
Symmetry in Temporal Logic Model Checking

ALICE MILLER, ALASTAIR DONALDSON, AND MUFFY CALDER

University of Glasgow

Temporal logic model checking involves checking the state-space of a model of a system to determine whether
errors can occur in the system. Often this involves checking symmetrically equivalent areas of the state-space.
The use of symmetry reduction to increase the efficiency of model checking has inspired a wealth of activity
in the area of model checking research. We provide a survey of the associated literature.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software Program Verification—Cor-
rectness proofs; validation

General Terms: Theory, Verification

Additional Key Words and Phrases: Model checking, symmetry, quotient graph

1. INTRODUCTION

As software-controlled systems expand and become more complex, the importance of
error detection at design-time increases. It is estimated [Schneider 2003] that 70% of
design-time is spent on simulation to minimize the risk that errors are exposed at a
later stage in production, involving costly redesign.

Temporal logic model checking [Clarke et al. 1999; Merz 2000; Müller-Olm et al.
1999] is a technique whereby the properties of a system can be checked by building
a model of the system and checking whether the model satisfies these properties. The
model is constructed using a specification language, and checked using an automatic
model checker. Failure of the model to satisfy a desired property of the system indicates
either that the model does not accurately reflect the behavior of the system, or that there
is an error (bug) in the original system. Examination of counterexamples provided by
the model checker enables the user to either refine the model, or more importantly, to
debug the original system.

Any search technique used in model checking involves the exploration of the state-
space associated with the model. Inherent symmetry of the original system will be
reflected in the state-space. Therefore, knowledge of the symmetry of the system can
be used to avoid searching areas of the state-space which are symmetrically equivalent
to areas that have been searched previously.

Several different approaches and techniques have been proposed for using sym-
metry to reduce the size of the state-space to be explored. Some of these have been

Authors’ addresses: A. Miller, A. Donaldson, M. Calder, Department of Computing Science, University of
Glasgow, 17 Lilybank Gardens, Glasgow, UK, G12 8QQ; email: alice@dcs.gla.ac.uk;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c©2006 ACM 0360-0300/2006/09-ART8 $5.00. DOI 10.1145/1132960.1132962 http://doi.acm.org/10.1145/

1132960.1132962.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

2 A. Miller et al.

implemented within widely used model checkers [Bosnacki et al. 2002; Hendriks et al.
2003; Ip and Dill 1996; McMillan 1993; Wang and Schmidt 2002]. Indeed, there is even
a model checker designed primarily for the verification of highly symmetric systems
[Sistla et al. 2000]. In this article we survey and classify the existing research in this
area.

Note that some of the methods discussed in this article have recently been surveyed in
some detail [Sistla 2004]. Specifically, that article describes methods based on annotated
quotient structures (AQSs) and related guarded quotient structures (GQSs). We discuss
these approaches in Sections 4.2, 4.6, and 4.7, and describe how they are implemented
using the SMC model checker in Section 5.1. Our survey has a much broader scope
than that of Sistla [2004]. We include the preceding methods within the wider context
of symmetry reduction methods for model checking in general, and we describe a greater
range of systems that employ symmetry reduction methods.

2. MODEL CHECKING

Temporal logic model checking [Clarke et al. 1986, 1999; Merz 2000; Müller-Olm et al.
1999] is an automatic technique for verifying finite state concurrent systems. The type
of systems that we are concerned with maintain a continuing interaction with their
environment, and are referred to as reactive systems. Model checking involves the
construction of a model of a system, usually in the form of a Kripke structure, and the
verification of temporal logic properties of this model.

Let V denote a set of variables, and for each v ∈ V , let D(v) be the domain of v. The
set of atomic propositions over V is given by

AP = {(v = val) : v ∈ V and val ∈ D(v)}.

For a given set of variables V , a Kripke structure is defined in terms of AP thusly:

Definition 1. A Kripke structure M over AP is a tuple M = (S, R, L, S0) where:

(1) S is a nonempty, finite set of states
(2) R ⊆ S × S is a total transition relation that is for each s ∈ S ∃ t ∈ S such that

(s, t) ∈ R
(3) L : S → 2AP is a mapping that labels each state in S with the set of atomic

propositions true in that state
(4) S0 ⊆ S is a set of initial states.

A path in M is an infinite sequence of states π = s0, s1, s2, . . . such that s0 ∈ S0, and
for all i > 0, (si−1, si) ∈ R. Similarly, a transition sequence is an infinite sequence of
transitions. For states s and t, it is common to denote the transition from s to t, by
s → t.

We often refer to the state-space associated with a system. By this we mean the Kripke
structure of the associated transition system. Because of the graphical nature of the
state-space, it is sometimes referred to as the state graph associated with the system.

In practice, reactive systems are described using modeling languages, including
(pseudo) programming languages such as PROMELA [Holzmann 2003] or the SMV lan-
guage [McMillan 1993], Petri nets [Girault and Valk 2003], or process algebras such
as PBC (Petri box calculus) [Best and Koutny 1995] or LOTOS (language of temporal
ordering specification) [Bolognesi and Brinksma 1987].

Model checking involves checking the truth of a set of specifications defined using a
temporal logic. Generally, the temporal logic that is used is either CTL∗ or one of its

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 3

sublogics, CTL (computation tree logic) [Clarke et al. 1986] or LTL (linear temporal
logic) [Pnuelli 1981].

2.1. Syntax and Semantics of CTL∗, CTL, and LTL

The logic CTL∗ is defined as a set of state formulas, where the CTL∗ state and path
formulas are defined inductively to follow. The quantifiers A and E are used to denote
for all paths, and for some path, respectively (where Eφ = ¬A¬φ). In addition, X , U,
〈〉, and [] represent the standard nexttime, strong until, eventually, and always oper-
ators (where 〈〉φ = trueUφ and []φ = ¬〈〉¬φ, respectively). Let AP be a finite set of
propositions. Then

—for all p ∈ AP , p is a state formula
—if φ and ψ are state formulas, then so are ¬φ, φ ∧ ψ , and φ ∨ ψ

—if φ is a path formula, then Aφ and Eφ are state formulas
—any state formula φ is also a path formula
—if φ and ψ are path formulas, then so are ¬φ, φ∧ψ and φ∨ψ , X φ, φUψ , 〈〉φ, and [][]φ.

The logic CTL is the sublogic of CTL∗ in which the temporal operators X , U, 〈〉, and
[] must be immediately preceded by a path quantifier. The logic LTL is obtained by
restricting the set of (CTL∗) formulas to those of the form Aφ, where φ does not contain
A or E. When referring to an LTL formula, it is conventional to omit the A operator
and instead, interpret the formula φ as “for all paths φ.”

For a model M, if the CTL∗ formula φ holds at a state s ∈ S, then we write M, s |= φ
(or simply s |= φ when the identity of the model is clear from the context). The relation
|= is defined inductively to follow. Note that for a path π = s0, s1, . . . , starting at s0,
first(π) = s0, and for all i ≥ 0, πi is the suffix of π starting from state si.

—s |= p, for p ∈ AP if and only if p ∈ L(s)
—s |= ¬φ if and only if s |= φ

—s |= φ ∧ ψ if and only if s |= φ and s |= ψ

—s |= φ ∨ ψ if and only if s |= φ or s |= ψ

—s |= Aφ if and only if π |= φ for every path π starting at s
—π |= φ, for any state formula φ, if and only if first(π) |= φ

—π |= ¬φ if and only if π |= φ

—π |= φ ∧ ψ if and only if π |= φ and φ |= ψ

—π |= φ ∨ ψ if and only if π |= φ or π |= ψ

—π |= φUψ if and only if, for some i ≥ 0, πi |= ψ and π j |= φ for all 0 ≤ j < i
—π |= X φ if and only if π1 |= φ

—π |= 〈〉φ if and only if πi |= φ, for some i ≥ 0
—π |= []φ if and only if πi |= φ, for all i ≥ 0 .

2.2. Büchi Automata and LTL

One of the most efficient algorithms for model checking LTL properties is the automata-
theoretic approach (see Section 2.3.2). Although we will not describe the algorithms in
detail, we provide a little background theory here.

Definition 2. A finite-state automaton (FSA) A is a tuple A = (S, s0, L, T, F) where:

(1) S is a nonempty, finite set of states
(2) s0 ∈ S is an initial state

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

4 A. Miller et al.

(3) L is a finite set of labels
(4) T ⊆ S × L × S is a set of transitions, and
(5) F ⊆ S is a set of final states.

A run of A is an ordered, possibly infinite, sequence of transitions

(s0, l0, s1), (s1, l1, s2), . . . ,

where si ∈ S and li ∈ L for all i > 0. An accepting run of A is a finite run in which the
final transition (sn−1, ln−1, sn) has the property that sn ∈ F .

In order to reason about infinite runs of an automaton, alternative notions of accep-
tance, for example, Büchi acceptance, are required. We say that an infinite run (of an
FSA) is an accepting ω-run (i.e., it satisfies Büchi acceptance) if and only if some state
in F is visited infinitely often in the run. A Büchi automaton is an FSA defined over
infinite runs (together with the associated notion of Büchi acceptance).

Every LTL formula can be represented as a Büchi automaton (see, for example,
Wolper et al. [1983] and Vardi and Wolper [1994], and references therein). For more
details of automata and logic, see, for example, Holzmann [2003].

2.3. Model Checking Algorithms

The model checking problem can be stated as follows:

Given a Kripke structure M and a temporal logic formula φ, determine the
set of initial states in M that satisfy φ.

Generally, we say that the model M satisfies the specification φ if all of the initial states
of M satisfy φ.

In this section we give a brief overview of the basic model checking algorithms for
checking CTL and LTL formulas, respectively, and describe the techniques that are used
to combat the state-space explosion problem for each. Note that CTL∗ model checking
was first introduced in Clarke et al. [1986]. A method for checking CTL∗ properties
[Emerson and Lei 1987] involves the use of an LTL model checker on the subformulas
of the property to be checked. However, most model checkers are used to verify either
CTL or LTL properties, but not both.

2.3.1. CTL Model Checking. The model checking algorithm for CTL [Clarke et al. 1986,
1994; Quielle and Sifakis 1982] works by successively marking the states which satisfy
subformulas of the formula to be checked. The particular form of algorithm used de-
pends on the formula. For illustration, we give here an example of how the algorithm
proceeds to check formula φ, where φ is A(φ1Uφ2).

For a state s, s |= φ if and only if either s satisfies φ2 or s has at least one successor, s
satisfies φ1, and all successors of s satisfy φ. Initially, all states are marked to indicate
whether they satisfy φ1 and/or φ2 and/or φ, and also with a number (nb say) denoting
how many successors have yet to be marked as satisfying φ. Initially, for each state s,
nb is set to 0 if s |= φ, or to the number of successors of s, otherwise. In the latter case,
each time a successor of s is marked as satisfying φ, nb is decremented by one. When
nb = 0 for s, clearly s |= φ. When no states can be remarked, the algorithm terminates.
If at this point all initial states are marked as satisfying φ, then M |= φ.

2.3.2. LTL Model Checking. The model checking problem for LTL can be restated as:
“given M and φ, does there exist a path of M that does not satisfy φ?” One approach to
LTL model checking is the tableau approach described in Müller-Olm et al. [1999].

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 5

However, we concentrate here on the more efficient automata-theoretic approach
[Lichtenstein and Pnueli 1985; Vardi and Wolper 1986].

In order to verify an LTL property φ, a model checker must show that all paths of
a model M satisfy φ (alternatively, must find a counterexample, namely, a path which
does not satisfy φ). To do this, an automaton A representing the reachable states of M
is constructed, together with an automaton B¬φ , which accepts all paths for which ¬φ
holds. The asynchronous product of the two automata, A′, is constructed (in practice,
A′ is usually constructed implicitly by letting A and B¬φ take alternate steps). Any
accepting run of A′ signifies an error. If there are no accepting runs, M |= φ. Generally,
to prove LTL properties a depth-first search is used. As the search progresses, all states
visited are stored (in a reduced form) in a hash array (or heap), and states along the
current path are pushed on to the stack.

If the property φ to be verified is a safety property, say φ = []ψ , where ψ does
not contain the until operator U, then a depth-first search of A′ is used. If a state
is encountered at which ψ is false, then φ is false and the current path (the current
contents of the stack) provides a counterexample. If, on the other hand, φ is a liveness
property, then determining the truth, or otherwise, of φ relies on the ability to detect
the presence of infinite accepting runs in A′. This is achieved either by using the classic
approach of Tarjan [1972], in which strongly connected components are constructed and
analyzed separately for acceptance runs or via a nested depth-first search [Courcoubetis
et al. 1992]. The latter is more efficient than the classic approach in that it is not
necessary to produce all acceptance runs, but merely a single acceptance cycle (if one
exists). Suppose, for example, φ is []〈〉p for some proposition p. From any state s reached
during an initial search at which ¬p holds, a second search is initiated to check for paths
leading back to s, during which p remains false. If no such path exists, the original
search resumes from s.

2.3.3. The State-Space Explosion Problem. One of the main problems associated with
model checking is that of state-space explosion. The model checking algorithms de-
scribed previously both rely upon the explicit construction of a model representing all
possible system states. The number of states for a system with associated model M
is potentially exponential with respect to the number of processes in the system. As
a result, full verification is often impossible. Therefore, techniques are used to try to
reduce the memory required to store each state (e.g., symbolic state representation, see
the following) or the number of states or paths explored (e.g., on-the-fly methods and
partial order reduction, see the following). Another method used to reduce the number
of states is symmetry reduction, in which subsets of symmetrically equivalent states
are collapsed into a single representative state. Symmetry reduction is described in full
in Section 4.

2.3.4. Symbolic Model Checking. Symbolic model checking [Burch et al. 1992] is a
method by which the states and transitions of a model are represented symbolically (as
opposed to explicitly) in order to save space. A particular symbolic approach (namely,
BDD-based encoding) has proved especially successful for the verification of CTL prop-
erties for very large systems [McMillan 1993].

A binary decision tree is a structure that is used to represent a Boolean formula.
Any assignment of truth values to the variables of the formula corresponds to a path
down the tree from the root node to a terminal node, which is labeled either true or
false. The value of this label determines the value of the function for this assignment of
variables. A binary decision diagram (BDD) is obtained from a binary decision tree by
merging isomorphic subtrees and identical terminals. Any set of states can be encoded

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

6 A. Miller et al.

as a BDD. Indeed, if S is a set of states encoded as a set of Boolean tuples (on a set X),
then for any fixed ordering of the elements of X , there is a unique BDD representing
S [Bryant 1992].

An ordered binary decision diagram (OBDD) is a BDD which has a total ordering
applied to the variables labeling the vertices of the diagram. The size of the OBDD can
vary greatly, depending on the ordering used. Heuristics have been developed to find
efficient orderings for a given formula (when such an ordering exists). However, finding
the optimal ordering is NP-complete [Bollig and Wegener 1996].

For a Kripke structure, both the set of states and set of transitions can be represented
by BDDs. All possible states are encoded, as opposed to all reachable states. As super-
fluous states are unreachable, they do not affect the result of model checking. Indeed,
their presence may lead to a simplification of certain BDDs. In addition, it is possible
to first compute the reachable states, R say, and then restrict the CTL model checking
algorithm to R.

2.3.5. On-the-Fly Model Checking. It is not always necessary to build the entire state-
space in order to determine whether or not a system satisfies a given property.

If the property to be checked is false, only part of the state-space needs to be con-
structed; up to the point at which an error state (safety property) or violating cycle
(liveness property) is discovered. However, if there are no errors, the entire state-space
must be constructed. This means that although debugging can be performed relatively
easily, property verification very quickly becomes prohibitive.

On-the-fly methods are most suitable for model checking algorithms based on a depth-
first traversal of the state-space (i.e., explicit state methods) and have been developed
to check specifications in LTL, CTL, and CTL∗ [Vardi and Wolper 1986; Vergauwen and
Lewi 1993; Bhat et al. 1995].

Some approaches for combining on-the-fly techniques with symbolic model checking
exist [Ben-David and Heyman 2000], but are restricted to checking safety properties.

2.3.6. Partial Order Reduction. The explosion of states and transitions in a model results
from the interleaving of actions of distinct processes in all possible orders. In general,
the consideration of all such interleavings is crucial—bugs in concurrent systems often
correspond to the unexpected ordering of actions. However, if a set of transitions is
entirely independent and invisible with respect to the property being verified, the order
in which the transitions are executed does not affect the overall behavior of the system
(a transition is invisible with respect to a property φ if the truth of φ is unaffected by
the transition). Partial order reduction [Emerson et al. 1997; Godefroid 1996b; Peled
1996a] exploits this fact, and considers only one representative ordering for any set of
concurrently enabled, independent, invisible transitions.

Partial order reduction methods rely on determining a suitable subset of transitions
to be considered at every state. As a result, rather than exploring a structure M, an
equivalent (usually smaller) structureM′ is explored, with fewer transitions and states.

The particular subset (and correspondingly, equivalence relation) depends upon the
strategy being used. A common strategy, for example, is the ample sets method [Peled
1996b]. This is the method chosen for the partial order reduction implementation in
SPIN [Holzmann 2003; Holzmann and Peled 1994]. In this case, suppose that a property
φ is to be verified. For any state s reached along a search path, rather than considering
all of the transitions enabled at s (enabled(s)), an ample set (ample(s)) of transitions is
chosen in such a way to ensure that

—any transition t ∈ enabled(s) which is not in ample(s) is independent of all transitions
in ample(s). That is, the execution of t does not affect the enabledness of any of the
transitions in ample(s), and vice versa.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 7

—All transitions in ample(s) are invisible.
—If a ∈ ample(s), then the state resulting from taking transition a from s has not been

reached along the current search path.

The equivalence relation in this case is trace equivalence. Two transition sequences
are said to be trace equivalent if one can be obtained from the other by repeatedly com-
muting the order of adjacent, independent transitions. Using the ample sets method,
every transition sequence in the original structure M is trace equivalent to a transition
sequence in the reduced structure M′. It follows that for any stuttering-closed [Peled
1996b] LTL formula φ, φ |= M if and only if φ |= M′.

Other strategies for determining suitable subsets of transitions include the stubborn
sets method [Valmari 1992] or the sleep sets and persistent sets method [Godefroid
1996b] which is implemented in VeriSoft [Godefroid 1997].

For some systems wherein all actions are interdependent, partial order reduction
cannot offer any improvement in verification space or time. In many realistic cases,
however, partial order reduction can be extremely effective. For example, for some
systems the growth of the state-space as the number of processes increases is reduced
from exponential to polynomial when partial order methods are used. In others, the
global state-space may increase with the growth of a parameter, whereas the size of
the reduced state-space remains unchanged [Godefroid 1996a].

2.4. Example Model Checkers

2.4.1. Explicit State-Based Model Checkers. Two of the most popular on-the-fly, explicit-
state-based model checkers are SPIN [Holzmann 2003] and Murφ [Dill et al. 1992, 1996].

SPIN is used for efficient software verification. Specifications are described using the
high-level state-based description language PROMELA (process meta language), which
is loosely based on Dijkstra’s guarded command language [Dijkstra 1976]. PROMELA

allows for the expression of nondeterminism, asynchronous and synchronous com-
munication, dynamic process creation, and mobile communications (communication
channels can contain references to other communication channels). SPIN uses a depth-
first search algorithm (breadth-first search is also possible) and can be used as a full
LTL model checking system supporting all correctness requirements expressible in
linear-time temporal logic (or Büchi automata, directly). It can also be used as an ef-
ficient on-the-fly verifier for more basic safety and liveness properties (e.g., progress
and lack of deadlock), which can often be expressed and verified without the use of
LTL.

SPIN has been used to trace logical errors in distributed systems designs, such as
operating systems [Cattel 1994; Kumar and Li 2002], computer networks [Yuen and
Tjioe 2001], and railway signaling systems [Cimatti et al. 1997], and for the feature
interaction analysis of telecommunications and email systems [Calder and Miller 2001,
2003; Holzmann and Smith 1999b].

To optimize verification runs, SPIN uses efficient partial order reduction techniques,
and also employs statement merging [Holzmann 1999], a special case of partial order
reduction that merges internal, invisible process statements to reduce the number
of reachable system states. For efficient state-storage, SPIN offers state compression (a
form of byte-sharing) or, alternatively, BDD-like storage techniques based on minimized
automata [Visser and Barringer 1996]. In addition, approximate hashing methods are
available, namely, hash-compact methods [Wolper and Leroy 1993] and bitstate hashing
[Holzmann 1998].

The Murφ description language is based on a collection of guarded commands
(condition/action rules), which are executed repeatedly in an infinite loop. The data

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

8 A. Miller et al.

structures and guarded commands are written in an imperative-style language,
together with new data types, including “multiset” (for describing a bounded set of
values whose order is irrelevant to the behavior of the description) and “scalarset”
(for describing a subrange whose elements can be freely permuted). The Murφ verifier
performs a depth- or breadth-first search over the state-space to check for deadlock
or assertion or invariance violations. Assertion violations are trapped using an assert
statement (a conditional error statement) within the program description. Invariants,
on the other hand, are defined in a separate part of the Murφ description. More complex
temporal properties cannot be verified.

Other state-based verifiers include PROD [Varpaaniemi et al. 1995] and PEP [Best
and Grahlmann 1996], in which systems are specified using Petri nets. The on-the-
fly verification of various temporal or μ-calculus properties of LOTOS specifications is
achieved by translation into to state-spaces using CÆSAR [Garavel and Sifakis 1990],
which are then checked using the model checkers XTL [Mateescu and Garavel 1998]
or EVALUATOR [Mateescu 2003], respectively. The tool COSPAN [Kurshan 1995] uses an
automata-theoretic approach. The system to be verified is modeled as a collection of
coordinating processes described in the S/R (selection/resolution) modeling language.
The verifier supports both on-the-fly enumerative search and symbolic search using
BDDs.

2.4.2. Symbolic Model Checkers. The most successful (OBDD-based) symbolic model
checker is the branching time CTL model checker SMV [McMillan 1993]. Systems are
described using the SMV language, which has been developed with a precise semantics
that relates programs to their expressions as Boolean formulas. SMV supports both
synchronous and asynchronous communication, and provides for modular hierarchi-
cal descriptions and the definition of reusable components. It has been used to verify
various hardware systems, including an avionics triple sensor voter [Danjani-Brown
et al. 2003], the Gigamax cache coherence protocol [McMillan and Schwalbe 1992] and
the t9000 virtual channel processor [Barrett 1995]. NuSMV [Cimatti et al. 1999, 2002]
is a reimplemented and extended version of SMV. The additional features contained
in NuSMV include a textual interaction shell and graphical interface, extended model
partitioning techniques, and facilities for LTL model checking.

An enhanced version of SMV, RuleBase [Beer et al. 1996] is an industry-oriented tool
for the verification of hardware designs. In an effort to make the specification of CTL
properties easier for the nonexpert, RuleBase supports its own language, Sugar. In
addition, RuleBase supports standard hardware description languages such as VHDL
and Verilog.

2.4.3. Real-Time Model Checkers. When modeling certain critical systems, it is es-
sential to include some notion of time. If time is considered to increase in discrete
steps (discrete-time), then existing model checkers can be readily extended [Alur and
Henzinger 1992; Emerson 1992]. The most widely used dense real-time model checker
(in which time is viewed as increasing continuously) is UPPAAL [Larson et al. 1997].
Models are expressed as timed automata [Alur and Dill 1993] and properties defined
in UPPAAL logic, a subset of timed computational tree logic (TCTL) [Alur et al. 1990].
UPPAAL uses a combination of on-the-fly and symbolic techniques [Larson et al. 1995;
Yi et al. 1994] so as to reduce the verification problem to that of manipulating and
solving simple constraints. Another real-time model checker is KRONOS [Yovine 1997],
which is used to analyse real-time systems modeled in several timed process descrip-
tion formalisms, such as ATP [Nicollin and Sifakis 1994] and ET-LOTOS [Léonard and
Leduc 1997, 1998]. A real-time extension to COSPAN [Alur and Kurshan 1995] allows

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 9

real-time constraints to be expressed by associating lower and upper bounds on the
time spent by a process in a local state. An execution is said to be timing-consistent if
its steps can be assigned real-valued time-stamps that satisfy all the specified bounds.

The probabilistic model checker PRISM [Kwiatkowska et al. 2002; Rutten et al. 2004]
allows time to be considered as increasing either in discrete steps or continuously. Mod-
els are expressed in the PRISM Language and converted to a variant of a Markov chain
(either discrete- or continuous-time). Properties are written in terms of probabilistic
computation tree logic (PCTL) or continuous stochastic logic (CSL), respectively. Mod-
els can also be expressed using PEPA (performance evaluation process algebra) [Hillston
1996] and converted to PRISM.

The hybrid model checker HYTECH [Henzinger et al. 1997] is used to analyze dy-
namical systems whose behavior exhibits both discrete and continuous change. Linear
hybrid automata (extensions to timed automata, including access to dynamic variables)
are used to incorporate the discrete behavior of computer programs with the continuous
behavior of environmental variables, such as time.

2.4.4. Direct Model Checking of Programs. Finite state model checking traditionally re-
quires the manual construction of a model, via a modeling language, which is then
converted to a Kripke structure (or finite-state automaton) for model checking.

Recently, there has been much interest in applying model checking directly to pro-
gram source code written in languages such as Java or C. Early approaches to model
checking Java software, like JCAT [Demartini et al. 1999] and Java PathFinder (JPF1)
[Havelund and Pressburger 2000], involved the direct translation of Java code into
Promela, and subsequent verification via SPIN. Although both of these systems were
successful, direct translation meant that programs were only able to contain features
that were supported by both Java and Promela (this is not true for floating point num-
bers, for example).

The BANDERA tool [Corbett et al. 2000] avoids direct translation by instead extracting
an abstracted finite-state model from Java source code. This model is then translated
into a suitable modeling language (Promela or SMV) and model checked accordingly.
Meanwhile, a second-generation Java PathFinder tool (JPF2) [Visser et al. 2000], which
makes extensive use of BANDERA abstraction tools, has been developed to model check
Java bytecode directly.

The dSPIN tool [Iosif and Sisto 1999] is an extension of SPIN, which has been designed
for modeling and verifying object-oriented software (Java programs, in particular). In
addition to the usual features available with SPIN, the dSPIN model checker allows for
the dynamic creation of heap objects and the representation of garbage collection.

The Bogor model checking framework [Robby et al. 2003] is used to check sequential
and concurrent programs. The behavioral aspects of the program are first specified in
JML (Java modeling language), which, together with the original Java program, is then
translated into a lower-level specification for verification. Bogor exploits the canonical
heap representation of dSPIN and is implemented as an Eclipse [Clayberg and Rubel
2004] plug-in.

Various tools address the problem of direct model checking of C code. For example,
BLAST (Berkeley lazy abstraction software verification tool) [Henzinger et al. 2003]
uses an iterative process of abstraction, verification, and counterexample-driven refine-
ment for proving the correctness of software. The FeaVer (feature verification system)
tool [Holzmann and Smith 1999a] allows models to be extracted mechanically from the
source of software applications, and checked using SPIN. Indeed, a new feature of SPIN is
to allow C code to be embedded directly within a PROMELA specification. Microsoft’s SDV
(static driver verifier) tool uses the SLAM [Ball et al. 2004] analysis engine to analyze

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

10 A. Miller et al.

the source code of Windows device drivers. SDV involves a similar abstraction, veri-
fication, and refinement loop to that of BLAST and exploits the BEBOP model checker
during the verification stage.

The VeriSoft model checker [Godefroid 1997] is used to verify concurrent processes
executing C code. Unlike traditional model checking techniques, the use of VeriSoft
does not rely on states being expressed as sequences of bits. Systematic search of the
state-space allows the user to check for deadlock and assertion violations, as well as for
timeouts and livelocks. A stateless search is used, whereby only states along the current
path are stored, together with as many states as possible in the remaining available
memory. As a result, state-space explosion is not a problem—it is theoretically possible
to verify systems of any size. However, as as result, the same path may be explored
many times, and so the search can be very slow.

Note that we have not attempted to provide an exhaustive description of the available
model checkers, but merely to provide sufficient coverage for the purposes of our sym-
metry survey. We do not, for example, consider conformance checkers or combination
checkers. For an overview of these types of checkers, refer to Clarke and Wing [1996].

3. BASIC GROUP THEORY

In this section we summarize some definitions from group theory which will be useful
throughout our article.

Definition 3. Let G be a nonempty set, and let ◦ : G ×G → G be a binary operation.
We say that (G, ◦) is a group if:

—◦ is associative
—G has an identity element 1G and
—for each element α ∈ G, there is an inverse element α−1 ∈ G such that α ◦ α−1 =

α−1 ◦ α = 1G .

We call the operation ◦ multiplication in G. When it is clear what the binary operation
is, we simply refer to a group as G, rather than (G, ◦), and use concatenation to denote
multiplication. Let H be a nonempty subset of a group G. If H is a group in its own
right under the binary operation of G, that is, it satisfies Definition 3, then we call
H a subgroup of G and write H ≤ G. For elements α1, α2, . . . , αn of a group G, the
set 〈α1, α2, . . . , αn〉 denotes the smallest subgroup of G containing α1, α2, . . . , αn, and is
called the subgroup generated by α1, α2, . . . , αn.

Let X be a finite set. A permutation of X is a bijection from X to X . The set of
all permutations of X , Sym X , forms a group under composition of mappings. Any
subgroup of this group is called a permutation group acting on the set X . If G is a
permutation group acting on X and α1 and α2 elements of G, then for any x ∈ X , α1(x)
denotes the result of applying α1 to x, and α1α2(x) = α1(α2(x)) the result of applying α1
to α2(x). Consider the set [n] = {1, 2, . . . , n}. The group of all permutations acting on [n]
is called the symmetric group on n points, and is denoted Sn, or equivalently, S{1,2,...,n}.

If G is a permutation group acting on a finite set X , then for x ∈ X , the set {α(x) :
α ∈ G} is called the orbit of x under G, denoted [x]G . For x and y ∈ X , we use x ∼G y
to denote that x and y are in the same orbit. The relation ∼G is an equivalence relation
on X , and hence partitions X into disjoint subsets, which are the orbits of X under
G. Sometimes it is useful to identify the orbits of a set X under a group G as a set of
representative elements (one chosen for each orbit). We use the notation rep([s]G) to
denote the representative element of the orbit containing the element s.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 11

Fig. 1. Kripke structure for two-process mutual
exclusion.

4. SYMMETRY REDUCTION METHODS IN MODEL CHECKING

4.1. Symmetry Reduction in Automatic Verification

The earliest use of symmetry reduction in automatic verification was in the context of
high-level (colored) Petri nets [Huber et al. 1984], where reduction by equivalent mark-
ings was used to construct finite reachability trees. These ideas were later extended
for deadlock detection and the checking of liveness properties in place/transition nets
[Starke 1991].

Concurrent systems often contain many replicated components, and as a conse-
quence, model checking may involve making a redundant search over equivalent areas
of the state-space. For example, Figure 1 shows a Kripke structure for a model of two-
process mutual exclusion. The model consists of two-processes, each with three local
states N , T , and C. For process i, the proposition Ni denotes that process i is in the
neutral state. Similarly, the propositions Ti and Ci denote that process i is in the trying
and critical state, respectively. There is a global variable, tok, which takes the value 1
or 2, depending which process holds the token. Only if process i is in the trying state
(i.e., Ti holds) and tok = i also holds can process i move into the critical state. When a
process leaves the critical state, the token is nondeterministically assigned the value 1
or 2. Thus, in the model it is not possible for both processes to be in the critical state.
That is, the mutual exclusion property holds. Note that there are two initial states
(indicated with a bold outline in Figure 1). In each initial state, both processes are in
the neutral state and one of the processes has the token.

Though simple, this example clearly demonstrates the existence of symmetry within
a Kripke structure. In terms of the mutual exclusion property, any pair of states (A1 B2,
token = i) and (B1 A2, token = j), where A and B belong to {N , T, C} and i = j , are
equivalent, that is, state (A1 B2, token = i) will satisfy the mutual exclusion property
if and only if (B1 A2, token = j) does. Most symmetry reduction techniques exploit this
type of symmetry by restricting the state-space search to equivalence class representa-
tives, and often result in significant savings in memory and verification time [Bosnacki
et al. 2002; Clarke et al. 1996; Emerson and Sistla 1996; Ip and Dill 1996].

4.2. Symmetry Reduction Using Quotient Structures

Let M = (S, R, L, S0) be a Kripke structure over a set of atomic propositions AP. An
automorphism of M is a permutation α : S → S that preserves the transition relation.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

12 A. Miller et al.

Fig. 2. Quotient Kripke struc-
ture for two-process mutual
exclusion.

In other words, α satisfies the following condition:

∀s, t ∈ S, (s, t) ∈ R ⇒ (α(s), α(t)) ∈ R.

In a model of a concurrent system with many replicated processes, Kripke structure au-
tomorphisms may involve the permutation of process identifiers or data values through-
out all states of the model. On the other hand, a model may include a data structure
which has geometrical symmetry [Holzmann and Joshi 2004]. In this case, Kripke
structure automorphisms involve applying the geometrical symmetries throughout all
states of the model.

The set of all automorphisms of the Kripke structure M forms a group under compo-
sition of mappings. This group is denoted Aut(M). A subgroup G of Aut(M) partitions
the set S of states into disjoint orbits, as described in Section 3, which can be used to
define a quotient Kripke structure MG :

Definition 4. The quotient Kripke structure MG of M, with respect to G, is a tuple
MG = (SG , RG , LG , S0

G) where:

—SG = {[s]G : s ∈ S} (the set of orbits of S under the action of G)
—RG = {([s]G , [t]G) : (s, t) ∈ R}
—LG([s]G) = L(rep([s]G)), where rep([s]G) is a unique representative of [s]G

—S0
G = {[s]G : s ∈ S0} (the orbits of the initial states S0 under the action of G).

If G is nontrivial, then the quotient structure MG is smaller than M. For any s, the
size of [s]G is bounded by |G|, and so the theoretical minimum size of SG is |S|/|G|.
Since for highly symmetric systems we may have |G| = n!, where n is the number of
components, symmetry reduction potentially offers a considerable reduction in memory
requirements.

In practice, the set of states S is taken to be the set of orbit representatives, rather
than the set of the orbits themselves. To give an example of a quotient structure, for the
mutual exclusion example shown in Figure 1, observe that swapping the process indices
1 and 2 throughout all states is an automorphism of the structure. Let α denote this
automorphism. Then for this example, Aut(M) = {α, 1}, where 1 is the identity map-
ping. Choosing a unique representative from each orbit, we obtain a quotient Kripke
structure MAut(M), as illustrated by Figure 2.

It can be shown [Clarke et al. 1996; Emerson and Sistla 1996] (see Theorem 1,
to follow) that a model and its quotient structure satisfy the same symmetric CTL∗

formulas. A CTL∗ formula φ is symmetric, or invariant, with respect to G if for

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 13

Fig. 3. Algorithm to explore a quo-
tient Kripke structure.

every maximal propositional subformula f appearing in φ, and for every α ∈ G,
M, s |= f ⇔ M, α(s) |= f .

THEOREM 1. If M and MG denote a model and its quotient model, respectively, with
respect to a group G, then MG is bisimulation equivalent to M, and therefore M, s |=
φ ⇔ MG , [s]G |= φ, for every symmetric CTL∗ formula φ.

As an example, consider the two-process mutual exclusion property “it is not possi-
ble for both processes to be in the critical section at the same time.” In terms of the
propositions used to label the structures represented by Figures 1 and 2, this property
is expressed in CTL∗ as A[](¬(C1 ∧ C2)). Let us call this property φ1. Clearly, φ1 is sym-
metric with respect to the automorphism group {α, 1}, where α is defined as earlier.
Thus, the Kripke structure represented by Figure 1 satisfies φ1 if and only if the quo-
tient structure represented by Figure 2 does. Therefore, to check the mutual exclusion
property it is sufficient to check the quotient model only. Note that the quotient model
also satisfies the property φ2, defined as A[](¬C2). However, as φ2 is not symmetric with
respect to the automorphism group, we cannot infer the truth (or otherwise) of φ2 for
the original Kripke structure (indeed, φ2 is clearly not true for the original structure).

The algorithm of Figure 3 (adapted from Ip and Dill [1996]) shows how a quotient
structure can be explored incrementally if the symmetries of the Kripke structure can
be identified before search. In this case, it may be possible to build the quotient structure
even though the original structure is intractably large.

An approach suggested for symmetry reduction during automata-based model check-
ing involves the construction of an annotated quotient structure (AQS) [Emerson and
Sistla 1996; Sistla 2004]. In this case, there is a labeled edge between representative
states [s]G and [t]G for every edge that exists (in M) from rep([s]G) to an element
of [t]G . If (rep([s]G), t ′) were such an edge (in M), and π the permutation such that
π (rep([t]G)) = t ′, then the edge (in the annotated quotient structure) would be labeled
with π . Not only is it possible to unwind the original structure M from the (anno-
tated) quotient structure, but it is also possible to check properties expressed in in-
dexed CTL∗—an extension to CTL∗ in which properties include the indexed quantifiers
for all processes or for some process. In addition, the properties to be checked are not
required to be symmetric with respect to the group G. We discuss the use of AQSs to
verify properties under fairness assumptions in Section 4.6.2.

4.3. Identifying Symmetry

The first step which must be accomplished by any method that exploits symmetry is
the identification of symmetries in a model. Let M be a Kripke structure. An obvious
approach to solving this problem would be to construct M, and then to find a symmetry

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

14 A. Miller et al.

group G of M using a standard algorithm (e.g., nauty [McKay 1981]). These symmetries
could be used to reduce M to a quotient model, MG .

This approach is flawed in two ways. First, finding the automorphisms of a Kripke
structure is equivalent to checking for state-space isomorphism, which for large state-
spaces is a hard problem (no polynomial time algorithm is known [McKay 1981]). Sec-
ond, if enough resources are available to construct M, then symmetry reduction is
unlikely to be of much benefit. Indeed, the power of reduction techniques is that they
allow a reduced model to be checked, even when the unreduced model is intractable.

Thus, the problem is to find symmetries of M without building M explicitly. For
simple concurrent programs consisting of a finite number of isomorphic (identical up
to renaming) processes executing in parallel, communicating via shared variables, a
subgroup of the automorphism group of M can be determined from the communication
relation of the program [Emerson and Sistla 1996]. The communication relation CR
of the program P = ‖n

i=1 pi is defined as the undirected graph CR = ([n], E), where
{i, j } ∈ E iff processes pi and pj share a variable.

THEOREM 2. If M is the global state transition state-space of P = ‖n
i=1 pi, where all

pi are normal and isomorphic, then Aut(CR) ≤ AutM.

The group Aut(CR) may be automatically computed, since CR is typically small com-
pared to M, or may simply be known in advance.

Theorem 2 applies to systems in which all variables are shared between, at most,
two processes, and all processes are of the same type. This result is generalized [Clarke
et al. 1998] to remove this restriction via the introduction of the colored hypergraph
HG(P) of a shared variable program P. The node set of the hypergraph HG(P) is [n]
and there is a hyperedge w ⊆ [n] if the program P has a variable shared by all process
pi, i ∈ w. Each node is assigned a color so that two processes pi and pj are isomorphic
iff nodes i and j have the same color in the colored hypergraph. Two processes are
isomorphic in this case if they are of the same process type, and have equivalent sets
of transitions.

THEOREM 3. Let HG(P) be the hypergraph corresponding to the program P = ‖n
i=1 pi.

Let M be the Kripke structure corresponding to P. Given these conditions, Aut(HG(P)) ≤
Aut(M).

Another approach to symmetry detection involves the detection of symmetries in
the state-space by annotation of the system description via a purpose-built data type
[Ip and Dill 1993]. The data type is called a scalarset, which acts as documentation that
certain symmetries hold in a specification expressed in the Murφ description language
[Dill et al. 1992]. A scalarset is an integer subrange with restricted operations as follows:

—An array with a scalarset index type can only be indexed by a scalarset variable of
exactly the same type.

—A term of scalarset type must be a variable reference (a scalarset may not appear as
an operand to + or any other operator in a term).

—Scalarset variables may only be compared using =, and in such cases, must be of
exactly the same type.

—For all assignments d := t, if d is a scalarset variable, t must be a term of exactly the
same scalarset type.

—If a scalarset variable is used as an index of a for statement, the body of the statement
is restricted so that the result of the execution is independent of the order of iteration.

The restrictions are sufficient to ensure that the consistent permutation of scalarset
variables in all states corresponds to an automorphism of the state-space. Furthermore,

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 15

violations of the restrictions can be detected in polynomial time [Ip and Dill 1996]. In
the following theorem, a permutation αs is a permutation on the elements of scalarset
s, which acts on the states of M by permuting state components.

THEOREM 4. Given a source program containing a scalarset s, every permutation αs
on the states of the state-space M derived from the program is an automorphism of M.

COROLLARY 1. If a program P has scalarsets s1, s2, . . . , sn, there are symmetries in the
state graph M and we can use the symmetry-reduced state graph MG to perform verifi-
cation, where G is the set of all permutations of the states with respect to s1, s2, . . . , sn.

An example of the use of scalarsets is in the verification of the Needham-Shroeder
public key protocol [Mitchell et al. 1997]. The protocol involves a set of initiator pro-
cesses and a set of receptor processes. Each initiator process is identified by the variable
Initiatorid, which is used to index an array ini storing the state of each initiator process.
The Initiatorid variable is also used as an index within a for loop containing the rules
determining the behavior of each initiator process. As initiator processes behave sym-
metrically, by declaring the Initiatorid variable a scalarset, symmetry reduction can
be automatically performed. Similarly, a scalarset (Receptorid) can be used to identify
symmetry between receptor processes.

The aforementioned use of scalarsets exploits structural symmetry (symmetry be-
tween the processes themselves). The scalarset approach can also be used to exploit
data symmetry. A scalarset that is used to denote data symmetry is referred to as a
data scalarset.

Definition 5. A scalarset s is a data scalarset in a source program P if s is not used
as an array index or a for statement index.

If a protocol uses a data scalarset, then it is said to be data independent [Wolper
1986]. In this case, symmetry reduction can be used to reduce an infinite state-space
(in which data is unbounded) to a finite state-space (with bounded data) thusly:

THEOREM 5. If P is a source program, and s is the name of a data scalarset in P and
P1 and P2 are programs identical to P, except that s is declared to be of size N1 in P1
and N2 in P2, then there exists Ns > 0 such that the symmetry-reduced state graphs of
P1 and P2 are isomorphic whenever N1 ≥ Ns and N2 ≥ Ns.

However, this application of scalarsets is seldom required, as abstraction can be used
to eliminate redundant data values [Clarke et al. 1994]. Data symmetry reduction will
be discussed again in Section 4.8.

The original scalarset approach [Ip and Dill 1996] only considered the verification
of simple safety properties of the form AG(¬error). Nonetheless, scalarsets have been
successfully used to exploit symmetry during the verification of more general LTL for-
mulas [Bosnacki et al. 2002]. A major drawback to scalarsets is that they only allow
the specification of total (or full) symmetries (where all processes of a given type can be
permuted among themselves), thus can be applied to a system of processes connected
as a clique, say, but not, for example, as a ring. An alternative data type, called circu-
larset [Ip 1996], and additional extensions to scalarset [Donaldson et al. 2005b] have
been proposed to handle systems with ring structure and more general systems, respec-
tively. However, these alternatives share with the scalarset approach the problem that
the modeler must identify symmetry in the model and use the appropriate data type
to specify the presence of this symmetry. This means that symmetry reduction using
scalarsets is not a “push-button” reduction technique.

In the message-passing paradigm (in which processes communicate by sending mes-
sages on buffered channels), the structural symmetries of a model can be automatically

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

16 A. Miller et al.

extracted from program text by using a graph automorphism package such as nauty
[McKay 1981] or saucy [Darga et al. 2004] to analyze the static channel diagram
(a graphical representation of the communication structure) of the original system
[Donaldson et al. 2005a]. This approach is not limited to total symmetries, and has
been applied to detect symmetry in PROMELA models [Donaldson and Miller 2005]. A
similar approach [Manku et al. 1998] uses GAP [Gap Group 1999] for identifying sym-
metries in structural descriptions of digital circuits.

4.4. The Orbit Problem

The crux of exploiting symmetry when model checking is that during the search, when
a state s is reached, we must test whether an element t has already been reached such
that s = α(t) for some α ∈ G (i.e., [s]G = [t]G). This is known as the orbit problem, and
central to all model checking methods that exploit symmetry. Techniques must be used
either to solve the orbit problem efficiently or to somehow avoid it altogether.

In the design of protocols and sequential circuits, it is common to model a system
using a set of Boolean state variables x1, x2, . . . , xn. In such cases the symmetry group
G is also given in terms of state variables, so that a permutation α acting on {1, 2, . . . , n}
acts on a state vector s ∈ Bn, as follows [Clarke et al. 1996]:

α((x1, x2, . . . , xn)) = (xα(1), xα(2), . . . , xα(n)).

Definition 6. The orbit problem [Clarke et al. 1996] Let G be a group acting on the
set {1, 2, . . . , n}. Given two vectors x ∈ Bn and y ∈ Bn, the orbit problem is thus: does
there exist a permutation α ∈ G such that y = α(x)?

The orbit problem is related to the graph isomorphism problem:

Definition 7. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there
is a bijection f : V1 → V2 such that (f (x), f (y)) ∈ E2 if and only if (x, y) ∈ E1. The
mapping f is said to be an isomorphism between G1 and G2.

The issue of determining whether two graphs are isomorphic is known as the graph
isomorphism problem and is very difficult to solve (although not widely believed to be
NP-complete). In some cases (e.g., when the maximum degree of the two associated
graphs is known to be bounded by a given constant) isomorphism can be determined
in polynomial time. However, in general, the graph isomorphism problem is upheld as
being highly combinatorially expensive.

THEOREM 6. [Clarke et al. 1996] The orbit problem is as hard as the graph isomor-
phism problem.

In fact, the orbit problem has been shown to be equivalent to a well-known issue in
computational group theory; the set stabiliser in a coset (SSC) problem:

Definition 8. Given a set X ⊆ [n], a group G ⊆ Sn, and a group element α ∈ Sn,
there is an element σ in the coset Gα = {βα : β ∈ G} which stabilises the set X , that
is, σ (X) = X .

THEOREM 7. [Clarke et al. 1998; Jha 1996] The orbit problem and SSC problem are
polynomially equivalent.

The SSC problem is known [Hoffman 1982; Luks 1991] to be equivalent to several
computational group theory problems in NP, which are harder than graph isomorphism,
but not known to be NP-complete.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 17

If BDDs are used to represent the state-space of a model, then exploiting symmetry
becomes more complex, as the orbit relation of a symmetry group must be represented
as a BDD. The orbit relation of a group G is the set of pairs {(s, t) : t ∈ [s]}. The BDD
of the orbit relation induced by a transitive group (a group acting on a set such that
every element of the set is moved by some element of the group) is exponential in the
minimum number of components in a system and states in one component [Clarke et al.
1996]. Since transitive groups occur commonly in models of concurrent systems, the
combination of standard symmetry reduction techniques with symbolic model checking
is limited. We discuss some methods which avoid construction of the orbit relation for
symbolic model checking in Section 4.5.

For concurrent programs, modeling using Boolean variables is cumbersome, and it
is customary instead to model a state as a vector in [k]n, where k is the size of the
set of possible process locations. The action of a symmetry group G ⊆ Sn on a vector
(x1, x2, . . . , xn) ∈ [k]n is analogous to that of a vector in Bn, as described earlier [Clarke
et al. 1996].

When attempting to exploit symmetry, a representative function rep is often required,
which maps a state s to the unique representative of its orbit (see Definition 4 and
Figure 3). In practice, it is convenient to use the lexicographically least element in the
orbit as the representative.

Definition 9. The Constructive Orbit Problem (COP) [Clarke et al. 1998; Jha 1996]
Given a group acting on [n] and a vector x = (x1, . . . , xn) ∈ [k]n, find the lexicographically
least element in the orbit of x.

THEOREM 8. [Clarke et al. 1998; Jha 1996] The COP is NP-hard.

In Section 4.5.5 we discuss certain classes of symmetry group for which the COP can
be solved in polynomial time.

4.5. Simplifying the Orbit Problem

4.5.1. Multiple Representatives. As discussed in the previous section, combining sym-
metry reduction with symbolic model checking may not be effective, due to the exponen-
tially large BDDs which are required to represent the orbit relation. By using multiple
representatives from each orbit, this problem can be avoided to some extent [Clarke
et al. 1996, 1998] If G is a set of automorphisms, a subset C of G is chosen which is
closed under inverses and contains the identity element. The set of representatives Rep
is selected such that each orbit (of the set of states S under G) has at least one element
in Rep, and for every s ∈ S, there is some α ∈ C such that α(s) ∈ Rep. The size of Rep
(and consequently, that of the resulting quotient model) depends heavily on the choice
of C, hence C must be chosen carefully. The state-space of the quotient model is not
reduced (with respect to the original model) as much as with unique representatives.
However, multiple representatives reduce the size of the BDDs required to store the
state-space, and thus are more effective when the symbolic representation of states is
used.

In practice, BDDs reduced through multiple representatives may still be intractably
large. Approaches using generic representatives or computing representatives dynam-
ically, which we discuss next in Sections 4.5.2 and 4.5.3, respectively, have been shown
to outperform the multiple representatives approach [Emerson and Wahl 2003, 2005a].

4.5.2. Generic Representatives. For the symbolic model checking of fully symmetric sys-
tems using BDDs, a method which uses generic representatives avoids both the orbit
problem and construction of the orbit relation [Emerson and Trefler 1999]. This method

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

18 A. Miller et al.

involves translating the source program for a model into a reduced program which can
be explored using standard model checking algorithms. The idea of generic represen-
tatives is best explained using an example. For a basic model of mutual exclusion with
three processes (and no token), the states (N1, N2, T3), (T1, N2, N3), and (N1, T2, N3)
are all equivalent. This is because there are two processes in the neutral local state
and one in the trying local state in each of the three global states. The generic rep-
resentative of these states is (2N , 1T). A generic representative indicates how many
processes are in each local state, but does not refer to individual processes. Hence, the
reduced program abstracts from processes to counters, with one counter for each local
state, which indicates the number of processes currently in that state.

This approach is extended [Emerson and Wahl 2003] to include systems with global
shared variables. The translation of a program into reduced form is polynomial in
the length of the program and the approach compares well to those using unique or
multiple representatives. However, the benefits of this approach can be negated due to
the local state explosion problem, where the number of potential local states of a process
is exponential in the number of local variables. Since the reduced program requires
one counter per local state, BDD representations that require bits to be reserved for
each counter become infeasible. Techniques based on live variable analysis (similar to
the data flow optimizations provided by SPIN [Holzmann 2003]) and local reachability
analysis [Emerson and Wahl 2005b] have been proposed to limit local state explosion.
The generic representatives approach is also very limited, as it only applies to those
fully symmetric systems that are simple enough to be amenable to counterabstraction
[Emerson and Wahl 2005a].

4.5.3. Dynamic Computation of Representatives. Another approach to combining sym-
metry reduction techniques with symbolic representation (for CTL model checking)
involves determining orbit representatives dynamically during fixpoint iterations
[Emerson and Wahl 2005a]. Instead of building a representation of the quotient struc-
ture for a model, this approach works by computing transition images with respect to
the unreduced structure, then mapping the new states to their respective represen-
tatives. This approach is not restricted to fully symmetric systems, and can handle
data (see Section 4.8) as well as process symmetry. A potential bottleneck here is the
operation of swapping bits in the BDD representation of the model, which must be per-
formed repeatedly during representative computation. The complexity of such swaps
depends exponentially on the distance, in the BDD variable ordering, between the vari-
ables to be swapped. To avoid this problem, permutations are expressed as the product
of transpositions of adjacent elements. Experimental results show that this approach
outperforms the use of both multiple and generic representatives (see Sections 4.5.1
and 4.5.2, respectively) when applied to a queueing lock algorithm and buggy version
of a cache coherence protocol.

4.5.4. On-the-Fly Representative Selection. Model checking algorithms that use depth-
first search (DFS) can be adapted so that the first element of an orbit encountered during
the search is chosen as the orbit representative [Gyuris and Sistla 1999]. However,
this approach is not suitable for symbolic model checking techniques, as DFS is very
inefficient in the context of BDD state representation. On-the-fly orbit representative
selection is possible during breadth-first search (BFS) when the choice of representative
is guided using BDD-specific criteria [Barner and Grumberg 2002].

4.5.5. “Easy” Classes of Groups. For the following classes of automorphism, group G
(acting on a model of a system of n processes), the constructive orbit problem (COP)

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 19

can be solved in polynomial time [Clarke et al. 1998; Jha 1996]:

—G has order polynomial in n, for example, a cyclic or dihedral group, or the group
associated with an n × n torus

—G is the full symmetric group Sn

—G is a disjoint or wreath product of groups for which the COP is polynomial time
solvable

—G is generated by transpositions

Note that when G is the full symmetric group Sn, the lexicographically least (lex-
least) element of the orbit of a state can be obtained by sorting the state-vector. When
G has order polynomial in n, the COP can be solved by enumerating the orbit of a
state. In the other cases, the lex-least element is found by sorting the segments of the
state-vector individually.

4.5.6. Using Orbit Representatives in Practice. The scalarset method [Ip and Dill 1996]
assumes the existence of a canonicalization function (in which states are replaced by a
unique equivalence class representative) or normalization function (in which states of
a subset are used as multiple representative states). For symmetry reduction in Murφ a
suitable canonicalization function [Ip and Dill 1993] applies all permutations to a state
s and returns the lexicographically smallest image. An approach using a normalization
function is also suggested, in which the state-vector is split into two parts. For a given
state, a permutation φ is selected that produces the lexicographically smallest image
of the first (most significant) part of the associated state-vector. The representative
state chosen is the concatenation of the image of the two parts of the state-vector
(under φ).

The use of normalization and canonicalization functions with scalarsets is extended
[Bosnacki et al. 2001] using heuristics to choose the order in which variables are po-
sitioned in the state-vector. This ordering determines, for example, which variables
are most significant and appear in the first (leftmost) part of the split state-vector.
One approach, the sorted strategy, involves the identification of an array that is in-
dexed by a scalarset type (the main array), and placing it in the leftmost position of
the state-vector. In another approach, the segmented strategy, the lexicographically
smallest image of the second part of the state-vector, with respect to all permutations
that canonicalize the first part, is used in the representative state. There is tradeoff
between reduction in memory requirements and faster verification for the sorted and
segmented strategies. The segmented strategy yields canonical representatives, but is
more computationally expensive than the sorted strategy. On the other hand, use of
the sorted strategy may result in exploring several states from the same equivalence
class.

Two further approaches, pc-sorted and pc-segmented, are also suggested for systems
in which no suitable main arrays exist, but the process identities are of type scalarset. In
this case, a main array is constructed that contains the program counters. A prototype
implementation of this approach is implemented in the SymmSpin package [Bosnacki
et al. 2000, 2002], which we discuss in Section 5.1.

A canonicalization function is suggested, again within the context SPIN [Nalumasu
and Gopalakrishnan 1995], for systems with any (user-defined) symmetry. Though less
restrictive than the scalar-set approach (full symmetry is not required and more general
operations on permutable variables are permitted), a unique canonicalization function
must be constructed manually by the modeler for every individual model, thereby lim-
iting the applicability of the method.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

20 A. Miller et al.

4.6. Combining Symmetry Reduction with Other Techniques

Basic symmetry reduction does not take into account the more sophisticated techniques
associated with model checking. In this section we discuss how symmetry reduction can
be safely combined with partial order reduction, and modified to successfully handle
fairness.

4.6.1. Symmetry and Partial Order Reduction. Partial order (see Section 2.3.6) and sym-
metry reduction are orthogonal reduction techniques. They can therefore be success-
fully used in conjunction, resulting in larger savings in memory and verification time.

The combination of these two techniques was first suggested in the context of Petri
nets [Valmari 1989]. This approach applies to the stubborn sets method of partial order
reduction and is restricted to deadlock detection.

The idea of combining two reductions simultaneously is extended to verifying next-
time free LTL properties via model checking [Emerson et al. 1997]. Indeed, an algorithm
is given combining partial order reduction and any bisimulation-preserving equiva-
lence. When the equivalence is the automorphism relation, the algorithm proceeds as
follows: From any state s, an ample set of transitions is calculated. The orbit repre-
sentatives of any states that are reachable via these transitions are then explored.
A similar algorithm, combining the persistent sets method of partial order reduction
with symmetry reduction, is used within the stateless search technique implemented
in VeriSoft [Godefroid 1999].

4.6.2. Exploiting Symmetry Under Fairness Assumptions. Fairness is vital for proving live-
ness properties, as it reflects the basic requirement that processes are executing at an
indefinite yet positive speed [Emerson and Sistla 1997]. Two important kinds are weak
and strong fairness. Given a Kripke structure M, an infinite path π of M is strongly
fair if each process that is enabled infinitely often is executed infinitely often. A path
π is weakly fair if any process that is continuously enabled is executed infinitely often.

Fairness is generally incompatible with basic symmetry reduction methods because
the progress of an individual process along a path of the quotient structure cannot
be tracked in the usual way. Each state of the quotient structure is labeled according
to the representative of an equivalence class of states in the original structure, and
for a transition s → t in the original model, it may not be the case that transition
rep([s]G) → rep([t]G) also occurs in the quotient model.

These fundamental problems are overcome when the automata-theoretic approach
using annotated quotient structures (see Section 4.2) is used in the context of (inher-
ently symmetric) fair-indexed CTL∗ properties [Emerson and Sistla 1997; Sistla 2004].
An annotated quotient structureMG is used together with an automatonA that accepts
only fair computations. An efficient algorithm, based on finding maximal strongly con-
nected components (MSCCs) [Tarjan 1972] (see Section 2.3.2), is presented for model
checking fair-indexed CTL∗ formulas under the assumption of strong and (by implica-
tion) weak fairness. Correctness results (including liveness properties) are verified for
a resource controller example using a prototype (fair) model checker. Comparison with
an unreduced model indicates an exponential reduction in the number of stored states.

This approach to symmetry-reduced model checking has been extended to the on-the-
fly case [Gyuris and Sistla 1999] in which MG ×A is checked during construction. The
approach also exploits state symmetries [Emerson and Sistla 1996]. A state symmetry
of a state s is a permutation α ∈ Aut(M) on process indices such that α(s) = s. If
processes i and j have the same local state in global state s, and if α(i) = j , then only
the transitions made from state s by process i need to be considered, thus saving space
and computation time. The resulting algorithm is exploited in the symmetry-based
model checker (SMC) [Sistla et al. 2000], which we discuss in Section 5.1.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 21

A parallel approach to model checking with symmetry reduction and weak fairness
[Bosnacki 2003] combines the weak fairness algorithm implemented in SPIN [Holzmann
2003] (based on the Choeka flag algorithm [Choueka 1974]) with a symmetry reduction
algorithm [Bosnacki 2002] based on the nested depth-first search (NDFS) approach
to model checking [Holzmann et al. 1996]. As well as exploiting the usual advantages
over MSCC algorithms, the NDFS approach is compatible with approximate verification
techniques, such as the hash-compact method and bitstate hashing (see Section 2.4.1).

4.7. Exploiting Symmetry in Less Symmetric Systems

Many systems which occur commonly in practice are comprised of several similar, but
not all identical, processes. An example is the readers-writers problem [Emerson and
Trefler 1999], where m reader processes and n writer processes access a shared resource,
for some m, n > 0.

A writer always has priority over a reader when both are trying to access the shared
resource. If M is a model of this system, then M is not fully symmetric. In fact,
Aut(M) = S{1,2,...,m} × S{m+1,m+2,...,m+n}, that is, both readers and writers can be per-
muted, but readers cannot be interchanged with writers.1 However, the state graph is
symmetric in every sense, except for transitions from a state where two processes are
attempting to access the shared resource.

It is possible to exploit this kind of almost symmetry during model checking. Indeed,
by defining different classes of “symmetry,” such as near or rough symmetry [Emerson
and Trefler 1999] and virtual symmetry [Emerson et al. 2000], it is still possible to infer
temporal logic properties of the system by model checking a suitable quotient graph
using the entire group Sm+n as the automorphism group.

Suppose M is a model of a system, and I the set of process identifiers associated with
M. Then, a permutation α ∈ Sym I is said to be a near automorphism of M if for every
transition s → t of M, either α(s) → α(t) is a transition of M or s is totally symmetric
with respect to Aut(M), that is, s is invariant under Aut(M). The model M is said to
be nearly symmetric if it has a suitable group of near automorphisms Gn.

If, on the other hand, Gr is a subgroup of Sym I, then M is roughly symmetric
with respect to Gr if for every pair of states s and s′, where s ∼Gr s′, any transition
from s is matched by a transition from s′, provided the associated local transition (from
s′) involves a process with the highest priority. If M is a nearly (roughly) symmetric
model with respect to group Gn (Gr), then despite the lack of complete symmetry,
the quotient model MGn (MGr) is bisimilar to the original model M. It follows that
symmetry reduction preserves all symmetric CTL∗ properties.

Both near and rough symmetry are subsumed by the notions of virtual and strong
virtual symmetry [Emerson et al. 2000]. In addition to systems with static priorities
(which can already be described via rough symmetry), virtual symmetry applies to sys-
tems where the resources are asymmetrically shared according to dynamic priorities.

The symmetrization RG of a transition relation R by a group G is defined by

RG = {α(s) → α(t) : α ∈ G and s → t ∈ R}.

Intuitively, symmetrizing a transition relation can be considered to be the process of
adding transitions that are missing due to asymmetry in the system.

A structure M is said to be virtually symmetric with respect to a group Gv acting
on S if for any s → t ∈ RGv , there exists α ∈ Gv such that s → α(t) ∈ R. In addition,
if for any s → t ∈ RGv there exists α in Fix(s, Gv) (the largest subgroup of Gv which

1Assuming there are no symmetries other than those which permute process ids.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

22 A. Miller et al.

fixes s) such that s → α(t) ∈ R, then M is said to be strongly virtually symmetric with
respect to Gv. If a Kripke structure M is (strongly) virtually symmetric with respect
to a group Gv, then M is bisimilar to the quotient model MGv , and model checking
of symmetric properties can be performed over MGv . A procedure is given to identify
the case where a Kripke structure is strongly virtually symmetric with respect to a
group Gv. This procedure involves the local counting of transitions that are present
in RGv , but absent in R. Virtual symmetry has been successfully combined with the
generic representatives approach (see Section 4.5.2) for the case where processes are
fully interchangeable with respect to virtual symmetry [Wei et al. 2005]. This allows
symmetry-reduced symbolic model checking of partially symmetric systems by using
the NuSMV model checker [Cimatti et al. 2002] (see Section 2.4.2).

A method involving the symmetry reduction of models that have little or no symmetry
uses guarded annotated quotient structures (GQSs) [Sistla 2004; Sistla and Godefroid
2004]. These structures are an extension to the annotated quotient structures [Emerson
and Sistla 1996, 1997; Gyuris and Sistla 1999] discussed in Section 4.2. Suppose M is
the Kripke structure of a system, and M′ ⊇ M is obtained from M by adding transi-
tions (in a similar manner to the process of symmetrization described previously), so
that M′ has more symmetry than M. A guarded annotated quotient structure for M
can be viewed as an annotated quotient structure for M′, with edges labeled to indicate
which processes can make the transition (in M). Thus, the original edges of M can be
recovered from the representation of M′. A temporal formula φ can be checked over the
guarded annotated quotient structure by unwinding the structure, even if φ is not sym-
metric with respect to the automorphisms used for reduction. This approach potentially
allows large factors of reduction to be obtained, since a larger group of automorphisms
is used than would be possible using standard quotient structure reduction. Indeed,
experimental results using the SMC model checker [Sistla et al. 2000] show how the
GQS method can be applied effectively to a system of prioritized processes.

A recent extension to the GQS approach [Sistla et al. 2004] involves (symmetry-
reduced) model checking of extended CTL (CCTL) properties (which involve an addi-
tional construct, COUNT, for specifying the number of components in a given state).
This extended logic is more expressive than indexed CTL (see Section 4.2).

Properties are again not restricted to being fully symmetric in an alternative
automata-theoretic approach [Ajami et al. 1998], but must be partially symmetric.
For example, consider the following property: “If some process is waiting for a resource
then it will get it, provided none of the processes with higher identity will require the
resource in the future.” To check the satisfaction of a formula φ for a modelMwith set of
states S, a set of equivalence relations is first computed between states of B, the Büchi
automaton representing φ. If G is a symmetry group of M, one equivalence relation
is defined for every element of G. Two states, b1, b2 ∈ B, are equivalent with respect
to α ∈ G if and only if the predecessors and successors of b1 are mapped to the prede-
cessors and successors of b2, respectively (and vice versa). The quotient graph is then
constructed by applying the equivalence relations to the pairs of states (s, b) ∈ S × B.
The approach is extended [Haddad et al. 2000] to partially symmetric models by rep-
resenting the model itself as the synchronized product of a symmetric model and an
asymmetric Büchi automaton. The method is illustrated using well-formed Petri nets.

4.8. Exploiting Data Symmetry

Most of the symmetry reduction methods described in this article relate to struc-
tural symmetry. However, as discussed in Section 4.3, another form of symmetry,
namely data symmetry, can be exploited to increase the effectiveness of model checking.
In Section 4.3 we discussed the application of scalarsets to exploit data symmetries.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 23

As software specifications often involve large data structures with vast numbers of
values, it may be impossible to check whether properties hold for every feasible assign-
ment of values to the dataset. That is, it may not be possible to check the properties for
every interpretation of the model. It is therefore desirable only to check representative
models for each equivalence class of interpretations.

This use of data equivalence is exploited for software analysis using the Nitpick
specification tool [Jackson et al. 1998].

5. IMPLEMENTATIONS OF SYMMETRY REDUCTION

In this section we list the major tools for which symmetry reduction has been imple-
mented. This is not intended as an exhaustive exposition, but as selective illustration.

5.1. Explicit State Methods

Murφ. The Murφ description language is the first to have been augmented with the
scalarset data type (see Section 4.3). As a result, the Murφ verification system [Dill et al.
1992] (see Section 2.4) is the first to implement symmetry reduction using scalarsets
[Ip and Dill 1996] and has inspired many of the other implementations discussed in
this section.

An automorphism group for the state-space is determined statically from the Murφ
description and consists of all permutations that permute scalarset variables. The lex-
icographically smallest member of each orbit is used as the orbit representative and a
suitable canonicalization function (see Section 4.5.6) is used to map every state to its
orbit representative.

Murφ has been used to verify a number of highly symmetric algorithms (e.g.,
Peterson’s n-process mutual exclusion algorithm [Peterson 1981]) and a lock imple-
mentation for the Stanford DASH multiprocessor [Lenoski et al. 1992].

The Murφ tool has been extended with two alternative classes of algorithm for rep-
resentative computation [Juntilla 2004]. The first class of algorithms transforms each
state encountered during the search to a characteristic graph, and derives a canonical
state representative from the canonical form of this graph. The nauty graph isomor-
phism tool [McKay 1981] is used to perform canonicalization operations. The other
class of algorithms uses ordered partitions on states, and during canonicalization con-
siders only permutations which are compatible with the partitioning of a given state.
This approach mimics the partitioning approach commonly used by graph isomorphism
algorithms [McKay 1981].

SMC. The symmetry-based model checker (SMC) [Sistla 2004; Sistla et al. 2000] is
an explicit state model checker which has been specifically designed for the verification
of highly symmetric systems. Exploiting both process and state symmetry, in addition to
proving safety properties, SMC is the only model checker that can be used to effectively
verify liveness properties under both strong and weak fairness assumptions. Model
checking is performed using a technique [Gyuris and Sistla 1999] involving annotated
quotient structures (AQSs) (see Sections 4.2 and 4.6.2). The AQS can be constructed
either in advance or on-the-fly. For on-the-fly construction, it is also possible to store the
edges of the AQS during construction. If the edges are not stored, considerable space
savings can be made. However, verification time is increased dramatically.

The input language of SMC uses a syntax similar to that of Murφ [Dill et al. 1992].
Processes are separated into modules such that all processes in a given module are
identical, up to renaming (note that these modules are analogous to the scalarsets used
by Murφ). Symmetry cannot be exploited in programs where there is not total symmetry
within each component type, for example, in a token ring network.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

24 A. Miller et al.

The AQS is constructed incrementally, and the first state of an orbit encountered
during search is used as the representative for that orbit. State symmetries of a state s
are detected by partitioning processes within each module into equivalence classes. A
leader process is chosen from each equivalence class, and only transitions from s made
by one of the leader processes are explored. Reached states are stored in a hash table,
and a hashing function is used which always hashes equivalent states to the same
location, and desirably hashes inequivalent states to different locations. For a state s,
the hashing function returns Checksum(s) mod b, where b is the size of the hash
table. The checksum for a state is computed from the values of variables in that state.
Each time a state is to be stored at a position in the hash table, a check is made to see if
the state is equivalent to any other state in that position in the table. Two states with
differing checksums cannot be equivalent, so SMC performs the pretest of comparing
checksums before checking the equivalence of two states. In many cases, this quickly
shows the nonequivalence of states.

To check whether two states with equal checksums are equivalent, a polynomial time
bounded, randomized algorithm is used which runs in quadratic time. This algorithm
sometimes falsely reports that two equivalent states are not equivalent, which may
result in the construction of a larger-than-optimal AQS (but this is not unsafe).

SMC has been used to check the correctness of the link-layer part of the IEEE stan-
dard 1394 “Firewire” protocol [IEEE-1394 1995], and also a resource controller example.
The latter shows that exploiting state symmetry can speed up verification considerably
when the number of processes is high. Recent extensions of SMC [Sistla and Godefroid
2004; Sistla et al. 2004] enable partially symmetric systems with priorities to be verified
over a GQS, and the properties to be expressed in an extended form of CTL.

SymmSpin. Symmetric SPIN (SymmSpin) [Bosnacki et al. 2002] is a symmetry reduc-
tion package for the SPIN model checker [Holzmann 2003] (see Section 2.4.1). To allow
the process symmetry of a system to be specified, the scalarset data type [Ip and Dill
1996] is used. However, to avoid modifying the PROMELA parser, rather than directly
extending PROMELA language with the scalarset data type, all symmetry information is
provided (by the user) in a separate file. This is called the system description file and
identifies which variables have the scalarset type.

For a given Promela model, SPIN generates a verifier for it in the form of a C program
which is compiled and executed. SymmSpin modifies this program to add symmetry
reduction via a representative function, which for a given state computes an orbit rep-
resentative for that state. For a given orbit, the representative is the least element
with respect to a specified canonicalization function or one of the minimal elements
computed via a normalization function (see Section 4.5.6). During search, SymmSpin
stores the original states on the stack and representative states on the heap (see Section
2.3.2). This means that the counterexample traces generated by SymmSpin correspond
to real counterexample traces through the model, rather than representatives of a
counterexample trace.

Experiments using SymmSpin show that for certain models, the factor of reduction
gained is close to the theoretical limit [Bosnacki et al. 2002]. They also show that
the combination of symmetry and partial order reduction can be effective. A prototype
extension of SymmSpin for symmetry-reduced model checking under weak fairness
[Bosnacki 2003] has recently been developed. This is discussed in Section 4.6.2.

Other SPIN-Based Implementations. An extension to SPIN is proposed [Derepas and
Gastin 2001] to allow symmetry reduction of models of systems of replicated processes.
The specification language PROMELA is augmented with two additional keywords, ref
and public, which identify reference variables and local variables with public scope,
respectively. Unlike scalarsets, these variables may hold the addresses of other pro-
cesses for communication purposes or may represent process ids. Orbit representatives

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 25

are computed by a process called pseudosorting in which the parts of the state-vector
corresponding to individual processes are sorted lexicographically. As the original state-
vector ordering depends on the order in which variables are declared, the efficiency of
the sorting algorithm depends on the initial declaration ordering. Only fully symmetric
properties can be verified using this technique.

An on-the-fly state-space exploration algorithm exploiting both process and heap ob-
ject symmetry has been implemented in the dSPIN model checking tool [Iosif 2002] (see
Section 2.4.4). For dynamic systems modeled using dSPIN, the number of state compo-
nents may grow along an execution path. Therefore, rather than applying symmetry
reduction with respect to a fixed permutation group, a family of groups is considered. A
suitable group is selected at each execution step. Orbit representatives are calculated
using a similar set of heuristics to that used by SymmSpin.

The SymmExtractor tool [Donaldson and Miller 2005] can be used to detect struc-
tural symmetries arising from the communication structure of a PROMELA model (see
Section 4.3).

5.2. Symbolic Methods

SMV. As a symbolic model checker, SMV [McMillan 1993] does not lend itself to sym-
metry reduction of the state-space. This is because the symbolic representation of the
orbit relation as a BDD is prohibitively large (see Section 4.4). However, symmetry
reduction on the cases associated with a property to be proved for a system is achieved
via the use of scalarsets [McMillan 2000]. In order to exploit the abstraction techniques
available with SMV, a method called temporal case-splitting is used to break a given
property down into a parameterized set of assertions. This addresses state explosion,
but may result in an unwanted side-effect, namely, case explosion. Declaring variables
as scalarsets enables SMV to sort assertions into equivalence classes. Specifically, if we
have two assertions φ1 and φ2, where φ2 is obtained from φ1 by some permutation of
scalarset values, then φ1 holds if and only if φ2 holds. Thus for a given parameterized
set of assertions, it is only necessary to check a representative subset of assertions.
This representative subset is chosen in such a way that every assertion in the origi-
nal parameterized set can be mapped to a representative assertion via permutation of
scalarset values.

SYMM. One (purpose-built) symbolic model checker that exploits symmetry reduc-
tion methods for the verification of CTL specifications is SYMM [Clarke et al. 1998]. SYMM

uses a simple input language that is based on a shared variable model of computation,
and allows the user to give symmetries of the system to be verified.

To combat the orbit problem, symmetry reduction is implemented using the multiple
orbit representatives approach (see Section 4.5.1). SYMM has been used to verify the IEEE
Futurebus arbiter protocol [IEEE-896.1 1992], which controls a number of prioritized
components competing for a resource. Each individual process is described via a module.
Modules with the same priority can be permuted.

Other Symbolic Implementations. The RuleBase model checker [Beer et al. 1996] (see
Section 2.4.2) has been experimentally extended with symmetry reduction techniques
for under-approximation [Barner and Grumberg 2002]. Generators for a symmetry
group of the verified system are supplied by the user. The generators which are gen-
uine symmetries of the system, and under which the checked property is invariant,
are retained by the model checker for exploitation during search. Orbit representatives
are selected on-the-fly (see Section 4.5.4). Experimental results show that RuleBase
performs significantly better for checking liveness properties when symmetry reduc-
tion is applied. However, no improvement in performance has been shown for safety
properties.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

26 A. Miller et al.

An experimental model checking system, UTOOL [Emerson and Wahl 2005b], has
been developed for the investigation of techniques to combine symmetry reduction
with symbolic representation. This tool uses the input language of Murφ and per-
forms symbolic verification, exploiting symmetry wherever possible. UTOOL avoids
constructing the orbit relation through the use of generic representatives or dynamic
representative computation (see Sections 4.5.2 and 4.5.3, respectively). Though less
efficient, for the purposes of comparison, UTOOL also implements symmetry reduction
using precomputed multiple representatives (see Section 4.5.1).

5.3. Real-Time Methods

UPPAAL. The real-time model checking tool, UPPAAL, has been extended to exploit sym-
metry [Hendriks et al. 2003] by using scalarsets [Ip and Dill 1996]. As the main purpose
of UPPAAL is to perform reachability analysis, symmetry reduction using scalarsets is an
obvious choice—the original scalarset theory was developed in the context of reachabil-
ity analysis, rather than, for checking temporal logic properties. However, the sound-
ness of symmetry reduction does not follow directly, since the UPPAAL language is very
different from that of Murφ. Hence, soundness is proved separately for UPPAAL.

The implementation of symmetry reduction in UPPAAL involves the development of an
efficient algorithm for the computation of a canonical representative for a state. This is
particularly challenging because UPPAAL represents sets of clock valuations symbolically
using a difference-bounded matrix (DBM).

The scalarsets for a given model define a set of state swaps for the model. Each state
swap is an automorphism of the model, and the set of all state swaps can be used to
compute a canonical state representative. In order to simplify the computation of repre-
sentatives, two assumptions are made. The first is that an array indexed by scalarsets
does not contain elements of scalarset type. The second is that a timed automaton in a
UPPAAL model may only reset its clock to the value zero. This assumption ensures that
individual clocks can always be ordered using the order in which they were reset—this
is called the diagonal property and leads to a total ordering on states. Note that the
diagonal property is important, since for a given total ordering, minimization using the
state swaps of a general DBM is at least as hard as testing isomorphism for strongly
regular graphs [Hendriks et al. 2003].

A state is minimized using the state swaps defined by scalarsets in the model, together
with this total ordering. This minimized state is a canonical representative for the
original state.

Experimental results for Fischer’s mutual exclusion protocol, presented in some de-
tail, show that exponential savings can be gained by exploiting symmetry. Further
experiments for an audio/video protocol, and for a distributed agreement algorithm,
are also encouraging. Since symmetry reduction in UPPAAL makes use of scalarsets,
only total symmetries can be exploited.

RED. Another (symbolic) real-time model checker to support symmetry reduction
is RED [Wang and Schmidt 2002]. The symmetry reduction algorithm uses relations
between pointers to define an ordering among processes. This ordering is then used
to compute a representative by sorting the associated orbits. Every permutation is
constructed via the successive composition of transpositions. This can lead to an over-
approximation of the reachable state-space (the “anomaly of image false reachability”).
For this reason, using RED with symmetry reduction is only useful for checking that a
state is not reachable. The performance of RED (with symmetry reduction) is compared
to that of Murφ [Dill et al. 1992] (with symmetry reduction) and SMC [Sistla et al.
2000] for three benchmark systems [Wang and Schmidt 2002]. Since it manages to

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 27

successfully combine symbolic techniques with symmetry reduction, as the number of
processes increases, RED dramatically outperforms the other model checkers.

5.4. Direct Model Checking

Bogor. A symmetry reduction technique has been developed for the Bogor model check-
ing framework [Robby et al. 2003], which is used to model check Java programs (see
Section 2.4.4). The symmetry reduction methods used in Bogor [Robby et al. 2003] are
based on those implemented in dSPIN [Iosif 2002] (see Section 5.1), but use more efficient
heuristics [Iosif 2004] for state-vector sorting.

States contain both thread and heap information. These different parts of the state
(the thread and the heap state) are sorted separately. Threads are sorted by comparing
associated program counters. This does not always produce a unique ordering. How-
ever, heap states can be sorted in a canonical way. For every heap state s, there is an
associated set of memory locations, l1,s, l2,s, . . . , lr,s, say. It is possible to sort the indices
of the memory locations (for a given s) by ordering the traces associated with each pair
(s, li,s), 1 ≤ i ≤ r. The trace for pair (s, li,s) is the smallest of all the incoming chains
(pairs of thread identifiers and variable sequences) that can themselves be ordered
in a natural way. The sorting of the location indices produces a strictly ordered list
of integers. If G is a symmetry group acting on the heap elements, then the ordered
list associated with state s is identical to the corresponding list for any s′ in the same
orbit of G as s. Thus, the index sorting function is a canonicalization function (see
Section 4.5.6).

VeriSoft. The VeriSoft model checker [Godefroid 1997] verifies C-code directly via
a stateless search (see Section 2.4.4). As such, the symmetry reduction methods im-
plemented in VeriSoft [Godefroid 1999] rely on equivalences between sequences of
transitions, rather than between states. If M is a transition system and MG a quo-
tient transition system of M with respect to the equivalence of transition sequences,
then M and MG are bisimilar and satisfy the same (symmetric) temporal logic
formulas.

In order for equivalent transitions to be identified, labels are added to transitions so
that the model is represented by a labeled transition system. Two transitions are equiv-
alent with respect to a given symmetry group G if their respective labels are equivalent
with respect to G. This concept can be easily extended to sequences of transitions. Sym-
metry reduction is used to prune transitions on-the-fly. If, for some α ∈ G, transitions
t and α(t) are enabled and α fixes s, then only one of t or α(t) need be explored. Given
that s is not stored explicitly, it is not straightforward to check that α fixes s. However,
assuming that α fixes the initial state s0, if w is the sequence of transitions leading from
s0 to s, then it can be shown that α(s) = s if and only if w and α(w) are equivalent with
respect to a partial ordering of transitions. Thus, by combining symmetry reduction
with partial order reduction techniques (see Section 4.6.1), the problem of checking
that α(s) = s is overcome.

Other Direct Model Checking Implementations. A limited form of symmetry reduction
is applied [Lerda and Visser 2001] within the second, generation Java PathFinder tool
(JPF2) [Visser et al. 2000] (see Section 2.4.4), which model checks Java bytecode directly.
Like dSPIN, JPF2 is capable of handling dynamic structures (although unlike dSPIN,
data is not allocated dynamically). States are composed of a static area, dynamic area,
and thread area, each of which is represented as an array. Two states are considered
to be equivalent if a permutation applied to the static and dynamic area arrays of the
first state gives the corresponding arrays of the second. A canonicalization function
(see Section 4.5.6) is used, which imposes a simple ordering (calculated during model
checking) on the static and dynamic areas of the states.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

28 A. Miller et al.

6. CONCLUSION

Model checking algorithms rely upon the construction of a model representing all
system states. One of the major problems associated with model checking is state-
space explosion. The main approaches to overcoming state-space explosion involve a
reduction in either state representation size (e.g., symbolic representations) or the
number of states or paths explored (e.g., on-the-fly methods, partial order reduction
and symmetry reduction). Symmetry reduction involves avoiding areas of the state-
space which are symmetrically equivalent to those already visited. In this article we
have given an overview of symmetry reduction, and how it relates to other reduction
approaches.

The identification of symmetries involves finding symmetries of a model without
building the model explicitly. Purpose-built data types, such as scalarsets and circu-
larsets, allow permutations to be identified that correspond to automorphisms. How-
ever, they can only be used for systems where subsets of processes behave identically,
whereas many computer science applications naturally involve partial symmetries, in
which individual processes are distinguished in some way. Recent results extend to
partial symmetries, as well as to the automatic extraction of symmetry from source
programs, in certain cases.

The crux of exploiting symmetry is the orbit problem—it must be either solved effi-
ciently or avoided altogether. This makes symmetry reduction ineffective, in general,
for symbolic model checking. As a result, its implementation within the most widely
used symbolic model checker, SMV, is very limited. However, the use of multiple rep-
resentatives, generic representatives, or dynamic representative computation makes
the combination of symmetry reduction and symbolic techniques theoretically possible.
Symmetry is amenable to combination with partial order reduction and also to fairness
when using automata-theoretic approaches.

Most implementations of symmetry reduction using scalarsets are within main-
stream on-the-fly checkers such as Murφ and SPIN, though scalarsets have also been
added to the real-time model checking tool UPPAAL. Other techniques have been devel-
oped to implement symmetry within the specialist symbolic model checker RED and
within model checkers that are used to verify C or Java code directly (e.g., VeriSoft,
Bogor, and Java PathFinder (JPF2)).

Open problems remain, including the development of improved techniques to deal
with partial symmetries [Emerson 2000], identification of (full or partial) symmetries
from Java and C source programs, and the identification and exploitation of symmetry
in probabilistic model checking.

REFERENCES

AJAMI, K., HADDAD, S., AND ILIE, J. 1998. Exploiting symmetry in linear time temporal logic model check-
ing: One step beyond. In Proceedings of the 4th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS ’98), B. Steffen, Ed. Lisbon, Portugal. Lecture Notes in
Computer Science, vol. 1384. Springer-Verlag, 52–67.

ALUR, R., COURCOUBETIS, G., AND DILL, D. 1990. Model-Checking for real-time systems. In Proceedings of the
5th Annual IEEE Symposium on Logic in Computer Science. Philadelphia, PA. IEEE Computer Society
Press, 414–425.

ALUR, R. AND DILL, D. 1993. A theory of timed automata. Inf. Comput. 194, 2–34.
ALUR, R. AND HENZINGER, T. 1992. Logics and models of real time: A survey. In Proceedings of the REX Work-

shop on Real-Time: Theory and Practice. Mook, the Netherlands. Lecture Notes in Computer Science,
vol. 600. Springer-Verlag, 74–106.

ALUR, R. AND KURSHAN, R. 1995. Timing analysis in COSPAN. In Proceedings of the 3rd DIMACS/SYCON
Workshop on Hybrid Systems: Verification and Control, R. Alur et al., Eds. Lecture Notes in Computer
Science, vol. 1066. New Brunswick, NJ. Springer-Verlag, 220–231.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 29

BALL, T., COOK, B., LEVIN, V., AND RAJAMANI, K. 2004. SLAM and static driver verifier: Technology transfer
of formal methods inside Microsoft. In Proceedings of the 4th International Conference on Integrated
Formal Methods (IFM 2004), E. Boiten et al. Eds. Canterbury, UK. Lecture Notes in Computer Science,
vol. 2999. Springer-Verlag, 1–20.

BALL, T. AND RAJAMANI, S., EDS. 2003. Model Checking Software: Proceedings of the 10th International SPIN
Workshop (SPIN 2003). Portland, OR. Lecture Notes in Computer Science, vol. 2648. Springer-Verlag.

BARNER, S. AND GRUMBERG, O. 2002. Combining symmetry reduction and under-approximation for symbolic
model checking. In Proceedings of the 14th International Conference on Computer Aided Verification (CAV
2002). Copenhagen, Denmark. Lecture Notes in Computer Science, vol. 2404. Springer-Verlag, 93–106.

BARRETT, G. 1995. Model checking in practice: The t9000 virtual channel processor. IEEE Trans. Softw.
Eng. 21, 2, 69–78.

BEER, I., BEN-DAVID, S., EISNER, C., AND LANDVER, A. 1996. Rulebase: An industry-oriented formal verification
tool. In Proceedings of the 33rd Conference on Design Automation (DAC ’96). Las Vegas, NV. ACM Press,
655–660.

BEN-DAVID, S. AND HEYMAN, T. 2000. Scalable distributed on-the-fly symbolic model checking. In Proceedings
of the 3rd International Conference on Formal Methods in Computer-Aided Design (FMCAD 2000), W. A.
Hunt Jr. and S. D. Johnson, Eds. Austin, TX. Lecture Notes in Computer Science, vol. 1954. Springer-
Verlag, 390–404.

BEST, B. AND GRAHLMANN, B. 1996. PEP—More than a Petri net tool. In Proceedings of the 2nd International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS ’96), T. Margaria
and B. Steffen, Eds. Passau, Germany. Lecture Notes in Computer Science, vol. 1055. Springer-Verlag,
397–401.

BEST, B. AND KOUTNY, M. 1995. A refined view of the box calculus. In Proceedings of the 16th International
Conference on the Application and Theory of Petri Nets (ATPN ’95), G. De Michelis and M. Diaz, Eds.
Turin, Italy. Lecture Notes in Computer Science, vol. 935. Springer-Verlag, 103–118.

BHAT, G., CLEAVELAND, R., AND GRUMBERG, O. 1995. Efficient on-the-fly model checking for CTL∗. In Proceed-
ings of the 10th Annual IEEE Symposium on Logic in Computer Science. San Diego, CA. IEEE Computer
Society Press, 388–397.

BOLLIG, B. AND WEGENER, I. 1996. Improving the variable ordering of OBDDs is NP-complete. IEEE Trans.
Comput. 45, 9, 993–1002.

BOLOGNESI, T. AND BRINKSMA, E. 1987. Introduction to the ISO specificaiton language LOTOS. Comput.
Netw. ISDN Syst. 14, 1, 25–59.

BOSNACKI, D. 2002. A nested depth-first search algorithm for model checking with symmetry reduction. In
Proceedings of the 22nd International Conference on Formal Technigues for Networked and Distributed
System (FORTE 2002). Houston, TX. Lecture Notes in Computer Science, vol. 2529. Springer-Verlag,
40–56.

BOSNACKI, D. 2003. A light-weight algorithm for model checking with symmetry reduction and weak fair-
ness. In Model Checking Software: Proceedings of the 10th International SPIN Workshop (SPIN 2003).
T. Ball and S. Rajamani, Eds. Portland, OR. Lecture Notes in Computer Science, vol. 2648. Springer-
Verlag, 89–103.

BOSNACKI, D., DAMS, D., AND HOLENDERSKI, L. 2000. Symmetric Spin. In Proceedings of the 7th SPIN Work-
shop (SPIN 2000), K. Havelund et al., Eds. Stanford, CA. Lecture Notes in Computer Science, vol. 1885.
Springer-Verlag, 1–19.

BOSNACKI, D., DAMS, D., AND HOLENDERSKI, L. 2001. A heuristic for symmetry reductions with scalarsets.
In Proceedings of the International Symposium of Formal Methods Europe (FME 2001), J. N. Oliveira
and Z. Pamela, Eds. Berlin, Germany. Lecture Notes in Computer Science, vol. 2021. Springer-Verlag,
518–533.

BOSNACKI, D., DAMS, D., AND HOLENDERSKI, L. 2002. Symmetric Spin. Int. J. Soft. Tools Technol. Transfer 4, 1,
65–80.

BRINKSMA, E. AND LARSEN, K., EDS. 2002. In Proceedings of the 14th International Conference on Computer
Aided Verification (CAV 2002). Copenhagen, Denmark. Lecture Notes in Computer Science, vol. 2404.
Springer-Verlag.

BRYANT, R. 1992. Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput.
Surv. 24, 3, 293–318.

BURCH, J., CLARKE, E., MCMILLAN, K., DILL, D., AND HWANG, L. 1992. Symbolic model checking: 1020 states
and beyond. Inf. Comput. 98, 2, 142–170.

CALDER, M. AND MILLER, A. 2001. Using SPIN for feature interaction analysis—A case study. In Proceedings
of the 8th International SPIN Workshop (SPIN 2001), M. Dwyer, Ed. Toronto, Canada. Lecture Notes in
Computer Science, vol. 2057. Springer-Verlag, 143–162.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

30 A. Miller et al.

CALDER, M. AND MILLER, A. 2003. Generalizing feature interactions in email. In Feature Interactions in
Telecommunications and Software Systems VII, D. Amyot and L. Logrippo, Eds. IOS Press, Ottawa,
Canada, 187–205.

CATTEL, T. 1994. Modeling and verification of a multiprocessor real-time OS kernel. In Proceedings of the
7th WG6.1 International Conference on Formal Description Technigues (FORTE ’94), D. Hogrefe and S.
Leue. Eds. Berne, Switzerland. International Federation for Information Processing, vol. 6. Chapman
and Hall, London, UK, 55–70.

CHOUEKA, Y. 1974. Theories of automata on ω-tapes: A simplified approach. J. Comput. Sys. Sci. 8, 117–141.
CIMATTI, A., CLARKE, E., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M., ROVERI, M., SEBASTIANI, R., AND

TACCHELLA, A. 2002. NuSMV2: A new OpenSource tool for symbolic model checking. In Proceedings
of the 14th International Conference on Computer-Aided Verification (CAV 2002), E. Brinksma and K.
Larsen, Eds. Copenhagen, Denmark. Lecture Notes in Computer Science, vol. 2404. Springer-Verlag,
359–364.

CIMATTI, A., CLARKE, E., GIUNCHIGLIA, F., AND ROVERI, M. 1999. NuSMV: A new symbolic model verifier. In
Proceedings of the 11th International Conference on Computer-Aided Verification (CAV ’99), N. Halbwachs
and D. Peled, Eds. Trento, Italy. Lecture Notes in Computer Science, vol. 1633. Springer-Verlag, 495–499.

CIMATTI, A., GIUNCHIGLIA, F., MINGARDI, G., ROMANO, D., TORIELLI, F., AND TRAVERSO, P. 1997. Model checking
safety critical software with SPIN: An application to a railway interlocking system. In Proceedings of
the 3rd SPIN Workshop (SPIN ’97), R. Langerak, Ed. Twente University, The Netherlands, 5–17.

CLARKE, E., EMERSON, E., JHA, S., AND SISTLA, A. 1998. Symmetry reductions in model-checking. In Proceed-
ings of the 10th International Conference on Computer Aided Verification (CAV ’98), A. Hu and M. Vardi,
Eds. Vancouver, BC, 147–158.

CLARKE, E., EMERSON, E., AND SISTLA, A. 1986. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 2, 244–263.

CLARKE, E., ENDERS, R., FILKHORN, T., AND JHA, S. 1996. Exploiting symmetry in temporal logic model check-
ing. Formal Methods Syst. Desi. 9, 1–2, 77–104.

CLARKE, E., GRUMBERG, O., AND LONG, D. 1994. Model checking and abstraction. ACM Trans. Program. Lang.
Syst. 16, 5, 1512–1542.

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press, Cambridge, MA.
CLARKE, E. AND WING, J. M. 1996. Formal methods: State-of-the-art and future directions. ACM Comput.

Surv. 28, 4, 626–643. Report by the Working Group on Formal Methods for the ACM Workshop on
Strategic Directions in Computing Research.

CLAYBERG, E. AND RUBEL, D. 2004. Eclipse: Building Commercial-Quality Plug-Ins. Addison Wesley,
Reading, MA.

CORBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S., PĂSRĂEANU, C., ROBBY, AND ZHENG, H. 2000. Bandera: Ex-
tracting finite-state models from Java source code. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE 2000). Limerick, Ireland. ACM Press, New York, 439–448.

COURCOUBETIS, C., VARDI, M., WOLPER, P., AND YANNAKAKIS, M. 1992. Memory-Efficient algorithms for
the verification of temporal properties. Formal Methods in Syst. Des. 1, 275–288. Also appeared in
Proceedings of the 2nd International Workshop on Computer-Aided Verification (CAV ’90), 207–218.

DAMS, D., GERTH, R., LEUE, S., AND MASSINK, M. EDS. 1999. In Proceedings of the 5th and 6th International
SPIN Workshops. Trento, Italy and Toulouse, France. Lecture Notes in Computer Science, vol. 1680.
Springer-Verlag.

DANJANI-BROWN, S., COFER, D., HARTMANN, G., AND PRATT, S. 2003. Formal modeling and analysis of an
avionics triplex sensor voter. In Model Checking Software: Proceedings of the 10th International SPIN
Workshop (SPIN 2003), T. Ball and S. Rajamani, eds, Portland, OR. Lecture Notes in Computer Science,
vol. 2648. Springer-Verlag. 34–48.

DARGA, P., LIFFITON, M., SAKALLAH, K., AND MARKOV, I. 2004. Exploiting structure in symmetry detection for
CNF. In Proceedings of the 41st Annual Conference on Design Automation. San Diego. CA. ACM Press,
New York, 530–534.

DE BAKKER, J. W., HUIZING, C., DE ROEVER, W., AND ROZENBERG, G., EDS. 1992. In Proceedings of the REX
Workshop on Real-Time: Theory and Practice. Mook, the Netherlands. Lecture Notes in Computer
Science, vol. 600. Springer-Verlag,

DEMARTINI, C., IOSIF, R., AND SISTO, R. 1999. A deadlock detection tool for concurrent Java programs. Softw.
Pract. Exper. 29, 7, 577–603.

DEREPAS, F. AND GASTIN, P. 2001. Model checking systems of replicated processes with Spin. In Proceedings
of the 8th International SPIN Workshop (SPIN 2001), M. Dwyer, Ed. Toronto, Canada. Lecture Notes in
Computer Science, vol. 2057. Springer-Verlag, 235–251.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 31

DIJKSTRA, E. 1976. A Discipline of Programming. Prentice-Hall Series in Automatic Computation.
Prentice-Hall, Englewood Cliffs, NJ.

DILL, D. 1996. The Murφ verification system. In Proceedings of the 8th International Conference on
Computer Aided Verification (CAV ’96), R. Alur and T. Henzinger, Eds. New Brunswick, NJ. Lecture
Notes in Computer Science, vol. 1102. Springer-Verlag, 390–393.

DILL, D., DREXLER, A., HU, A., AND YANG, C. H. 1992. Protocol verification as a hardware design aid. In
Proceedings of the 1992 IEEE International Conference on Computer Design: VLSI in Computer and
Processors (ICCD’92), Cambridge, MA, IEEE Computer Society, 522–525.

DONALDSON, A. AND MILLER, A. 2005. Automatic symmetry detection for model checking using computa-
tional group theory. In Proceedings of the 13th International Symposium on Formal Methods (FM 2005),
J. Fitzgerald et al., Eds. Newcastle, UK. Lecture Notes in Computer Science, vol. 3582. Springer-Verlag,
481–496.

DONALDSON, A., MILLER, A., AND CALDER, M. 2005a. Finding symmetry in models of concurrent systems by
static channel diagram analysis. Electron. Notes Theoretical Comput. Sci. 128, 6, 161–177.

DONALDSON, A., MILLER, A., AND CALDER, M. 2005b. SPIN-to-GRAPE: A tool for analysing symmetry in
Promela models. Electron. Notes Theoretical Comput. Sci. 139, 1, 3–23.

DWYER, M., ED. 2001. In Proceedings of the 8th International SPIN Workshop (SPIN 2001). Toronto,
Canada. Lecture Notes in Computer Science, vol. 2057. Springer-Verlag.

EMERSON, E. 1992. Real time and the μ-calculus. In Proceedings of the REX Workshop on Real-Time:
Theory and Practice, I. W. de Bakker et al., Eds. Mook, the Netherlands. Lecture Notes in Computer
Science, vol. 600. Springer-Verlag, 176–194.

EMERSON, E. 2000. Model checking: Theory into practice. In Proceedings of the 20th International Confer-
ence on Foundations of Software Technology and Theoretical Computer Science, S. Kapoor and S. Prasad,
Eds. New Delhi, India. Lecture Notes in Computer Science, vol. 1974. Springer-Verlag, 1–10.

EMERSON, E., HAVLICEK, J., AND TREFLER, R. 2000. Virtual symmetry reduction. In Proceedings of the 15th
Annual IEEE Symposium on Logic in Computer Science. Santa Barbara, CA. IEEE Computer Society
Press, 121–131.

EMERSON, E., JHA, S., AND PELED, D. 1997. Combining partial order and symmetry reductions. In Pro-
ceedings of the 3rd International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS ’97), E. Brinksma, Ed. Enschede, the Netherlands. Lecture Notes in Computer
Science, vol. 1217. Springer-Verlag, 19–34.

EMERSON, E. AND LEI, C. 1987. Modalities for model checking: Branching time logic strikes back. Sci.
Comput. Program. 8, 3, 275–306.

EMERSON, E. AND SISTLA, A. 1996. Symmetry and model checking. Formal Methods Syst. Des. 9, 1–2,
105–131.

EMERSON, E. AND SISTLA, A. 1997. Utilizing symmetry when model-checking under fairness assumptions:
An automata-theoretic approach. ACM Trans. Program. Lang. Syst. 19, 4, 617–638.

EMERSON, E. AND TREFLER, R. 1999. From asymmetry to full symmetry: New techniques for symmetry
reduction in model checking. In Proceedings of the 10th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods (CHARME ’99), L. Pierre and T. Kropf,
Eds. Bad Herrenalp, Germany. Lecture Notes in Computer Science, vol. 1703. Springer-Verlag, 142–156.

EMERSON, E. AND WAHL, T. 2003. On combining symmetry reduction and symbolic representation for effi-
cient model checking. In Proceedings of the 12th IFIP WG 10.5 Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME 2003), D. Geist and E. Tronci, Eds.
L’Aquila, Italy. Lecture Notes in Computer Science, vol. 2860. Springer-Verlag, 216–230.

EMERSON, E. AND WAHL, T. 2005a. Dynamic symmetry reduction. In Proceedings of the 11th International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS 2005). Held as part
of the Joint European Conference on Theory and Practice of Software (ETAPS 2005), N. Halbwachs and
L. Zuck, Eds. Edinburgh, UK. Lecture Notes in Computer Science, vol. 3440. Springer-Verlag, 382–396.

EMERSON, E. AND WAHL, T. 2005b. Efficient reduction techniques for systems with many components.
Electron. Notes Theoretical Comput. Sci. 130, 379–399.

GAP GROUP. 1999. GAP—Groups Algorithms and Programming, Version 4.2. Aachen, St. Andrews.
http://www-gap.dcs.st-and.ac.uk/˜gap.

GARAVEL, H. AND SIFAKIS, J. 1990. Compilation and verification of LOTOS specifications. In Proceedings
of the IFIP WG6.1 10th International Symposium on Protocol Specification, Testing and Verification
(PSTV ’90), L. Logrippo et al., Eds. Ottawa, Canada. 379–394.

GIRAULT, C. AND VALK, R., EDS. 2003. Petri Nets for Systems Engineering: A Guide to Modeling, Verification,
and Applications. Springer-Verlag, New York.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

32 A. Miller et al.

GODEFROID, P. 1996a. On the costs and benefits of using partial-order methods for the verification of
concurrent systems. In Proceedings of the DIMACS Workshop on Partial-Order Methods, in Verification
(POMIV ’96), D. Peled et al., Eds. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 29. American Mathematical Society, Boston, MA. 289–303.

GODEFROID, P. 1996b. Partial Order Methods for the Verification of Concurrent Systems. Lecture Notes in
Computer Science, vol. 1032. Springer-Verlag, Berlin.

GODEFROID, P. 1997. Model checking for programming languages using VeriSoft. In Proceedings of the
24th Symposium on Principles of Programming Languages (POPL ’97). Paris, France. ACM Press, New
York, 174–186.

GODEFROID, P. 1999. Exploiting symmetry when model-checking software (extended abstract). In Proceed-
ings of the Joint International Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols and Protocol Specification, Testing and Verification (FORTE/PSTV ’99),
J. Wu et al., Eds. Beijing, China. International Federation for Information Processing, vol. 156. Kluwer,
257–275.

GREGOIRE, J.-C., HOLZMANN, G., AND PELED, D., EDS. 1996. Proceedings of the 2nd Workshop on the SPIN
Verification System. Rutgers University, NJ. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 32. American Mathematical Society, Boston, MA.

GYURIS, V. AND SISTLA, A. 1999. On-the-fly model checking under fairness that exploits symmetry. Formal
Methods. Syst. Des. 15, 3, 217–238.

HADDAD, S., ILIE, J., AND AJAMI, K. 2000. A model checking method for partially symmetric systems. In
Proceedings of the 20th IFIP International Conference on Formal Description Techniques/Protocol
Specification, Testing, and Verification (FORTE/PSTV 2000). Pisa, Italy. International Federation For
Information Processing. Kluwer, 121–136.

HAVELUND, K. AND PRESSBURGER, T. 2000. Model checking JAVA programs using JAVA PathFinder. Inte. J.
Softw. Tools Technol. Transfer 2, 4, 366–381.

HENDRIKS, M., BEHRMANN, G., LARSEN, K., NIEBERT, P., AND VAANDRAGER, F. 2003. Adding symmetry reduction
to UPPAAL. In Proceedings of the 1st International Workshop on Formal Modeling and Analysis of
Timed Systems (FORMATS 2003), K. Larson and P. Niebert, Eds. Merseille, France. Lecture Notes in
Computer Science, vol. 2791. Springer-Verlag, 46–59.

HENZINGER, T., HO, P., AND WONG-TOI, H. 1997. HyTech: A model checker for hybrid systems. Int. J. Softw.
Tools Technol. Transfer 1, 1/2 (December), 110–122.

HENZINGER, T., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2003. Software verification with BLAST. In Model
Checking Software: Proceedings of the 10th International SPIN Workshop (SPIN 2003), T. Ball and S.
Rajamani, Eds. Portland, OR. Lecture Notes in Computer Science, vol. 2648. Springer-Verlag. 235–
239.

HILLSTON, J. 1996. A Compositional Approach to Performance Modeling. Distinguished Dissertations in
Computer Science. Cambridge University Press, Cambridge, UK.

HOFFMAN, C. 1982. Group Theoretic Algorithms and Graph Isomorphism. Lecture Notes in Computer
Science, vol. 136. Springer-Verlag, Berlin.

HOGREFE, D. AND LEUE, S., EDS. 1994. In Proceedings of the 7th WG6.1 International Conference on Formal
Description Techniques (FORTE ’94). Berne, Switzerland. International Federation for Information
Processing, vol. 6. Chapman and Hall, London, UK.

HOLZMANN, G. 1998. An analysis of bitstate hashing. Formal Methods Syst. Des. 13, 3, 289–307.
HOLZMANN, G. 1999. The engineering of a model checker: The Gnu i-protocol case study revisited. In

Proceedings of the 5th and 6th International SPIN Workshops. D. Dams et al., Eds. Trento, Italy and
Toulouse, France. Lecture Notes in Computer Science, vol. 1680. Springer-Verlag. 232–244.

HOLZMANN, G. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison Wesley, Boston,
MA.

HOLZMANN, G. AND JOSHI, R. 2004. Model-Driven software verification. In Proceedings of the 11th Interna-
tional SPIN Workshop (SPIN 2004), S. Graf and L. Mounier, Eds. Barcelona, Spain. Lecture Notes in
Computer Science, vol. 2989. Springer-Verlag, 76–91.

HOLZMANN, G. AND PELED, D. 1994. An improvement in formal verification. In Proceedings of the 7th WG6.1
International Conference on Formal Description Techniques (FORTE ’94), D. Hogrefe and S. Leue, Eds.
Berne, Switzerland. International Federation for Information Processing, vol. 6. Chapman and Hall,
London, UK. 197–211.

HOLZMANN, G., PELED, D., AND YANNAKAKIS, M. 1996. On nested depth first search. In Proceedings of the 2nd
Workshop on the SPIN Verification System, J.-C. Gregoire et al., Eds. Rutgers University, NJ. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 32. American Mathematical
Society, Boston, MA. 23–32.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 33

HOLZMANN, G. AND SMITH, M. 1999a. A practical method for the verification of event-driven software. In
Proceedings of the 21st International Conference on Software engineering (ICSE ’99). Los Angeles, CA.
ACM Press, New York, 597–607.

HOLZMANN, G. AND SMITH, M. 1999b. Software model checking—Extracting verification models from
source code. In Proceedings of the Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols and Protocol Specification, Testing and Verification
(FORTE/PSTV ’99), J. Wu et al., Eds. Beijing, China. International Federation for Information
Processing, vol. 156. Kluwer, 481–497.

HU, A. AND VARDI, M., EDS. 1998. Proceedings of the 10th International Conference on Computer-Aided
Verification (CAV ’98). Vancouver, BC. Lecture Notes in Computer Science, vol. 1427. Springer-Verlag.

HUBER, P., JENSON, A., JEPSON, L., AND JENSON, K. 1984. Towards reachability trees for high-level Petri nets.
In Proceedings of the European Workshop on Applications and Theory in Petri Nets. G. Rozenberg et al.,
Eds. Aarhus, Denmark. Lecture Notes in Computer Science, vol. 188. Springer-Verlag, 215–233.

IEEE-1394. 1995. IEEE Standard for a High Performance Serial Bus Std 1394–1995. Institute of
Electrical and Electronic Engineers.

IEEE-896.1. 1992. IEEE Standard for Futurebus+—Logical Protocol Specification Std 896.1-1991.
Institute of Electrical and Electronic Engineers.

IOSIF, R. 2002. Symmetry reduction criteria for software model checking. In Proceedings of the 9th
International SPIN Workshop (SPIN 2002), D. Bosnacki and S. Leue, Eds. Grenoble, France. Lecture
Notes in Computer Science, vol. 2318. Springer-Verlag, 22–41.

IOSIF, R. 2004. Symmetry reductions for model checking of concurrent dynamic software. Int. J. Softw.
Tools Technol. Transfer 6, 4, 302–319.

IOSIF, R. AND SISTO, R. 1999. dSPIN: A dynamic extension of SPIN. In Proceedings of the 5th and 6th
International SPIN Workshops. D. Dams et al., Eds. Trento, Italy and Toulouse, France. Lecture Notes
in Computer Science, vol. 1680. Springer-Verlag. 20–33.

IP, C. AND DILL, D. 1996. Better verification through symmetry. Formal Methods in Syst. Des. 9, 41–75.
IP, C. N. 1996. State reduction methods for automatic formal verification. Ph.D. thesis, Department of

Computer Science, Stanford University.
IP, C. N. AND DILL, D. L. 1993. Better verification through symmetry. Comput. Hardw. Description Lang.

Appl. A-32, 97–111.
JACKSON, D., JHA, S., AND DAMON, C. 1998. Isomorph-Free model enumeration: A new method for checking

relational specifications. ACM Trans. Program. Lang. Syst. 20, 2, 302–343.
JHA, S. 1996. Symmetry and induction in model checking. Ph.D. thesis, School of Computer Science,

Carnegie Mellon University.
JUNTILLA, T. 2004. New orbit algorithms for data symmetries. In Proceedings of the 4th International

Conference on Application of Concurrency to System Design (ACSD 2004). Ontario, Canada. IEEE
Computer Society, 175–184.

KUMAR, S. AND LI, K. 2002. Using model checking to debug device firmware. In Proceedings of the 5th
Symposium on Operating System Design and Implementation (OSDI 2002). USENIX, Boston, MA.

KURSHAN, R. 1995. Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic
Approach. Princeton Series in Computer Science. Princeton University Press, Princeton, NJ.

KWIATKOWSKA, M., NORMAN, G., AND PARKER, D. 2002. Probabilistic symbolic model checking with PRISM. In
Proceedings of the 8th International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2002). Held as part of the Joint European Conference on Theory and Practice of
Software (ETAPS 2002), J. Katoen and P. Stevens, Eds. Grenoble, France. Lecture Notes in Computer
Science, vol. 2280. Springer-Verlag, 52–66.

LARSON, K., PETTERSSON, P., AND YI, W. 1995. Model-checking for real-time systems. In Proceedings of the
10th International Symposium on the Fundamentals of Computation Theory (FCT ’95), H. Reichel Ed.
Dresden, Germany. Lecture Notes in Computer Science, vol. 965. Springer-Verlag, 62–88.

LARSON, K., PETTERSSON, P., AND YI, W. 1997. UPPAAL in a nutshell. Int. J. Softw. Tools. Technol.
Transfer 1, 1/2, 134–152.

LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WEBER, W.-D., GUPTA, A., HENNESSEY, J., HOROWITZ, M., AND LAM, M.
1992. The directory-based cache coherence protocol for the DASH multiprocessor. IEEE Comput. 25, 3,
63–79.

LÉONARD, L. AND LEDUC, G. 1997. An introduction to ET-LOTOS for the description of time-sensitive
systems. Comput. Netw. ISDN Syst. 29, 3, 271–292.

LÉONARD, L. AND LEDUC, G. 1998. A formal definition of time in LOTOS. Formal Aspects Comput. 10, 3,
248–266.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

34 A. Miller et al.

LERDA, F. AND VISSER, W. 2001. Addressing dynamic issues of program model checking. In Proceedings of
the 8th International SPIN Workshop (SPIN 2001), M. Dwyer, Ed. Toronto, Canada. Lecture Notes in
Computer Science, vol. 2057. Springer-Verlag, 80–102.

LICHTENSTEIN, O. AND PNUELI, A. 1985. Checking that finite state concurrent programs satisfy their linear
specification. In Conference Record of the 12th Annual ACM Symposium on Principles of Programming
Languages (POPL ’85). New Orleans, LA. ACM Press, New York, 97–107.

LUKS, E. 1991. Permutation groups and polynomial-time computation. In Groups and Computation,
L. Finkelstein and W. Kantor, Eds. DIMACS series in Discrete Mathematics and Theoretical Computer
Science, vol. 11. American Mathematical Society, Boston, MA, 139–176.

MANKU, G., HOJATI, R., AND BRAYTON, R. 1998. Structural symmetry and model checking. In Proceedings
of the 10th International Conference on Computer-Aided Verification (CAV ’2002), A. Hu and M. Vardi,
Eds. Vancovver, BC. Lecture Notes in Computer Science, vol. 1427. Springer-Verlag, 159–171.

MATEESCU, R. 2003. On-the-Fly verification using CADP. In Proceedings of the 8th International Workshop
on Formal Methods for Industrial Critical Systems (FMICS 2003), T. Arts and W. Fokkink, Eds.
Trondheim, Norway. Electronic Notes in Theoretical Computer Science, vol. 80. Elsevier, 1–5.

MATEESCU, R. AND GARAVEL, H. 1998. XTL: A metalanguage and tool for temporal logic model-checking.
In Proceedings of the International Workshop on Software Tools for Technology Transfer (STTT ’98),
T. Margaria and B. Steffen, Eds. Aalborg, Denmark.

MCKAY, B. D. 1981. Practical graph isomorphism. Congressus Numerantium 30, 45–87.
MCMILLAN, K. 1993. Symbolic Model Checking. Kluwer Academic, Hingham, MA.
MCMILLAN, K. 2000. A methodology for hardware verification using compositional model checking. Sci.

Comput. Program. 37, 1–3, 279–309.
MCMILLAN, K. L. AND SCHWALBE, J. 1992. Formal specification of the Gigamax cache consistency protocols.

In Proceedings of the 1991 International Symposium on Shared Memory Multiprocessors, N. Suzuki,
Ed. Tokyo. Information Processing Society of Japan. MIT Press, 242–251.

MERZ, S. 2000. Model checking: A tutorial overview. In Modeling and Verification of Parallel Processes,
4th Summer School (MOVEP 2000), F. Cassez et al., Eds. Nantes, France. Lecture Notes in Computer
Science, vol. 2067. Springer-Verlag, 3–38.

MITCHELL, J., MITCHELL, M., AND STERN, U. 1997. Automated analysis of cryptographic protocols using
Murφ. In Proceedings of the IEEE Symposium on Security and Privacy. Oakland, CA. IEEE Computer
Society, 141–151.

MÜLLER-OLM, M., SCHMIDT, D., AND STEFFEN, B. 1999. Model-Checking: A tutorial introduction. In Proceed-
ings of the 6th International Static Analysis Symposium (SAS ’99), A. Cortesi and G. File, Eds. Venice,
Italy. Lecture Notes in Computer Science, vol. 1694. Springer-Verlag, 330–354.

NALUMASU, R. AND GOPALAKRISHNAN, G. 1995. Explicit-Enumeration-Based verification made memory-
efficient. In Proceedings of the 12th IFIP International Conference on Computer Hardware Description
Languages and Their Applications (CHDL ’95), S. D. Johnston, Ed. Chiba, Japan. Elsevier Science,
617–622.

NICOLLIN, X. AND SIFAKIS, J. 1994. ATP: Theory and application. Inf. Comput. 114, 131–178.
PELED, D. 1996a. Combining partial order reductions with on-the-fly model checking. Formal Methods

Syst. Des. 8, 39–64.
PELED, D. 1996b. Partial order reduction: Linear and branching temporal logics and process algebras. In

Proceedings of the DIMACS Workshop on Partial-Order Methods in Verification (POMIV ’96), D. Peled
et al., Eds. Princeton, NJ. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 29. American Mathematical Society, Boston, MA. 233–257.

PELED, D., PRATT, V., AND HOLZMANN, G., EDS. 1996. Proceedings of the DIMACS Workshop on Partial-Order
Methods in Verification (POMIV ’96). Princeton, NJ. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 29. American Mathematical Society, Boston, MA.

PELED, D. AND VARDI, M., EDS. 2002. Proceedings of the 22nd International Conference on Formal Tech-
niques for Networked and Distributed Systems (FORTE 2002). Houston, TX. Lecture Notes in Computer
Science, vol. 2529. Springer-Verlag.

PETERSON, G. 1981. Myths about the mutual exclusion problem. Inf. Process. Lett. 12, 3, 115–116.
PNUELLI, A. 1981. The temporal semantics of concurrent programs. Theoretical Comput. Sci. 13, 45–60.
QUIELLE, J. AND SIFAKIS, J. 1982. Specification and verification of concurrent systems in CÆSAR. In Pro-

ceedings of the 5th International Symposium on Programming, M. Dezani-Ciancaglini and U. Montanari,
Eds. Torino, Italy. Lecture Notes in Computer Science, vol. 137. Springer-Verlag, 195–220.

ROBBY, DWYER, M., AND HATCLIFF, J. 2003. Bogor: An extensible and highly-modular model checking frame-
work. In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

Symmetry in Temporal Logic Model Checking 35

Held jointly with the 9th European Software Engineering Conference (ESEC/FSE 2003). Helsinki,
Finland. ACM Press, New York, 267–276.

ROBBY, DWYER, M., HATCLIFF, J., AND IOSEF, R. 2003. Space-Reduction strategies for model checking dynamic
software. Electron. Notes Theoretical Comput. Sci. 89, 3, 499–517.

RUTTEN, J., KWAITOWSKA, M., NORMAN, G., AND PARKER, D. 2004. Mathematical Techniques for Analysing
Concurrent and Probabilisitic Systems. CRM Monograph Series, vol. 23. American Mathematical
Society, Centre de Recherches Mathématiques, Université de Montréal.

SCHNEIDER, K. 2003. Verification of Reactive Systems. Springer-Verlag, Berlin.
SISTLA, A. 2004. Employing symmetry reductions in model checking. Comput. Lang. Syst. Structures 3,

99–137.
SISTLA, A. AND GODEFROID, P. 2004. Symmetry and reduced symmetry in model checking. ACM Trans.

Program. Lang. Syst. 25, 4, 702–734.
SISTLA, A., GYURIS, V., AND EMERSON, E. 2000. SMC: A symmetry-based model checker for verification of

safety and liveness properties. ACM Trans. Softw. Eng. Methodol 9, 133–166.
SISTLA, A., WANG, X., AND ZHOU, M. 2004. Checking extended CTL properties using guarded quotient

structures. In Proceedings of the 2nd IEEE International Conference on Software Engineering and
Formal Methods. IEEE Computer Society, 87–94.

STARKE, P. H. 1991. Reachability analysis of Petri nets using symmetries. Syst. Anal. Model. Simul. 8, 4/5,
293–303.

TARJAN, R. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2, 146–160.
VALMARI, A. 1989. Stubborn sets for reduced state space generation. In Proceedings of the 10th Interna-

tional Conference on Application and Theory of Petri Nets. Bonn, Denmark. Lecture Notes in Computer
Science, vol. 483. Springer-Verlag, 491–515.

VALMARI, A. 1992. A stubborn attack on state explosion. Formal Methods Syst. Des. 1, 297–322.
VARDI, M. AND WOLPER, P. 1986. An automata-theoretic approach to automatic program verification

(preliminary report). In Proceedings of the 1st Annual IEEE Symposium on Logic in Computer Science.
Cambridge, MA. IEEE Computer Society Press, 332–344.

VARDI, M. AND WOLPER, P. 1994. Reasoning about infinite computations. Inf. Comput. 115, 1–37.
VARPAANIEMI, K., HALME, J., HIEKKANEN, K., AND PYSSYSALO, T. 1995. PROD reference manual. Tech. Rep.

B13, Helsinki University of Technology, Digital Systems Laboratory, Espoo, Finland.
VERGAUWEN, B. AND LEWI, J. 1993. A linear local model checking algorithm for CTL. In Proceedings of the

4th International Conference on Concurrency Theory (CONCUR ’93), E. Best, Ed. Hildesheim, Germany.
Lecture Notes in Computer Science, vol. 715. Springer-Verlag, 447–461.

VISSER, W. AND BARRINGER, H. 1996. Memory efficient state storage in SPIN. In Proceedings of the 2nd
Workshop on the SPIN Verification System, J.-C. Gregoire et al., Eds. Rutgers University, NJ. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 32. American Mathematical
Society, Boston, MA. 185–203.

VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. 2000. Model checking programs. In Proceedings of the
15th IEEE Conference on Automated Software Engineering (ASE-2000), P. Alexander and P. Flener,
Eds. Grenoble, France. IEEE Computer Society Press, 3–12.

WANG, F. AND SCHMIDT, K. 2002. Symmetric symbolic safety-analysis of concurrent software with pointer
data structures. In Proceedings of the 22nd International Conference on Formal Techniques for Net-
worked and Distributed System (FORTE 2002), D. Peled and M. Vardi, Eds. Houston, TX. Lecture Notes
in Computer Science, vol. 2529. Springer-Verlag, 50–64.

WEI, O., GURFINKEL, A., AND CHECHIK, M. 2005. Identification and counter abstraction for full vir-
tual symmetry. In Proceedings of the 13th IFIP WG 10.5 Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME ’05), D. Borrione and W. J.
Paul, Eds. Saarbrücken, Germany. Lecture Notes in Computer Science, vol. 3725. Springer-Verlag,
285–300.

WOLPER, P. 1986. Expressing interesting properties of programs in propositional temporal logic. In Pro-
ceedings of the Conference Record of the 13th Annual ACM Symposium on Principles of Programming
Languages (POPL ’86). St. Petersburg Beach, FL. ACM Press, New York, 184–193.

WOLPER, P. AND LEROY, D. 1993. Reliable hashing without collision detection. In Proceedings of the 5th
International Conference on Computer Aided Verification (CAV ’93), C. Courcoubetis, Ed. Elounda,
Greece. Lecture Notes in Computer Science, vol. 697. Springer-Verlag, 59–70.

WOLPER, P., VARDI, M., AND SISTLA, A. 1983. Reasoning about infinite computation paths. In Proceedings
of the 4th IEEE Symposium on Foundations of Computer Science. Tucson, AZ. IEEE Computer Society,
185–194.

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

36 A. Miller et al.

WU, J., CHANSON, S., AND GAO, Q., EDS. 1999. Proceedings of the Joint International Conference on
Formal Description Techniques for Distributed Systems and Communication Protocols and Protocol
Specification, Testing and Verification (FORTE/PSTV ’99). Beijing, China. International Federation for
Information Processing, vol. 156. Kluwer.

YI, W., PETTERSSON, P., AND DANIELS, M. 1994. Automatic verification of real-time communicating systems
by constraint-solving. In Proceedings of the 7th WG6.1 International Conference on Formal Description
Techniques (FORTE ’94), D. Hogrefe and S. Leue, Eds. Berne, Switzerland. International Federation for
Information Processing, vol. 6. Chapman and Hall, London, UK, 243–258.

YOVINE, S. 1997. Kronos: A verification tool for real-time systems. Int. J. Softw. Tools Technol. Trans-
fer 1, 1/2, 123–133.

YUEN, C. AND TJIOE. 2001. Modeling and verifying a price model for congestion control in computer
networks using Promela/SPIN. In Proceedings of the 8th International SPIN Workshop (SPIN 2001), M.
Dwyer, Ed. Toronto, Canada. Lecture Notes in Computer Science, vol. 2057. Springer-Verlag, 272–287.

Received December 2004; revised November 2005; accepted March 2006

ACM Computing Surveys, Vol. 38, No. 3, Article 8, Publication date: September 2006.

