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Abstract

This paper examines the notion of symmetry
in Markov decision processes (MDPs). We
define symmetry for an MDP and show how
it can be exploited for more effective learning
in single agent systems as well as multiagent
systems and multirobot systems. We prove
that if an MDP possesses a symmetry, then
the optimal value function and @ function are
similarly symmetric and there exists a sym-
metric optimal policy. If an MDP is known
to possess a symmetry, this knowledge can be
applied to decrease the number of training ex-
amples needed for algorithms like @) learning
and value iteration. It can also be used to
directly restrict the hypothesis space.

1. Introduction and Background

In this paper, we formalize the concept of symmetry in
Markov decision processes (MDPs) and derive theoret-
ical results using this formalism. We use these results
to improve the performance of existing algorithms and
to prove an interesting result regarding homogeneous
agents.

A symmetry is a type of equivalence relation. Two
states are symmetric if they have symmetric actions.
Two actions are symmetric if they lead to symmetric
outcomes. We show that if an MDP possesses a sym-
metry, then it possesses a symmetric optimal value
function, a symmetric @) function, symmetric optimal
actions, and a symmetric optimal policy. We look at
the two types of symmetry: adherence to an equiva-
lence relation and invariance under a group of trans-
formations. We use homogeneity in multiagent groups
as an example to clarify the differences between these
two types.

Single agents can exploit symmetry by reusing plans
or policies for portions of their problem space (Bowl-

ing, 1999). Multiple agents can exploit symmetry in
distributed tasks by using homogeneous team poli-
cies (e.g. (Balch, 2000)). This paper does not ad-
dress the problem of recognizing symmetry in an agent
task. This problem is being investigated by other re-
searchers, including (McCallum, 1995) and (Bowling,
1999). We focus here on providing a formalism in
which this work can be discussed and examined.

MDPs have been studied in operations research and
artificial intelligence (Bellman, 1957; Filar & Vrieze,
1997; Mitchell, 1997). Reinforcement Learning is a
technique for discovering a solution to an MDP by it-
eratively updating a value function or @) function with
information gained by operating inside the MDP. Kae-
bling, Littman, & Moore (1996) provide an excellent
survey on reinforcement learning. Here we show how
algorithms which are guaranteed to converge to an op-
timal value function or () function can be accelerated,
and we provide a guideline for improving the speed of
heuristic techniques.

2. Markov Decision Processes

Here we present the traditional definitions relating to
MDPs to clarify the notation that will be needed for
the definition of symmetry introduced below.

Definition 1 A Markov decision process is an or-
dered tuple (S, A, T, R) where S is a set of states, A
is a set of actions, T is a transition function from
S x AxS to|0,1] where for all s € S and all a € A,
YsesT(s,a,8") =1, and R is a reward function from
S x A toR.

An MDP represents a stochastic environment with one
agent. At any time, the agent is in a state s € S. It
then performs an action a € A. The agent receives a
reward R(s,a). The probability that the agent is in
any state s’ € S at the next step is T'(s, a, s).



There are several types of algorithms that the agent
could use to determine its action in a particular state.
The agent can use a deterministic function of its cur-
rent state to determine its next action, or the function
could depend on time, or the agent could choose from
a probability distribution over states.

Definition 2 A policy is a function o : S — A.

If an agent executing policy o is in a state s € S,
it performs action o(s). Thus, the probability that
the agent is in state s’ € S in the next time step is
T(s,0(s),s). Also, the reward is R(s,o(s)).

Thus, the sequence of states is a Markov chain. The
transition matrix for the chain is Py = T'(s,0(s),s’).
If the agent is in state s € S at time 0, then the
probability that the agent is in state s’ € S at time
tis (P')gs. Thus the expected reward at time ¢ is

Yves(PssR(s',0(s).

Definition 3 Define the value function of an MDP
and a policy o to be a function V, such that for all
s€eS:

V,(s) = th Z (PY)ysR(s',0(s))
t=0

= s'eS
for some vy € [0,1).

V(s) represents a weighted sum of the expected re-
wards if a policy is played in an MDP. It is important
to notice that

V,(s) = R(s,0(s)) + Z T(s,0(s),s )V, (s")
s’eS

Observe that different policies will most likely result
in different value functions.

Definition 4 An optimal policy o* is a policy such
that for all policies o, Vy«(s) > Vy(s) for all s € S.
The optimal value function is a value function of
an optimal policy, V* = V.

It is apparent from the definition that there is no more
than one optimal value function. There can be more
than one optimal policy.

Theorem 1 (Bellman, 1957) A value function V* is
optimal if and only if it obeys Bellman’s equation:

V*(s) = max (R(s, a)+7 Y T(sa, 5’)V*(5’)>

€A
“ s'eS

It is well known that there exists an optimal value
function (Bellman, 1957). We provide a proof in the
Appendix.

Definition 5 The Q function is a function such that
for all s € S, for all a € A, Q(s,a) = R(s,a) +
Y ses T(s,a,8)V*(s). An optimal action for a
state s € S is an action a € A such that Q(s,a) =
V*(s).

A strategy o is optimal if and only if for all states s
o(s) is an optimal action.

3. Symmetry in MDPs

We introduce symmetry in an MDP with an example.
Consider a two dimensional pixellated image which is
symmetric across the line y = z. That is, if one flips
the image around the line, it looks the same as it did
before. Another way of representing this symmetry
is that the pixel (z,y) is the same color as the pixel
(y,x). That is, the locations are “equivalent.”

Definition 6 A relation f is a subset of G x H. For
all g € G, define f(g) = {h|(g,h) € f}. An equiva-
lence relation E on a set K is a subset of K x K obey-
ing the following three properties for all a,b,c € K:
a € E(a); ifa€ Eb), thenbe€ E(a); if a € E(b), and
b e E(c), then a € E(c). E(a) is called the equiva-
lence class of a.

There are other types of symmetry. Consider an image
which is symmetric about the origin. In other words,
if you perform a rotation of an arbitrary number of
degrees, the image looks the same. Converting this
into an equivalence relation, two points are equivalent
if they are the same distance from the origin.

A najve definition of symmetry would be an equiv-
alence relation over the states of the MDP. However,
this is insufficient for representing several types of sym-
metries. For example, consider when an agent is play-
ing soccer, and its actions are of the form “turn ten
degrees left” and “move three meters forward”. In
this game a line of symmetry runs lengthwise down
the middle of the field. However, when you flip across
this line, “left” and “right” switch, so the agent must
modify his actions accordingly. So we define symmetry
in the following fashion:

Definition 7 An MDP symmetry is an ordered
pair (Es, E4) where Es is an equivalence relation on
S and E 4 is an equivalence relation on the set S X A.

1. For all (s,s') € Es, for all a € A, there exists an
a’ € A such that (s',a’) € EA(s,a).



2. For all ((s,a),(s',d")) € E4, (s,8') € Es.

In other words, if two states are equivalent if they have
equivalent actions.

An interpretation of ((s,a), (s',a")) € E 4 is that “per-
forming action a in state s is the same as performing
action a’ in state s’.” The act of turning eight degrees
right on the left side of the soccer field should have the
same effect as the act of turning eight degrees left on
the right side of the soccer field. This does not mean
that it ends in exactly the same position, only that
the new positions where it arrives are symmetrical. It
should be that a goal from the left side of the field and

a goal from the right side are rewarded equally.

Definition 8 We define symmetric with respect to
(Es, E4) in several contexts as follows:

a. A reward function is symmetric if for all
((Sa a)7 (5/5 a/)) € E.A: R(Sv a’) = R(Slva,)'

b. A transition function is symmetric if for all
((s,a),(s',a")) € Eq, forall s € S,

Z T(s,a,s") = Z

s"eEs(s") s""EEs(s")

T(SI, al7 s///)

This means that the probability of transitioning to
an equivalence class is equal for both state-action
pairs.

c. An MDP is symmetric if the reward function
and transition function are symmetric.

d. A walue function V is symmetric if for all
(s,8') € Es, V(s') =V(s).

e. A Q function is symmetric if for all
((s,a),(s',a")) € Ea, Q(s,a) =Q(s,a).

f- The optimal actions are symmetric if for all
((s,a),(s',d")) € Ex, a is an optimal action in
state s 1mplies a’ is an optimal action in state s'.

g- A policy o is symmetric if for all (s,s’) € Es,
((s,0(5)), (s',0(s))) € Ea.

We illustrate symmetry in an MDP with an example.
Consider a single agent sent to forage on a square field.
A square has several lines of symmetry, thus for each
state there are seven other states which are equivalent
to it. However, suppose we introduce a puck in the
field to be foraged. If the location of the puck is part of
the state, then the associated MDP is still symmetric.
However, if we restrict the puck to be in a specific
location, the symmetry of the square is broken. Thus
symmetry is not only dependent on the environment
of the agent but also upon how that environment is
represented.

Theorem 2 Given an MDP (S, A,T,R), which is
symmetric with respect to (Es,E4), where § =
{s1,82,...,8,} and A are finite, then

a. the optimal value function is symmetric,
b. the Q function is symmetric,
c. the optimal actions are symmetric, and

d. there exists an optimal symmetric policy.

A proof is given in the Appendix. We proceed now to
examine the implications of Theorem 2.

4. Accelerating Learning

How does one learn to behave optimally in an MDP?
Two popular ways of deriving a policy for an MDP
are to guess an optimal value function (Samuel, 1959)
or @ function (Watkins, 1989) and iteratively improve
it. The speed of these algorithms is dependent on the
number of states and actions. If one is using a value
function approach and one has identified some symme-
try possessed by the MDP, one can consider the MDP
formed with the equivalence classes as states. For ex-
ample, in soccer, the set of two points equidistant from
the center line and equidistant from the goal could be
considered a single state for learning.

This can improve the usefulness of each update im-
mensely. Assume for instance an agent is stuck explor-
ing the right side of a symmetric field. It can translate
this information to the left side, so that even if it never
escapes the right side, it can learn the dynamics of the
whole field.

If using a @ function to learn a policy, one can learn
a value for each equivalence class of state-action pairs.
For nondeterministic MDPs, learning the @ function
involves recording the number of times a state-action
pair is visited, so that later visits can be weighted less.
One must now record the total number of executions
of all the state-action pairs in an equivalence class.

Both of these approaches enable the agent to learn a
strategy for an effectively “smaller” MDP. This should
improve the speed of convergence to the optimal value
function or @ function.

A table update method is not always the most efficient
method for learning how to operate in large MDPs. A
function approximator (e.g. an artificial neural net-
work) can be used to approximate V* or ). Here, the
knowledge that symmetrical states and actions have
the same value can be used to guide the construction
of the network. If an agent is on a circle, then we can



enter the distance from the center as opposed to the
absolute coordinates of the agent.

5. Implications for Multiagent Learning
5.1 Multiagent Markov Decision Processes

There are a number of interesting learning problems
that require us to find policies for multiple identical
agents. These agents might be physical robots or soft-
ware programs (Mataric, 1997; Noda, 1995; Parker,
1992). It may be convenient and appropriate to use
the same program for all the agents: if we know the
same policy will be effective for all agents, we only
need to learn a single policy rather than one for each
agent. However, can such an approach be optimal?

Another reason for addressing this issue is that it helps
illustrate the differences between two types of symme-
try. Heretofore, we have discussed a symmetry based
on adherence to an equivalence relation. In the follow-
ing sections, we present an alternative: invariance un-
der a group of transformations. Here, we use group in
the strict sense: a set of functions containing the iden-
tity and closed under composition and inversion. One
reason we introduced the equivalence relation type of
symmetry earlier is that an invariance under a group
of transformations can be converted to an adherence
to an equivalence relation, although the latter may be
less restrictive.

In the following discussion we assume the agents
(robotic or software) are homogeneous, but that they
may utilize heterogeneous policies. By “homogeneous
agents” we mean they all share the same sensing and
acting capabilities. In the case of robotic agents,
this means the robots are mechanically and electri-
cally identical. An MDP is typically used to represent
the interactions of a single agent. However, if multi-
ple agents are fully collaborative and have complete
knowledge of the environment, they may be treated as
a single agent acting in an MDP. If each agent is capa-
ble of computing its portion of the joint deterministic
optimal policy, then it may simply execute its portion.
If the joint policy is nondeterministic, then this may
not be the case. Because we are going to be consider-
ing homogeneous agents, we will restrict the state sets
and action sets of all the agents to be identical. Now
we introduce:

Definition 9 A Multiagent Markov Decision
Process (MMDP) with n agents is an MDP
(S, A, T,R) where S C (Sagent)™ for some set Sggent
and A = (Aagent)™ for some set Aqgent, where Sggent
is considered the state space of a single agent, and
Aagent s considered the set of actions of a single agent.

The purpose of this representation is for ease of theo-
retical analysis. In practical applications, augmenting
the vector with additional state of the environment
and perhaps the state of other agents would be appro-
priate. The theory extends to such cases.

On the other hand, for some cases, this representation
is insufficiently restrictive. If our agents are physical
robots, then they will not be in the same physical po-
sition, and their exact position is contained in their
state, then they will not be in the same state. This
gives us an additional restriction on the nature of the
state space.

Definition 10 An MMDP has agents in distinct
states if for all elements s € S, for alli,j where i # j,

Si#Sj.

Note that for an MMDP, a policy is a function from
S C (Sagent)™ to (Aggent)™. This allows each robot’s
action to depend upon the states of the others.

5.2 Homogeneity

How can one say that two robots are physically iden-
tical? One way is to say that there are separate, but
identical transition functions for each robot depending
only on that robot’s state. However, this is overly re-
strictive, because it would not allow for interaction of
any kind between robots.

Suppose a group of robots is performing a task. Robot
1 is in position s, performs action a;, and ends up in
state s|. Simultaneously, robot 2 is in position sg,
performs action as, and ends up in state s,. If they
robots are physically identical, then it should be the
case that if you place robot 1 in position sy and robot
2 in position s1, and robot 1 performs action as and
robot 2 performs action a1, then robot 1 should end
up in state s; and robot 2 should end up in state s.
In general, if we permute the states of the robots and
their actions, then the results should be the same. We
formalize this concept below:

Definition 11 A permutation of a state is a per-
mutation of the elements. If P is a permutation
of a set of vectors V™, then there exists a bijection
g:{l...n} — {1...n}, such that for all ¥ € V",
for all i, P(¥); = vgy. The inverse of a permutation
P is the permutation P~ such that for all v € V",
7= P~Y(P(¥)). The inverse of the inverse of P is P.

Definition 12 An equivalence homogeneity for an
MMDP is an ordered pair (Hs, H4) where Hs and H 4
are defined as follows:

1. (s,8') € Hs if and only if there exists a permuta-



tion P such that s’ = P(s).

2. ((s,a),(s',a’)) € Hu if and only if there exists a
permutation P such that s = P(s) anda’ = P(a).
Thus, if you use any permutation to swap the
robots and their actions similarly, the new con-
figuration of robots and actions are equivalent to

the old.

We could choose to define a homogeneous MMDP to be
an MMDP possessing this symmetry, but that would
allow the agents to “swap” states during a transition.
In other words, in soccer, if agent A is on the left
side of the field, and agent B is on the right side of
the field, a transition which is symmetric with respect
to homogeneity could place B on the left and A on
the right. Therefore, we provide a more restrictive
definition.

Definition 13 An MMDP is functionally homo-
geneous if for all permutations P, all states s,s’ €
S, and dall actions a € A, T(P(s),P(a),P(s')) =
T(s,a,s") and R(P(s),P(a)) = R(s,a).

Observe that a functionally homogeneous MMDP is
symmetric with respect to equivalence homogeneity.
A functionally homogeneous policy conforms to each
agents’ determining its action separately using the
same algorithm.

Definition 14 A policy o is functionally homoge-
neous if for all permutations P, for all states s € S,

o(P(s)) = P(o(s))-

Observe that this definition is the same as the follow-
ing: for all ((s,a),(s',a')) € Hyu, if o(s) = a, then
o(s') = a’. For an equivalence homogeneity it is re-
quired that if two states are equivalent, the actions
performed in these states are equivalent. A function-
ally homogeneous policy requires that if two state-
action pairs are equivalent and one is part of the op-
timal policy, then the other must be. But what if two
actions in the same state are equivalent? The following
examples clarify this issue.

5.3 A Counterexample

It might seem that all functionally homogeneous
MMDPs have at least one optimal functionally homo-
geneous policy. In fact, this is not the case.

Consider the following situation: Wacko Foods has two
stores in Fruitytown. Each day, each store can sell ei-
ther apples or oranges, but not both. If one store sells
apples and the other sells oranges, they sell them all
and Wacko Foods makes ten dollars. If both stores

sell apples or both stores sell oranges, they sell half
and Wacko Foods makes five dollars. If we defines this
as an MMDP with one state, it is homogeneous. How-
ever, there exists no optimal policy which involves the
managers doing the same thing! This is an example
of a functionally homogeneous MMDP without agents
in distinct states. Other examples of MMDPs without
agents in distinct states might be software agents man-
aging stock portfolios, or agents managing purchasing
decisions for a company, or any other cerebral agent.

When does one know that the agents are in distinct
states? If the agents are physical robots, where their
state contains their exact position, and these positions
cannot overlap, then they would be guaranteed to al-
ways be in distinct states. Examples include soccer
players, soldiers in the battlefield, etc.

However, one could formulate the MMDP of the stores
in Fruitytown in a different way. The exact location of
each manager could be included in the state. Suppose
that one store is on Cherry Boulevard and the other is
on Kiwi Drive. In this situation, the manager in the
store on Cherry Boulevard could sell apples, and the
manager in the store on Kiwi Drive could sell oranges.
But it makes no sense to encode this information into
the state, because it has no real bearing on the prob-
lem.

5.4 Optimal Homogeneous Policies

Lemma 1 In an MMDP with agents in distinct
states, for all s € S, for all a,a’ € A, ((s,a),(s,a’)) €
H 4 implies a = a’.

Proof: If ((s,a), (s,a’)) € H4, then there exists a per-
mutation P such that P(s) = s and P(a) = do/. If
agents are in distinct states, then for all s € S, the
elements are unique. Therefore the only permutation
P for which s = P(s) is the identity. Therefore a = a’.
[ |

Lemma 2 If for all s € S, for all a,d € A,
((s,a),(s,d')) € Hy implies a = o', then all policies
which are symmetric with respect to homogeneity are
functionally homogeneous.

Proof: Assume o is a policy which is symmetric with
respect to homogeneity. For all ((s,o(s)),(s',a’)) €
Hy, if s = &', then ¢ = a. Thus o(s') =
a'If s # s, then first observe that (s,s’) €
Hs. Thus ((s,0(s)),(s',0(s"))) € Ha. Therefore,
((s'y0(s")),(s',a")) € Ha. Thus o(s') = o/, implying
that the policy is homogeneous. [ |

Theorem 3 A functionally homogeneous MMDP



with agents in distinct states possesses a homogeneous
optimal policy.

Proof: As stated before in Section 5.2, a functionally
homogeneous MMDP is symmetric with respect to ho-
mogeneity. Therefore, there exists an optimal policy
which is symmetric with respect to equivalence homo-
geneity. From Lemma 1 and Lemma 2, this strategy
is functionally homogeneous. |

6. Conclusions and Future Work

In this paper, we introduce a definition of symmetry.
We show that a symmetric MDP has a symmetric opti-
mal value function, a symmetric @ function, symmet-
ric optimal actions, and a symmetric optimal policy.
Symmetry in an MDP can often be easily recognized.
Symmetries in a playing field, identical objects, and
identical agents are often explicit or apparent in the
statement of a problem. This paper presents a theo-
retical justification for exploiting these types of sym-
metry to accelerate learning for single and multiagent
systems.

We introduce two types of symmetry in this paper:
equivalence symmetry and functional symmetry. An
equivalence symmetry is in some ways more fundamen-
tal in that an MDP which has an equivalence symme-
try has a symmetric optimal policy. However, some
types of symmetry cannot be represented by an equiv-
alence symmetry, so the more restrictive functional
symmetry is quite useful for proving properties like
homogeneity.

The concept of symmetry can be taken further than
has been done in this paper. For symmetric MDPs
which are invariant under a group of functions and
have an infinite number of states or actions, there ex-
ists a symmetric optimal policy. At present, we also
have a proof regarding symmetric stochastic games in
preparation for publication.

The proof technique in this paper is straightforward
and can probably be extended to several other types of
systems. MDPs with an infinite number of states, hid-
den Markov models, partially observable MDPs, par-
tially observable stochastic games, and other games in
economics would have similar properties.
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Appendix

In order to prove Theorem 2, we begin with Brouwer’s
Theorem. Then we develop the concept of symmetry
in Euclidean spaces, and prove a result which will be
used as a foundation of the proof of Theorem 2.

Definition 15 A set K C R™ is bounded if there
exists an N € R such that for all ¥ € K, d(#,0) < N.
A set K CR" is compact if it is closed and bounded.

Theorem 4 Brouwer’s Theorem  Given a
nonempty, compact, convex set K C R", a con-
tinuous function f : K — K, there exists a vector
¥ € K such that f(Z) = Z.

A proof can be found in (Border, 1985).

Definition 16 If E is an equivalence relation on
{1,...,n}, then a vector & € R™ is symmetric with
respect to E if for all (i,j) € E, x; = x;. Suppose that
f is a function from B C R"™ to C C R"™. f is sym-
metric with respect to E if for all symmetric ¥ € B,
f(Z) is symmetric.

Theorem 5 The set of all symmetric vectors in R™
with respect to an equivalence relation E on {1...n}
is a linear subspace, and therefore closed and conver.

Proof: Define V' to be the set of all symmetric vectors
in R™ with respect to E. A subset of R" is a linear
subspace if it is closed under addition, scalar multi-
plication, and contains the zero vector. V is closed
under addition, because if £ and ¢ are symmetric,
then for all (4,5) € F, x; = x;, and y; = y;, hence
z; +y; = x; +y;. If £ is symmetric and A is a scalar,
then for all (¢,j) € E, x; = x;, and Az; = Az;. For 6,
for all (i,7) € E, 0; = 0 = 0;, implying 0 is symmet-
ric. Thus the set of all symmetric vectors is a linear
subspace. |

Here we present a theory of symmetry which will be
at the core of the proof to Theorem 2.a.

Theorem 6 Given B € R" is a compact, convex set,
a continuous, symmetric function f : B — B, E is
an equivalence relation on {1...n}. If there exists a
symmetric vector in B with respect to E, then there
exists a symmetric vector T € B with respect to E
such that f(Z) = Z.

Proof: Define B’ to be the set of all symmetric vectors
in R™ with respect to E. B’ is closed and convex by
Theorem 5. Consider the set B” = B’ N B. Since B’
and B are closed, B” is closed, and since B’ and B
are convex, B” is convex. Since B is bounded, B” is

bounded, and because B contains a symmetric vector,
B" is nonempty. If we restrict f to B”, f is still con-
tinuous and because f is symmetric the new codomain
will be a subset of B”. Hence, Brouwer’s Theorem ap-
plies to f on B”, and there exists an & € B” such that
f(@) = 2. ¥ is a symmetric vector in B. [ |

Before presenting the proof of Theorem 2, we present
a proof of the existence of an optimal value function,
originally proved by Bellman (1957). We show this
proof because it shares many elements with the proof
of Theorem 2, and will help elucidate that argument.

Theorem 7 Given an MDP (S, A, T, R), where S =
{51,82,...,8n} and A are finite, then there exists a
value function V* : § — R satisfying Bellman’s equa-
tion.

Proof: Bellman’s equation may or may not have a so-
lution because it has a value V* on both sides of the
equation. So, let us slightly modify Bellman’s equa-
tion by introducing U : RIS| — RIS! replacing V*(s;)
on the left side of Bellman’s equation with U(Z);, and
on the right side with ;.

R(s;,a) + Z T(s4,a,5;)x;

Jj=1

U(x); = max

Observe that if U(Z) = &, then V*(s;) = z; would be
a solution to Bellman’s equation.

Observe that the value in any state will be bounded
above by the case where the agent receives the
maximum value at every step, and bounded be-
low by the case where it receives the mini-
mum value. Define R4 = maxsesqca R(s,a),
Ryin, = minges qca R(s,a). Define the set K =
[ﬁRmm, ﬁRmaz]ls‘. Observe that K is a hyper-
cube, both compact and convex.

Also, for all Z € K, U(Z) € K. Observe that:

U(@); <
(x)l_gleaj(

= 1
Ripae + ’YZT(SM a, Sj)mRmax

Jj=1

. v =
U(m)z S zné?zl( Rmam + mRmaI ;T(siaav Sj)

By the definition of an MDP, E?Zl T(si,a,s;) = 1,
so:
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Similarly, U(Z); >
U is continuous, because it is formed by the com-
position of concatenation, maximization, multiplica-
tion and addition, which are all continuous functions.
Therefore, K is a compact, convex set and U is a con-
tinuous function from K to K, and hence by Brouwer’s
Theorem there exists a fixed point & such that U(Z) =
Z. Therefore there exists a function V* satisfying Bell-
man’s equation. [ |

Proof of Theorem 2.a: Consider the symmetry F' =
{(i,j) € {1...n}?: (si,s;) € Es}. Define K and U as
before. Observe that a vector in K is symmetric with
respect to F' if and only it represents a symmetric value
function. Also, (Rmin - - - Rmin) IS a symmetric vector
in K. Observe that if U is symmetric, then by The-
orem 6, there exists a symmetric value function in K
satisfying Bellman’s equation, implying that the opti-
mal value function is symmetric. Now we will prove
that U is a symmetric function with respect to F'. For

all (i,k) e F

CL) + Y Z T(S’ia a, Sj)xj
j=1

U(z); = max R(s;,

Choose an a' € A that maximizes R(s;,a’) +
72?:1 T(s;,d’,s;)xj. Note that:

U(Z); = R(s;,a’ +’yZT iy, 85)T;
j=1

Since (i,k) € F, (s;,8x) € Es. Thus, there exists a
a” € A such that ((ss,a’), (sk,a”)) € E4. Since the
reward function is symmetric:

) +7 ZT(sia a/a Sj)xj
j=1

U(f)z = R(Sk, a”
Define P = {F(i)|]i € {1...n}}, the set of equivalence
classes of states represented as indices. This set is

finite, so it can be represented as {Py, Ps,..., Py}
Observe this is a partition, so:

N> ST

p=1j€EP,

U(-'f)z sk:a

(si,a, 55)x;

For each P,, choose some j € P, and define v, = ;.
Observe that for all [ € P,, ; = x; and hence z; = vp.

m

N2 2T

p=1j€P,

U(Z)i = R(s,a

(si,d,55)vp

Now we can bring this value out of the innermost sum.

+’yva Z

= JEP,

U(Z); = R(sk,a

(si,d',85)

Because the transition function is symmetric:

—l—’yva Z (sk,a”,s;)

p=1 JEP,

U(Z); = R(sk,a
Afterwards, we unwrap these manipulations:

U(Z); = R(sk, a +’YZT sk, a”, 85)T;

a) + va(sk,a, 55)x;

j=1

U(Z); < U(D)x

U(Z)i < mazaea | R(sk,

By reversing ¢ and k, we can prove U(Z);, < U(Z);.
Thus, U(Z); = U(Z)g. This implies that if & is sym-
metric, U(Z) is symmetric, which means we can use
Theorem 6 to prove there is a symmetric optimal
value function. Because the optimal value function
is unique, the optimal value function is symmetric. i

Proof of Theorem 2.b: For all (s,a),(s’,a’) € S x A
such that (s',a’) € Ea(s,a):

(s,a Jr’yz s,a,8"YV*(s")

s"€S

Q(s,a) =

Observe that V* is symmetric in the same way that ¥
was. Thus, we can use the same technique we used in
Theorem 2.a. |

Proof of Theorem 2.c: Now we will prove that
the optimal actions sets are symmetric. Take an
((s,a),(s',a")) € E4 such that a is an optimal ac-
tion for the state s. Thus (s,s’) € Es. Therefore,
Q(s',d") = Q(s,a) = V*(s) = V*(s'), so @ is an opti-
mal action for the state s’. |

Proof of Theorem 2.d: Finally, we shall prove there ex-
ists a symmetric optimal policy. For each P;, choose a
representative s; € P;. For each s;, choose an optimal
action a; € A for s;. For each s € P;, choose an a € A
such that ((s,a), (si,a;)) € E, and set o(s) = a. Ob-
serve that, by definition, ¢ is symmetric. Since the set
of optimal actions is symmetric, ¢ is optimal. |



