2 transition
probabilities and (f) quadrupole moments for 6Li, shown for the complete Nmax model spaces (dashed
black curves) and for the 〈Nmax〉12 SA-NCSM selected model spaces (solid red lines). Results shown
are for JISP16 and ~Ω = 20 MeV. Note the relatively large changes in the results when the complete
space is increased from Nmax = 2 to Nmax = 12 as compared to the nearly constant 〈Nmax〉12 SA-NCSM
outcomes. Figure adapted from Ref. [20].

plus JISP16 NN interaction for ~Ω values ranging from 17.5 up to 25 MeV, along with the Gloeckner-
Lawson prescription [261] for elimination of spurious center-of-mass excitations.

The ground-state binding energies represent from 98% up to 98.7% of the complete-space binding
energy in the case of 6Li, and reach over 99% for 6He (Fig. 17). Furthermore, the excitation energies
differ only by 11 keV to a few hundred keV from the corresponding complete-space results, and the
agreement with known experimental data is reasonable over a broad range of ~Ω values (Fig. 19).

As illustrated in Table 5, the magnetic dipole moments for 6Li agree to within 0.3%. In addition, the
ground-state magnetic dipole moment agrees with the experimental value and turns out to be very close
to the sum of the magnetic moments of the neutron and the proton. Qualitatively similar agreement
is achieved for µ(2+

1 ) of 6He. The results suggest that it may suffice to include all low-lying ~Ω states
up to a fixed limit, e.g. N⊥

max = 6 for 6Li and N⊥
max = 8 for 6He, to account for the most important

correlations that contribute to the magnetic dipole moment.
To explore how close one comes to reproducing the important long-range correlations of the complete

Nmax = 12 space in terms of nuclear collective excitations within the symmetry-guided spaces under
consideration, we compare observables that are sensitive to the tails of the wave functions; specifically,
the point-particle rms matter radii, the electric quadrupole moments and the reduced electromagnetic
B(E2) transition strengths. As Table 5 clearly shows, the complete-space results for these observables
are remarkably well reproduced by the SA-NCSM for 6He in the restricted 12〈8〉 space. Similarly, the
12〈6〉 eigensolutions for 6Li yield results for B(E2) strengths and quadrupole moments that track very
closely with their complete Nmax = 12 space counterparts for all values of ~Ω (Fig. 19). The B(E2)
strengths almost double upon increasing the model space from Nmax = 6 to Nmax = 12. While larger
model spaces may be needed to achieve convergence, the close correlation between the Nmax = 12 and
12〈6〉 results is nevertheless impressive. In addition to being in agreement, the results reproduce the
challenging sign and magnitude of the ground-state quadrupole moment (Table 5) that is measured to be
Q(1+) = −0.0818(17) efm2 [38]. The sign can be easily understood in terms of the SU(3) structure of the
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Figure 18: (a) Dimensions of positive-parity model spaces as functions of Nmax for selected nuclei for
the M scheme (solid curves) and the J scheme (dashed and dotted curves). (b) Dimension of relevance
to the SA-NCSM, namely, number of many-nucleon single-shell basis configurations that generate the
SA-NCSM model space. The increase in particle number is shown for selected nuclei in p, sd, and pf
shells.

Table 5: Selected observables for the two lowest-lying states of 6He and 6Li obtained in the complete
Nmax = 12 space and selected model subspaces forJISP16 and ~Ω = 20 MeV. The experimental values
for the 6Li 1+

gs are measured to be Q(1+) = −0.0818(17) efm2 and µ = +0.822 µN [38].

6He 6Li
Nmax = 12 〈8〉12 Nmax = 12 〈6〉12

B(E2; 2+
1 → 0+

1 ), e2fm4 0.181 0.184
Q, efm2 2+

1 -0.69 -0.711 1+
1 −0.064 −0.08

µ, µN 2+
1 -0.873 -0.817 1+

1 0.838 0.839
3+

1 1.866 1.866
rm, fm 2+

1 2.153 2.141 1+
1 2.119 2.106

0+
1 2.113 2.11 3+

1 2.063 2.044

6Li ground-state rotational band, which is dominated foremost by a 0~Ω(2 0) configuration (of a prolate
shape), followed by high-~Ω configurations of prolate deformation, which, as mentioned earlier, implies
a negative Q value. Finally, the results for the rms matter radii of 6Li, listed in Table 5, agree to within
1%. The differences between selected-space and complete-space results are found insensitive to the
choice of ~Ω and appear sufficiently small as to be inconsequential relative to the residual dependencies
on ~Ω and on Nmax.

For 12C [108], we construct two SU(3)-based selection model spaces, based on an algorithm that
includes largest-deformation/lowest-spin configurations and symplectic configurations thereof according
to the rule (20) first. These are referred to as “A” (a smaller set of basis states) of dimensions 2.8× 106

(all 0+ states), 10.2 × 106 (all 2+ states), and 9.4 × 106 (all 4+ states), and “B” (an extended set) of
dimensions 4.0× 106 (all 0+ states), 16.3× 106 (all 2+ states), 20.3× 106 (all 4+ states) and 14.4× 106

(all 1+ states). Indeed, these sizes realize only 0.5% to 3.5% of the corresponding complete Nmax = 8
model space. Table 6 reveals that by employing the drastically reduced model space, 〈6〉8-B, the SA-
NCSM isospin-zero 2+

1 , 1+
1 , and 4+

1 excitation energies are found to deviate from the corresponding
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Figure 19: Experimental (from Ref. [38]) and theoretical excitation energies for (a) 6Li and (b) 6He.
The theoretical results are for JISP16 and ~Ω = 20 MeV in the complete Nmax = 6 and 12 spaces and
in selected model spaces. (c) Electric quadrupole transition probabilities and (d) quadrupole moments
for 6Li, calculated using the JISP16 interaction without using effective charges, as a function of ~Ω
for the complete Nmax = 12 space (dashed black lines) and 〈6〉12 selected space (solid blue lines).
Experimentally, B(E2; 1+

1 → 3+
1 ) = 25.6(20) e2fm4 [38]. Figure adapted from [20].

Table 6: Observables for several model spaces, namely, excitation energies E, electric quadrupole mo-
ments Q, together with point-particle matter rms radii rm for selected low-lying states (including the
ground state, g.st.) in 12C. The observables are calculated for ~Ω=20 MeV using the bare JISP16 in-
teraction and compared to the experiment [133] (“Expt.”). The SA-NCSM results are obtained in a
reduced 〈6〉8 model space with a complete space up to 6~Ω. Two selection patterns, “A” and “B”, are
shown. The fraction of the many-body basis dimension used in the calculations as compared to the
complete Nmax = 8 M -scheme dimension is also specified.

〈6〉8-A 〈6〉8-B Nmax = 8 Expt.
Model Space Dimensionality 3.8%a 9.2%b 100%

E2+

1
(MeV) 5.253 4.644 4.685 4.439

E1+

1
(MeV) 14.199 14.161 12.71

E4+

1
(MeV) 17.132 16.324 16.255 14.083

rm(0+
g.st.) (fm) 2.007 2.005 2.003 2.43(2)c

rm(2+
1 ) (fm) 2.027 2.023 2.024 N/A

rm(4+
1 ) (fm) 2.058 2.055 2.061 N/A

Q2+

1
(e fm2) 3.712 3.735 3.741 +6(3)

Q4+

1
(e fm2) 4.826 4.845 4.864 N/A

a Model space for all 0+, 2+, and 4+ states in 12C.
b Model space for all 0+, 1+, 2+, and 4+ states in 12C.

c Ref. [138]
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Nmax = 8 results [262] only by 0.9%, 0.3%, and 0.4%, respectively. These states lie remarkably close
to the complete-space counterparts even when the smaller 〈6〉8-A SA-NCSM model space is utilized.
In addition, radii and quadrupole moments shown in Table 6 are well reproduced by the SA-NCSM
calculations in both selected spaces. This indicates that these observables are not sensitive to the fine-
tuning of the selected space and only a manageable number of symmetry-adapted configurations of the
8~Ω subspace appears sufficient for their description.

Ab initio investigations of open-shell nuclei in the sd-shell region are now feasible and the first ab
initio calculations for 24Si and its mirror nucleus 24Ne (Fig. 20) have been achieved in the framework
of the SA-NCSM with SRG-evolved (to λc = 2 fm−1) chiral N3LO interactions in an Nmax = 〈2〉6
symmetry-selected model space of 3.5× 106 dimensionality (dimensionality of the corresponding J = 0
and J = 2 Nmax = 6 complete model space is 8 × 109) [32, 263]. While structural properties of the
short-lived 24Si are difficult to measure, E2 transitions are experimentally available for 24Ne and the SA-
NCSM result for B(E2; 2+

1 → 0+
1 ) agrees with the experimental value without using effective charges

(note that conclusive results will require the exploration of bare 3N chiral interactions, along with
the SRG-induced many-body components of the interaction and observables). Ab initio results up to
Nmax = 12 for sd-shell nuclei are detailed in Ref. [264].
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Figure 20: First ab initio SA-NCSM calculations for open-shell intermediate-mass nuclei, 24Si and 24Ne,
obtained for a selected Nmax = 〈2〉6 model space (that is, the complete space up through 2~Ω and
selected 4~Ω and 6~Ω subspaces with 3.5× 106 dimensionality – compare to the currently inaccessible
Nmax = 6 complete model space of ∼ 1011 dimensionality, as shown in Fig. 18a, required for the
corresponding M -scheme NCSM calculations). Calculations are performed for ~Ω = 15 MeV and using
the SRG-N3LO NN interaction for an SRG cutoff λc = 2 fm−1. Figure adapted from Ref. [263].

5.3 Electron scattering for light nuclei

In the SA-NCSM, the impact of the symmetry-guided space selection on the charge density components
for the ground state of 6Li in momentum space is studied, including the effect of higher shells [87], by
investigating the electron scattering charge form factor for momentum transfers up to q ∼ 4 fm−1. The
results demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions
for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum
transfer. This confirms the previous outcomes for selected spectroscopy observables in light nuclei, as
discussed in Sec. 5.2.
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Figure 21: Longitudinal C0 electron scattering form factors F 2
L for the SA-NCSM 1+ ground state of 6Li

calculated in the complete Nmax = 12 space (darker colors) and the SU(3)-selected spaces, 〈2〉12, 〈4〉12,
〈6〉12, 〈8〉12, and 〈10〉12 (lighter colors), for selected ~Ω values and for (a) the bare JISP16 interaction,
as well as for (b) the bare NNLOopt interaction. Deviations due to the SU(3)-based space selection
are indicated by the curve thickness. All form factors are corrected for the center-of-mass motion and
the finite-size effect of the nucleon. Experimental data are taken from Ref. [265]. Figure adapted from
Ref. [87].

In particular, Fig. 21 shows longitudinal electron scattering form factors for the ground state of 6Li
in the framework of the ab initio SA-NCSM for several SU(3)-selected spaces, 〈2〉12, 〈4〉12, 〈6〉12, 〈8〉12,
〈10〉12, together with the complete Nmax = 12 space. An important result is that in all cases, 〈6〉12
selected-space results are found to be almost identical to the Nmax = 12 complete-space counterparts
for any momenta, shown here up to momentum transfer q ∼ 4 fm−1, while being reasonably close to
experiment. This remains valid for various ~Ω values, as well as when different bare interactions are
employed. Deviations in the form factor (and in the one-body densities) as a result of the SU(3)-based
selection of model spaces are found to be only marginal and to decrease for higher ~Ω [87].

While results using NNLOopt lie slightly closer to experiment, both interactions show similar patterns
with a small dependence on ~Ω (Fig. 21). Furthermore, as one increases Nmax (e.g., from Nmax = 8 to
Nmax = 12), SA-NCSM predictions are reasonably trending towards experiment (see Fig. 3 of Ref. [87]).
We note that the Nmax = 12 results continue to deviate from the experimental data for intermediate
momenta, especially for q & 2 fm−1, where two-body currents become significant for C0 as shown by the
Variational Monte Carlo (VMC) [6] with the AV18 [1] two-nucleon and Urbana IX [266] three-nucleon
interactions. Nonetheless, the low-~Ω SA-NCSM F 2

L calculations using NNLOopt agree with the ones
of the VMC using AV18/UIX (without contributions from two-body currents) for q . 2 fm−1 (e.g.,
compare Fig. 21 and Fig. 1 of Ref. [6]). The agreement might be a consequence of the fact that
the NNLOopt is designed to minimize the contribution due to three-nucleon interactions (similarly, for
JISP16). In order to gain additional insight into the similarities and differences among the ab initio
results for 6Li, we present in Table 7 the energies, electromagnetic moments, and point-nucleon rms
radii for selected states in 6Li, as calculated in the present SA-NCSM approach with the JISP16 and
NNLOopt, and in other ab initio models, such as the NCSM, the VMC with AV18/UIX and the Green’s
function Monte Carlo (GFMC) with AV18/UIX. The results presented in Table 7 show good correlations
among the different models with, perhaps, the exception of the smaller rms radii obtained with JISP16
(SA-NCSM & NCSM) and the larger magnitude of the electric quadrupole moment obtained with the
VMC.

The largest contribution to the C0 form factor comes from the (λµ) = (0 0) one-body density and,
for all q values, from the (0 0) contribution to the FL (Fig. 22), as a result of the largest density
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Table 7: 6Li binding energy (BE), excitation energies (E), electric quadrupole (Q) and magnetic dipole
(µ) moments, as well as point-nucleon proton (rp) and matter (rm) rms radii, as calculated in the 〈6〉12
SA-NCSM with the JISP16 NN interaction and for ~Ω=20 MeV (taken from Ref. [20]) and compared
to other ab initio approaches: the complete Nmax = 12 model space [20] (or NCSM), as well as VMC and
GFMC using AV18/UIX interaction (energies taken from Ref. [6]; radii and electromagnetic moments
taken from Ref. [267], without contributions from two-body currents). Experimental results (Expt.)
taken from Ref. [38] unless otherwise specified.

SA-NCSM NCSM VMC GFMC Expt.
1+

gs

BE [MeV] 30.445 30.951 27.0(1) 31.2(1) 31.99
rms rp [fm] 2.112 2.125 2.46(2) 2.43a

rms rm [fm] 2.106 2.119 2.35(3)b

Q [e fm2] -0.08 -0.064 -0.33(18) -0.0818(17)
µ [µN ] 0.839 0.838 0.828(1) 0.822

3+

E [MeV] 2.515 2.526 3.0(1) 2.7(3) 2.186
rms rm [fm] 2.044 2.063
Q [e fm2] -3.88 -3.965
µ [µN ] 1.866 1.866

2+

E [MeV] 5.303 5.066 4.4(1) 4.4(4) 4.312
rms rm [fm] 2.18 2.204
Q [e fm2] -2.279 -2.318
µ [µN ] 1.014 0.97

a Deduced from the 6Li charge radius of 2.56(5) fm [265]
b From Ref. [268]

within the s, p, sd, and pf shells. In addition, for all ~Ω, only the (0 0)+ (2 0)/(0 2) components
are found sufficient to reproduce the low-momentum regime of the form factor. The (4 0), (2 2), and
(8 0) components are the ones that are most responsible for larger form-factor values at intermediate
momenta. The preponderance of 0~Ω(0 0), 2~Ω(2 0), . . . , and 8~Ω(8 0) together with 0~Ω(2 2) and
2~Ω(4 2) (and their conjugates) in the one-body densities and in the form factor can be recognized as
another signature of the Sp(3,R) symmetry. Above all, the symmetry-adapted model spaces include
the important excitations to higher HO shells as seen in their significant contributions at low- and
intermediate-momentum transfers. The outcome further confirms the utility of the SA-NCSM concept
for low-lying nuclear states.

6 Summary and outlook

We have reviewed exact and near symmetries of atomic nuclei that have been long recognized and
only recently, exposed from first principles and exploited in ab initio theories. Such symmetries in-
clude, for the spatial degrees of freedom, the deformation-related SU(3) together with Sp(3,R) and its
complementary O(A − 1), and, for the spin-isospin degrees of freedom, Wigner’s SU(4). We have also
presented various symmetry-guided techniques, with a focus on open-core shell-model theory and the
use of symmetries in large-scale nuclear simulations that permit symmetry mixing. In such calculations,
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Figure 22: Most dominant SU(3) contributions to FL for the longitudinal C0 form factor, with (solid)
and without (dashed) removing the CM contribution. SU(3) contributions are labeled by (λµ), shown
at the top of each plot in order of decreasing maximum amplitude. The Nmax = 12 SA-NCSM 1+

ground state of 6Li is calculated with the NNLOopt bare interaction and for ~Ω = 20 MeV. Deviations
due to the SU(3)-based space selection are indicated by the curve thickness. Note that the vertical
axis scale is reduced by an order of magnitude from the left to the right panels. Figure adapted from
Ref. [87].

symmetries are not used to restrict the nuclear dynamics (e.g., limiting to symmetry-preserving interac-
tions or a single irrep, which is often very restrictive), but rather to expose physically relevant degrees
of freedom to organize large-scale model spaces. We have demonstrated the unique role of symmetries
in large-scale applications of the ab initio SA-NCSM, NCSM, HH method, lattice EFT, and GFMC to
nuclear dynamics. We have discussed an important new development of the theory, the SU(3)-based
SA-NCSM, that, for the first time, has demonstrated that observed collective phenomena in light nuclei
emerge naturally from first-principle ab initio considerations. The results, supporting experimental ev-
idence, underscore the strong dominance of configurations with large quadrupole deformation and low
intrinsic spins, and symplectic excitations thereof. In addition to this, an overall pattern coherently
propagates through states that form a rotational band, as first recognized in Ref. [98].

Within this context, a symmetry-guided concept has been discussed, within the SA-NCSM frame-
work, that accommodates spatially expanded correlations that are essential to collective features, by
including complete low-N~Ω subspaces (all “horizontal” mixing) and symmetry-guided selected sub-
spaces up to a very large Nmax (“vertical cones” built on dominant SU(3) configurations). We have
demonstrated that this symmetry-guided framework can achieve significantly reduced dimensions for
equivalent large shell-model spaces while retaining the accuracy of the corresponding complete-space re-
sults; they also achieve a close agreement with experiment, when using the bare JISP16 NN interaction
that minimizes the contribution of the 3N interactions [55]. While the 3N interactions are secondary
in importance to the physics and underpinning symmetries discussed here, and often secondary to the
need for larger model spaces, they play an important role [269] toward reproducing experimental binding
energies and the physics of certain nuclear states, such as the ones influenced by the spin-orbit force.
Including 3N interactions in the ab initio SA-NCSM is underway (e.g., the N2LO and forthcoming
N3LO 3N chiral interactions [270], or 3N interactions induced during a renormalization procedure). In
particular, current efforts focus to derive and implement a unitary transformation of M -scheme or JT -
scheme 3N interaction matrix elements into the SU(3) scheme. This represents an elaborate task, which
involves the computing of a huge number of SU(3) coupling/recoupling coefficients. Fortunately, it can
be straightforwardly implemented based on our successful strategy for NN interactions, which has been
recently shown to run very efficiently on modern GPU architectures by a symmetry-aware reordering of
input matrix elements [271]. This greatly reduces the thread divergence in branching conditionals and
improves utilization of fast memories. Another important consideration relates to an efficient memory
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storage of the 3N matrix elements, which will greatly benefit from the group-theoretical foundation of
the SA-NCSM. For example, Ref. [272] has already shown that the use of JT -scheme 3N interactions
reduces memory footprints by up to three orders of magnitude as compared to the use of their M -scheme
representation.

The results further anticipate the likely significance of LS-coupling and SU(3) as well as the over-
arching symplectic symmetry for an extension of ab initio methods to the heavier nuclei. And while
medium-mass nuclei are expected to exhibit a stronger SU(3) mixing in low-N~Ω subspaces as a result
of the richer subspaces as compared to light nuclei (e.g., the dimension of the 0~Ω subspace is 4 for
the 6Li ground state and 4.1 × 104 for the 48Cr ground state), the relevant (λµ)S configurations in
these subspaces typically remain a fraction of the complete subspaces. It is important to emphasize
that such an SU(3) mixing is readily accounted for in the SA-NCSM, by the complete horizontal span
of the SA-NCSM model space, while the vertical selection is guided by symplectic vertical cones built
on the most dominant SU(3) configurations. And while it is clear that selected model spaces, without
compromising the accuracy of results, can reduce the memory demand in computations as compared to
the complete space, utilizing symmetries leads to time-consuming evaluations of the many-body Hamil-
tonian. Nonetheless, it transforms a memory-bound unfeasible problem in a complete Nmax model space
into a CPU-bound problem in a selected N⊤

max model space, with N⊤
max much larger than Nmax, which

is attainable on today’s petascale architecture. This allows a theory of the symmetry-guided large-scale
shell-model type to extend the reach of the standard schemes by exploiting symmetry-guided principles
that enable one to include large spatial configurations, and in so doing capture the essence of long-range
correlations that often dominate the nuclear landscape. The findings reviewed here start to unveil new
physics, namely, understanding the mechanism on how simple patterns in nuclei and a diversity of
nuclear properties emerge from a fundamental level.
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[270] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, and H. Witala, Phys. Rev. C 66
(2002) 064001

[271] T. Dytrych, T. Oberhuber, et al., to be submitted to Comp. Phys. Comm. (2016)

[272] R. Roth, A. Calci, J. Langhammer, and S. Binder, Phys. Rev. C 90 (2014) 024325

54


