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Abstract

The concept of symmetry has received significant attention in computer graphics and computer vision research

in recent years. Numerous methods have been proposed to find and extract geometric symmetries and exploit

such high-level structural information for a wide variety of geometry processing tasks. This report surveys and

classifies recent developments in symmetry detection. We focus on elucidating the similarities and differences

between existing methods to gain a better understanding of a fundamental problem in digital geometry processing

and shape understanding in general. We discuss a variety of applications in computer graphics and geometry

that benefit from symmetry information for more effective processing. An analysis of the strengths and limitations

of existing algorithms highlights the plenitude of opportunities for future research both in terms of theory and

applications.

1. Introduction

The mathematical sciences particularly exhibit order, sym-

metry, and limitation; and these are the greatest forms of the

beautiful. - Aristotle

Symmetry is a universal concept in nature, science, and
art (see Figure 1). In the physical world, geometric symme-
tries and structural regularity occur at all scales, from crystal
lattices and carbon nano-structures to the human body, archi-
tectural artifacts, and the formation of galaxies. Many bio-
chemical processes are governed by symmetry and as a re-
sult we experience a wealth of biological structures that ex-
hibit strong regularity patterns. This abundance of symmetry
in the natural world has inspired mankind from its origins to
incorporate symmetry in the design of tools, buildings, art-
work, or even music. Besides aesthetic considerations, phys-
ical optimality principles and manufacturing efficiency often
lead to symmetric designs in engineering and architecture.

Geometric data, acquired via scanning or modeled from
scratch, is traditionally represented as a collection of low-
level primitives, e.g., point clouds, polygon meshes, NURBS
patches, etc., without explicit encoding of their high-level
structure. Finding symmetries in such geometric data is thus
an important problem in geometry processing that has re-
ceived significant attention in recent years. Numerous ap-
plications immediately benefit from extracted symmetry in-
formation, e.g., shape matching, segmentation, retrieval, ge-
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Figure 1: Examples of symmetry in nature, engineering, ar-

chitecture, and art.
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ometry completion, beautification, meshing, or procedural
modeling.

This survey reviews the state-of-the-art in symmetry de-
tection methods for geometric data sets. We first introduce
basic mathematical terms and present various high-level cri-
teria to organize existing work into a set of categories, em-
phasizing their similarities and differences (see Table 1). We
hope that this comparative survey will help readers navigate
through the constantly expanding literature on symmetry de-
tection and inspire researchers to contribute to this emerging
field in the future.

The rest of the survey is structured as follows: In Sec-
tion 2 we start with a discussion of the classical mathemat-
ical theory of symmetry groups that characterizes the struc-
ture of globally and exactly symmetric objects. In Section 3
we look at more general cases including partial and approx-
imate symmetry, which are particularly relevant in practical
applications in computer graphics and vision. The main part
of this paper surveys different algorithms for symmetry de-
tection (Sections 4-7). We then examine what types of ge-
ometrical structures these different algorithms discover and
how symmetry information is encoded (Section 8). Finally,
we discuss various applications of symmetry detection (Sec-
tion 9) and conclude with thoughts on future challenges in
the field (Sections 10 and 11).

2. Classical Theory

Symmetry is a general concept in mathematics [Wey52];
broadly speaking, a symmetry preserves a certain property
(e.g., geometric similarity) of an object under some opera-
tion applied to the object. This notion of invariance is for-
malized in an elegant branch of mathematics called group

theory [Rot94]. In the context of geometry, we will con-
sider geometric transformations as the symmetry operations,
such as reflections, translations, rotations, or combinations
thereof.

We say that a geometric object M is symmetric with re-
spect to a transformation T , if M = T (M), i.e., M is in-
variant under the action of transformation T . The set S of
all symmetry transformations of a shape has a very specific
structure, namely that of a group. A symmetry group is a set
of transformations that satisfies the following group axioms
with composition as the group operation:

• Closure: If M is symmetric with respect to two transfor-
mations T1 and T2, then it will also be symmetric with
respect to the composition T1T2. Thus if T1,T2 ∈ S, it fol-
lows that (T1T2) ∈ S also.

• Identity element: The identity transform I ∈ S is always
a symmetry transformation, since it trivially leaves any
object unchanged, i.e., I(M) = M.

• Inverse element: For each symmetry transformation T ∈
S there exists an inverse element T−1 ∈ S, such that
T−1T = T T−1 = I.

120° 240°I

dihedral group D3

dihedral group D5 cyclic group C3 infinite group O(2)
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Figure 2: The dihedral group D3 represents the symmetries

of the equilateral triangle (the colored flags are added to il-

lustrate the transformation), while D5 is the symmetry group

of the five-sided star. The triskelion has three rotational sym-

metry but no reflectional symmetries and is represented by

the cyclic group C3. All of these finite point groups are sub-

sets of the isometry group O(2) that represents the symme-

tries of the circle.

• Associativity: The compositions of multiple transforma-
tions is independent of the priority of composition, i.e.,
(T1T2)T3 = T1(T2T3) ∀ T1,T2,T3 ∈ S .

Note that while the priority of composition is irrelevant,
the order of transformations can be important. For example,
composing two rotations in 3D about different axes in gen-
eral leads to a different transformation when switching the
order of application. Groups for which the relation T1T2 =
T2T1 holds ∀T1,T2 ∈ S are called commutative or Abelian

groups.

The notion of symmetry as invariance under transforma-
tions is a powerful concept that has been advocated promi-
nently by Felix Klein in his Erlanger Programm [Kle93].
Klein proposed to characterize different classes of geometry,
such as projective geometry or Euclidean geometry, based
on the underlying symmetry groups. For example, distances
and angles are invariants in Euclidean geometry. These prop-
erties are preserved under transformations of the Euclidean
group, the group of all isometries with respect to the Eu-
clidean metric. This notion of classifying geometries based
on symmetry groups can be transferred to geometric objects
as well.

Let us consider the example of a 2D equilateral triangle

c© The Eurographics Association 2012.
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Figure 3: Frieze groups are composed of translation, rota-

tion by 180 degrees, glide reflection, reflection about a hori-

zontal line, or reflection about a vertical line.

shown in Figure 2(a). We observe that a rotation of 120◦

around the triangle center maps the triangle onto itself. It fol-
lows that all integer multiples of this rotation are also sym-
metries of the triangle. However, only three of these rotations
are unique, since a rotation by 360◦ is equal to the identity
transformation. We also see that the triangle has three reflec-
tional symmetries across the lines from each vertex through
the triangle center. Together, these transformations form the
dihedral group D3 consisting of six elements, three rotations
(of which one is the identity transformation) and three reflec-
tions. In general, the dihedral group Dn represents the sym-
metries of a regular n-gon. These symmetries can be rep-
resented as finite combinations of two generating transfor-

mations. For example, repeated application of a 72◦ rotation
and a reflection can generate all elements of a dihedral group
D5 (see Figure 2(b)). Shapes that have rotational symmetries
but no reflectional symmetries, such as the triskelion shown
in Figure 2(c) can be characterized by a cyclic group Cn that
is generated by a rotation of 360◦/n. The cyclic and dihe-
dral groups are finite point groups. In two dimensions, they
are subgroups of the orthogonal group O(2), the group of all
Euclidean isometries that leave the origin fixed. This infinite

group is the symmetry group of the circle, which is sym-
metric with respect to rotations of arbitrary angle around its
center and reflections across arbitrary lines through the cen-
ter (Figure 2(d)).

Symmetry groups have been used extensively in the study
of decorative art and structural ornaments. The symmetries
of a two-dimensional surface that is repetitive in one direc-
tion and extends to infinity along that direction can be classi-
fied by one of exactly seven Frieze groups (Figure 3). If rep-

Figure 4: The symmetries of the tiling patterns of the Al-

hambra can be described by wallpaper groups of which 17

distinct types exist.

etition occurs in two different directions, seventeen distinct
groups are possible, denoted as wallpaper groups. These
groups combine reflections, rotations, and translations so
that all these transformations and all combinations of them
leave the entire grid unchanged. This leads to a wealth of
repetitive patterns that can, for example, be observed in the
beautiful tiling patterns of the Alhambra in Granada, Spain
(Figure 4).

In summary, the classical theory of symmetry groups de-
scribes the structure of transformations that map objects to
themselves exactly. Such exact, global symmetry leads to a
group structure because after applying a transformation, we
end up with the same situation as before, creating a closed
algebraic structure.

In computer graphics applications, we often face a more
general problem, where symmetry is approximate and par-
tial. For example, for a simple building facade with win-
dows related by translational symmetry, the closure property
is violated since the facades have finite extent. Further, we
have to handle different classes of transformations. Finally,
we need efficient algorithms to compute such symmetries. In
the following subsection, we discuss these issues.

3. Classification

This survey investigates algorithmic paradigms for extract-
ing symmetries and relations in 3D geometric data. We first
formalize the problem of symmetry detection and present
several classification categories to highlight the similarities
and differences of existing symmetry detection algorithms.
In contrast to the classical theory discussed before, we now
take practically important aspects such as approximate sym-
metry and partiality into account.
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transform.

Type of

Features

Alt et al. 1988 [AMWW88] object-space graph isomorph. X X X X pairwise rigid

Atallah et al. 1985 [Ata85] string pattern matching X X X X pairwise reflections

Bermanis et al. 2010 [BAK10] spectral analysis X X X X pairwise rotations,

reflections

angular difference

functions

Berner et al. 2008 [BBW∗08] feature-graph matching X X X X X X segmentation rigid slippage features

Berner et al. 2009 [BBW∗09a] feature-graph matching X X X X X X segmentation (relaxed)

isometries

Gaussian

curvature,

curvature lines

Bokeloh et al. 2009 [BBW∗09b] feature graph matching X X X X X segmentation rigid lines

Ben-Chen et al. 2010 [BCBSG10] flow of killing vector fields X X X X continuous continuous

isometries

Killing vector

fields

Bokeloh et al. 2011 [BWKS11] RANSAC-based transformation

verification

X X X X X symmetry

groups,

continuous

translations sharp creases

Berner et al. 2011 [BWM∗11] feature-graph matching X X X X X segmentation subspace

symmetries

lines of large

principle curvature

Chertok et al. 2010 [CK10] spectral analysis X X X X X pairwise rotations,

reflections

local image

features

Gal et al. 2006 [GCO06] geometric hashing X X X X segmentation similarity

transform.

curvature based

salient features

Gelfand et al. 2004 [GG04] slippage analysis X X X X X continuous rigid local slippage

signatures

Kazhdan et al. 2003 [KCD∗03] descriptor computation with

Fourier methods

X X X X pairwise reflections

Kazhdan et al. 2004 [KFR04] descriptor computation with

Fourier methods

X X X X pairwise rotations,

reflections

Kim et al. 2010 [KLCF10] search in möbius

transformations

X X X X pairwise isometries average geodesic

distance

Lipman et al. 2010 [LCDF10] spectral analysis in

correspondence space

X X X X X X symmetry

aware

embedding

rigid

Lasowski et al. 2009 [LTSW09] belief propagation X X X X X segmentation isometries

Mitra et al. 2010 [MBB10] multi-dimensional scaling X X X X symmetry

groups

isometries discrete

Laplacians

Mitra et al. 2006 [MGP06] transformation voting X X X X X segmentation,

hierarchy

similarity

transform.

curvature

Martinet et al. 2006 [MSHS06] generalized moment functions X X X X X pairwise,

hierarchy

rotations,

reflections

moments

Ovsjanikov et al. 2008 [OSG08] search in signature embedding X X X X pairwise isometries global point

signatures

Pauly et al. 2008 [PMW∗08] transformation voting X X X X X symmetry

groups

similarity

transform.

curvature

Podolak et al. 2006 [PSG∗06] symmetry transform

computation

X X X X X pairwise reflections

Raviv et al. 2007 [RBBK07] generalized multi-dimensional

scaling

X X X X pairwise isometries geodesic distances

Raviv et al. 2009 [RBBK09] generalized multi-dimensional

scaling

X X X X X pairwise isometries geodesic distances

Raviv et al. 2010 [RBS∗10] matching of distance

histograms

X X X X pairwise isometries diffusion distances

Simari et al. 2006 [SKS06] reweighted least squares auto

alignment

X X X X hierarchy reflections PCA axes

Sun et al. 1997 [SS97] search in orientation histograms X X X X X X pairwise reflections,

rotations

extended Gaussian

image

Thrun et al. 2005 [TW05] symmetry space scoring X X X X segmentation reflections,

rotations

Xu et al. 2009 [XZT∗09] voting for symmetry transforms X X X X segmentation reflections SDF

Zabrodsky et al. 1995 [ZPA95] symmetry distance computation X X X X X pairwise isometries

Table 1: The table classifies the related work on symmetry detection according to the method used, type of input (meshes, point

sets, volume data, and images), and type of output (global vs. partial, discrete vs. continuous measure, extrinsic vs. intrinsic,

structure of the symmetries, and the class of transformations, and features used.)
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Correspondences as Building Blocks. The elementary
building block for symmetry detection is the identification of
matching geometry: Given a shape, the goal is to identify and
extract pairs of regions such that each pair of regions, under
an appropriate distance measure, is similar when the respec-
tive regions are aligned using an allowable transformation.
Specifically, given a geometric model M, the goal is to iden-
tify subsets M1,M2 � M such that M1 � T (M2), where T

denotes a transformation and � denotes equality under the
chosen distance measure. In case of partial symmetry detec-
tion (see later), the surface patches are often required to be
non-overlapping, i.e., M1 � M2 = �. In this survey, we focus
on shapes represented as surfaces, e.g., point cloud data, tri-
angle meshes, or NURBS surfaces, rather than 2D images or
volumetric data.

Research efforts target variations of the symmetry detec-
tion problem primarily based on the choice of (i) how the
shape is segmented, (ii) how distance between two surface
patches is measured, and (iii) what classes of transforma-
tions are allowed to bring surface patches into alignment (see
Table 1 for a classification of recent related work). The sym-
metry detection problem is challenging because we have to
simultaneously segment the shape and establish correspon-
dence across the resultant segments, while solving for the
respective aligning transforms. Note that even the decou-
pled versions of the problem are non-trivial with various
solution strategies: we refer the readers to respective sur-
veys on mesh segmentation [Sha08] and surface correspon-
dence [vKZHCO10]. Next we discuss some common vari-
ants of the problem.

Global vs. Partial Symmetries. For global symmetry de-
tection we seek transformations that map the whole object
to itself, i.e., M1 = M2 = M. Consequently, we do not have
to solve the segmentation problem, which greatly simplifies
the symmetry detection process.

For global symmetries of a finite object the centroid of
an object is a fixpoint, i.e., is invariant under the shape’s
symmetry transformations. Specifically, symmetry rotations
have the object centroid as rotation centers, while planes of
reflection must pass through the object centroid. Methods
for global symmetry detection exploit this property to sig-
nificantly reduce the search space.

While a number of common shapes exhibit global sym-
metries (see Figure 1), self-similarities often occur only on
parts of a shape. In order to capture these regularity pat-
terns and enable a fine-grain analysis of geometric objects,
we consider partial symmetries. There are two aspects to
partial symmetries. Symmetry can be restricted to a subset
M� � M as shown in Figure 5(a). If we consider M� as a
separate shape, then we can apply the notion of symmetry
groups as defined above. Symmetry detection thus amounts
to segmenting the shape into subsets that exhibit global sym-
metries represented by a transformation group.

(a) complete symmetry group on parts of a shape

(b) partial translational

symmetry

(c) partial rotational 

symmetry

Figure 5: Partial symmetries commonly occur in geometric

data sets.

In many instances, however, we do not have a complete
symmetry as defined by a symmetry group. For example,
translational structures in bounded shapes are very common,
such as the repetitive patterns of the steps of the stairs shown
in Figure 5(b). For such a structure, we can find a transfor-
mation that maps, e.g., the three lower-most steps to the three
upper-most ones, but there is no self-similarity of the entire
set of steps, except for the identity transform. Specifically,
we say a shape M has a partial symmetry with respect to
a transformation T , if there exist two subsets M1,M2 � M

such that T (M1) = M2. This definition coincides with the
definition of a global symmetry if M1 =M2 =M, thus global
symmetry is a special case of partial symmetry.

Partial symmetry allows handling a broader class of sym-
metries, but typically does not preserve the group structure.
However, we can classify partial symmetries by the small-
est group that contains the partial symmetry transformations.
Conceptually, we can compute the closure of the symme-
try set with respect to composition, which is analogous to
repeating the pattern to infinity (or until a full rotation is
achieved for a cyclic rotation group) as illustrated in Fig-
ure 5.

Exact vs. Approximate Symmetries. In another axis of
variation, we look at the notion of equivalence � under
transformations. Physical objects as shown in Figure 1 are

c� The Eurographics Association 2012.
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typically not symmetric in a precise sense; according to the
definition given in Section 2, none of these objects is sym-
metric. Deviations in biological growth, manufacturing im-
precisions, or stochastic fluctuations in physical processes
commonly invalidate a precise symmetry transformation.
These shapes, however, exhibit strong regularity patterns
that are close to ideal symmetries.

In order to enable more practical symmetry detection al-
gorithms, we need a mathematical definition of approximate
symmetry that is suitable for computation. For this purpose
we define a distance function d(M,T (M)) that measures the
distance between the two shapes M and T (M). We say that
a shape M is � -symmetric with respect to a transformation
T , if d(M,T (M)) < � . For � = 0 we obtain the definition of
exact symmetry, i.e., T (M) = M.

Different variants of distance functions have been pro-
posed. Zabrodsky et al. [ZPA95] introduced a measure of
approximate symmetry as the “minimum effort required to
transform a given object into a symmetric one”. This effort
of transformation is quantified through a distance function
that computes the mean of squared distances of each point
on a shape to the location on the closest symmetric shape. If
a shape is defined through a scalar-valued function f , e.g.,
a gray-scale image, then the closest symmetric function is
simply the average of f and T ( f ) [PSG�06]. Thus the sym-
metry distance can be defined as

d( f,T ) =

�

�

�

�

f �
f +T ( f )

2

�

�

�

�

=

�

�

�

�

f � T ( f )

2

�

�

�

�

.

A distance measure that is often used in shape matching
and registration is defined as,

d(M,T (M)) =
�

x� M
⊂T x� � M(T x)⊂2

dx, (1)

where � M(y) is the closest point from y on the surface M.
Note that this is not a symmetric definition. Another popular
definition is the Hausdorff distance

d(M,T (M))=max{ sup
x� M

inf
y� T (M)

⊂x� y⊂, sup
y� T (M)

inf
x� M

⊂x� y⊂}.

For a given transformation T and subset M� � M we can
compute the symmetry distance using suitable discretiza-
tions of the continuous measures defined above. For exam-
ple, the integral distance measure of Equation 1 can be ap-
proximated as

d(M,T (M)) �
A(M)

|P| �
pi� P

⊂T pi � � P(T pi)⊂
2,

where, A(M) is the surface area of M and P is a uniform
sampling of M with |P|samples.

Figure 6: A rigid correspondence is determined by a surface

point and a direction. In practice, we expect that an object

encoded by n points has no more than O(n1.5) candidate

transformations that a brute-force search algorithm would

need to test.

Another difficulty with approximate symmetries is that
the group structure is not preserved — it is well pos-
sible that d(M,T1(M)) < � and d(M,T2(M)) < � , while
d(M,(T1T2)(M)) > � . Hence � -symmetries are not closed
under composition and thus do not form a group. Alternately,
A � B and B � C does not necessarily imply that A � C.

For a partial and approximate symmetry to be meaning-
ful, the size of the symmetric subset needs to be sufficiently
large, and the approximation threshold � sufficiently small.
We say a tuple (M�,T ) with M� � M is a (� ,� )-symmetry, if
d(M�,T (M�)) < � and � = |M�|/|M|, where |·|denotes an
area measure. In general, we want to find symmetry trans-
formations that maximize � and minimize � . A higher ap-
proximation threshold � typically allows larger symmetric
patches and vice versa. The appropriate tradeoff depends on
the specific application.

Intrinsic vs. Extrinsic Symmetry. Another mode of dis-
tinction between symmetry detection paradigms is how dis-
tance is measured. In most cases, we consider Euclidean dis-
tance between points. In few cases, however, an intrinsic
distance measure is more appropriate: for example, human
bodies undergoing isometric deformations. We return to this
topic later in Section 7.

4. Complexity

In this section, we consider a simple “brute-force” baseline
algorithm in order to understand the complexity of the sym-
metry detection problem and to motivate the need for more
sophisticated algorithms discussed in the subsequent sec-
tions.

The simplest option is to uniformly sample the space of
all allowed transformations, and then for each such trans-
formation T check whether d(M,T (M)) < � . Since such
a distance function typically has many local minima, a lo-
cal gradient descent optimization from a sparse sampling of
the transformation space is impractical. On the other hand,
since the space of transformations is high-dimensional (e.g.,
6-dimensional for rigid transforms), naïvely sampling the
space can be highly inefficient. Instead, any practical algo-

c� The Eurographics Association 2012.
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rithm first analyzes the input to identify good regions of the
transformation space to investigate.

To analyze the complexity of the symmetry detection
problem, let us assume we have a uniformly sampled point
set P consisting of n points that represent a shape M. Sup-
pose we want to detect if M is globally symmetric un-
der rigid transformations. Since a rigid transformation is
uniquely determined by three pairs of (non-degenerate) cor-
responding points, a brute force approach can be as follows:
We randomly select a triplet of points from P and try out all
possible

(

n
3

)

correspondences from points in P. For each cor-
respondence assignment, we verify if M is globally symmet-
ric under the action of the corresponding transformation T ,
i.e., we evaluate if d(M,T (M))< ε. The verification test re-
quires O(n) distance computations, with each distance com-
putation taking O(1) (for example using an ε-grid as search
data structure, and excluding degenerate cases). Thus, our
brute force approach detects global symmetry in O(n4). This
estimate is an upper bound and is rather conservative: If
reliable surface normal information is available, two corre-
sponding point pairs are sufficient to fix a rigid mapping that
matches the local surface orientation. This reduces the cost
to O(n2) trials with O(n) cost each for verification, i.e., leads
to a total complexity of O(n3).

In practice, further optimizations are possible for non-
degenerate geometry: Rigid transformations preserve dis-
tances, which excludes all matches of point pairs where the
pairwise distance changes. Thus we only need to fix one
point and a tangential direction. Fixing a pair of source
points and one target point, the second target point should
be chosen from a sphere intersecting the geometry, a set that
typically resembles a distorted circle with typically O(n0.5)
points. In other words, we would expect not more than
O(n0.5) relevant orientations, reducing the complexity of
finding transformation candidates to O(n1.5) trials (Figure 6
illustrates the idea). The O(n) cost for verification can be
addressed by random sampling: If the current proposal for
a transformation T is wrong, it is likely that a random point
x ∈ P will not be mapped close to P. We can expect that
the likelihood of not detecting a mistake will drop exponen-
tially with the number of trials, rejecting wrong matches in
expected O(1) time (we still need O(n) time for correct and
nearly-correct solutions). Thus, in a practical scenario, with
non-degenerate geometry, this would lead to an algorithm
with expected costs of O(n1.5) for finding a global rigid sym-
metry.

In the case of partial symmetry the complexity is higher.
First, we need to try all points of the object as source points
for finding a matching transformation, increasing the (ex-
pected) number of transformations to O(n2.5). Furthermore,
we cannot any longer rely on the randomized verification,
as this will miss partial symmetries more easily. The overall
complexity estimate therefore amounts to O(n3.5) point-to-
point comparisons.

Classes of allowable transformations with more degrees
of freedom also lead to an increase of the complexity.
Triplets rather than pairs need to be matched to estimate a
similarity transform (rigid motion + scaling). Affine map-
pings (a general linear transformation + scaling) requires a
match of four point pairs, increasing the costs accordingly
(global symmetries require testing of O(n4) candidate trans-
formations, partial symmetries require O(n5) candidates).

The goal of the algorithms presented in the following is to
find pairwise correspondences more rapidly. The key will be
to find the relevant transformations more quickly rather than
by applying a brute-force search.

5. Global Symmetry Detection

The main focus of this survey is on partial symmetry detec-
tion methods (see Section 6). For completeness, we briefly
mention a few global symmetry detection algorithms that
have been proposed for point clouds, triangle meshes, or
volumetric grids. Global Euclidean symmetries for finite ob-
jects can only occur as reflections or rotations. Models ex-
hibiting such symmetries share an important property: the
planes of reflection and/or the axes of rotation pass through
their center of mass. This property greatly reduces the search
space for symmetry extraction.

Theoretical characterization of symmetry detection algo-
rithms has been a topic of interest in computational geome-
try. Atallah et al. [Ata85] propose an O(n logn) optimal al-
gorithm for enumerating all reflective symmetries of a pla-
nar figure consisting of segments, circles, and points. Alt et
al. [AMWW88] present efficient algorithms to handle rigid
transformations and also general congruences for point sets.

The computation of global symmetries can be further sim-
plified if reliable global shape descriptors can be computed.
Popular methods detect n-fold rotational symmetry based
on the correlation of the extended Gaussian image [SS97],
moment coefficients [TMS09], or spherical harmonic coeffi-
cients [KFR04]. Kazhdan et al. [KCD∗03] use Fourier meth-
ods to compute symmetry descriptors for data embedded in
a voxel grid.

Martinet et al. [MSHS06] propose an efficient method for
global symmetry detection using generalized even moments.
Given a surface mesh M, the generalized moment of order 2p

in a direction v is given by,

M2p(v) =
∫

x∈M
‖x×v‖2pdx.

For a shape that is symmetric about an axis v, they show that
▽M2p(v) = 0, i.e., the parameters of the global symmetry
transformations can be extracted as the directions that lead to
zero gradient of the moment functions. Since this condition
on the gradient can produce false positives, they verify the
candidate solutions in the last step of the algorithm.

c© The Eurographics Association 2012.
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Raviv et al. [RBBK07] employ generalized multi-
dimensional scaling to detect global intrinsic symmetries.
They find an embedding that preserves the geodesic dis-
tances on the object as corresponding Euclidean distances,
thereby reducing the isometric symmetry detection prob-
lem into an instance of Euclidean symmetry detection.
An alternative strategy has been proposed by Ovsjanikov
et al. [OSG08], who use eigenfunctions of Laplace Bel-
trami operators to transform intrinsic symmetries of a shape
into Euclidean symmetries in a signature space. As feature
points they use a restricted version of a Global Point Sig-
nature (GPS) embedding of manifold introduced by Rusta-
mov [Rus07b].

6. Partial Symmetry Detection

As discussed in Section 3, global symmetry detection is a
special case of partial symmetry detection. We now dis-
cuss five main approaches for partial symmetry detec-
tion: The geometric hashing algorithm of Gal and Cohen-
Or [GCO06], the transformation space voting schemes of
Mitra et al. [MGP06] and Pauly et al. [PMW∗08], the planar
reflective symmetry transform of Podolak et al. [PSG∗06],
the graph-based approach of Bokeloh et al. [BBW∗09b], and
symmetry-factored encoding by Lipman et al. [LCDF10].
At an abstract level, these methods share many similarities,
even though the individual algorithmic components are dif-
ferent. We identify three main stages that appear more or less
prominently in all these methods:

i) feature selection restricts the computations to a small
set of relevant geometric features,

ii) aggregation accumulates local symmetry information
in a suitable data structure, and

iii) extraction retrieves meaningful partial symmetries
from the aggregate symmetry representation.

Feature selection typically uses local shape descriptors to
significantly reduce the search space by considering geo-
metric properties of the shape that are invariant under the
considered symmetry transformations. For example, rigid
transforms preserve principal curvatures [Car76]. As a con-
sequence, if two points have significantly different curva-
tures, then no rigid transformation can bring the local sur-
faces around the points into sufficiently close alignment, and
hence the points cannot be symmetric counterparts. In gen-
eral, feature descriptors should satisfy the following require-
ments: The features should be (i) distinctive and character-
istic of local geometry, (ii) invariant under the considered
symmetry transformations, (iii) efficiently computable, and
(iv) robust under missing data, noise, and outliers.

For symmetry under rigid transformations, a natural
choice for a feature descriptor are differential properties of
the surface that are commonly averaged over the local fea-
ture area. Curvatures can be reliably estimated from mesh
representations using various approaches including curva-
ture tensors [Tau95], finite-differences [Rus04], polynomial

Figure 7: The suction cup on the tentacle of the octopus is

identified as a salient feature and its similar occurences are

detected [GCO06]. (Images courtesy of Gal et al.)

approximations [MGPG04], osculating jets [CP03], integral
invariants [PWY∗07], or heat kernels [SOG09]. Under in-
trinsically isometric transformations, Gaussian curvatures
are preserved at the surface point and hence are commonly
used as local features. Heat kernels, which are also functions
of Gaussian curvature for small neighborhoods, are also em-
ployed as they can be robustly computed.

However, even with feature-based pruning, an exhaustive
validation of all remaining symmetry candidate transforma-
tions is computationally too expensive. A successful strategy
is to further reduce the search space by aggregating local in-
formation of symmetries in a suitable representation of the
symmetry transformation space. Given the aggregated local
symmetry information, different strategies can be employed
to extract the most likely candidates for meaningful partial
symmetries. The extracted symmetry candidates are finally
verified and refined in the spatial domain. This commonly
leads to a segmentation of the model.

6.1. Geometric Hashing

A fundamental technique often employed for indexing is
geometric hashing. Gal and Cohen-Or [GCO06] propose
a solution for self-similarity or symmetry detection based
on this approach. Originally introduced by Schwartz and
Sharir [SS87], geometric hashing was later popularized by
Wolfson [WR97] in the context of object retrieval. The algo-
rithm proceeds in two main stages: In a preprocessing phase,
a large hash table is constructed consisting of a collection of
features. Given a query, the hash table is then used to effi-
ciently prune out unnecessary retrievals for testing matches.

Feature selection. Gal and Cohen-Or use a local feature
descriptor based on surface curvature. First, they locally fit
quadratic patches to vertex neighborhoods of a given mesh
using a least-squares formulation. The curvature tensor and
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curvature derivatives at vertices are then computed using the
coefficients of the fitted quadratic patches and the mesh ver-
tices are sorted according to the magnitude of the Gaus-
sian curvature, i.e., the product of principal curvature val-
ues. Subsequently, they build local patches around the ver-
tices by greedily adding neighboring faces to the current
patch as long as the patch can be quadratically approxi-
mated, within a user-defined threshold. Finally, they mark
patches as salient based on a score computed using an empir-
ical combination of curvature values associated with a patch,
the number of curvature extrema in the patch, the curvature
variance in the patch cluster, and the patch area. This rather
sophisticated method of feature selection is necessary for
sufficient pruning in order to reduce the memory overhead
for storing the index tables.

Aggregation. They aggregate transformations based on the
following observation: several transformation families have
only a few degrees of freedom and are uniquely determined
by a small number of correct corresponding point pairs.
For example, rigid transformations are uniquely specified by
only three corresponding point pairs. So for rigid transfor-
mations, they pick all sets of triplets of points as bases, and
use each base to bring the point set to a canonical position.
For each choice of base, the remaining points in their canon-
ical positions define a hash function, where each point is in-
dexed based on their spatial location. They then handle query
objects by probing against this hash table.

Extraction. In the geometric hashing step, they first bring
each query patch to a canonical position by indexing a small
number of rotation-invariant features. The remaining points
in the aligned pointset are tested against the geometric hash-
ing grid to check if there is any consensus for a matching
base index. The method determines the best aligning trans-
formation from a large set of transformations using a vot-
ing scheme, quantizing the transformation space using a six-
dimensional table.

Suppose using the current base, the aligned point set po-
sitions are given by {pi}. They first retrieve the cells {ci}
where the aligned points lie, and for each cell ci find the base
indices Bi = {bi

j} that vote for the current cell. A consensus
is reached when there is a significant number of cells vot-
ing for any particular base(s). A consensus, if found, yields
a potential aligning transformation using the transformation
between the starting base and the matched base index. This
process is repeated over all possible choices of bases to list
the candidate transformations. In practice, instead of iterat-
ing over all possible bases it is sufficient to try a random
selection of bases [WR97, GCO06]. Figure 7 shows an ex-
ample of searching for similar occurences of a query patch
in an input model using this approach.

Figure 8: Symmetry detection results under similarity trans-

formations (rotation, translation, reflection, and scaling)

on 3D geometry using a transformation domain voting

scheme [MGP06].

6.2. Transformation Space Voting

Mitra et al. [MGP06] propose a method for computing
pairwise partial and approximate symmetries based on ac-
cumulating local symmetry votes in a symmetry trans-
formation space. The method was extended by Pauly et
al. [PMW∗08] to handle repetitive patterns based on one-
and two-parameter transformation groups.

Feature selection. An important aspect of the voting
scheme is to aggregate local geometric information to cap-
ture even small-scale symmetries. They employ simple fea-
ture descriptors based on differential geometry invariants:
Principal curvatures κ1 and κ2 for rigid transformations, and
the ratio of principal curvatures κ1/κ2 for similarity trans-
formations.

Aggregation. They map point-pairs with matching signa-
tures of the original object to points in a transformation do-
main. When considering mirror symmetries, the algorithm
exploits the fact that any two points p and q define a unique
plane of reflection. This plane is the orthogonal bisector of
the two points, i.e., passes through the point (p + q)/2 and
has normal vector (p−q)/‖p−q‖. Notice that the orienta-
tion of the normal vector has a flip ambiguity. The reflective
plane can be represented as a point in a 3D space consisting
of two angles that define the normal vector and the distance
of the plane from the origin. Thus a pair of spatial points gets
mapped to a point in the 3D space of reflective planes, called
transformation space (see Figure 9). This idea does not im-
mediately generalize to handle rigid transformations as a
point pair alone is not sufficient to uniquely determine an
aligning transformation. Instead, in order to extract a unique
aligning transformation, they encode the local neighborhood
at each point ,using the intrinsic local frame composed of the
surface normal and the principal curvature directions. Since
umbilical points, i.e., points with locally spherical neighbor-
hoods, do not have uniquely defined principal curvature di-
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Figure 9: To detect symmetries in geometric models, the

boundary of the shape is uniformly sampled (left) [MGP06].

Every pair of samples with compatible local surface ge-

ometry provides local evidence for a symmetry transforma-

tion (center). In this example we consider reflections that

are parameterized by an angle φ and the distance d to the

origin. Accumulating such evidence using a clustering ap-

proach yields the dominant symmetries of the model (right).

rections, they are left out of the point-pairing. In the case of
rigid transformations each point-pair along with the respec-
tive intrinsic coordinate frame produces a rigid transforma-
tion parameterized by a translation vector and three Euler
angles, i.e., a point in a 6D transformation space.

Extraction. Each point in transformation space can be in-
terpreted as a witness or vote for a symmetry transformation.
To extract meaningful symmetries at larger scales such local
evidence is accumulated, i.e., groups of pairs with a similar
transformation are found that correspond to symmetric sub-
sets of the model surface. Suppose the transformation space
is equipped with a distance metric, i.e., for any two trans-
formation points Ti and Tj, their distance d(Ti,Tj) is defined
(typically it is sufficient to use Euclidean distance). Under
such a distance notion, dense regions in the transformation
space can be identified using a clustering approach. For this
purpose, Mitra et al. [MGP06] use a mean-shift clustering
method, which does not require a priori knowledge of the
number of potential clusters or equivalently potential sym-
metry transformation candidates. The kernel width of the
mean-shift clustering method is a user parameter that con-
trols the approximation level of the detected symmetries. For
a fixed approximation level, the strength or height of clus-
ters relates to the number of votes the region receives in the
transformation space. Each cluster corresponds to a poten-
tial pairwise partial symmetry of the shape and the extracted
cluster centers act as symmetry transformation candidates
that are subsequently validated and refined.

Transformation domain voting can be extended to detect
one- and two-parameter patterns as demonstrated by Pauly
et al. [PMW∗08]. The algorithm is based on the observa-
tion that regularity in spatial domain reveals itself as a lat-
tice structure in the transformation domain. Such lattices can
be effectively extracted by analyzing appropriate 2D planar
slices passing through the origin of the 6D transformation
space. A robust grid fitting algorithm is then applied on the
2D slices to estimate the generating transformations of the

Figure 10: Regular structures discovered using transforma-

tion domain grid-detection [PMW∗08] on an amphitheater,

a nautilus shell, a laser-scan of a building, and a procedu-

rally generated helical segment.

symmetry lattice. Figure 10 shows typical results obtained
using this approach.

6.3. Planar Reflective Symmetry Transform

Motivated by the notion of continuous symmetry introduced
by Zabrodsky et al. [ZPA95], Podolak et al. [PSG∗06] inves-
tigate the notion of a symmetry transform under reflective
transformations. They propose the planar reflective symme-

try transform (PRST) to encode a continuous notion of sym-
metry of an object about any reflective line in 2D, or about
any reflective plane in 3D. Given a reflective plane γ, the
PRST for a function f is defined as:

PRST2( f ,γ) := 1−d( f ,γ( f ))2/‖ f‖2.

The symmetry distance d( f ,γ( f )), as originally introduced
by Zabrodsky, is defined as the distance of the function f

to the closest function g that is symmetric with respect to
the transformation defined by γ, i.e., d( f ,γ( f )) :=ming ‖ f −
g‖2, such that γ(g) = g. Computationally, the closest func-
tion is simply the average of f and its reflection γ( f ), and
hence the symmetry distance simply [KCD∗03]:,

d( f ,γ( f )) = ‖ f − ( f + γ( f ))/2‖= ‖ f − γ( f )‖/2.

This greatly simplifies the computation of the PRST reduc-
ing it to evaluating dot products:

PRST2( f ,γ) =
1+ f · γ( f )

2
,

where the function f is assumed to be normalized, i.e.,
‖ f‖ = 1. Since the above definition applies to a function
f , the algorithm transforms a given surface geometry into
a suitable functional representation. A typical solution is to
embed the surface in a volume grid and rasterize the sur-
face using a Gaussian blur kernel to smooth out effects of
noise and small features. An alternative is to use the Gaus-
sian Euclidean Distance Transform (GEDT) as proposed by
Kazhdan and colleagues [KFR04]. Podolok et al. [PSG∗06]
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Figure 11: Planar Reflective Symmetry Transforms (PRST)

for various curves. For visualization, each pixel is colored by

the score of the plane with maximum symmetry score among

all the planes passing passing through the pixel. (Images

courtesy of Podolak and et al. [PSG∗06]).

observe that functions arising from rasterized surfaces are
typically sparse over the volume grids, and propose a Monte
Carlo algorithm to efficiently compute the PRST. It has been
conjectured that the PRST captures all the necessary ge-
ometric information about an object, and hence is invert-
ible. Figure 11 shows the PRST for several simple curves.
The definition has subsequently been extended by Rusta-
mov [Rus07a] to incorporate local neighborhood of points
or contexts using a scale factor for controlling the neighbor-
hood range.

Feature selection. PRST being a symmetry transform as-
signs scores to all possible reflective planes, and hence does
not involve any feature selection to limit the possible choices
of potential candidate transformations.

Aggregation. In practice, the PRST is evaluated over a dis-
crete space using a volume grid discretization. Typically the
local maxima of the symmetry function are of interest, as
they reveal principal reflective symmetries, both partial and
approximate. The PRST values are computed over a medium
resolution volume grid, and then candidate maxima are iden-
tified via a thresholding step. Instead of a global threshold
value, Podolak et al. suggest using a lower threshold near
the edges of the boundary than near its center. They use a
threshold proportional to (1− r/R), where R is the radius of
the object, and r is the distance of the candidate plane of re-
flection from the center of mass of the object. Additionally,
shallow maxima, typically caused by noise, are suppressed
using a discrete Laplacian smoothing of the computed PRST.
Potential symmetry candidates are locally refined using the
Iterated Closest Point (ICP) algorithm [BM92, CM92].

6.4. Graph-Based Symmetry Detection

Instead of operating at the level of sample points, it is some-
times more practical to work at the level of feature curves,
in particular for data sets where these feature curves can
be extracted robustly. This leads to substantial reduction in
computational overhead, since the number of feature curves
is typically significantly smaller than the number of sample
points.

Bokeloh et al. [BBW∗09b] explore this idea by mapping
the symmetry extraction problem to a mapping problem of
a network of curves. They extract line features that form a
very sparse approximation of the original geometry, arguing
that for many objects the crease lines carry the most impor-
tant information. Feature lines are then used to define local
coordinates or bases. Matching subsets of such bases then
amounts to arrangements of line features with compatible
local neighborhoods. Such matching subsets are treated as
potential symmetry candidates and are subsequently tested
and extracted in a validation stage. Although working with
a sparse set of linear features makes the approach substan-
tially more efficient than directly comparing local geometry,
the approach assumes input models with a dominating set of
such characteristic linear features. The graph of linear fea-
tures is built using detected feature lines as nodes and using
an edge set obtained by connecting k-nearest line segment
neighbors.

Feature selection. As a general criterion for a line feature,
the local geometry on the line should be invariant under
continuous motions along that line. The algorithm consid-
ers rigid motions as potential symmetry transformations and
detects lines by slippage analysis [GG04]. Effectively, the
method finds regions that map to themselves under infinites-
imal rotations and translations, yielding straight and circular
line directions. In order to place the actual features, points
of maximum principal curvature orthogonal to the line direc-
tion are chosen. The actual detection is formulated as a mov-
ing least-squares problem that sparsely samples the geome-
try and then iteratively moves points within line-regions to-
wards curvature extrema. The sparse sampling yields rather
moderate computation times. Other feature selection crite-
ria have been proposed in the context of similar symmetry
detection methods [BBW∗09a, GSMCO09, MZL∗09].

Aggregation. The algorithm matches pairs of line features
that intersect in a locally similar way (similar curvatures,
similar angles). All such base-pairs yield potential transfor-
mations that could be checked: The combination of non-
parallel lines gives a fixed coordinate frame for the initial
transformation. The algorithm then proceeds by checking
the line-pattern in the neighborhood iteratively, thereby re-
fining the transformations by iterative alignment. For effi-
ciency reasons, not all pairs of bases are checked but instead
random sampling is applied. The underlying assumption is
that the most salient symmetries are more likely to receive a
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Figure 12: Symmetry detection result using line features and

sub-graph matching [BBW∗09b]. Detected symmetric or re-

peating parts are highlighted.

random sample. By testing local line configurations in grow-
ing radii, false positives can be rejected rapidly.

Extraction. The previous step yields a list of potential
transformations that are true positives with high probabil-
ity, because it is known that the main crease lines match
in a local neighborhood. Potential transformations are ver-
ified using a region growing algorithm that compares actual
points in terms of their distance to the matching surface and
also fixes the final extent of the symmetric regions. In the
original paper [BBW∗09b], a simultaneous region growing
is performed that stops if symmetric areas collide, thereby
partitioning the model into symmetric pieces. Such a parti-
tioning, however, is non-canonical since it depends on arbi-
trary choices (such as where the region growing is started).
Later, Bokeloh et al. [BWS10] introduce a similar algorithm
that lifts this restriction but outputs overlapping symmetric
areas.

6.5. Symmetry Factored Embedding

Instead of working in the transformation space, one can also
work directly in the space of correspondences. Specifically,
if a model is sampled with n points, then one can repre-
sent symmetry using a symmetry correspondence matrix C

of n×n non-negative entries, where each entry encodes sym-
metry relations between point pairs. Lipman et al. [LCDF10]
make an important observation that such a matrix is sparse
and all points symmetric to each other form an orbit, which
appears as a clique in the graph induced by the symme-
try correspondence matrix C. They extract connectedness
of the graph using spectral methods. Specifically, given a
model, first a correspondence matrix is selected using a ran-
domized algorithm similar in spirit to voting-based meth-
ods [MGP06]. The symmetry factored embedding is then de-
fined using the spectral analysis of the correspondence ma-
trix C. If Cψk = λkψk for k = 1, . . . ,n with ψk and λk are
respectively the eigenvectors and eigenvalues of C, the em-

Figure 13: Symmetry factored distance and the symmetry

orbits detected. (Left) Symmetry factored distance from the

marked point (with arrow) to all other points on the model,

with blue denoting small distance and red denoting large

distance. Note that symmetric points are at similar dis-

tances. (Right) Segmentation in the symmetry-factored em-

bedding space produces symmetry-aware segmentation. (Im-

ages courtesy of Lipman et al. [LCDF10].)

bedding is defined as:

Φt(xi) :=
(

λt
1ψ1(xi), . . . ,λ

t
nψn(xi)

)

where, t is in the range of 20 − 80 (see also [NLCK05]).
Subsequently, symmetry factored distance between any two
points xi and x j on the mesh can be simply computed as the

Euclidean distance in this embedded space, i.e., dt(xi,x j)
2 =

‖Φt(xi)− Φt(x j)‖
2 = ∑k λ2t

k ‖ψk(xi)− ψk(x j)‖
2 (see Fig-

ure 13).

Symmetry Verification

Local Refinement. Most symmetry detection algorithms
first detect symmetry transformations approximately, and
later refine the transformations for improved accuracy. Sup-
pose a mesh M is symmetric (partially) under transforma-
tion T . This implies that M and T (M) are closely aligned,
though only parts of the object may be matched in case of
partial symmetry. To further improve the matching, one can
treat M and T (M) as two independent shapes and improve
their alignment — this is the classic local registration prob-
lem. A popular solution to this problem is the Iterated Clos-
est Point (ICP) algorithm [BM92, CM92]. In case of line
features the approach can be extended to Iterated Closest
Line algorithm [BBW∗09b]. Suppose the local (rigid) reg-
istration brings M in alignment with T (M) under transfor-
mation τ, i.e., τ(M) ≈ T (M) ⇒ M ≈ τ−1T (M), assuming
τ is invertible. In case of symmetry detection under rigid
transformations, the refined rigid transformation is given by
τ−1T . In case of reflective symmetry, we can factor in τ ap-
propriately to solve for the refined transformation plane.

In the case of regularity detection, when instead of look-
ing for isolated symmetries one searches for a pattern among
the detected transformations, the refinement process is cou-
pled, i.e., such local refinements amount to a simultane-
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M
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M
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Figure 14: Under the action of transformation Ti, the in-

put shape M gets mapped to Ti(M). The overlap regions,

shown in black, between M and Ti(M) are the parts that are

symmetric under the action of transformation Ti. Overlap is

measured with respect to a tolerance ε as specified by the

approximation level.

ous registration problem in the object domain. This is a
generalization of ICP based refinement, but additionally 1-
parameter or 2-parameter detected regularities are main-
tained [PMW∗08].

Patch Extraction. After extracting potential symmetry
transformations and then refining the coarse estimates, the
last step of most symmetry detection algorithms involves ex-
tracting patches of the mesh that are symmetric under the
detected symmetry transformations. Recall that for given a
mesh M, the goal is to identify regions {Ri} of the mesh that
are symmetric to other regions of the mesh under transfor-
mations {Ti}. The challenge is to simultaneously determine
{Ri} and {Ti}. Once {Ti} is known, however, the problem
becomes much simpler. Thus given a transformation Ti, the
problem amounts to finding the overlapping region Ri be-
tween M and Ti(M) (see Figure 14).

The notion of overlap is defined up to a margin of ap-
proximation ε. Let V be the vertex set of mesh M. The set
of vertices {vi} ∈ V can then be extracted such that for all
the chosen vertices d(vi,M)< ε under an appropriate choice
of distance. Finally, the selected points {vi} can be grouped
together into connected components using the original con-
nectivity of the input mesh M. Most algorithms retain only
the largest connected component as the symmetric patch Ri,
and analyze the remaining mesh for further symmetries.

7. Intrinsic Symmetries

Euclidean symmetries depend on the embedding of an object
in the ambient space. For example, while the geometry of the
dragon in Figure 15(a) does not exhibit any global symme-
tries, the pose of Figure 15(b) exhibits a global mirror sym-
metry. The symmetries of the object change with changes of
the embedding. In the spirit of the Erlangen Program initi-
ated by Felix Klein, it is possible to avoid the dependence
on the embedding by looking at a broader class of transfor-
mations. Intrinsic symmetry can be defined by considering

self-isometries of a surface with respect to an intrinsic met-
ric of the surface. For example, we can specify as an intrin-
sic metric the geodesic distance function dM that measures
the distance between any two points x,y ∈ M as the length
of the shortest path between x and y on M. We say that a
shape M is intrinsically symmetric with respect to a homeo-
morphism T : M → M, if the intrinsic metric is preserved by
the mapping, i.e., if dM(x,y) = dM(T (x),T (y)) for all points
x,y ∈ M.

Extrinsic, i.e., Euclidean, symmetries as defined previ-
ously are a subset of intrinsic symmetries, since all Eu-
clidean transformations are isometries of the embedded sur-
face. Whether extrinsic or intrinsic symmetries are more ap-
propriate to characterize an object depends on the type of
object and the specific application.

For isometric transformations, a natural choice for local
descriptor is the Gaussian curvature. At any point on a sur-
face Gaussian curvature can be evaluated using only length
measurement on the surface, i.e., using the first fundamental
form of the local surface, and hence remains invariant un-
der isometric deformations [Car76]. A Gaussian curvature
based feature descriptor has been used for performing non-
rigid registration under isometric deformations by Huang et
al. [HAWG08]. Xu et al. [XZT∗09] use shape diameter func-
tions [SSCO08] computed on equally spaced geodesic rings
around surface points as an alternative to conventional cur-
vature estimates.

In the context of point-to-point correspondence between
surface pairs with approximate and partial isometry, Lip-
man et al. [LF09] propose an automatic and efficient algo-
rithm (see Figure 16). They observe that isometry is a subset
of Möbius group, which has only 6 degrees of freedom for
genus zero surfaces and only 3 degrees of freedom for topo-
logical discs. Based on this observation, they efficiently ex-
tract candidate Möbius transforms, which are then verified to
extract the best isometric deformation, thus producing point-
to-point correspondence. Specifically, given two surfaces M1

and M2, they first uniformly sample the surfaces to produce
point sets P1 and P2, respectively using same sample spac-
ing. In a key step, they observe that a pair of triplets of points

(a) (b)

Figure 15: Changes of pose cause a change in extrinsic sym-

metries. While the pose in (a) does not exhibit a global mir-

ror symmetry, a (nearly) isometric deformation exposes the

global reflection (images from [MGP07]).
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Figure 16: Isometric point-to-point correspondence be-

tween two meshes M1 and M2. The meshes are first confor-

mally flattened to the plane. Any pair of triplet of correspon-

dences, then uniquely specifies a Möbius transform between

the flattened meshes. Each such Möbius transform is ranked

based on the votes from other mesh vertices, and the high-

est rated transform is retained as the isometric deformation

linking M1 and M2. Intuitively, a correct pair of correspon-

dence triplets (like shown in red, green, blue) brings the flat-

tened meshes to alignment (bottom row). (Images courtesy

of Lipman and Funkhouser [LF09].)

from the two point sets is sufficient to uniquely determine
a Möbius transform linking M1 ≈ M2. Each such Möbius
transform can then be used to vote for correspondence be-
tween shapes M1 and M2. The algorithm successfully finds
correspondence across model pairs even under isometric de-
formations resulting in large Euclidean deformations. Kim et
al. [KLCF10] extend this algorithm to detect global intrinsic
symmetry on 3D models (see Figure 17).

Earlier, Raviv et al. [RBBK07] employ generalized multi-

Figure 17: Intrinsic symmetries detected on 3D geome-

try. (Images courtesy of Ovsjanikov et al. [OSG08], Kim et

al. [KLCF10] and Lasowski et al. [LTSW09], respectively.)

Figure 18: Intrinsic symmetries detected on 3D geometry.

(Image courtesy of Raviv et al. [RBBK07] and Xu and et

al. [XZT�09], respectively.)

dimensional scaling to compute a new embedding that best
preserves the original geodesic distances on the object in
the form of corresponding Euclidean distances in the new
space. This mapping reduces the isometric symmetry de-
tection problem to an instance of Euclidean symmetry de-
tection. In another attempt, Ovsjanikov et al. [OSG08] use
eigenfunctions of Laplace Beltrami operators to transform
intrinsic symmetries of a shape to Euclidean symmetries in
the signature space. As feature points they use a restricted
version of Global Point Signature (GPS) embedding of a
manifold, originally introduced by Rustamov [Rus07b]. Xu
et al. [XZT�09] extend PRST based reflectional symme-
try detection [PSG�06] and introduce an algorithm to ex-
tract partial intrinsic reflectional symmetries in 3D geome-
try. Given a closed 2-manifold mesh, a voting scheme is used
to compute a scalar field, whose local extrema are accen-
tuated to reveal local reflectional symmetry support along
curves. An iterative refinement procedure combined with
region growing is used to finalize the results and identify
the isometrically repeating parts (see Figure 18). In another
attempt, Mitra et al. [MBB10] extract intrinsic regularity,
where the repetitions are on an intrinsic grid, without any
apparent Euclidean pattern to describe the shape, but rising
out of (near) isometric deformation of the underlying sur-
face. They employ multidimensional scaling to reduce the
problem of intrinsic structure detection to a simpler problem
of 2D grid detection, which is performed using an autocor-
relation analysis.
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8. Encoding Extracted Symmetries

In addition to detecting symmetries, as discussed in the pre-
vious sections, it is also important to consider how the output
is encoded. Independent of the specific symmetry detection
algorithm, a number of different representations of the ex-
tracted symmetries are possible with the preferred represen-
tation depending on the target application.

Pairwise symmetries. The simplest form of output is a list
of pairwise symmetries, i.e., a list of the pairwise correspon-
dences: For each such entry, the detection algorithm reports
a transformation T and a subset of points (or surface patch)
M1 � M such that dist(T(M1),M) is small and T has de-
sirable properties such as rigidity, isometry, similarity, etc.
In the case of approximate symmetries, every point x � M1

might be additionally tagged with a confidence measure,
e.g., based on the distance to the surface.

Pairwise symmetries couple parts of surfaces in two
ways: First, they define a pairwise similarity measure for
points on the surface. This can be used to non-locally trans-
port information, such as denoising or simultaneous edit-
ing. Second, the information that two regions M1,M2 =
T(M1) are coupled by a symmetry transformation T can
be exploited to characterize shapes for recognition or for
structure-preserving editing.

Pairwise relations capture the symmetry structure of an
object only indirectly. While the set of pairwise relations
in principle encode all symmetries within an object, further
processing is necessary to extract relevant aspects.

Segmentation. One option for representing the symmetry
information is to segment the input shape M into symmetric
building blocks. A simple implementation is through region
growing (see [MGP06, BBW�09b], Figure 12 shows a typi-
cal result): For each pairwise symmetry (M1,T), seed points
x,T(x) are created and a simultaneous region growing is
started, stopping when regions collide. The technique of Lip-
man et al. [LCDF10] processes the correspondence informa-
tion by clustering consistent orbits, computing a symmetry-
aware distance function as output. In particular, this allows
improved segmentation results that take consistent groups of
symmetric mappings into account.

Segmentation into symmetric parts has a number of limi-
tations: Hierarchy and regularity are not explicitly encoded,
and the decomposition does not necessarily lead to build-
ing blocks that can be reassembled to create new composite
shapes. Therefore a number of alternatives have been pro-
posed:

Hierarchy. The segmentation algorithm can be augmented
to provide a hierarchical encoding: Mitra et al. [MGP06] per-
form a hierarchical reduction where salient symmetric parts
(indicated by a strong response in transformation space) are

Figure 19: Establishing a hierarchical structure is ambigu-

ous; there are usually several equivalent solutions that all

explain the structure compactly.

reduced to a single part, then recursively continuing the sym-
metry search. In another effort, Simari et al. [SKS06] present
a folding tree data structure to encode non-redundant re-
gions of the original mesh as well as the reflection planes by
recursively applying a symmetry detection algorithm. The
encoded structure can then be unfolded to recover back the
original shape. Wang et al. [WXL�11] refine the idea by us-
ing perceptual grouping for estimating the hierarchy. Such
hierarchical encodings facilitate compression and structure-
aware editing. In many cases, however, symmetries are not
fully captured by a hierarchical model. For example, for a
grid of 4 × 4 windows, many, equally well-justified hierar-
chical decompositions exist (for example, see Figure 19) . A
purely hierarchical encoding therefore has to make choices
during the construction of the hierarchy, making the repre-
sentation non-canonical. Finding an optimal hierarchy with
respect to compression (minimal coding costs) is NP-hard; a
two-level hierarchy already reduces to the NP-hard set-cover
problem.

Building blocks. The issue of finding a segmentation that
leads to building blocks that can be connected to form new
shapes has been considered by Bokeloh et al. [BWS10]: In-
stead of cutting pieces at Voronoi cells of a region grow-
ing algorithm, their approach cuts at the boundaries of par-
tial symmetries. The set of such boundaries leads to dock-

ing sites that form adapters for connecting alternative pieces.
The proposed algorithm, however, still uses a non-canonical
hierarchical encoding of the docking for efficiency reasons
and only works for exact symmetries.

Symmetry groups. The structure of global, exact symme-
tries is understood by the formalism of symmetry groups, as
discussed in Section 2. The idea is easily extended to finite
excerpts of such groups, for example, to detect the regularity
in a finite grid of windows of a building. The detection can
be restricted to certain types of symmetry groups: For ex-
ample, commutative symmetry groups (such as translational
patterns) are concisely described by a set of generator trans-
formations T1,...,Tk that replicate a base instance M1 � M

by a set of transformations {T
i1
1 �...�T

ik
k
,i1,...,ik � Z}. This

structure is isomorphic to an integer lattice (commutativ-
ity is important here, because it allows us to reorder the
transformations). Such models are useful for shape analysis
and structure-aware shape editing (unlike complex symme-
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scan consolidation model compression

data completion symmetric triangulation

Figure 20: Applications of symmetry in model acqui-

sition and representation (Images courtesy of Zhang et

al. [ZSW∗10], Mitra et al. [MGP06], Thrun et al. [TW05],

and Podolak et al. [PGR07] respectively.)

try groups, grids can be easily augmented with additional
elements) [PMW∗08, MP08, BWKS11].

Continuous symmetry. For shapes that contain areas such
as flat planar surfaces or straight edges, infinitely many par-
tial symmetries exist, with a continuum of transformations.
Continuous symmetries with respect to rigid motion have
been studied by Gelfand et al. [GG04]. Their method finds
slippable motions by finding zero eigenvalues of the Hes-
sian matrix of a rigid auto-alignment problem (local patches
of geometry are matched to themselves). The output is a
segmentation into different types of slippable regions (with
zero to three rotational and/or translational degrees of free-
dom). An analogon for intrinsic rather than extrinsic isome-
tries (Killing vector fields) has been studied by Ben-Chen et
al. [BCBSG10].

In summary, while different models are possible to struc-
ture the space of pairwise symmetries, the choice often de-
pends on the target application. While global and exact sym-
metries are well understood by models from group theory,
we still lack a similar, canonical model for approximate and
partial symmetry.

9. Applications

Extracted symmetries, global or partial, exact or approxi-
mate, essentially provide relations across different parts of
a shape, as discussed in the last section. Such high-level un-
derstanding of the input 3D geometry enables a range of ap-

original symmetrized

3,000 500

Figure 21: (Top panel) An input architectural design is an-

alyzed to reveal six symmetric patches, which are then si-

multaneously optimized to create exactly symmetric surfaces

and compatible meshes. (Bottom panel) Approximate sym-

metries of inputs are made exact, and the resultant meshes

are simplified while respecting the symmetry relations. The

number below each model indicate the corresponding vertex

count [MGP07].

plications, which are otherwise difficult to perform. We now
discuss the main application areas where the extracted non-
local symmetry relations are commonly used.

Model acquisition and representation. Symmetry rela-
tions are essentially equivalence among different parts of
an object. In other words, symmetric parts represent redun-
dant geometric regions, and thus are repeated measurements
of the same underlying geometry. Such redundant obser-
vations allow denoising the input in presence of unbiased
noise. More specifically, say surface patch S0 is symmetric
with surface patches S1,S2, . . . under transforms T1,T2, . . .,
respectively, i.e., S0 ≈ Ti(Si) for i = 1, . . .. Then for any
point p ∈ S0 the corresponding point on the i-th patch is
given by the point qi ∈ Si such that d(qi,Ti(p)) is mini-
mized. Note that under perfect symmetry qi = Ti(p). Such
correspondence information is used for non-local denois-
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ing [BCM08] and scan consolidation [ZSW�10] of man-
made objects (e.g., building facades, 3D ornamentation, etc.)
where symmetry relations are common. Further, in regions
of missing data, instead of looking for points qi, surface in-
formation is propagated using symmetry information Ti(p)
for data completion [PMG�05, TW05, XZT�09] (see Fig-
ure 20).

In addition to model improvement, symmetry relations
also suggest a novel acquisition framework. The main obser-
vation is that for redundant object regions essentially one has
to recover the transformations Ti while using the base patch
S0 for model construction. This effectively allows a smart
acquisition process where base patch S0 is to be acquired
at a high resolution, while for the corresponding symmet-
ric relations only the symmetry transforms are needed, and
hence significantly coarser scanning suffice. The challenge,
however, is reliable symmetry detection, which can be chal-
lenging in severely undersampled data.

Detected symmetries, if organized by explicitly storing
the symmetry transforms, factor out model redundancies and
thus produce a compressed representation, e.g., if geometry
is organized as a tree-structure [MGP06, SKS06] or in a hier-
archy [WXL�11] (see Figure 20). However, as discussed in
Section 8, such representations are typically non-canonical,
and we expect more research efforts in this direction. Intu-
itively such factored representations can provide a measure
of information content of shapes, rather than simply measur-
ing the model complexity in terms of vertex count.

Geometric models, however, are rarely perfectly symmet-
ric. Deviations from perfect symmetry arise due to high-
frequency noise, or due to low-frequency global deforma-
tions. Hence, researchers have proposed to symmetrize mod-
els, i.e., factor out deformations or deviations to increase the
symmetry or redundancy of 3D models, by allowing certain
model deformations [MGP07, PGR07]. Symmetrized mod-
els can also be used to produce equivalent or symmetric tri-
angulation, which is particularly useful for symmetric ge-
ometry processing [PGR07], or to reuse of identical surface
patches especially for efficient and economical manufactur-
ing [EKS�10, FLHCO10], etc. In the future, we expect to
see more efforts on how to characterize the space of such
model variations, especially ones with low degrees of free-
dom [BWM�11, OLGM11].

Model manipulation. We discussed how properties relat-
ing to symmetries in the object-domain manifest as clusters
in the transform domain, with the fuzziness of clusters in-
dicating the extent of approximation in the detected sym-
metries. Based on this observation, Mitra et al. [MGP07]
present a non-local geometry editing framework wherein
fuzzy clusters are tightened and the corresponding point-pair
positions suitably adjusted to enhance object symmetries,
both local and global. Similarly one can perform symmet-
ric remeshing and simplification where the progressive sim-
pler meshes still retain and respect the original object sym-

Figure 22: Detecting regularity in shapes specially building

facades and similar man-made structures, allow us to in-

fer plausible procedural rules [PM01, MWH�06, MZWG07]

to recreate the models. This allows smart geometric mod-

eling to perform global geometric edits by inserting and

deleting geometric patches, or replacing the base geomet-

ric patches, while conferring to the inferred procedural

rules [PMW�08, MP08].

metries [MGP07, PGR07] (see Figure 21). Intuitively, since
symmetry manifests itself better in the transform domain, a
coupled spatial and transform domain editing paradigm is
natural for symmetry-aware manipulations.

Symmetry of an object often relates to its charac-
teristic form, specially for man-made objects. Gal et
al. [GSMCO09] observe that such objects can be character-
ized using 1D feature curves or wires. Such features are then
analyzed to reveal their mutual relations and symmetry prop-
erties, which are preserved using an optimization in course
of subsequent manipulations. Explicitly distilling such sym-
metry relations as a minimalist curve network, which can
act as intuitive interaction handles for manipulation of shape
abstractions [MZL�09] (see Figure 24).

Model synthesis. Symmetry is ubiquitous in natural ob-
jects, man-made shapes, and architectural forms. Extracted
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Figure 23: Inverse procedural modeling from symmetry: By

attaching building blocks derived from boundaries between

non-symmetric area (docking sides), shape variations can be

created automatically (top; original in red). Sliding dockers

(bottom, orange) generalize the idea to partial patterns.

symmetries provide valuable understanding about the reg-
ularity of the structures, which often relate to form, func-
tion, and aesthetics. The extracted symmetric patches can
be treated as alphabets and combined with the detected
symmetry transforms in order to construct an inverse-
shape grammar [SG71] for the input shapes. The con-
structed grammar can then be used to procedurally cre-
ate variations of the input geometry of similar character-
istics [PM01, MWH�06, MZWG07]. Such a workflow has
been demonstrated in the context of modeling architectural
buildings and facades [PMW�08, MP08] (see Figure 22).

A formal framework for inferring shape grammars from
symmetry information has been developed by Bokeloh et
al. [BWS10]. The main challenge is how to extract building
blocks that fit together, i.e., symmetric parts that can be ex-
changed without changing the object – this, however, does
not create any shape variations. Therefore, in the context
of synthesis, interesting regions comprise of the boundaries
between symmetric and non-symmetric areas. Such bound-
aries are referred to as docking sites that allow different non-
symmetric parts to be exchanged. This exchange of parts en-
capsulated in symmetry defines a rewriting system for cre-
ating shape modifications, which can be transformed into a
constructive grammar towards creating a rich set of shape
variations. Additionally, such a technique detects repetitive
regular patterns that form a regular grid (see Figure 3) and
also allows the user to change the repetition count. This has
been demonstrated by Bokeloh et al. [BWKS11], where slid-

ing dockers are extracted to describe partial regularity within
more general shapes (see Figure 23).

Shape classification. Kazhdan and colleagues [KFR04] use
symmetry as a distinguishing feature for classification and
retrieval of shapes. They relate global rotational and re-
flective symmetries of objects to properties of their spher-
ical harmonic expansions (see also work of Martinet et

Figure 24: (Top panel) Preservation of analyzed sym-

metry relations in iWires a shape manipulation frame-

work [GSMCO09], (bottom panel) distilling and highlight-

ing of symmetry relations for creating abstractions of man-

made shapes [MZL�09]. (Images courtesy of Gal et al. and

Mehra et al. respectively.)

al. [MSHS06]) and the coefficients as symmetry descriptors.
The symmetry augmented representations were then used to
compare shapes. The method presented a compact, rotation
invariant shape descriptor that has been shown to be an effec-
tive descriptor on the Princeton shape database [SMKF04]
(see Figure 25). The approach has been extended later to
make use of symmetry transforms of objects [PSG�06].

Symmetry is also believed to be a dominating factor
in shape perception and viewpoint selection [RWY95].
Podolak et al. [PSG�06] use the detected reflective symme-
tries to automatically select preferred viewpoints for objects
and to pose them better. Wang et al. [WXL�11] discuss how
to group objects hierarchically by a perceptually motivated
scheme that combines symmetry and proximity information.
The result is an intuitive though non-canonical decomposi-
tion of shapes that is used for structure-preserving editing
(see Figure 25).

10. Future Directions

Symmetry of geometric shapes is an important tool in ge-
ometry processing. Arguably, it takes us one step closer to
the ultimate goal of a computationally understanding three-
dimensional objects. The state-of-the-art provides a large
range of algorithms for detecting extrinsic and intrinsic sym-
metries in various types of data, ranging from clean meshes
to point clouds from 3D scanners. Nevertheless, there are
many problems yet to be resolved. Maybe, the bigger part
of the challenge is even still ahead of us. Below, we give a
brief overview of open problems where no good solution is
known. We structure these into three areas: (i) improving de-
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shape retrieval

viewpoint selection perceptual grouping

Figure 25: (Top panel) Symmetry descriptors are used to

query a database for shape retrieval [KFR04]. (Bottom

panel) Good viewpoints are automatically selected to min-

imize the symmetry in the scene [PSG∗06] and a symmetry-

induced hierarchical organization of the parts of a model

is presented[WXL∗11]. (Images courtesy of Kazhdan et al.,

Podolak et al., and Wang et al. respectively.)

tection, (ii) defining more general notions of symmetry, and
(iii) structural models of redundancy.

Improving symmetry detection. Although a large variety
of algorithms exist for symmetry detection, there are still
challenging situations that cannot be handled. One aspect
is data quality. For very poor data, with a large amount
of noise and outliers, or substantial portions of data miss-
ing, existing approaches run into problems, in particular in
the feature extraction and aggregation stages. Intrinsic ap-
proaches are particularly troubled – currently, none of the
techniques could handle objects with large scale topologi-
cal noise, such as acquisition holes and contacts in a raw
3D scan. On the one hand, directions to address these issues
could include traditional measures such as multi-resolution
techniques, inpainting and feature extrapolation approaches,
various data filtering and preprocessing steps, and com-
bining information from multiple data sources when avail-
able [JTC11, CML∗12]. Further, uncertainty in the input at
some point unavoidably shows up as uncertainty in the out-
put, which could be modeled explicitly. Statistical represen-
tation of potential symmetry is a direction that could possi-
bly contribute to addressing such challenges.

Another aspect of the detection itself is computational
performance: Although known techniques are efficient
enough to handle objects such as larger buildings within
a few minutes, there is no technique that would scale to
processing a scan of an entire city, or other instances of
very large amounts of data. Neither the absolute computa-
tional costs nor the asymptotic scaling behavior for growing

amounts of data is adequate for such scenarios. Similarly,
there are no online algorithms that could for example pro-
cess data that is coming in in real-time from a dynamic 3D
scanner such as Microsoft Kinect.

More general notions of symmetry. All of the techniques
presented so far define symmetry as matching of geometry
under the group action of transformations from a set of ad-
missible transformations that is fixed a priori. The groups
that have been explored are translations, reflections, rota-
tions, scaling, and combinations of those, as well as intrin-
sic isometries of a fixed manifold. However, many objects
in the real world, in particular organic shapes, show redun-
dancy that cannot be characterized by these notions of sym-
metry, not even in an approximate sense. For example, the
leaves of a plant might all roughly look alike, although no
pair of them is actually related by a similarity transform.
Going even further, there exist semantic categories such as
“windows” or “cars” that share common traits that are im-
possible to capture by just fixing a priori set of transforma-
tion parameters. There are two important challenges here:
First, what is a good model of more general similarity? The
main conceptual pitfall is that very general mappings be-
tween shapes are prone to overfitting; the fewer restrictions
we place upon the matching of parts, the easier it becomes
to relate things that, to a human, are clearly unrelated. Find-
ing a good model for significant structural redundancy is
probably one of the major and very difficult challenges in
the field. The second problem is efficiency; given such gen-
eral matching models, how can the solution be computed
in a reasonable amount of time? As an example, there has
been a recent attempt to generalize matchings to linear sub-
spaces of variations [BWM∗11] but it very much struggles
with efficient detection. Another idea for more general mod-
els could be a data driven approach that either in a super-
vised or unsupervised manner learns categories of similar
shapes [KHS10, SJW∗11].

Structural models. Finally, there is the challenge of under-
standing the structure of the redundancy in the symmetry in-
formation. The known approaches use tools from group the-
ory to structure the symmetries, but there are several restric-
tions: While mutually commutative transformations yield
easily understood grid structures [PMW∗08], complex non-
commutative structures are more difficult to handle. Also,
symmetry groups only describe globally symmetry. Once
we only observe excerpts, there is a risk of overfitting, i.e.,
misinterpretation of the data in terms of a structure that is
unnecessarily complex. Aside from group structures of the
symmetries themselves, there is also the question what else
the structural redundancy tells us about the shape. For exam-
ple, what is the information content of a shape with partial
symmetry or regularity, and what is the relative information
if we know a set of shapes and observe a new one that is par-
tially similar? In the end, this might lead to an “information
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theory of shapes” that unlike traditional shape compression
and takes self-similarity and symmetry into account.

11. Conclusion

Symmetry is ubiquitous in nature and in man-made ob-
jects. It captures self-similarity of objects under the action
of transformations, and can be naturally thought of in terms
of transformation groups. Automatic detection of symme-
try depends on the type of symmetries that are of inter-
est, i.e., whether exact or approximate, global or partial,
and Euclidean or intrinsic. The choice of symmetry type for
shape analysis often is dependent on the family of objects
and target applications. We presented a framework to orga-
nize state-of-the-art symmetry detection algorithms based on
their choices in the key phases of the algorithms. Finally, we
discussed a wide range of applications organized into groups
depending on the phase of a typical geometry processing
framework they affect. Symmetry-aided processing can be
applied in the shape acquisition phase, in the geometry ma-
nipulation phase, and also can be used for categorizing and
organizing the captured 3D geometry of shapes.

In future, research efforts are expected to be devoted to-
wards development of symmetry detection algorithms to
handle very large volumes of data, in the form of a paral-
lel approach or as an online algorithm. The chief difficulty
in developing such algorithms come from the global nature
of symmetry that tightly couples the overall geometry mak-
ing it difficult to work solely with local reasoning, without
any prior knowledge or preprocessing of the data.

Symmetry can be interpreted as redundancy in the con-
text of information theory. This raises questions about what
geometric information is fundamental, and how we can ef-
ficiently represent and store geometric shapes. Similar to
many image compression procedures, it is conceivable to
store a compact base representation as a symmetrized ver-
sion of the shape, and then subsequently store deviations
from the symmetrized shape. Intuitively this can be thought
to be a level of symmetry representation, similar to fre-
quency band representations for images. But, we still lack
a canonical algorithm to quantify information content of 3D
geometry.

In contrast to point sets or triangle meshes, a symmetry-
aware representation provides high-level cues about the
objects: symmetry properties describe the relation of ob-
ject parts to themselves, thereby abstracting from the
concrete shape and emphasizing on structural relations.
Thus, symmetry is an important building block in gain-
ing a high level understanding of geometry. A grand
goal, however, is to infer meaningful shape semantics
via computational shape analysis. Semantics can be in
terms of motion, in terms of function of object parts,
or degrees of freedom. A combination of geometric in-
sights [XWY∗09, GSMCO09, MYY∗10] with data-driven

approaches [FCODS08, KHS10] to capture complex pat-
terns in the geometric structure and their relation to seman-
tic attributes, may possibly bring us closer solving this grand
goal. Symmetry – the redundancy within a geometric object
and the structure of such redundancy – will continue to play
an important role in model acquisition, understanding, ma-
nipulation, manufacturing, and also towards efficient, eco-
nomic, aesthetic, and functional object designs.
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