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SYMMETRY IN THE VANISHING OF EXT OVER
GORENSTEIN RINGS

CRAIG HUNEKE and DAVID A. JORGENSEN∗

Abstract

We investigate symmetry in the vanishing of Ext for finitely generated modules over local Goren-
stein rings. In particular, we define a class of local Gorenstein rings, which we call AB rings, and
show that for finitely generated modules M and N over an AB ring R, ExtiR(M,N) = 0 for all
i � 0 if and only if ExtiR(N,M) = 0 for all i � 0.

Introduction

Let R be a local Gorenstein ring and let M and N denote finitely generated
R-modules. This paper is concerned with the relation between the vanishing
of all higher ExtR(M,N) and the vanishing of all higher ExtR(N,M). As a
means of investigation we concentrate on the more natural duality between
the vanishing of all higher ExtR(M,N) and the vanishing of all higher Tor
modules where either M or N is replaced by its dual M∗(:= HomR(M,R))

or N∗.
Our interest in this topic came about in part from the following striking

result proved recently by Avramov and Buchweitz [2, Thm. III]. Suppose M

and N are finitely generated modules over a complete intersection R. Then the
following are equivalent:

(1) TorRi (M,N) = 0 for all i � 0

(2) ExtiR(M,N) = 0 for all i � 0

(3) ExtiR(N,M) = 0 for all i � 0.

Their proof relies heavily on the use of certain affine algebraic sets associated to
M and N , called support varieties. In their paper [2], Avramov and Buchweitz
raise the question of what class of rings satisfy these equivalences for all finitely
generated modulesM andN . They point out this class lies somewhere between
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complete intersections and local Gorenstein rings, but mention that they do not
know whether this class is equal to either complete intersections or Gorenstein
rings. In this paper we introduce a class of local Gorenstein rings, which we
call AB rings, and prove that AB rings satisfy the property that for all finitely
generated modules M and N , the following are equivalent (Theorem 4.1):

(1) ExtiR(M,N) = 0 for all i � 0

(2) ExtiR(N,M) = 0 for all i � 0.

Regular local rings are AB rings, and if R is an AB ring, then R/(x1, . . . , xc) is
also anAB ring wheneverx1, . . . , xc is a regular sequence (see Proposition 3.3).
This implies that complete intersections are AB rings. Even when restricted
to the case of a complete intersection, our proof of the above equivalence
avoids the use of support varieties, and in some ways is more direct than
the methods of [2]. We also prove that local Gorenstein rings of minimal
possible multiplicity are AB rings, for the strong reason that over such rings
(except when the embedding dimension is 2) all large ExtR(M,N) vanish if
and only if either M or N has finite projective dimension. See Theorem 3.6 for
a precise statement. These rings are not complete intersections in general, so
that in particular the class of AB rings is strictly larger than that of complete
intersections. In Theorem 3.8 and Proposition 4.4 we show that there also
exist AB rings R which are not complete intersections and over which there
are finitely generated modules M and N such that ExtiR(M,N) = 0 for all
i > dim R even though both M and N have infinite projective dimension over
R.

An AB ring R is a local Gorenstein ring defined by the property that there
is a constant C, depending only on the ring, such that if ExtiR(M,N) = 0
for all i � 0, then ExtiR(M,N) = 0 for all i > C. As far as we know
every Gorenstein ring is an AB ring; we have been unable to find an example
which is not. The name ‘AB’ stands for both Auslander-Bridger and Avramov-
Buchweitz.

The paper is organized as follows. In Section 1 we give some preliminary
and straightforward results concerning the relationship of Ext and Tor. In
Section 2 we prove a basic result concerning what holds over an arbitrary
local Gorenstein ring. Specifically, if M and N are finitely generated maximal
Cohen-Macaulay modules over a local Gorenstein ring R, then the following
are equivalent:

(1) TorRi (M,N) = 0 for all i � 0,

(2) ExtiR(M,N∗) = 0 for all i � 0, and

(3) ExtiR(N,M∗) = 0 for all i � 0.
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Section 3 introduces AB rings, details their basic properties, and gives the
main examples. In Section 4 we prove the main theorem of symmetry in the
vanishing of Ext over AB rings. Section 5 contains some independent observa-
tions concerning what the vanishing of Ext means. In particular we relate the
vanishing of d consecutive Ext modules (d being the dimension of the ring)
to the Cohen-Macaulay property of a related tensor product. We include some
questions in a final section.

1. Preliminaries

In this section we set notation and discuss some basic facts which will be used
throughout the paper.

Unless otherwise stated, we will assume R to be a local Gorenstein ring.
Also, M and N will denote finitely generated R-modules. For an R-module
M we let M∗ denote its dual HomR(M,R). If M is maximal Cohen-Macaulay
then it is also reflexive, meaning M∗∗ � M (assuming R is Gorenstein).

By a complete intersection we mean a local ring whose completion with
respect to the maximal ideal is the quotient of a regular local ring by a regular
sequence.

For a local ring R, we let embdim R denote its embedding dimension.

Syzygies and Conversions for Ext and Tor

Suppose M is an R-module. Then for i ≥ 0 we let Mi denote image fi , where
fi is the ith differential in a minimal free resolution

F: · · · → F2
f2−→ F1

f1−→ F0
f0−→ M → 0

of M . These Mi are the non-negative syzygies of M . They are unique up to
isomorphism, or if one considers a non-minimal resolution any two are stably
isomorphic.

Now suppose that M is a maximal Cohen-Macaulay R-module. Let

G: · · · → G2
g2−→ G1

g1−→ G0 → M∗ → 0

a minimal free resolution of its dual M∗. Since M∗ is maximal Cohen-Macau-
lay, the dual sequence

G∗: 0→ M∗∗ → G∗0
g∗1−→ G∗1

g∗2−→ G∗2 → · · ·
is exact. Using the fact that M is reflexive, we can splice F and G∗ together,
getting the doubly infinite long exact sequence

C(M): · · · → F
2

2
f2−→ F

1
1

f1−→ F
0

0 → G
−1

∗
0

g∗1−→ G
−2

∗
1

g∗2−→ G
−3

∗
2 → · · · .
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(Note the degree convention.) For i ≤ −1 we set Mi := image(g∗−i ). These
are the negative syzygies of M . They are unique up to isomorphism. Note that
Mi is again maximal Cohen-Macaulay for all i when M is.

We now list some properties of the long exact sequences C(M).

Lemma 1.1. Let M be a finitely generated maximal Cohen-Macaulay R-
module, and let N be a finitely generated R-module.

(1) C(M)∗ � C(M∗)

(2) (Mi)
∗ � (M∗)−i for all i.

(3) TorRi (M,N) � Hi (C(M)⊗N) for i ≥ 1.

(4) ExtiR(M,N) � H−i−1(C(M)∗ ⊗N) for i ≥ 1.

(5) For fixed t ≥ 3 and for 1 ≤ i ≤ t − 2 we have

(i) ExtiR(M−t , N) � TorRt−i−1(M
∗, N)

and

(ii) TorRi (M−t , N) � Extt−i−1
R (M∗, N).

Proof. Conditions (1)–(3) are straightforward. Condition (5) follows eas-
ily from (1)–(4), so only Condition (4) needs some explanation. The critical
fact we need to show is that for any complex of freeR-modules F, HomR(F, N)

and HomR(F, R)⊗R N are isomorphic as complexes: write

F: · · · → Fi+1
fi+1−−→ Fi

fi−→ Fi−1 → · · · ,
where theFi are freeR-modules. The natural mapshi : HomR(Fi, R)⊗RN →
HomR(Fi, N) given by f ⊗ n �→ {a �→ f (a)n} are isomorphisms since Fi is
free. It is easy to check that the diagram

HomR(Fi, R)⊗R N
f ∗i+1⊗N−−−−−−−−→ HomR(Fi+1, R)⊗R N

↓hi ↓hi+1

HomR(Fi, N)
Hom(fi+1,N)−−−−−−−−→ HomR(Fi+1, N)

is commutative, and this establishes our fact.

Suppose M and N are R-modules with M maximal Cohen-Macaulay. Then
Exti (M,R) = 0 for all i ≥ 1, and so by shifting along the short exact sequences
0→ Nn+1 → Gn→ Nn→ 0 (with Gn free) we obtain isomorphisms

(1.2) ExtiR(M,N) � Exti+nR (M,Nn)

for i ≥ 1 and n ≥ 0.
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The Change of Rings Long Exact Sequences of Ext and Tor

Suppose that S is a commutative ring, x is a non-zerodivisor of S and R :=
S/(x). Let M and N be R-modules. Then we have the change of rings long
exact sequence of Ext [6, 11.65]

(1.3)

...
...

...

Ext1
R(M,N)←− Ext2

S(M,N)←− Ext2
R(M,N)←−

Ext0
R(M,N)←− Ext1

S(M,N)←− Ext1
R(M,N)←− 0,

and the change of rings long exact sequence of Tor [6, 11.64]

(1.4)

...
...

...

TorR1 (M,N) −→ TorS2 (M,N) −→ TorR2 (M,N) −→

TorR0 (M,N) −→ TorS1 (M,N) −→ TorR1 (M,N) −→ 0.

2. Vanishing of Ext and Tor over Arbitrary Local Gorenstein Rings

In this section we prove what type of duality between the vanishing of Ext and
Tor holds over arbitrary local Gorenstein rings. It is possible an even stronger
result is true, as we discuss in Section 4, but the main result of this section is
what is true ‘on the surface’. In particular, Theorem 2.1 states that one can flip
the arguments in vanishing Ext modules ‘up to duals’.

Theorem 2.1. Let R be a local Gorenstein ring, and let M and N be
finitely generated maximal Cohen-Macaulay R-modules. Then the following
are equivalent:

(1) TorRi (M,N) = 0 for all i � 0,

(2) ExtiR(M,N∗) = 0 for all i � 0, and

(3) ExtiR(N,M∗) = 0 for all i � 0.

Proof. Suppose we have shown that (1) and (2) are equivalent. By repla-
cing (1) by the equivalent condition that TorRi (N,M) = 0 for all i � 0,
we see then that (1) is equivalent to (3). Hence it suffices to prove (1) and
(2) are equivalent, and for this we only need to assume that N is maximal
Cohen-Macaulay.

We induce upon the dimension of R, say d. If d = 0, then ExtiR(M,N∗) is
the Matlis dual of TorRi (M,N), so the result is immediate in this case.



166 craig huneke and david a. jorgensen

Now assume that d > 0. Choose x ∈ R a non-zerodivisor on Md , N , N∗,
and R. We have

TorRi (M,N) = 0 for all i � 0;

⇐⇒ TorRi (Md,N) = 0 for all i � 0;

and from the long exact sequence of Tor coming from the short exact sequence
0→ N x−→ N → N/xN → 0 and Nakayama’s lemma,

⇐⇒ TorRi (Md,N/xN) = 0 for all i � 0;

and by the standard isomorphisms TorRi (Md,N/xN) � TorR/(x)i (Md/xMd,

N/xN),

⇐⇒ TorR/(x)i (Md/xMd,N/xN) = 0 for all i � 0;

by the induction hypothesis,

⇐⇒ ExtiR/(x)(Md/xMd, (N/xN)∗) = 0 for all i � 0;

and now sinceN is maximal Cohen-Macaulay andR is Gorenstein,N∗/xN∗ �
(N/xN)∗ (where the second module is HomR/(x)(N/xN,R/(x))), thus,

⇐⇒ ExtiR/(x)(Md/xMd,N
∗/xN∗) = 0 for all i � 0;

by the isomorphisms [5] ExtiR(Md,N
∗/xN∗) � ExtiR/(x)(Md/xMd,N

∗/xN∗),

⇐⇒ ExtiR(Md,N
∗/xN∗) = 0 for all i � 0;

and now from the long exact sequence of Ext coming from the short exact
sequence 0→ N∗ x−→ N∗ → N∗/xN∗ → 0 and Nakayama’s lemma,

⇐⇒ ExtiR(Md,N
∗) = 0 for all i � 0;

⇐⇒ ExtiR(M,N∗) = 0 for all i � 0.

Remark 2.2. Suppose M and N are maximal Cohen-Macaulay modules
over the local Gorenstein ring R. Then

ExtiR(M,N) � ExtiR(N
∗,M∗).

This isomorphism can be seen as follows: suppose that i = 1. As M and
N are maximal Cohen-Macaulay, they are reflexive, so short exact sequences
0 → N → T → M → 0 dualize to short exact sequences 0 → M∗ →
T ∗ → N∗ → 0 and vice-versa. The Yoneda definition of Ext1 then gives the
isomorphism.



symmetry in the vanishing of ext over gorenstein rings 167

For i > 1 we have

ExtiR(M,N) � Ext1
R(Mi−1, N)

� Ext1
R(N

∗,M∗i−1)

� Ext1
R(N

∗, (M∗)−i+1)

� ExtiR(N
∗,M∗)

by the i = 1 case

by (2) of Lemma 1.1

by (1.2).

Presumably, one can directly prove this remark using the Yoneda definition
of Ext and the fact that both M and N are maximal Cohen-Macaulay.

Below is an example showing that the hypothesis thatN is maximal Cohen-
Macaulay in the equivalence of (1) and (2) in Theorem 2.1 cannot be dropped.

Example 2.3. Let R be the 3-dimensional hypersurface k[[W,X, Y,Z]]/

(WX − YZ), and set M := k and N := coker

(
w

x

y

z

)
. Then pdR N = 1

(but pdR N∗ = ∞), so we have TorRi (M,N) = 0 for all i � 0. However,
Ext4

R(M,N∗) �= 0. By what is shown in the next section, R is an AB ring.
If it were the case that ExtiR(M,N∗) is zero for all i � 0 then, as R is AB,
Proposition 3.2 shows then that ExtiR(M,N∗) = 0 for all i > dim R, which
would be a contradiction.

3. AB Rings

Let R be a commutative ring. We define the Ext-index of R to be

sup{ n | ExtiR(M,N) = 0 for all i > n and ExtnR(M,N) �= 0 },
where the sup is taken over all pairs of finitely generated R-modules (M,N)

with ExtiR(M,N) = 0 for all i � 0.

Definition 3.1. If R is a local Gorenstein ring of finite Ext-index, we say
that R is an AB ring.

We will prove that all complete intersections are AB rings. More generally,
it is obvious that R is an AB ring if R̂ is (where R̂ is the completion of R),
and we show (3.3) that if R is an AB ring and x1, . . . , xc is a regular sequence,
then R/(x1, . . . , xc) is also an AB ring. The class of AB rings also includes
local Gorenstein rings of ‘minimal’ multiplicity embdim(R) − dim(R) + 2
(see 3.6).

Proposition 3.2. Suppose that R is an AB ring. Then the Ext-index of R
equals dim R.
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Proof. Let n denote the Ext-index of R and d the dimension of R. Let
x1, . . . , xd be a maximal R-sequence. Set M := R/(x1, . . . , xd) and N = k,
the residue field of R. Then ExtiR(M,N) = 0 for i > d and ExtdR(M,N) �
k �= 0. Hence n ≥ d.

Suppose that n > d. There exists a pair of finitely generated R-modules
(M,N) such that ExtiR(M,N) = 0 for i > n and ExtnR(M,N) �= 0. We
have the isomorphisms Exti+1

R ((Md)−d−1, N) � Exti−dR (Md,N) �
ExtiR(M,N) for i > d. Hence Exti ((Md)−d−1, N) = 0 for i > n + 1 and
Extn+1((Md)−d−1, N) �= 0, which contradicts the definition of n. Therefore
n = d.

We of course have the dual notion of Tor-index. If R is local Gorenstein
with finite Tor-index, then it is also equal to dim R, by an argument analogous
to that of 3.2.

Another related property of rings we are interested in is the following. We
say that Ext∗R(M,N) has a gap of length t if for some n ≥ 0, ExtiR(M,N) = 0
for n+1 ≤ i ≤ n+ t , but ExtnR(M,N) and Extn+t+1

R (M,N) are both nonzero.
We have the analogous notion of gap for TorR∗ (M,N). (We allow gaps of length
0.) We set

Ext-gap(R) := sup

{
t ∈ N

∣∣∣∣ Ext∗R(M,N) has a gap of length t

for finite R-modules M and N

}
,

and

Tor-gap(R) := sup

{
t ∈ N

∣∣∣∣ TorR∗ (M,N) has a gap of length t

for finite R-modules M and N

}
.

We say that R is Ext-bounded if it has finite Ext-gap. Similarly, we say R

is Tor-bounded if it has finite Tor-gap.
We list some elementary properties involving finite Ext-index, Tor-index,

Ext-boundedness and Tor-boundedness for local Gorenstein rings.

Proposition 3.3. Let x be a non-zerodivisor of the d-dimensional local
Gorenstein ring R. Then

(1) R is an AB ring if and only if R/(x) is an AB ring.

(2) R has finite Tor-index if and only if R/(x) does.

(3) R is Ext-bounded if and only if R/(x) is.

(4) R is Tor-bounded if and only if R/(x) is.

Proof. (1). Suppose thatR is anAB ring. LetM andN be finitely generated
R/(x)-modules such that ExtiR/(x)(M,N) = 0 for all i � 0. By the change
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of rings long exact sequence of Ext (1.3) we conclude that ExtiR(M,N) = 0
for all i � 0, and so ExtiR(M,N) = 0 for all i > d . Looking at (1.3)
again, we see that ExtiR/(x)(M,N) � Exti+2

R/(x)(M,N) for i > d − 1. But

as ExtiR/(x)(M,N) = 0 for all i � 0, we have ExtiR/(x)(M,N) = 0 for all
i > d − 1. Hence R/(x) is an AB ring.

Now suppose that R/(x) is an AB ring, and let M and N be finitely gen-
erated R-modules such that ExtiR(M,N) = 0 for all i � 0. We have the
isomorphisms

ExtiR(M,N) � Exti−dR (Md,N) � ExtiR(Md,Nd)

which are valid for i > d, the second one being that of (1.2). The short exact
sequence 0 → Nd

x−→ Nd → Nd/xNd → 0 gives rise to the the long exact
sequence of Ext
(3.3.1)
· · · → ExtiR(Md,Nd)

x−→ ExtiR(Md,Nd)→ ExtiR(Md,Nd/xNd)→ · · · .
Since ExtiR(Md,Nd) = 0 for all i � 0, we see that ExtiR(Md,Nd/xNd) = 0
for all i � 0. We have the isomorphisms [5]

(3.3.2) ExtiR/(x)(Md/xMd,Nd/xNd) � ExtiR(Md,Nd/xNd)

for all i ≥ 0. Hence ExtiR/(x)(Md/xMd,Nd/xNd) = 0 for all i � 0, which
means that ExtiR/(x)(Md/xMd,Nd/xNd) = 0 for all i > d − 1, since R/(x)

is an AB ring. Therefore ExtiR(Md,Nd/xNd) = 0 for all i > d − 1. By
(3.3.1) and Nakayama’s Lemma, we conclude that ExtiR(Md,Nd) = 0 for all
i > d − 1, and so ExtiR(M,N) = 0 for all i > d . Therefore R is an AB ring.

The proof of (2) is exactly analogous to the proof of (1), using (1.4) and a
long exact sequence of Tor this time.

(3). Assume that e := Ext-gap(R) < ∞. Let M and N be finitely gener-
ated R/(x)-modules such that ExtiR/(x)(M,N) = 0 for n ≤ i ≤ n + e + 1,
some n ≥ 1. The change of rings long exact sequence of Ext (1.3) shows
that ExtiR(M,N) = 0 for n + 1 ≤ i ≤ n + e + 1. Since Ext-gap(R) = e

we have ExtiR(M,N) = 0 for all i > n. Another look at (1.3) shows that
ExtiR/(x)(M,N) � Exti+2

R/(x)(M,N) for all i > n− 1. Since ExtiR/(x)(M,N) =
0 for i = n, n+ 1, we see then that ExtiR/(x)(M,N) = 0 for i > n− 1 Hence
Ext-gap(R/(x)) ≤ e + 1.

Now assume that e := Ext-gap(R/(x)) < ∞. Suppose that M and N are
finitely generatedR-modules with ExtiR(M,N) = 0 for n ≤ i ≤ n+d+e+1,
some n ≥ 1. We have ExtiR(Md,Nd) � ExtiR(M,N) = 0 for n+d ≤ i ≤ n+
d+e+1. Therefore, from (3.3.1), we get ExtiR(Md,Nd/xNd) = 0 for n+d ≤



170 craig huneke and david a. jorgensen

i ≤ n+d+e. Equivalently, ExtiR/(x)(Md/xMd,Nd/xNd) = 0 for n+d ≤ i ≤
n+d+e. Since Ext-gap(R/(x)) = e, ExtiR/(x)(Md/xMd,Nd/xNd) = 0 for all
i ≥ n+d, which implies, by (3.3.1) and Nakayama’s lemma, ExtiR(Md,Nd) =
0 for all i ≥ n + d, which means ExtiR(M,N) = 0 for all i ≥ n. Therefore
Ext-gap(R) ≤ d + e + 1.

The proof of (4) is similar to the proof of (3).

Theorem 3.4. Assume that R is a local Gorenstein ring. Then

(1) R is an AB ring if and only if it has finite Tor-index;

(2) R is Ext-bounded if and only if it is Tor-bounded;

(3) if R is Ext-bounded, then it is an AB ring.

Proof. We first prove (1). Choose a maximal regular sequence in R and
let I be the ideal generated by this sequence. Proposition 3.3 states that R is
an AB ring if and only if R/I is an AB ring, and R has finite Tor-index if and
only if R/I has finite Tor-index. Hence it suffices to prove (1) in case R is
0-dimensional. In this case ExtiR(M,N) is the Matlis dual of TorRi (M,N∗) so
that the vanishing of one implies the vanishing of the other. This proves (1).

Statement (2) is proved in a similar manner, using Proposition 3.3.
We prove (3). Assume R is Ext-bounded. We prove that R has finite Tor-

index. Let d denote the dimension of R and e := Ext-gap(R), and suppose
that for finite R-modules M and N , TorRi (M,N) = 0 for all i � 0. Let b =
d − depthM so that Mb is maximal Cohen-Macaulay. Choose n largest such
that TorRn (Mb,N) �= 0. Using t = e + n+ 3 in (5)(i) of Lemma 1.1, we have
ExtiR((M

∗
b )−e−n−3, N) � TorRe+n+2−i (Mb,N) = 0 for 1 ≤ i ≤ e + 1. Hence

we have a gap of zero Ext larger than e. Therefore ExtiR((M
∗
b )−e−n−3, N) = 0

for all i ≥ 1, which forces n = 0. Thus TorRi (M,N) = 0 for all i > d.

The following Corollary is an almost immediate consequence of Proposi-
tion 3.4, as regular local rings are clearly Ext-bounded.

Corollary 3.5. Let R be a local Gorenstein ring. If R is a complete
intersection, then R is Ext-bounded. In particular, R is an AB ring.

Proof. Since R ↪→ R̂ is a faithfully flat extension, ExtiR(M,N) = 0 if
and only if Exti

R̂
(M̂, N̂) = 0 and so R is an AB ring if R̂ is. Therefore we may

without loss of generality assume thatR = S/(x1, . . . , xc)where S is a regular
local ring and x1, . . . , xc is anS-regular sequence. By Proposition 3.3 it suffices
to prove that S is Ext-bounded. But this is trivial as every finitely generated
module over S has projective dimension ≤ dim S, so that ExtiR(M,N) = 0
for i > dim S and Ext-gaps can occur of length no longer than dim S − 2.
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It could be that all local Gorenstein rings are AB rings; we have no counter-
example. The class of AB rings is strictly bigger than the class of complete
intersections as the next theorem proves, albeit for rather strong reasons. (See,
however, Theorem 3.8 and Propostion 4.4.)

Theorem 3.6. Let (R,�, k) be a local Gorenstein ring with multiplicity
equal to embdim R − dim R + 2. Assume that embdim R > dim R + 2 (so
that R is not a complete intersection). Then for finitely generated R-modules
M and N , ExtiR(M,N) = 0 for all i � 0 if and only if either M or N has
finite projective dimension. In particular, R is an AB ring.

Proof. We induce on d := dim R.
d = 0. In this case by duality we have that TorRi (M,N∗) = 0 for all

i � 0. Replace M by a high enough syzygy such that TorR3 (M,N∗) =
TorR4 (M,N∗) = TorR5 (M,N∗) = 0. Now the following lemma, 3.7, says
that either M or N is free.

d > 0. By replacing M and N by syzygies we can assume they are both
maximal Cohen-Macaulay. Choose a minimal generator x of the maximal ideal
of R such that the multiplicity of R/(x) is embdim R/(x) − dim R/(x) + 2,
and x is a non-zerodivisor on both M and N . Once again we use the fact that
ExtiR(M,N) = 0 for all i � 0 if and only if ExtiR/(x)(M/xM,N/xN) = 0 for
all i � 0. By induction eitherM/xM orN/xN has finite projective dimension
over R/(x). But then either M or N has finite projective dimension over R.

Lemma 3.7. Let (R,�, k) be a 0-dimensional local Gorenstein ring with
multiplicity embdim R + 2. Assume embdim R > 2 (so that R is not a
complete intersection). Let M and N be finitely generated R-modules. Then
Tor3

R(M,N) = Tor4
R(M,N) = Tor5

R(M,N) = 0 if and only if either M or N
is free.

Proof. Let n denote the embedding dimension of R. Assume that M is
not free. If k is a summand of Mi for any 0 ≤ i ≤ 4, then we get right away
that N is free, since TorR1 (Mi,N) = TorRi+1(M,N) = 0 would then imply
TorR1 (k,N) = 0. Therefore assume k is not a summand ofMi for all 0 ≤ i ≤ 4.
Replace M by its first syzygy. Then as M ⊆ �F , for F a free module, we
have �2M = 0 (since �3 = 0). Let bi denote the ith Betti number of M and
s := dimk �M . Then, as in Lescot’s paper [3, Lemma 3.3], M is 3-exceptional
and b1 = nb0 − s, b2 = b0(n

2 − 1)− sn and b3 = b0(n
3 − 2n)− s(n2 − 1).

Now suppose that N is also not free. Also replace N by its first syzygy, so
that �2N = 0. Write �N � kd . We have a short exact sequence 0→ kd →
N → kc → 0, where c is the minimal number of generators of N . Applying
M ⊗R to this short exact sequence and using the fact that Tor1

R(M,N) =
Tor2

R(M,N) = Tor3
R(M,N) = 0 we get cb2 = db1 and cb3 = db2. Letting
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α := d/c we can write these equations as b2 = αb1 and b3 = αb2 = α2b1.
Substituting for the bi we get

b0(n
2 − 1)− sn = α(nb0 − s)

b0(n
3 − 2n)− s(n2 − 1) = α2(nb0 − s).

After rearranging we arrive at

b0(n
2 − αn− 1) = s(n− α)

b0(n
3 − α2n− 2n) = s(n2 − α2 − 1).

Now cross multiplying, cancelling off the b0s terms, and simplifying we are
left with the condition α2 − nα + 1 = 0. This says that α ∈ Q is algebraic
over Z. Hence α is an integer, and the only choice is α = 1. But then n = 2,
which is a contradiction. Hence N must be free.

There also exist AB rings which are not complete intersections and which
have multiplicity > embdim R − dim R + 2:

Theorem 3.8. Suppose that (R,�R, k) and (S,�S, k) are local rings
essentially of finite type over the same field k. Set A := (R ⊗k S)P , where
P := �R⊗k S+R⊗k�S . If bothR and S are Gorenstein thenA is Gorenstein,
and the multiplicity of A is > embdim A− dim A+ 2. If R is an AB ring and
S is the quotient of a regular local ring by a regular sequence (so that S is a
complete intersection), then A is an AB ring; A is not a complete intersection
if R is not.

Proof. Suppose that R and S are Gorenstein. Obviously A is Noetherian,
being a localization of a finitely generated k-algebra. By applying [7] we have,
moreover, that it is Gorenstein. Proposition 4.3 of the next section shows that
there exist finitely generated A-modules M and N both of infinite projective
dimension overA such that ExtiA(M,N) = 0 for all i > dim A. It follows from
Theorem 3.6 that the multiplicity of A is larger than embdim A− dim A+ 2.

Suppose now that R is an AB ring and that S is the quotient of the regular
local ring (T ,�T , k) by the T -regular sequence x := x1, . . . , xc. Clearly A is
isomorphic to (R ⊗k T )P ′/(1 ⊗ x) where P ′ := �R ⊗k T + R ⊗k �T and
1⊗ x is the regular sequence 1⊗ x1, . . . , 1⊗ xc. Hence by Proposition 3.3, A
is an AB ring if and only if (R ⊗k T )P ′ is an AB ring. But now going modulo
1 ⊗ y1, . . . , 1 ⊗ yd where d := dim T and y1, . . . , yd a regular system of
parameters of T shows, again by Proposition 3.3, that (R ⊗k T )P ′ is an AB
ring if and only if R is an AB ring.

Recall that a local ring (A,�, k) is a complete intersection precisely when

dimk H1(A) = embdim A− dim A,
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where H1(A) is the first Koszul homology module on a system of generators
for the maximal ideal of A. In the current situation we have dimk H1(A) =
dimk H1(R)+dimk H1(S), embdim A = embdim R+embdim S, and dim A =
dim R+ dim S. Hence if R is not a complete intersection, then dimk H1(R) >

embdim R − dim R, so that dimk H1(A) > embdim A− dim A.

4. Vanishing of Ext and Tor over AB Rings

In this section we prove that AB rings are a class which gives the duality of
vanishing Ext discussed in the introduction. Our main theorem states:

Theorem 4.1. Suppose that R is an AB ring, and let M and N be finitely
generated R-modules. Then

ExtiR(M,N) = 0 for all i � 0

if and only if
ExtiR(N,M) = 0 for all i � 0.

Proof. First assume the theorem is true if both M and N are maximal
Cohen-Macaulay. For the general case, take syzygies Mm and Nn (m, n ≥ 0)
of M and N , respectively, which are maximal Cohen-Macaulay. We have
ExtiR(M,N) = 0 for all i � 0 if and only if ExtiR(Mm,N) = 0 for all i � 0
and by (1.2) this is equivalent to ExtiR(Mm,Nn) = 0 for all i � 0. Thus
ExtiR(M,N) = 0 for all i � 0 if and only if ExtiR(Mm,Nn) = 0 for all i � 0,
and so the theorem holds generally.

Now suppose thatM andN are maximal Cohen-Macaulay and ExtiR(M,N)

= 0 for all i � 0. Then for all t ≥ 1, ExtiR(M−t , N) = 0 for all i � 0. SinceR
is an AB ring, it follows from Proposition 3.2 that for all t ≥ 1 and all i > d :=
dim(R), ExtiR(M−t , N) = 0. However, ExtiR(M−t , N) � Ext1

R(Mi−t−1, N).
Hence for all t ≥ 1 and all i > d, Ext1

R(Mi−t+1, N) = 0. By varying i and
t , we obtain that Ext1

R(M−t , N) = 0 for all t ≥ 1. Therefore by (5)(i) of
Lemma 1.1, TorRt−2(M

∗, N) = TorRt−2(N,M∗) = 0 for all t ≥ 3. Applying
Theorem 2.1 then shows that ExtiR(N,M) = 0 for all i � 0.

As an immediate corollary, we have an analogue of Theorem 2.1

Corollary 4.2. Suppose that R is an AB ring, and let M and N be
finitely generated maximal Cohen-Macaulay R-modules. Then the following
are equivalent:

(1) TorRi (M,N) = 0 for all i � 0,

(2) ExtiR(M
∗, N) = 0 for all i � 0, and
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(3) ExtiR(N
∗,M) = 0 for all i � 0.

Proof. Due to the natural symmetry in Tor, it suffices to prove just the
equivalence between (1) and (2), and for this we only need to assume that M
is maximal Cohen-Macaulay.

We have

TorRi (M,N) = 0 for all i � 0⇐⇒ TorRi (N,M) = 0 for all i � 0

⇐⇒ ExtiR(N,M∗) = 0 for all i � 0 by 2.1

⇐⇒ ExtiR(M
∗, N) = 0 for all i � 0 by 4.1

If we strengthen the condition on the symmetry in the vanishing of Ext we
get an equivalent definition of AB ring.

Proposition 4.3. Let (R,�, k) be a local ring of dimension d. Then the
following are equivalent:

(1) R is an AB ring;

(2) For finitely generated R-modules M and N , ExtiR(M,N) = 0 for i > d

if and only if ExtiR(N,M) = 0 for i > d.

Proof. (1) �⇒ (2). This is simply Theorem 4.1 coupled with Proposi-
tion 3.2.

For (2)�⇒ (1), we get right away that R is Gorenstein from the hypothesis
with M := R and N := k.

For the remainder of the proof we will use the following fact. If M and
N are finitely generated R-modules, then ExtiR(M,N) � Exti+nR (M,Nn)

for i > d and n ≥ 0. This follows from the isomorphisms ExtiR(M,N) �
Exti−dR (Md,N) � Exti−d+n(Md,Nn) � Exti+nR (M,Nn) for i > d and n ≥ 0,
where the middle isomorphism is formula (1.2) of Section 1.

Suppose that ExtiR(M,N) = 0 for all i > d + n, some fixed n ≥ 1. Then
we have

ExtiR(Mn,N) = 0 for i > d;
�⇒ ExtiR(N,Mn) = 0 for i > d by hypothesis;
�⇒ Exti+nR (N,Mn) = 0 for i > d;
�⇒ ExtiR(N,M) = 0 for i > d by the isomorphism above;
�⇒ ExtiR(M,N) = 0 for i > d by hypothesis.
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Our final proposition in this section is an observation that there are circum-
stances other than where one module has finite projective dimension or where
the ring is a complete intersection in which all large Ext modules vanish.

Proposition-Example 4.4. Let (R,�R, k) and (S,�S, k) be two local
Gorenstein rings essentially of finite type over the same field k, and let MR

be a finitely generated R-module and NS a finitely generated S-module. Set
A := (R⊗k S)P where P := (�R ⊗k S +R⊗k �S), M := (MR ⊗k S)P and
N := (R ⊗k NS)P . Then A is a local Gorenstein ring, M has finite projective
dimension over A if and only if MR has finite projective dimension over R and
similarly for N , and ExtiA(M,N) = 0 for all i > dim A.

Proof. We remark again that A is also Gorenstein by [7].
For the second statement, we induce on d := dim A = dim R + dim S.

Suppose that A has dimension 0. In this case duality yields ExtiA(M,N)∗ �
TorAi (M,N∗). Thus it suffices to prove TorAi (M,N∗) = 0 for all i > 0.

We first claim that HomR⊗kS(MR ⊗k S, R ⊗k S) � HomR(MR,R) ⊗k S.
To see this, note that these modules are naturally isomorphic if MR is free
R-module. In general, let Rm ρ−→ Rn → MR → 0 be a presentation of MR

over R. Let A′ := R ⊗k S and M ′ := MR ⊗k S. This yields a presentation
(A′)m→ (A′)n→ M ′ → 0 of M ′ over A′. We obtain a commutative diagram

0 −→ HomA′(M
′, A′) −→ HomA′((A

′)n, A′) −→ HomA′((A
′)m,A′)

↓ ↓
0 −→ HomR(MR,R)⊗k S −→ HomR(R

n, R)⊗k S −→ HomR(R
m,R)⊗k S,

where the first row is exact and the vertical arrows are isomorphisms. To
establish the claim we only need to know that the bottom row is exact, but
this follows from the fact that 0 → HomR(MR,R) → HomR(R

n, R) →
HomR(R

m,R) is an exact sequence of k-modules and S is flat as a k-module.
Localizing the isomorphism in the claim above at P , we see that the A-

moduleM∗ := HomA(M,A) comes from theR-module HomR(MR,R). Sim-
ilarly N∗ := HomA(N,A) comes from the S-module HomS(NS, S). Hence
there is no distinction between proving TorAi (M,N∗) = 0 for all i > 0 and
proving TorAi (M,N) = 0 for all i > 0. We will prove the latter.

Let (F, f ) be an R-free resolution of MR . Then F is an exact sequence of
k modules, and since S is flat as a k-module, F ⊗k S is an exact sequence,
of R ⊗k S-modules. Thus (F ⊗k S)P is an A-free resolution of M . To show
that TorAi (M,N) = 0 for all i > 0 we will simply show that the complex
(F ⊗k S)P ⊗A N is acyclic (meaning the homology is zero except in degree
zero).
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For all i we have a commutative diagram

(Fi ⊗k S)⊗R⊗kS (R ⊗k NS)
(fi⊗S)⊗(R⊗NS)−−−−−−−−−−→ (Fi−1 ⊗k S)⊗R⊗kS (R ⊗k NS)

↓� ↓�
Fi ⊗k NS

fi⊗NS−−−−−−−−−−→ Fi−1 ⊗k NS,

where the vertical arrows are the natural isomorphisms. Hence (F⊗k S)⊗R⊗kS

(R⊗k NS) and F⊗k NS are isomorphic complexes of R ⊗k S-modules. Since
NS is flat as a k-module, the latter is acyclic, and therefore so is (F⊗kRS)⊗R⊗kS

(R ⊗k NS). Finally, localizing at P we get that (F ⊗k S)P ⊗A N is acyclic,
and this finishes the proof in the d = 0 case.

Now without loss of generality assume that dim R > 0. From the discussion
above we know that M1 � ((MR)1⊗k S)P . Let x be a non-zerodivisor on both
(MR)1 and R. Then x ⊗ 1 is a non-zerodivisor on M1, A and N , and we have

A/(x ⊗ 1) � (R/(x)⊗k S)P ,

M1/(x ⊗ 1)M1 � ((MR)1/x(MR)1 ⊗k S)P

and
N/(x ⊗ 1)N � (R/(x)⊗k NS)P .

Hence by induction we have that

ExtiA/(x⊗1)(M1/(x ⊗ 1)M1, N/(x ⊗ 1)N) = 0

for all i > d − 1. Now (3.3.1) and (3.3.2) show that ExtiA(M1, N) = 0 for all
i > d − 1, which means that ExtiA(M,N) = 0 for all i > d.

5. What does the vanishing of Ext mean?

Many of the results in this section are closely related to the work of Auslander
and Bridger. See [1], and the writeup [4] of the contents of [1]. However, none
of the results below is explicitly in these works, and we found they gave us a
better understanding of what the vanishing of Ext means.

The natural maps M∗⊗RN→HomR(M,N) and M⊗RN
∗→HomR(M,N)∗

Assume that M is maximal Cohen-Macaulay. From the short exact sequence
0→ M1 → F → M → 0 we get the dual short exact sequence 0→ M∗ →
F ∗ → M∗1 → 0, and these yield a commutative diagram

M∗ ⊗R N α−−−→ F ∗ ⊗R N −−−→ M∗1 ⊗R N −−−→ 0

↓f0 ↓g ↓f1

0 −−−→ HomR(M,N) −−−→ HomR(F,N)
β−−−→ HomR(M1, N),
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where the vertical arrows are the natural maps M∗ ⊗R N → HomR(M,N)

given by φ ⊗ n �→ {m �→ φ(m)n}. Note that g is an isomorphism (since F is
free), ker α � TorR1 (M

∗
1 , N) and coker β � Ext1

R(M,N). From this diagram
one easily deduces the following three facts.

(1) ker f1 � coker f0,

(2) TorR1 (M
∗
1 , N) � ker f0, and

(3) Ext1
R(M,N) � coker f1.

Building a diagram as above for each of the exact sequences 0→ Mi+1 →
Fi → Mi → 0 and using the corresponding three facts as above, we see that
we have exact sequences

0→ Ext1
R(Mi−2, N)→ M∗i ⊗R N

→ HomR(Mi,N)→ Ext1
R(Mi−1, N)→ 0,

and

0→ TorR1 (M
∗
i+1, N)→ M∗i ⊗R N

→ HomR(Mi,N)→ TorR1 (M
∗
i+2, N)→ 0.

For i ≥ 2 the first exact sequence can be written as

(5.1) 0→ Exti−1
R (M,N)→ M∗i ⊗R N

→ HomR(Mi,N)→ ExtiR(M,N)→ 0.

An immediate observation is

Proposition 5.2. Let R be a local Gorenstein ring, and let M and N

be finitely generated R-modules with M maximal Cohen-Macaulay. Then
ExtiR(M,N) = 0 for all i � 0 if and only if the natural maps M∗i ⊗R N →
HomR(Mi,N) are isomorphisms for all i � 0.

Note also that building exact sequences (5.1) for arbitrarily large negative
syzygies of M , and then splicing the resulting exact sequences together, we
obtain a doubly infinite long exact sequence

(5.3) · · · → M∗i ⊗R N → HomR(Mi,N)

→ M∗i+i ⊗R N → HomR(Mi+1, N)→ · · · .
Now suppose that N is maximal Cohen-Macaulay and that Ext1

R(M,N) =
0. From the short exact sequence 0→ M1 → F → M → 0 we get the short
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exact sequence 0 → HomR(M,N) → HomR(F,N) → HomR(M1, N) →
0, and a commutative diagram

M1 ⊗R N∗ γ−−−→ F ⊗R N∗ −−→ M ⊗R N∗ −−→ 0

↓h1 ↓g′ ↓h0

0 −−→ HomR(M1, N)∗ −−→ HomR(F,N)∗ δ−−→ HomR(M,N)∗,

where the vertical arrows are the natural maps M ⊗R N∗ → HomR(M,N)∗
given by m⊗ φ �→ {ψ �→ φ(ψ(m))}. Note that g′ is an isomorphism (since
F is free), ker γ � TorR1 (M,N∗) and coker δ � Ext1

R(HomR(M1, N), R).
Regarding this diagram, we have the following three facts.

(1) ker h0 � coker h1,

(2) TorR1 (M,N∗) � ker h1, and

(3) Ext1
R(HomR(M1, N), R) � coker h0.

Now assume that ExtiR(M,N) = 0 for all i > 0, equivalently Ext1
R(Mi,N) =

0 for all i ≥ 0. Constructing such a diagram as above for each of the short
exact sequences 0 → Mi+1 → Fi → Mi → 0 and using the corresponding
three facts as above we obtain exact sequences

(5.4) 0→ TorRi (M,N∗)→ Mi ⊗R N∗
hi−→ HomR(Mi,N)∗ → TorRi−1(M,N∗)→ 0

for i ≥ 2. From Theorem 2.1 we know that ExtiR(M,N) = 0 for all i � 0 if
and only if TorRi (M,N∗) = 0 for all i � 0. Hence

Proposition 5.5. Let R be a local Gorenstein ring, and let M and N be
finitely generated R-modules with N maximal Cohen-Macaulay. Then
Exti (M,N) = 0 for all i � 0 implies the natural maps Mi ⊗R N∗ →
HomR(Mi,N)∗ are isomorphisms for all i � 0.

Theorem 5.9 below contains a similar result.

Ext and Stable Hom

Recall that the stable Hom, HomR(M,N), is the cokernel of the natural map
M∗ ⊗R N → HomR(M,N). Equivalently, it is the quotient of HomR(M,N)

by maps f : M → N which factor through a free module. Stable Homs offer
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a convenient way of interpreting the vanishing of all higher ExtiR(M,N): from
(5.1) (and the exact sequence involving Ext preceding it) we see that

(5.6) ExtiR(M,N) � HomR(Mi,N)

for i ≥ 1. Hence we may record the following as a corollary of 5.2.

Corollary 5.7. Let R be a local Gorenstein ring, and let M and N

be finitely generated R-modules with M maximal Cohen-Macaulay. Then
ExtiR(M,N) = 0 for all i � 0 if and only if for all i � 0 every map
Mi → N factors through a free module.

The next Proposition allows us to shift among the stable Homs with ease,
which often can clarify basic vanishing results concerning Ext. (cf. Remark 2.2
and (1.2).)

Proposition 5.8. Let M and N be finitely generated maximal Cohen-
Macaulay modules over the local Gorenstein ring R. Then

(1) HomR(M,N) � HomR(N
∗,M∗).

(2) HomR(M,N) � HomR(Mt,Nt) for all t ∈ Z.

Proof. (1). The isomorphism is induced by the obvious mapping
HomR( , R) : HomR(M,N) → HomR(N

∗,M∗). The fact that the induced
map on stable Homs is an isomorphism is straightforward (since M and
N are reflexive) provided it is well-defined. But this is clear since if f ∈
HomR(M,N) factors through a free module F , then HomR(f, R) factors
through F ∗.

(2). It is enough to prove (2) in the case t=1. Given a map f∈HomR(M,N)

we get a map f1 ∈ HomR(M1, N1) by completing the diagram

(5.8.1)

0 −−−→M1 −−−→ F ε−−−→M −−−→ 0

↓f1 ↓f0 ↓f
0 −−−→ N1 −−−→ G ε′−−−→ N −−−→ 0.

Define 4 : HomR(M,N)→ HomR(M1, N1) by 4(f̄ ) = f̄1.
We first show that 4(f̄ ) is determined independent of the choice of chain

map {f0, f1}. Suppose that g0 : F → G and g1 : M1 → N1 are two other maps
making the diagram (5.8.1) commute and such that ε′g0 = f ε. Then we have
the standard homotopy h : F → N1 such that f1 − g1 = h(M1 ↪→ F). That
is, f1 − g1 factors through a free module, so that f̄1 = ḡ1 in HomR(M1, N1).
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Next we show 4 is well-defined. Suppose that f ∈ HomR(M,N) factors
through a free module H . Then f1 = 0 completes the diagram

0 −−−→M1 −−−→ F ε−−−→ M −−−→ 0

↓ ↓ ↓
0 −−−→ H −−−→ H −−−→ 0

↓ ↓ ↓
0 −−−→ N1 −−−→ G ε′−−−→ N −−−→ 0.

Hence, 4(f̄ ) = 0, as desired.
In order to show that 4 is an isomorphism we exhibit its inverse. Let g be

in HomR(M1, N1). We dualize and complete the diagram

0 −−−→M∗ −−−→ F ∗ −−−→M∗1 −−−→ 0
↑
(g∗)1

↑
(g∗)0

↑
g∗

0 −−−→ N∗ −−−→ G∗ −−−→ N∗1 −−−→ 0.

Define 5 : HomR(M1, N1)→ HomR(M,N) by 5(ḡ) = (g∗)∗1. It’s not hard
to see that 4 and 5 are inverses of one another (since M and N are reflexive).

Vanishing Ext and Cohen-Macaulayness

We end with a theorem which shows the relationship between the vanishing of
d consecutive Ext modules and the Cohen-Macaulayness of a certain tensor
product.

Theorem 5.9. Let R be a d-dimensional local Gorenstein ring, and let
M and N be maximal Cohen-Macaulay modules. Consider the following two
conditions.

(1) M∗ ⊗R N is maximal Cohen-Macaulay,

(2) Ext1
R(N,M) = · · · = ExtdR(N,M) = 0.

Then (2) implies (1). If we assume that Ext1
R(N,M), . . . ,ExtdR(N,M) have

finite length, then (1) implies (2). Furthermore, if (1) holds then HomR(N,M)

is maximal Cohen-Macaulay and M∗ ⊗R N � HomR(N,M)∗. If (1) holds
and R is also integrally closed, then M∗ ⊗R N � HomR(M,N).

Proof. We first prove that if (1) holds then the R-module HomR(N,M) is
maximal Cohen-Macaulay and M∗⊗R N � HomR(N,M)∗. Note that as both
M andN are reflexive, the natural map HomR(N,M)→ HomR(M

∗, N∗) is an
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isomorphism. SinceM∗⊗RN is maximal Cohen-Macaulay so is (M∗⊗RN)∗,
and we have

(M∗ ⊗R N)∗ = HomR(M
∗ ⊗R N,R)

� HomR(M
∗, N∗) by Hom-tensor adjointness

� HomR(N,M)(5.9.1)

Hence HomR(N,M) is maximal Cohen-Macaulay and M∗ ⊗R N � (M∗ ⊗R

N)∗∗ � HomR(N,M)∗.
We prove (1)�⇒ (2) under the assumption that Ext1

R(N,M), . . . ,ExtdR(N,

M) have finite length. We induce on d. The case in which d = 0 is vacuous.
d = 1. Since Ext1

R(N,M) has finite length and M and N are maximal
Cohen-Macaulay, we can choose a non-zerodivisor x ∈ R such that x is
a non-zerodivisor on both M and N and x Ext1

R(N,M) = 0. For any R-
module X we let X denote X/xX, and we let ∗ indicate Hom into either R
or R depending on the module in question. We have the short exact sequence
0→ M x−→ M → M → 0, which yields the exact sequence

0→ HomR(N,M) x−→ HomR(N,M)

→ HomR(N,M)→ Ext1
R(N,M)→ 0.

Hence length(HomR(N,M)) = length(HomR(N,M))+length(Ext1
R(N,M)).

Note that for any maximal Cohen-Macaulay R-module X, X∗ � X
∗
. We have

length(HomR(N,M)) = length((M
∗ ⊗R N)∗) by (5.9.1)

= length(M
∗ ⊗R N) since R is 0-dimensional

= length(M∗ ⊗R N) since M
∗ � M∗

= length(M∗ ⊗R N)

= length(HomR(N,M)∗) by (5.9.1)

= length(HomR(N,M)
∗
)

= length(HomR(N,M)) since R is 0-dimensional.

Therefore

length(HomR(N,M)) = length(HomR(N,M))+ length(Ext1
R(N,M)),

and so Ext1
R(N,M) = 0.

d > 1. Choose a parameter x ∈ ∩di=1 annR ExtiR(N,M). We have M
∗ ⊗R

N � M∗ ⊗R N is maximal Cohen-Macaulay. The short exact sequence 0→
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M x−→ M → M → 0 yields exact sequences

(5.9.2) 0→ ExtiR(N,M)→ ExtiR(N,M)→ Exti+1
R (N,M)→ 0

for i = 1, . . . , d−1. Hence ExtiR(N,M) have finite length for 1 ≤ i ≤ d−1.
Since ExtiR(N,M) � Exti

R
(N,M) for all i [5], it follows by induction that

Ext1
R
(N,M) = · · · = Extd−1

R
(N,M) = 0. Now the exact sequences (5.9.2),

for i = 1, . . . , d − 1, and the fact that ExtiR(N,M) � Exti
R
(N,M) for all

i ≥ 1 gives ExtiR(N,M) = 0 for i = 1, . . . , d.
Assume (2). Note then that HomR(N,M) is maximal Cohen-Macaulay: let

F : · · · → F1 → F0 → N → 0 be an R-free resolution of N . Applying
HomR( ,M) and using our hypothesis we get the exact sequence

0→ HomR(N,M)→ HomR(F0,M)→ · · · → HomR(Fd+1,M).

Each HomR(Fi,M) is maximal Cohen-Macaulay since M is. By counting
depths along this exact sequence we get the desired conclusion.

For (2) �⇒ (1) we again induce on d. The case d = 0 is trivial.
d = 1. Let x be a non-zerodivisor on both M and N . The short exact

sequence 0→ M x−→ M → M → 0 and our hypothesis yield the short exact
sequence

0→ HomR(N,M) x−→ HomR(N,M)→ HomR(N,M)→ 0.

Therefore

(5.9.3) HomR(N,M) � HomR(N,M)

Consider the natural map M∗ ⊗R N h−→ HomR(N,M)∗. We have a commut-
ative diagram

M∗ ⊗R N h−−−−→ HomR(N,M)∗

↓� ↓�
M
∗ ⊗R N �−−−−→ HomR(N,M)∗

where the right vertical arrow comes from (5.9.3) and the bottom arrow is the
isomorphism of (5.9.1). Thus h is an isomorphism modulo x. By Nakayama’s
lemma, h must be onto. Now we have a short exact sequence

0→ K → M∗ ⊗R N h−→ HomR(N,M)∗ → 0.
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The fact that HomR(N,M) is maximal Cohen-Macaulay implies that K = 0,
and therefore K = 0. Thus h is an isomorphism and M∗ ⊗R N is maximal
Cohen-Macaulay.

d > 1. For x a non-zerodivisor on M and N , the hypothesis yields
Ext1

R
(N,M) = · · · = Extd−1

R
(N,M) = 0, so by induction M

∗ ⊗R N is
maximal Cohen-Macaulay, which means so is M∗ ⊗R N .

Finally suppose that R is integrally closed. There is always a natural map
from HomR(M,N)→ HomR(N,M)∗ obtained by composition, and this map
is an isomorphism if eitherN orM is free. SinceM andN are maximal Cohen-
Macaulay modules andRP is regular if the height ofP is at most one, it follows
that this natural map is an isomorphism in codimension one. It is a standard
result that a map between reflexive modules which is an isomorphism in codi-
mension one must itself be an isomorphism. Hence, as both HomR(M,N) and
HomR(N,M)∗ are reflexive, the natural map HomR(M,N)→HomR(N,M)∗
is an isomorphism. The stated isomorphism of M∗ ⊗R N with HomR(M,N)

follows from the above paragraph.

6. Questions

This work leaves quite a few questions unresolved. We list a few for further
study. Perhaps the most intriguing is

1. Are all local Gorenstein rings AB rings?

Some other interesting questions are:

2. Let R and S be AB rings which are essentially of finite type over the
same field k. IsR⊗k S locally an AB ring if neitherR nor S is a complete
intersection?

3. Are localizations of AB rings AB rings?

4. Are AB rings Ext-bounded?

Note added in proof. This question has recently been answered in the
negative by the second author and L. M. Şeqa in ‘Nonvanishing cohomology
and classes of Gorenstein rings’, Preprint, available at
http://www.arxiv.org/abs/math/0306001.
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