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Symmetry in the open-system 
dynamics of quantum correlations
Henri Lyyra1, Göktuğ Karpat2,3, Chuan-Feng Li4,5, Guang-Can Guo4,5, Jyrki Piilo1 & Sabrina 

Maniscalco1,6

We study the symmetry properties in the dynamics of quantum correlations for two-qubit systems 

in one-sided noisy channels, with respect to a switch in the location of noise from one qubit to the 

other. We consider four different channel types, namely depolarizing, amplitude damping, bit-flip, 
and bit-phase-flip channel, and identify the classes of initial states leading to symmetric decay of 
entanglement, non-locality and discord. Our results show that the symmetric decay of quantum 

correlations is not directly linked to the presence or absence of symmetry in the initial state, while 

it does depend on the type of correlation considered as well as on the type of noise. We prove that 

asymmetric decay can be used to infer, in certain cases, characteristic properties of the channel. We also 

show that the location of noise may lead to dramatic changes in the persistence of phenomena such as 

entanglement sudden death and time-invariant discord.

Correlations of genuine quantum nature among the individual constituents of composite systems play a funda-
mental role in quantum physics. Entanglement is the paramount example of quantum correlations, considered 
by the founding fathers of quantum physics as the most bizarre aspect of this theory1. Initially viewed as a mere 
philosophical subject, it gained popularity and importance with the development of quantum information theory, 
when it was recognized as a resource for several tasks such as teleportation, superdense coding, and quantum key 
distribution2, 3.

A speci�c type of quantum correlation possessed by some entangled states is associated to the concept of 
quantum non-locality, which implies that predictions of quantum mechanics cannot be simulated by a local 
hidden variable model4–6. �e presence of non-local correlations in bipartite quantum systems leads to violation 
of Bell-type inequalities, such as the Clauser-Horne-Shimony-Holt (CHSH) inequality7. States violating Bell ine-
qualities are crucial for certain quantum technologies such as secure quantum communication8.

For mixed states, there exists a broader type of quantum correlations that does not occur in classical sys-
tems, namely quantum discord. It has been demonstrated that discordant states can perform more e�ciently 
than their classical counterparts in certain applications9. As a consequence, numerous di�erent measures of 
discord have been introduced in the recent literature to characterize quantum correlations more general than 
entanglement10–16.

Like all crucially quantum properties, entanglement, discord and non-locality are fragile and generally quickly 
disappear in presence of noise induced by the environment. Discord is clearly more robust than entanglement to 
the e�ects of noise, while entanglement may disappear a�er a �nite time (sudden death of entanglement), discord 
decays asymptotically17. Moreover, for certain types of local noise discord may remain constant in time, although 
the state of the system evolves (time-invariant discord)18, 19.

In this paper we investigate the dynamics of quantum correlations, namely discord, entanglement and 
non-locality, for two-qubit systems subjected to various types of one-sided noisy channels. More speci�cally 
we focus on a class of states known as X states for which all quantum correlations can be calculated analytically, 
and we study their symmetry properties with respect to a change in the location of the noise from one qubit to 
the other. Asymmetric decay of entanglement was earlier studied brie�y in ref. 20. Changing the noise location 
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corresponds, for example, to a situation in which Alice produces a state possessing certain quantum correlations 
and sends it to Bob, who measures the received state. �e two parts of the quantum correlated state travel along 
di�erent paths of equal length, named U (upper) and L (lower). An eavesdropper Eve may attack either one path 
or the other, her attack being modeled by introducing noise of di�erent type (depolarizing, amplitude damping, 
bit-�ip, and bit-phase-�ip channel).

We are interested in understanding whether the dynamics of various quantum correlations is sensitive, and if 
so how much, to the location of Eve’s attack, more precisely to whether she eavesdrops along the U or L path. Of 
course, we expect that the answer to this question will depend on both the initial quantum correlated state that 
Alice prepares, and the type of noise introduced by Eve. More precisely, we are interested in identifying the classes 
of initial states leading to symmetric behavior, with respect to noise acting on either U or L, for the di�erent types 
of channels and for di�erent types of quantum correlations. Moreover, we investigate how such classes of initial 
states change for di�erent types of quantum correlations and if there are overlaps between the classes of initial 
states that lead to symmetric behaviour of quantum entanglement, non-locality and discord.

More speci�cally, our study gives an answer to the following interesting questions:

 1) Is there any connection between symmetry properties of the initial state and symmetry properties of (i) the 
state dynamics and (ii) the dynamics of quantum correlations (discord, entanglement, non-locality) with 
respect to a switch in the noise between the channel? In other words, are certain symmetries in the initial 
state necessary to guarantee a symmetric dynamics of quantum correlations?

 2) How sensitive are e�ects such as entanglement sudden death and time-invariant discord to the location 
of noise (along the U or L path)? Stated another way, are there situations for which entanglement sudden 
death or time-invariant discord occurs only when Eve attacks along the U(L) path but not when she attacks 
the L(U) path, all other conditions being the same?

 3) Assuming that we do not know which type of noise acts on either U or L, can Bob use the symmetric/asym-
metric decay properties of quantum correlations to infer or characterize the type of noise, under minimal 
assumptions?

Our paper is structured as follows. First we introduce the class of initial states considered and discuss the 
symmetry properties of the dynamics and of entanglement as measured by concurrence. Next we analyze some 
physical consequences of our �ndings such as the e�ect of noise location on entanglement sudden death, the use 
of asymmetric decay for channel discrimination, and the connection between entanglement decay and entropy. 
A�er this we discuss the symmetry properties of non-locality and compare the classes of initial states leading to 
symmetric or asymmetric decay for entanglement and non-locality, respectively. �en we discuss the symmetry 
properties of a distance-based measure of quantum discord and the e�ect of the noise location on time-invariant 
discord. Finally we summarize and present conclusions.

X states, concurrence and one-sided channels
X states are a subclass of 2-qubit states appearing naturally in physical processes21–24. We denote an arbitrary X 
state by X, where

ρ ρ

ρ ρ

ρ ρ

ρ ρ

=













⁎

⁎

X

0 0

0 0

0 0

0 0

,

(1)

11 14

22 23

23 33

14 44

where ρ ρ ρ ρ ∈, , ,
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, ρ ρ ∈,
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, tr[X] =  1, and the density matrix is written in the basis 
=: { 00 , 01 , 10 , 11 } . Generally, we say, that a state is swap symmetric if the corresponding density matrix 

is invariant under swapping the elements according to the rule →ij ji . A straightforward calculation shows 
that X is swap symmetric if and only if the following conditions are satis�ed:

ρ ρ ρ= ∈ ., (2)22 33 23

�e �rst condition is equivalent to σ σ=X Xtr[ ] tr[ ]
U L
3 3  and the second one to σ σ σ σ⊗ = ⊗X Xtr[ ] tr[ ]

U L U L
1 2 2 1 , 

where σ1, σ2, and σ3 are the Pauli matrices. Here superscripts U and L refer to operators on Hilbert spaces U  and 
L of qubits U and L, respectively. In the vector notation of basis , the �rst qubit corresponds to U and the latter 
one to L. �e conditions in equation (2) are satis�ed for instance by all Bell-diagonal and Werner states, which 
form two important subclasses of X states.

Since entanglement is an essential feature of quantum mechanics, quantifying it has been an active �eld of 
research. Multiple entanglement measures have been de�ned, the most popular of which is concurrence25. It has 
been shown26 that, for all X states, concurrence can be obtained directly from the matrix elements as:

ρ ρ ρ ρ ρ ρ=  | | − | | − .C X( ) 2 max {0, , } (3)23 11 44 14 22 33

Physical dynamics of a quantum state ρ is represented by completely positive and trace preserving linear maps 
called channels. A map Φ is a channel if and only if there exists such set of operators 

∈
K{ }i i   that
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for all states ρ27. �e decomposition in equation (4) is called the Kraus decomposition and the operators Ki are 
called the Kraus operators.

In this study we concentrate on one-sided channels, which means that the channel in�uences only one of the 
local qubit states at a time, see Fig. 1. �is means that the Kraus operators acting on ⊗

U L   are of the form 
= ′ ⊗K K I:i i

L, when the channel a�ects qubit U and of the form = ⊗ ′K I K:i
U

i  when the channel a�ects qubit L. 
Here IU and IL are the identity operators of U  and L , respectively. We denote the one-sided channels a�ecting 
qubits U and L by

∑ρ ρΦ = ′ ⊗ ′ ⊗
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respectively. We say that the dynamics of a state ρ is symmetric if ρ ρΦ = Φ( ) ( )
U L . For example, in the case of pure 

dephasing channel, given by Kraus operators σ′ = − ′ =K pI K p1 ,1 2 3, we notice that Φ = ΦX X( ) ( )p
U

p
L  for all 

initial X states X. �us all the properties of the system, such as entanglement, Bell function and quantum discord, 
evolve symmetrically with respect to the location of the noise. Next we study the conditions leading to symmetric 
and asymmetric state dynamics and entanglement decay under the e�ects of di�erent channels.

Depolarizing channel. Single-qubit depolarizing channel can be represented by Kraus operators 

σ σ′ = ′ =K K, ,
p p

1 2 1 2 2 2  σ′ = ′ = −K K I, 1
p p

3 2 3 4

3

4
. Here ∈  p [0, 1] is the channel strength parameter, telling 

how strongly the channel in�uences states. Corresponding to equations (5) and (6), the dynamics of an arbitrary 
X state under one-sided depolarizing channels can be written as
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where we have denoted ρ ρ= −r :jk jj kk
 and = −q p: 1 . By comparing equations (7) and (8), it is evident, that the 

dynamics of a state is symmetric if and only if ρ ρ=
11 44

 and ρ ρ=
22 33

. We note that the symmetry of the state 
dynamics is independent of the phase of ρ23, unlike the symmetry of the initial state, but it requires ρ ρ=

11 44
 

instead. Trivially, symmetric density matrix dynamics implies symmetric behavior of all system properties and 
thus leads to symmetric entanglement decay. By using equation (3) we get the concurrences of the output states 
as

Figure 1. Visualization of di�erent noise locations. Alice sends a two-qubit system to Bob. Qubits U and L are 
transmitted through the upper and lower path, respectively. In (a) and (b) the local noise in�uences the qubit U 
and L, respectively.
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ρ ρ ρ ρ ρ ρΦ  = | | − + + | | − + +{ } (9)
C X q r p r p q r p r p( ( )) 2 max 0,
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A straightforward calculation shows that entanglement decays symmetrically, i.e. Φ =C X( ( ))p
D U,  

Φ ∀ ∈  C X p( ( )) [0, 1]p
D L, , if and only if ρ ρ=

33 22
 or ρ ρ=

11 44
. �e �rst condition is necessary for the symmetry of 

the initial state, as formulated in equation (2). Instead the second one, ρ ρ=
11 44

, is not.
We conclude that symmetry of entanglement decay requires neither swap symmetry of the initial state nor 

symmetry in the dynamics of the state.

Amplitude damping channel. Single-qubit amplitude damping channel can be represented by Kraus oper-

ators σ σ′ = +K i( ),
p

1 2 1 2 σ′ = +
+ − − −

K I
p p

2

1 1

2

1 1

2 3. �e dynamics of an arbitrary X state under one-sided 
amplitude damping channels becomes
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Comparison of equations (11) and (12) shows, that the dynamics of a state is symmetric if and only if 
=X 11 11 , which is invariant. Since for this state ρ ρ ρ= = = 0

22 33 23
, symmetric state dynamics occurs only 

for a single state which is swap symmetric, unlike in the case of depolarizing channel. By (3), we get the concur-
rences of the output states as

ρ ρ ρ ρ ρ ρ ρ ρΦ = | | − + | | − +{ }C X q p q p( ( )) 2 max 0, ( ( ) ), ( ( ) ) , (13)p
A U,

23 44 11 33 14 33 22 44

ρ ρ ρ ρ ρ ρ ρ ρΦ = | | − + | | − + .{ }C X q p q p( ( )) 2 max 0, ( ( ) ), ( ( ) ) (14)p
A L,

23 44 11 22 14 22 33 44

Now entanglement decay is symmetric if and only if ρ ρ=
33 22

 or ρ = 0
44

. �e �rst condition is necessary for 
the symmetry of the initial state but the second one, ρ = 0

44
, is not related to it.

So again, an initially asymmetric state can lead to symmetric decay of entanglement. Also, initial states leading 
to asymmetric state dynamics can have symmetric decay for entanglement.

Entanglement decay in channel combinations. To generalize the analysis, we study the initial condi-
tions for entanglement decay also in channel combinations. By combining local amplitude damping and depo-
larizing channels with equal channel strengths p, we can create new channels for the two-qubit system. In Fig. 2 
we illustrate the most simple two channel combinations. We have solved the families of initial states leading to 
symmetric and asymmetric entanglement decay in each noise con�guration (a)–(d).

Trivially, entanglement decay is symmetric for all initial states in con�guration (a) if Φ = Ψ. If in con�gura-
tion (b) the channels are chosen as Φ = Ψ, the conditions for symmetric entanglement decay are the same as in 
the situation of channel Φ in�uencing just one of the qubits once. �e same applies also for con�gurations (c) and 
(d): whenever Φ = Ψ = Ξ, the conditions for symmetric entanglement decay are the same as in the case of Φ 

Figure 2. Schematic illustrations (a), (b), (c) and (d) visualize four di�erent geometric con�gurations for noise 
combinations. Here channels Φ Ψ, ,p p  and Ξp correspond to local amplitude damping or depolarizing noises with 
equal channel strength parameters p acting on qubits U and L.
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a�ecting just one of the qubits once. �is means, that in the sense of entanglement decay symmetry, adding iden-
tical copies of the same channel does not break the symmetry or create it.

On the other hand, if Φ ≠ Ψ in (a), entanglement decay is symmetric if and only if ρ ρ=
22 33

. Also, if two of 
the channels in (c) are di�erent, entanglement decays symmetrically if and only if ρ ρ=

22 33
. If in (b) and (d) two 

of the channels are di�erent, entanglement decays symmetrically if and only if ρ ρ=
22 33

 or ρ ρ= = 0
11 44

. First of 
these is just one of the swap symmetry conditions, leading trivially to symmetric entanglement decay but the 
second one is actually a condition which satis�es the non-trivial symmetry conditions of both depolarizing and 
amplitude damping channels.

Bit-flip and bit-phase-flip channels. To avoid redundancy, we present here only the results for bit-�ip and 
bit-phase-�ip channels. For further details we refer the reader to the supplementary material.

We see that, for bit-�ip channel, the dynamics of a state is symmetric if and only if ρ ρ ρ ρ= =,
11 44 22 33

 and 
ρ ρ ∈,

14 23
. So, as in the case of amplitude damping channel, symmetric initial state is necessary but not su�-

cient condition for the symmetry of state dynamics. Due to the form of dynamics of coherences, it is not simple 
to solve analytically conditions for symmetric entanglement decay for the whole family of X states. By using a 
restrictive assumption, ρ ∈

23
 or ρ ∈

14
, we can perform the analysis. For this subfamily of X states, entangle-

ment decay is symmetric if and only if ρ ρ=
22 33

 or ρ ρ=
11 44

.
Interestingly, the families of initial states leading to symmetric state dynamics in bit-�ip and bit-phase-�ip 

channels are identical. Also for bit-phase-�ip channel it is di�cult to solve analytically, when entanglement decay 
is symmetric for the whole family of X states. If we set the same restriction as used for bit-�ip channel above, we 
see that the necessary and su�cient conditions for symmetric entanglement decay in bit-phase-�ip channel are 
the same as for bit-�ip channel. On the other hand, by setting C Rρ ρ ∈, \

23 14
 in numerical tests, we could not �nd 

any initial states leading to symmetric entanglement decay for either of the channels. �is serves as evidence for 
a claim that ρ ∈

23
 or ρ ∈

14
 is a necessary condition for an X state to have symmetric entanglement decay in 

these channels.
To conclude, also for bit-�ip and bit-phase-�ip channels an asymmetric initial state with asymmetric state 

dynamics can lead to symmetric entanglement decay.

Observations
In the previous sections we studied families of initial states leading to symmetric and asymmetric decay of entan-
glement under di�erent local channels. Next we concentrate on analyzing the implications of the results by using 
depolarizing and amplitude damping channels as examples. For plotting purposes, we set the coherence terms in 
each initial state to be maximal: ρ ρ ρ ρ ρ ρ| | = | | =,

14 11 44 23 22 33
.

Asymmetry in sudden death of entanglement. In Fig. 3 we present the concurrence of a state under 
amplitude damping channel. �e plot shows that, for this choice of initial state, entanglement decay is sudden 
when amplitude damping noise a�ects qubit L, whereas entanglement decays asymptotically when the noise is 
acting on qubit U, instead. �is means that, for this particular choice of initial state, the in�uence of the noise is 
signi�cantly more harmful when qubit L is a�ected by the noise.

Entanglement decay as a resource. In this section we show that the asymmetry of entanglement decay 
can be used to gain information on one-sided channels. A similar protocol was introduced in ref. 28, where 
behavior of quantum discord and negativity were used to discriminate between channels.

In Fig. 4(a)–(b) we present the concurrence in depolarizing channel for two initial states. By choosing 
ρ ρ=
44 11

 the noise is guaranteed to have identical in�uence independent of the location of the noise. �e di�er-
ence between the initial states used for Fig. 4(a) and (b) is that the values of ρ22 and ρ33 were swapped. �e form of 
equations (9) and (10) shows that, decay of entanglement is invariant under swapping ρ22 and ρ33, when ρ ρ=

44 11
.

In Fig. 4(c) and (d) we present the plots of concurrence in amplitude damping channel for initial states used in 
Fig. 4(a) and (b), respecticely. We see that Φ ≠ ΦC X C X( ( )) ( ( ))p

A U
p
A L, , , for both initial states X, whenever ∈p (0,1). 

Figure 3. �e red and blue curves correspond to situations with amplitude damping channel on qubit U and L, 
respectively. In�uence of the noise on qubit L leads to sudden death of entanglement, but when the noise a�ects 
the qubit U, entanglement decays asymptotically. We chose the input state as ρ ρ ρ= . = . = .0 35, 0 4, 0 05

11 22 33
 

and ρ = .0 2
44

.
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We notice that in Fig. 4(c) noise on qubit U has more harmful e�ect on the concurrence and in 4(d) the noise on 
qubit L is more harmful. �e swapping of the majorization of concurrence in Fig. 4(c) and (d) can be seen directly 
from equations (13) and (14). In fact, swapping ρ22 and ρ33 just swaps the curves corresponding to ΦC X( ( ))p

A U,  
and ΦC X( ( ))p

A L, .
Plots (a)–(d) in Fig. 4 show that, by using these two initial states, we can gain information of the channel which 

a�ects the system if we can assume that the noise is either depolarizing or amplitude damping type. If we let the 
noise in�uence one of the qubits and make a tomographic measurement, there are two possibilities, when using 
the two initial states presented above: either the concurrence has the same value for both initial states or one ini-
tial state leads to higher value of concurrence than the other. In the �rst case we know for sure that the noise was 
caused by a depolarizing channel and in the latter case the noise must have been amplitude damping. �is means 
that this pair of initial states can be used to distinguish the two channels.

On the other hand, this can be done without knowing the value of p. So, a�er determining which channel 
a�ected the state, we can also obtain the value of p for each channel by comparing the experimentally determined 
value of concurrence to the analytical solutions. Note that in the reasoning above we have not assumed anything 
about the location of the noise either. If we conclude that the noise was amplitude damping, we can compare the 
measured values of the concurrence for the two initial states. If the measured value of concurrence was smaller for 
the choice ρ = 0

22
, then we know that the noise was a�ecting qubit U. On the other hand if the value of the con-

currence is smaller for the choice ρ = 0
33

, we know that the noise was in�uencing qubit L, instead.
Same reasoning can be done also for the case when the noise is depolarizing type. Plots and the corresponding 

pair of initial states are presented in Fig. 5. �e protocol is not restricted just to these two channels. By recalling 
the symmetry conditions of entanglement decay calculated for channel combinations, one notices that we can 
now distinguish the set of channel combinations (a) and (c), the set of con�gurations (b) and (d), and individual 
amplitude damping, bit-�ip and depolarizing channels.

Entanglement decay and entropy. In ref. 20 Zyczkowski et al. studied asymmetric entanglement decay 
from the point of view of classical and quantum subsystems. �ey characterized a subsystem as classical if its von 
Neumann entropy is smaller than the von Neumann entropy of the total system, and as quantum if it is not clas-
sical. It was shown, through an example state, that when one of the subsystems is classical and the other one is 
quantum, noise a�ecting the classical subsystem decreases entanglement faster than if it was in�uencing the 
quantum subsystem.

In Fig. 6 we present concurrence for another initial state as a function of channel strength parameter p in 
amplitude damping and depolarizing channels. Von Neumann entropy of the initial total system state is 

≈ .S X( ) 0 40 and Von Neumann entropies of the reduced states of qubits U and L are ≈ .S X(tr [ ]) 0 14L  and 
≈ .S X(tr [ ]) 0 47U , respectively. Now subsystem L is quantum but subsystem U is classical. By looking at Fig. 6 it is 

clear that the result of ref. 20 does not hold generally, since in Fig. 6(a) entanglement decays faster when the noise 
a�ects qubit L but in Fig. 6(b) the situation is the opposite. �is also shows that, whether local noise on qubit U 

Figure 4. Concurrence of an X state as a function of the channel strength parameter p under depolarizing (a)–
(b) and amplitude damping (c)–(d) channel. Here the red and blue curves correspond to the cases with local 
noise on qubit U and L respectively. In (a) and (c) we have chosen ρ ρ ρ= = . =0 4, 0,

11 44 22
 and ρ = .0 2

33
. In (b)

and (d) we have chosen ρ ρ ρ= = . = .0 4, 0 2,
11 44 22

 and ρ = 0
33

.

Figure 5. Concurrence of an X state as a function of the channel strength parameter p under depolarizing (a), 
(b) and amplitude damping (c), (d) channel. Here the red and blue curves correspond to the cases with local 
noise on qubit U and L, respectively. In (a) and (c) we have chosen ρ ρ ρ= . = . = .0 2, 0 65, 0 15

11 22 33
, and 

ρ = .0
44

 In (b) and (d) we have chosen ρ ρ ρ= . = . = .0 2, 0 15, 0 65
11 22 33

, and ρ = 0
44

. Note that the situation is 
opposite to Fig. 4: now depolarizing channel causes asymmetric entanglement decay, and entanglement decays 
symmetrically in amplitude damping channel, instead.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 8367  | DOI:10.1038/s41598-017-08457-1

results to faster or slower entanglement decay is not only a property of the initial state, but depends also on the 
channel.

Decay of non-locality
In their famous paper29, Einstein, Podolsky and Rosen concluded, that some, hidden, variables should be added 
to quantum mechanics to restore locality to the theory. By assuming that the hidden variable theory is of local 
realistic nature, Clauser, Horne, Shimony and Holt derived the so-called CHSH inequality, which can be used to 
test the local hidden-variable theories7.

The CHSH inequality can be written for a system in state ρ as ≤ 2 , where ρ= | ⊗′ ′ ˆ
ˆ ˆ ˆ ˆ amax tr[ (
a a b b, , ,

  

+ ′ + ′ ⊗ − ′ˆ ˆ ˆ ˆ ˆb b a b b( ) ( ))] , is the Bell function, â and ′â  are some variables with values ±1 for qubit U and b̂ and 
′b̂  are some variables with values ±1 for qubit L. Whenever  > 2, the locality assumption is violated, and we say 

that the state is non-local. CHSH inequality has been violated in experiments repeatedly, proving that the local 
hidden variable theories cannot be valid30.

In ref. 31 it was shown, that for 2-qubit states  = + u u2 , where u and u are the two largest eigenvalues of 
=
ρ ρ ρ

U M MT , and M is a matrix de�ned by ρσ σ= ⊗M tr[ ]i j i j, , where ∈  i j, {1, 2, 3}. For X states the eigenvalues of 
Uρ become

ρ ρ ρ ρ= | + = + = | − .u u r r u4( ) , ( ) , 4( ) (15)1 14 23

2
2 12 43

2
3 14 23

2

Finally, we get   = 2 max { , }
j j j

1 2 , where = +u uj j j
1 1 2  and = +u uj j j

2 1 3 , and the superscript 
∈j U L{ , } tells whether the channel in�uences qubit U or L.

Next we study the behavior of   under local depolarizing and amplitude damping channels and their combi-
nations. As in the case of concurrence, also here we are interested in whether the dynamics of   depends on the 
location of the noise.

Depolazing channel. For one-sided depolarizing channel, we see that

ρ ρ ρ ρ= = + + + = = | + .q r r q2 4( ) ( ) , 4 2( ) (16)
U L U L
1 1 14 23

2
12 43

2
2 2 14

2

23

2   

�is means that the e�ect of depolarizing noise on non-locality of the state is independent of the location 
for all X states. Since certain initial states lead to asymmetric entanglement decay in depolarizing channel, this 
implies that non-locality and entanglement behave in di�erent way in terms of location of the noise.

Amplitude damping channel. For one-sided amplitude damping channel, we see that

 ρ ρ ρ ρ= + + + − = + + + −q r p r q r p r2 4 ( ) [ (2 1) ] , 2 4 ( ) [ (2 1) ] , (17)
U L
1 14 23

2
12 34

2
1 14 23

2
13 24

2

ρ ρ= = + .q4 2 ( ) (18)
U L
2 2 14

2

23

2 

Comparison of equations in equation (17) shows that now the location of the noise makes a di�erence, unlike 
in the case of depolarizing channel. We see that = ∀ ∈  p [0, 1]

U L
1 1   if and only if ρ ρ=

22 33
 or 

ρ ρ ρ ρ= = + =( )/2 1/4
11 44 22 33

. �e �rst condition is satis�ed by all symmetric initial states, so, as in the case of 
concurrence, also symmetric decay of non-locality seems to be a direct consequence of symmetric initial state. On 
the other hand, the second condition does not require symmetric initial state. For all initial X states satisfying the 
second condition, the value of   is maximized with the choice ρ ρ ρ ρ ρ ρ= = = = | | = | | = 1/4

11 22 33 44 14 23
. For 

this state we get  = 2, which is not interesting in the context of decay of non-locality, since such state is initially 
local.

Figure 6. Concurrence of a state as a function of the channel strength parameter p for (a) amplitude damping 
and (b) depolarizing channel. Here the red and blue curves correspond to the cases with local noise on qubit U 
and L, respectively. We have chosen ρ ρ ρ= . = = .0 9, 0, 0 08

11 22 33
, and ρ = .0 02

44
.
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In Fig. 7 we present the behavior of   in amplitude damping channel. �e plot illustrates the di�erence 
between the two noise locations: when the channel a�ects qubit U, the decay is twice as fast compared to the case 
of noise on qubit L. For comparison, we present also the plot of concurrence for the same initial state. In contrast 
to what happens to the Bell function, concurrence decays independently of the location of the noise.

We have gethered in Table 1 the families of initial states leading to interesting dynamics for concurrence and 
Bell function. �e most interesting result is obtained with choices ρ ρ ρ ρ≠ ≠ =, 0

22 33 11 44
. For this family, depo-

larizing channel leads to asymmetric entanglement decay and symmetric decay of Bell function. Contrary to this, 
the result for amplitude damping channel is the opposite: symmetric entanglement decay and asymmetric decay 
of Bell function. �is means that there is no hierarchy between the asymmetry of entanglement decay and decay 
of Bell function: asymmetry of one property does not imply or exclude the asymmetry of the other.

Channel combinations. To complete the study of Bell function decay under depolarizing and amplitude 
damping channels, we perform the analysis on combinations presented in Fig. 2. Trivially again   decays sym-
metrically in (a) if both channels are the same. �en again, if they are di�erent, the decay is symmetric if and only 
if ρ ρ=

22 33
. In fact, this is the same condition as for symmetric entanglement decay in this con�guration. If in (b), 

(c), or (d) all channels are depolarizing (amplitude damping) type, the symmetry conditions for   decay are the 
same as for single depolarizing (amplitude damping) channel. So, as in the case of entanglement decay, also the 
symmetry of Bell function decay seems to be invariant under repetition of the same local noise.

On the other hand, if in combinations (b)–(d) there is at least one copy of each channel,   decays symmetri-
cally if and only if ρ ρ=

22 33
. We note, that this di�ers from the conditions of symmetric entanglement decay in 

this con�guration. �e only exception appears in con�guration (c). If Φ and Ξ are amplitude damping channels 
and Ψ is depolarizing channel,   decays symmetrically for all initial X states.

For the sake of example, let us assume a situation, in which symmetric decay of non-locality is desired. 
Con�guration (a) can be divided into two cases in terms of symmetry conditions: Φ = Ψ, leading always to sym-
metric decay of  , and Φ ≠ Ψ leading to symmetric decay of   if and only if ρ ρ=

22 33
. In the latter case we can 

now achieve symmetry for all initial X states, by adding amplitude damping noise before depolarizing channel. It 
is worth noting, that there is something special about this con�guration, since it is impossible to induce the sym-
metry by adding amplitude damping noise a�er the depolarizing channel or on the same side with the original 
amplitude damping channel. Also, if the original con�guration has just a single amplitude damping channel, one 
can achieve symmetry by adding local amplitude damping and depolarizing noises on the qubits.

�e analysis of earlier section shows, that such phenomenon does not occur for entanglement decay in simple 
combinations of depolarizing and amplitude damping channels: in the case described above, adding one ampli-
tude damping or depolarizing channel in any possible location has no e�ect in the symmetry of entanglement 
decay.

Figure 7. Behavior of (a) Bell function and (b) concurrence as a function of channel parameter p. In each plot 
the red and blue lines correspond to amplitude damping channel a�ecting qubits U and L, respectively. Here we 
have chosen ρ ρ= = 0,

11 44
 ρ = .0 1875,
22

 and ρ = .0 8125
33

.

ρ22 = ρ33

ρ22 ≠ ρ33 & 
ρ11 = ρ44 ≠ 0

ρ22 ≠ ρ33 & 
ρ11 = ρ44 = 0

ρ22 ≠ ρ33 & 
ρ11 ≠ ρ44 = 0

(a) Depolarizing channel.

ED Symmetric Symmetric Symmetric Asymmetric

ND Symmetric Symmetric Symmetric Symmetric

(b) Amplitude damping channel.

ED Symmetric Asymmetric Symmetric Symmetric

ND Symmetric Asymmetric Asymmetric Asymmetric

Table 1. Behavior of entanglement decay (ED) and decay of non-locality (ND) for di�erent families of initial 
states.
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Decay of trace distance discord. Since all quantum correlations cannot be described by entanglement and 
non-locality, we conclude our study by considering the dynamics of a more general type of correlation, quantum 
discord. Due to the di�culty of computing and comparing the exact values of quantum discord, geometric meas-
ures have been developed. Geometric discord measures are based on the smallest distance between the given state 
ρ and the set of states with zero discord. A state ρ has zero discord if and only if it can be decomposed as

∑ρ α α ρ= | 〉〈 | ⊗ j( ),
(19)j

j j
L

where α| 〉{ }j j is a set of orthogonal vectors in U  and ρ j( )L  are positive operators in L . �e choice of metric used 
to measure the distance determines the properties of geometric discord. A good choice for metric is trace distance 

ρ ξ ρ ξ= −D ( , )tr tr, where ρ ρ ρ|| = †
tr[ ]/2tr  is the trace norm. With this norm, the trace distance discord 

can be de�ned as

ρ ρ ρ=

ρ




D D( ) min ( , ),
(20)

tr

where the minimization is taken over the set all states ρ with zero discord.
In ref. 32 it was shown, that for an arbitrary X state the trace distance discord can be calculated as

γ γ γ γ γ γ

γ γ γ γ γ γ

=
+ −

+ − + −

D X
x

x
( )

1

2

max { , } min { , }

max { , } min { , }
,

(21)

1
2

3
2

2
2 2

2
2

3
2

1
2

3
2

2
2 2

3
2

1
2

1
2

2
2

γ ρ ρ γ ρ ρ γ ρ ρ ρ ρ= + = − = − + = + − .x2( ), 2( ), 1 2( ), 2( ) 1 (22)1 32 41 2 32 41 3 22 33 11 22

Assuming ρ ρ ∈,
23 14

 simpli�es equation (21) into

γ
γ γ= | | ≥ | |D X( )

2
, when

(23)
1

3 1

γ
γ γ γ γ= | | < | | ≥ +D X x( )

2
, when &

(24)
3

3 1 3
2

2
2 2

γ γ γ γ

γ γ

=
+ −

− +

.D X
x

x
( )

1

2

( )
, otherwise

(25)

1
2

2
2 2

2
2

3
2

1
2

3
2 2

Asymmetric discord dynamics. In depolarizing, bit-�ip and bit-phase-�ip channels the parameters γ γ,1 2 
and γ3 evolve symmetrically with respect to noise location. �is means that whenever the conditions of equation 
(23) or (24) are satis�ed throughout the dynamics, trace distance discord behaves symmetrically. On the other 
hand, we see that in the case of equation (25), discord evolves symmetrically if and only if the parameter x has 
symmetric dynamics. �is is equivalent to using initial state with x = 0. In the case of equation (25), this choice 
leads to γ= |D X( ) /22 .

Two exemplary cases of states evolving in subspaces of X states, de�ned by conditions in equations (23–25), are 
illustrated in Fig. 8. In Fig. 8(a) we see, that noise on qubit U makes the state enter or exit the green segment if and 
only if noise on qubit L does so. Contrary to this, the line between purple and yellow segments is crossed by noise 
on one qubit when noise on the other one does not make the state cross the line. Instead in Fig. 8(b), each segment 
boarder is crossed by noise on one qubit if and only if noise on the other one makes the state cross the line. �is 
case is special also because decay of discord is symmetric in all sections, and thus through the whole dynamics.

Figure 8. Visualization for possible trajectories of state dynamics (color online). �e cases are divided between 
initial states satisfying (a) x ≠ 0 and (b) x = 0. �e space of states is represented by a clock-face and split into 
three colored segments. �e channel strength p corresponds to the rotation angle θ(p) of the orange hand of the 
clock. �e red and blue dashed circles represent possible trajectories of Φ X( )p

U  and Φ X( )p
L , respectively. As p 

increases, the clock hand rotates moving the evolved state along the dashed circle which corresponds to the 
noise location. �e value of θ(0) is determined by the initial state and the behavior of θ(p) depends on the 
channel Φp and the initial state.
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The non-trivial cases occur when noise on one qubit causes the evolved state Φ X( )p  to satisfy 
γ γ γ γ< ≥ + x&3 1 3

2
2
2 2 but noise on the other one leads to a state satisfying γ γ γ γ< < + x&3 1 3

2
2
2 2, 

instead. �is situation is illustrated in Fig. 8(a) as the curved boarder between the purple and yellow segments. 
For depolarizing, bit-�ip and bit-phase-�ip channels this case never results to symmetric decay of discord. �us 
we conclude, that symmetry of discord dynamics requires that both local channels map the state into the same 
segment of the state space at each value of p.

For depolarizing and bit-phase-�ip channels, initial state satisfying γ γ≥3 1  guarantees that the property is 
preserved throughout the dynamics. In the sense of Fig. 8 this means that any initial state inside the green seg-
ment never exits it during dynamics. Neither can any state outside the region enter it. As an interesting example, 
we study the maximally discordant mixed two-qubit states (MDM). In ref. 24 the analytic form of MDM’s was 
solved. �ey are all X states and it is easy to see that they satisfy γ γ≥3 1 , but their state dynamics is symmetric 
only in special cases. �us all two-qubit MDM’s have symmetric discord dynamics under depolarizing and 
bit-phase-�ip channel.

For bit-�ip channel the conditions are more restrictive. If initial state satis�es γ γ≥3 1 , the evolved state Φ X( )p
B U,  

satis�es it also if and only if ρ ρ ρ ρ≤ − + | | − +p 1/2 / 1 2( )
23 14 22 33

 or ρ ρ ρ ρ≥ + + | | − +p 1/2 / 1 2( )
23 14 22 33

. 
We note, that the values of p keeping the evolved state Φ X( )p

B U,  inside the region are determined by D(X). Especially, 
Φ X( )p

B U,  satis�es γ γ≥ ∀ ∈  p [0, 1]3 1  if and only if ρ ρ= + =D X( ) 0
23 14

.
If we assume γ γ<3 1  instead, decay of discord is symmetric for all of the channels, whenever γ γ≥ + x3

2
2
2 2 

is satis�ed by both Φ X( )p
U  and Φ X( )p

U . On the other hand, if γ γ< + x3
2

2
2 2 for both Φ X( )p

U  and Φ X( )p
L , decay of 

discord is symmetric for these channels if and only if ρ ρ+ = 1/2
11 22

.
Now we assume that γ γ<3 1  and study, which initial states stay inside or exit the region defined by 

γ γ≥ + x3
2

2
2 2 under di�erent local noises. For bit-�ip or depolarizing noise on qubit U, no initial state inside the 

region exits it nor does any initial state outside the region enter it. Contrary to this, under bit-�ip or depolarizing 
noise on qubit L, an initial state stays inside the region if and only if x = 0. �is means, that initial states violating 
x = 0 are mapped into region γ γ< + x3

2
2
2 2 by noises on qubit L, and thus they have asymmetric decay of 

discord.
For bit-phase-�ip channel, the set of states staying inside the region is more exclusive. Noise on qubit U pre-

serves the property if and only if the initial state satis�es γ = 02 . Bit-phase-�ip noise on qubit L keeps the state 
inside the region if and only if γ = =x 02 . Like in the case of the other channels, also here we see that initial 
states, satisfying γ = 02  but violating =x 0, stay inside the region when noise a�ects qubit U but exit it when 
noise is applied on qubit L instead, resulting to asymmetric discord dynamics.

To conclude, we see that for all of the channels and all three segments there exist well-de�ned families of states 
which stay within the segment they started from. �ere is no preference in the direction of crossing the segment 
boundaries: each segment has initial states exiting it and initial states from other segments entering it during the 
evolution. �e only exception is segment γ γ≥3 1  in depolarizing and bit-phase-�ip channels: no initial state 
outside the segment can enter it nor does any state initially inside exit it.

Time-invariant quantum discord. Finally, we study the so-called time-invariant discord phenomenon, 
where the value of discord is not in�uenced by the channel. Local depolarizing noises never induce time-invariant 
discord. Instead bit-phase-�ip and bit-�ip channels do. Discord is invariant under local bit-phase-�ip channel if 
and only if =x 0 and γ γ<3 2 . First of the conditions is preserved in the dynamics for all initial states satisfying 
it and the second one holds for the evolved state Φ X( )p

P U,  if and only if Φ X( )p
P L,  satisfies it. So we see that 

time-invariant discord occurs under bit-phase-�ip channel only if the discord dynamics is symmetric.
For a bit-�ip channel, there are two disjoint families of states leading to time-invariant discord: initial states 

satisfying γ γ≥ | > 03 1 , or γ = 03  and ρ ρ= ≠ 0
23 14

. All initial states satisfying either of the conditions sat-
is�es the condition through the whole dynamics. States in the �rst family have symmetric discord dynamics. 
Instead, for initial states in the latter family, discord dynamics is asymmetric. In fact the time-invariant discord 
occurs only when the local noise is applied on qubit L. If the noise a�ects qubit U instead, the value of discord goes 
to zero for all initial states of the family.

Discussion
We have studied the dynamics of concurrence, Bell function and trace distance discord under one-qubit chan-
nels and their combinations. �e channels we considered were depolarizing, amplitude damping, bit-�ip, and 
bit-phase-�ip channels and simple combinations of depolarizing and amplitude damping channels. We saw that 
even though the input state, or even the dynamics of the state, is asymmetric, entanglement, non-locality and dis-
cord can decay symmetrically. We noticed that the families of asymmetric states leading to symmetric entangle-
ment or Bell function decay are not the same for di�erent channels or channel combinations. �us, by measuring 
how concurrence or Bell function decays, one can deduce which noise was a�ecting the two-qubit system, which 
qubit it a�ected, and how large is the channel strength parameter p.

We also saw that, for some initial states, entanglement decay is sudden when the noise a�ects one qubit and 
asymptotic when the noise in�uences the other. Also, the same initial state can lead to sudden death of entan-
glement for one type of channel and asymptotic decay for another. For one-sided amplitude damping channel, 
initial states with symmetric entanglement decay can lead to asymmetric decay of Bell function and the opposite 
happens in depolarizing channel. �is means that there is no natural hierarchy between the asymmetric decays 
of concurrence and non-locality.
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Finally, we studied the dynamics of trace distance discord noticing that the total space of states can be divided 
into three disjoint regions. We saw that symmetric decay of discord requires that local noise a�ecting the system 
maps the initial state into the same region at the same value of parameter p. We characterized families of initial 
states leading to symmetric and asymmetric discord dynamics for each channel. We also characterized families 
of initial states leading to time-invariant discord and saw that for some of these families discord dynamics is sym-
metric but for one family time-invariant discord occurs only when noise a�ects qubit L.
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