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Abstract

The work is devoted to a new branch of application of continuous group’s techniques
in the investigation of nonlinear differential equations.

The principal stages of the development of perturbation theory of nonlinear diffe-
rential equations are considered in short. It is shown that its characteristic features
make it possible a fruitful usage of continuous group’s techniques in problems of per-
turbation theory.

1. Introduction

The idea of introducing coordinate transformations to simplify the analytic expression of
a general problem is a powerful one. Symmetry and differential equations have been close
partners since the time of the founding masters, namely, Sophus Lie (1842–1899), and
his disciples. To these days, symmetry has continued to play a strong role. The ideas
of symmetry penetrated deep into various branches of science: mathematical physics,
mechanics and so on.

The role of symmetry in perturbation problems of nonlinear mechanics, which was al-
ready used by many investigators since the 70-th years (J. Moser, G. Hori, A. Kamel,
U. Kirchgraber), has been developed considerably in recent time to gain further under-
standing and development of such constructive and powerful methods as averaging and
normal form methods.

The principal stages of the development of perturbation theory of nonlinear differential
equations connected with the fundamental works by A. Poincaré, A.M. Lyapunov, Van der
Pol, N.M. Krylov, N.N. Bogolyubov, and their followers are considered. The growing role
of symmetry (and, accordingly, of continuous group’s techniques) is shown by the example
of perturbation theory’s problems.

2. Short survey of perturbation theory

2.1. The basic problem

Let us consider the system

ẋ = −y,
ẏ = x+ εx3,

(1)

which is equivalent to Duffing’s equation, ε is a small positive parameter.
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When ε = 0, the system of “zero approximation” has the periodic solution

x = cos t, y = sin t.

The main question is: has system (1) also a periodic solution when ε �= 0 and is sufficiently
small?

It is naturally to try to find a periodic solution of nonlinear system (1) as a series

x = cos t+ εu1(t) + ε2u2(t) + · · · ,
y = sin t+ εv1(t) + ε2v2(t) + · · · .

(2)

Substitution of series (2) in equation (1) replaces the original system by an infinite se-
quence of simple systems of equations

u̇1 = −v1,
v̇1 = u1 + cos3t,
u1(0) = 1, v1(0) = 0;
u̇k = −vk,
v̇k = uk + fk(t, u1(t), . . . , uk−1(t)),
uk(0) = 0, vk(0) = 0, k = 2, 3, . . . .

(3)

Let us solve system (3). Excepting the function v1, one comes to the equation of the
second order

ü1 + u1 = cos3t =
4
3

cos t+
1
4

cos 3t. (4)

The general solution of (4) is

u1 = A cos t+B sin t+
3
8
t sin t− 1

9
cos 3t.

Constants A and B are to be found to satisfy an initial value.
So, already the first member of series (2) has an addend t sin t and, as a result, the

functions x, y are not periodic. It is easy to see that among subsequent members of
series (2) there will be also terms of kind tn sin t. Such terms in celestial mechanics are
called “secular terms”.

2.2. Principal stages of the development of perturbation theory

All the long-standing history of solution of nonlinear problems of form (1) (and more
complicate ones) was connected with the construction of solutions as series (2) which
do not contain secular terms. Here, let us go into three most important stages of the
development of perturbation theory.

– Works by A. Poincaré and A.M. Lyapunov.

– Works by Van der Pol, N.M. Krylov and N.N. Bogoliubov.

– Group-theoretic methods in perturbation theory.
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Works by A. Poincaré and A.M. Lyapunov

The problem formulated in section 2.1 was completely solved in works of the authors
cited above. Really, they have received more general results, but there is no necessity of
considering them here.

Theoretical bases for solving problem (1) are given by the following two theorems.
Let us formulate Poincaré’s theorem suitably to the system of form (1). (The complete

formulation see, for example, in [1], p.39.)

A. Poincaré’s theorem. The solutions of system (1) are analytic functions of the pa-
rameter ε, i.e., series converge when the absolute value of ε is sufficiently small and, hence,
they are solutions of system (1), expanded in an infinite power series in the parameter ε.

Therefore, the presentation of solutions of system (1) as series (2) is quite true. Its
default is that the periodic solution of system (1) is expanded into series in nonperiodic
functions.

Let us consider a more general system of the second order

ẋ = −y +X(x, y),

ẏ = x+ Y (x, y),
(5)

where X(x, y), Y (x, y) are analytic functions.

A.M. Lyapunov’s theorem. If system (5) has the analytic first integral

H(x, y) = x2 + y2 +R(x, y) = µ (6)

and µ is sufficiently small, then it has a family of solutions periodic in t.
The period of these functions tends to 2π when µ→ 0. The solutions of system (5) are

analytic functions of a quantity c, the initial deviation of variables x, y.

A.M. Lyapunov had proved also the inverse statement. Hence, the existence of integral
(6) for system (5) is necessary and sufficient condition for the existence for system (5)
in the neighborhood of the origin of the coordinate system of periodic solutions which
depend upon an arbitrary constant c.

On making in (5) change of variables

x = εx̄, y = εȳ,

one easy comes from system (5) to the one with a small parameter of the form (1).
System (1) has the first integral in elliptic functions. Hence, A.M. Lyapunov’s theorem

can be applied to it: there exists a periodic solution in the neighborhood of the origin of
the coordinate system.

A.M. Lyapunov had gave an effective algorithm of construction of solutions of sys-
tem (5) as series. The algorithm uses the change of variable

t = τ(1 + c2h2 + c3h3 + · · ·),
where h2, h3, . . . are some constants which are to be find in the process of calculations.

A. Poincaré’s method of defining the autoperiodic oscillations of equations of the form

ẍ+ λy = εF (x, ẋ)
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uses the change of variable

t =
τ

λ
(1 + g1ε+ g2ε

2 + · · ·),

where g1, g2, . . . are some constants which are to be find in the process of calculations.
In conclusion, let us note the typical features of A. Poincaré’s and A.M. Lyapunov’s

methods.

• The creation of constructive algorithms of the producing of periodic solutions as
series, which do not contain secular terms.

• The active transformation of the initial system: the introduction of arbitrary vari-
ables, which are to be find in the process of calculations.

• The base of the developed algorithms consists in the proof of analyticity of the series
which represent a desired periodic solution.

For more details about questions touched here, see, for example, [1].

Researches by Van der Pol, N.M. Krylov and N.N. Bogolyubov

The next stage in perturbation theory is connected with names of the scientists cited
above. A typical object of their investigations is the system of nonlinear equations

ẋ = εX(ε, x, y),

ẏ = ω(x) + εY (ε, x, y),
(7)

where x ∈ Rn, y ∈ R1, functions X(ε, x, y), Y (ε, x, y) are supposed to be periodical in y of
the period T .

One looks for solutions of system (7) as series

x = x̄+ εu1(x̄, ȳ) + ε2u2(x̄, ȳ) + · · · ,
y = ȳ + εv1(x̄, ȳ) + ε2v2(x̄, ȳ) + · · · .

(8)

Functions ui(x̄, ȳ), vi(x̄, ȳ) are unknown yet and are to be found in the process of solving
the problem. Variables x̄(t), ȳ(t)) must satisfy a system

˙̄x = εA1(x̄) + ε2A2(x̄) + · · · ,
˙̄y = ω(x̄) + εB1(x̄) + ε2B2(x̄) + · · · .

(9)

Functions A, B in (9) are also unknown and are to be found in the process of calculations.
Therefore, there is a problem of transformation of the original system (7) to a new one

(9) more simple for investigation. This transformation actively influences the system as
it contains uncertain functions to be found.

An original algorithm close to the above described scheme for n = 1 was first suggested
by the Dutch engineer Van der Pol in the 20-th years. His method had beautiful clearness
and was convenient for design calculations. It very quickly became popular among engi-
neers. But no proof of the method existed. That is why it was out of mathematics for a
long time (like Heaviside’s method).
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In the 30-th years N.M. Krylov and N.N. Bogolyubov suggested the just cited above
general scheme (7)–(9) for investigation of systems like (7). It started the creation of a
rigorous theory of nonlinear oscillations developed in the subsequent decades.

N.N. Bogolyubov and his pupils also investigated systems

ẋ = εX(ε, x, y),

which were called standard form’s systems. They created the strictly proved method of
averaging, which is successfully applied for investigation of nonlinear systems with a small
parameter.

In conclusion, let us note typical features of the considered period of the theory of
perturbations.

• The transformation of the original system to a simplified one. This transformation
is active as it contains unknown functions to be found.

• The convergence of series of the form (8) is not investigated. Instead, the asymptotic
nearness is investigated, i.e., the existence of relations

x→ x̄, y → ȳ, when ε→ 0.

• The essential weakening of the demands on the analytic characteristics of the right-
hand sides of (8).

• The essential extension of classes of the problems under consideration: searching for
periodic solutions, limit cycles, the description of transition processes, resonances
and so on.

One can find the detailed exposition of the questions touched here, for example, in [2], [3].

3. Group-theoretical methods in perturbation theory

3.1. Short survey

J. Moser [4] used the group-theoretic approach in the investigation of quasiperiodic solu-
tions of nonlinear systems. Lie’s rows and transformations in the perturbation problems
were used by G. Hori [5], [6], A. Kamel [7], U. Kirchgraber and E. Steifel [8], U. Kirchgraber
[9], Bogaevsky V.N., Povzner A.Ya. [10], and Zhuravlev V.F., Klimov D.N. [11].

Asymptotic methods of nonlinear mechanics developed by N.M. Krylov, N.N. Bo-
golyubov and Yu.A. Mitropolsky known as the KBM method (see, for example, Bo-
golyubov N.N. and Mitropolsky Yu.A. [2]) is a powerful tool for the investigation of
nonlinear vibrations.

The further development of these methods took place due to work by Yu.A. Mitropol-
sky, A.K. Lopatin [12]–[14], A.K. Lopatin [15]. In their works, a new method was proposed
for investigating systems of differential equations with small parameters. It was a further
development of Bogolyubov’s averaging method referred to by the authors as “the asymp-
totic decomposition method”. The idea of a new approach originates from Bogolyubov’s
averaging method (see [2]) but its realization needs to use essentially a new apparatus –
the theory of continuous transformation groups.
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3.2. Generalization of Bogolyubov’s averaging method through symmetry

The asymptotic decomposition method is based on the group-theoretic interpretation of
the averaging method. Consider the system of ordinary differential equations

dx

dt
= ω(x) + εω̃(x), (10)

where

ω(x) = col [ω1(x), . . . , ωn(x)], ω̃(x) = col [ω̃1(x), . . . , ω̃n(x)].

The differential operator associated with the perturbed system (10) can be represented as

U0 = U + εŨ ,

where

U = ω1
∂

∂x1
+ · · · + ωn

∂

∂xn
, Ũ = ω̃1

∂

∂x1
+ · · · + ω̃n

∂

∂xn
.

By using a certain change of variables in the form of a series in ε

x = ϕ(x̄, ε), (11)

system (10) is transformed into a new system

dx̄

dt
= ω(x̄) +

∞∑
ν=1

ενb(ν)(x̄), (12)

which is referred to as a centralized system. For this system, Ū0 = Ū + ε ˜̄U, where

Ū = ω1(x̄)
∂

∂x̄1
+ · · · + ωn(x̄)

∂

∂x̄n
,

˜̄U =
∞∑
ν=1

ενNν , Nν = b
(ν)
1 (x̄)

∂

∂x̄1
+ · · · + b(ν)n (x̄)

∂

∂x̄n
.

(13)

We impose a condition on the choice of transformations (11) saying that the centralized
system (12) should be invariant with respect to the one-parameter transformation group

x̄ = esŪ(x̄0)x̄0, (14)

where x̄0 is the vector of new variables. Therefore, after the change of variables (14),
system (12) turns into

dx̄0

dt
= ω(x̄0) +

∞∑
ν=1

ενb(ν)(x̄0),

which coincides with the original one up to the notations. This means that we have the
identities [Ū ,Nν ] ≡ 0 for Ū ,Nν , ν = 1, 2, . . . .

The essential point in realizing the above-mentioned scheme of the asymptotic decom-
position algorithm is that transformations (11) are chosen in the form of a series

x = eεSx̄, (15)
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where

S = S1 + εS2 + · · · ,

Sj = γj1(x̄)
∂

∂x̄1
+ · · · + γjn(x̄)

∂

∂x̄n
.

Coefficients of Sj , γj1(x̄), . . . , γjn(x̄) are unknown functions. They should be determined
by the recurrent sequence of operator equations

[U, Sν ] = Fν . (16)

The operator Fν is a known function of U and S1, . . . , Sν−1 are obtained on previous steps
(ν = 1, 2, . . . ).

In the case where S depends upon ε, the Lie series (15) is called a Lie transformation.
Thus, the application of a Lie transformation as a change of variables enables us to use
the technique of continuous transformation groups.

From the theory of linear operators, it is known that the solvability of the nonhomoge-
neous operator equation (16) depends on the properties of solutions of the homogeneous
equation

[U, Sν ] = 0. (17)

Operator (13) Nν is a projection of the right-hand side of the equation onto the kernel
of operator (17), which is determined from the condition of solvability in the sense of the
nonhomogeneous equation

[U, Sν ] = Fν −Nν , ν = 1, 2, . . . . (18)

Depending on the way for solving equations (16)–(18), various modifications of the
algorithm of the method are obtained.

The above indicated result can be summarized as the following theorem.

Theorem 1. There exists a formal change of variables as Lie’s transform (15) which
transforms the initial system (10) into the centralized one (12), invariant with respect to
the one-parameter transformation group (14) generated by zero approximation system’s
vector field.

One can find the detailed exposition of the questions touched here in [12]–[15].

4. Some examples

A further investigation of the structure of the centralized system (12) gives the possibility
to receive some nontrivial conclusions. Let us illustrate it by the examples.

4.1. Example 1. Perturbed motion on SO(2)

Let us consider a system of the second order

˙̄x = −ȳ + εQ(ε, x̄, ȳ),

˙̄y = x̄+ εR(ε, x̄, ȳ),
(19)

where Q(ε, x̄, ȳ), R(ε, x̄, ȳ) are the known analytical functions of variables ε, x̄, ȳ.



86 A. Lopatin

When ε = 0, the structure of the solution of system (19) is quite simple: it is the
movement on the circle of radius R =

√
x̄2 + ȳ2 with the proportional angular velocity

ω = 1.
The following statement is true.

Theorem 2. System (19) in the neighborhood of the point ε = 0 has a family of periodic
solutions which depends upon an arbitrary constant if and only if it can be transformed by
the analytic change of the variables

x̄ = eεSu, ȳ = eεSv,

where S = S1 + S2 + · · ·, Sj are known operators with the analytic coefficients,
to the system

u̇ = −(1 + εG1(ε, u2 + v2))v,

v̇ = (1 + εG1(ε, u2 + v2))u,

where G1(ε, u2 + v2) is the known analytic function of ε, u2 + v2,
which is invariant in respect to the following one-parameter transformation groups:

SO(2)

ū = eεUu, v̄ = eεUv, U = −v ∂
∂u

+ u
∂

∂v
,

and the group defined via

ū = eεWu, v̄ = eεW v, W = f(u2 + v2)U,

where f(ρ) is an arbitrary analytic function of ρ =
√
u2 + v2.

Theorem 2 generalizes the well-known result by A.M. Lyapunov about the existence of
a family of periodic solutions in the neighborhood of the point |x̄| = 0, |ȳ| = 0 of system
(19) when ε = 1. (See A.M. Lyapunov’s theorem above).

4.2. Example 2. Perturbed motion on SO(3)

Let us consider the system of the third order (in the spherical coordinates)

ρ̇ = εF1(ε, ρ, , θ, ϕ),

θ̇ = sinϕ+ εF2(ε, ρ, θ, ϕ),

ϕ̇ = −1 + ctg θ cosϕ+ εF3(ε, ρ, θ, ϕ),

(20)

where Fj(ε, ρ, θ, ϕ) are the known analytic functions of the variables ε, ρ, θ, ϕ, j = 1, 2, 3.
The system of zero approximation, which is received from (20) if one supposes ε = 0,

has a quite complicate structure. (See Fig.1.) The following statement is true.

Theorem 3. System (20) in the neighborhood of the point ε = 0 has a family of solutions
which depends upon an arbitrary constant and saves the topological structure of the system
of zero approximation, if and only if it can be transformed by the analytic change of the
variables

ρ̄ = eεSρ, θ̄ = eεSθ, ϕ̄ = eεSϕ,

where S = S1 + S2 + · · ·, Sj are the known operators with analytic coefficients,
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Fig. 1. (a) Solution for linear system of the movement of a point on a
sphere.
(b) Solution in the phase plane for angle spherical variables,
governing the movement of a point on a sphere.

to the system

˙̄ρ = 0,

˙̄θ = sin ϕ̄(1 + εG(ε, ρ̄, θ̄, ϕ̄)),

˙̄ϕ = (−1 + ctg θ̄ cos ϕ̄)(1 + εG(ε, ρ̄, θ̄, ϕ̄)),

where G(ε, ρ̄, θ̄, ϕ̄) is the known analytic function of ε, ρ̄, θ̄, ϕ̄,
which is invariant in respect to the one-parameter transformation groups:

ρ̄ = eεUρ, θ̄ = eεUθ, ϕ̄ = eεUϕ, U = (−1 + ctgθ cosϕ)
∂

∂ϕ
+ sinϕ

∂

∂θ

and

ρ̄ = eεWρ, θ̄ = eεW θ, ϕ̄ = eεWϕ, W = f(ρ, θ, ϕ)U,

where f(ρ, θ, ϕ) is an arbitrary analytic function of ρ, θ, ϕ which is an integral of the
equation Uf = 0.
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