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Abstract This article shows how to evaluate rotational
symmetry numbers for different molecular configurations
and how to apply them to transition state theory. In general,
the symmetry number is given by the ratio of the reactant and
transition state rotational symmetry numbers. However, spe-
cial care is advised in the evaluation of symmetry numbers
in the following situations: (i) if the reaction is symmetric,
(ii) if reactants and/or transition states are chiral, (iii) if the
reaction has multiple conformers for reactants and/or tran-
sition states and, (iv) if there is an internal rotation of part
of the molecular system. All these four situations are treated
systematically and analyzed in detail in the present article.
We also include a large number of examples to clarify some
complicated situations, and in the last section we discuss an
example involving an achiral diasteroisomer.
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1 Introduction

Transition state theory (TST) [1–6] is the most widely used
method for calculating rate constants of chemical reactions.
The conventional TST rate expression may be written

kTST(T ) = σ
kBT

h

QTS(T )

�R(T )
exp

[
−V ‡/kBT

]
(1)

where kB is Boltzmann’s constant; h is Planck’s constant;
V ‡ is the classical barrier height; T is the temperature and σ

is the reaction-path symmetry number; QTS(T ) and �R(T )

are the quantum mechanical transition state quasi-partition
function and reactant partition function, respectively, without
rotational symmetry numbers, and with the zeroes of energy
at the zero-point-exclusive energies of the saddle point and
equilibrium reactants, respectively. QTS(T ) is referred to as
a quasi-partition function because it is missing the vibra-
tional degree of freedom corresponding to the reaction coor-
dinate. �R(T ) is the unitless reactant partition function for
unimolecular reactions and the reactants partition function
per unit volume for bimolecular reactions. Specifically for
bimolecular reactions (A + B → P), the reactants partition
function can be factorized as �R(T ) = �

A,B
rel (T )QR(T ) =

�
A,B
rel (T )QA(T )QB(T ), where �

A,B
rel is the relative transla-

tional motion per unit volume and QR(T ) = QA(T )QB(T )

is the unitless reactants partition function for the internal
motions. The present article is mainly concerned with σ .

Equation (1) can be generalized by variationally optimiz-
ing the transition state (so it is no longer located at the saddle
point) and by adding a transmission coefficient to account
for recrossing and quantum effects (including tunnelling)
[3–6]. These generalizations do not change the considera-
tions involved in giving a value to σ .

In a classic article, Pollak and Pechukas [7] sorted out con-
ceptual difficulties involving σ and proved that it is always
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equal to the ratio of the total symmetry number of the reac-
tant divided by the total symmetry of the transition state.
Despite the simplicity and clarity of this result, it can some-
times be confusing to apply it to complex reactions, because it
may require considering more than the usual rotational sym-
metry numbers, and it is discouraging to find that in some
recent applications that the symmetry numbers are ignored,
ill-defined, or wrong. In addition, the increased complexity
of new applications also raises interesting new questions. For
these reasons it is useful to review some of the arguments of
Pollak and Pechukas and to add some new comments on the
subject. It should be noted that symmetry number arguments
similar to those of Pollak and Pechukas were also given by
Coulson [8].

In conventional TST, the forward thermal rate constant
can be calculated with information about only two config-
urations, i.e., reactants and the transition state. Leaving the
symmetry numbers out of the rotational partition function
in Eq. (1) means that we are treating the identical particles
as distinguishable, and in this case the rotational partition
functions would be given by

Q∗
rot(T ) = 2I

h̄2β
(2a)

for a lineal molecule, where I is the moment of inertia, h̄ is
Planck’s constant divided by 2 π , and β is defined as 1/kBT .
For nonlinear molecules, the expression for the rotational
partition function of distinguishable particles Q∗

rot(T ) is

Q∗
rot(T ) =

[(
2

h̄2β

)3

π IA IB IC

]1/2

(2b)

where IA, IB and IC are the principal moments of inertia.
The symmetry number in Eq. (1) arises from the indistin-
guishability of identical particles, i.e., the rotational partition
is given by

Qrot(T ) = 1

σrot
Q∗

rot(T ) (3a)

where σrot is the rotational symmetry number. Therefore the
ratio between the rotational partition functions of the transi-
tion state, Qrot,TS(T ), and reactants, Qrot,R(T ), leads to:

Qrot,TS(T )

Qrot,R(T )
= σrot,R

σrot,TS

Q∗
rot,TS(T )

Q∗
rot,R(T )

= σ
Q∗

rot,TS(T )

Q∗
rot,R(T )

(3b)

Therefore, in simple cases, the rotational symmetry num-
bers in the above partition functions account for all the effects
of nuclear indistinguishablility on reaction rates, and the
symmetry number in Eq. (1) is given by

σ = σrot,R/σrot,TS, (4)

withσrot,R andσrot,TS being the rotational symmetry numbers
of the reactants and the transition state, respectively. For a
bimolecular reaction, where the reactants are different, σrot,R

Table 1 Ratios of approximate rotational partition functions for 16O2
to the accurate one with only odd J

Temperature (K) Classical with Quantal without
symmetry factora symmetryb

1,000 0.9993 2.0000

600 0.9988 2.0000

300 0.9977 2.0000

200 0.9965 2.0000

100 0.9931 2.0000

50 0.9862 2.0000

25 0.9726 2.0000

10 0.9326 2.0002

5 0.8883 2.0452

1 5.1368 22.3732

For this illustration we use the rigid rotor approximation with a
moment of inertia of 75,894 me bohr2, where me is the mass of an
electron
a Ratio of Eq. (3a) with σrot = 2 to accurate result
b Ratio of partition function with all J to partition function with only
odd J

is the product of the two σrot numbers. In some cases, it will
not be sufficient to consider just rotational symmetry num-
bers, σrot. We will need to consider rotational translational
symmetry numbers σr–t .

It is useful to review the fundamental origin of the sym-
metry factors. Consider 16O2 as an example. Because the 16O
nucleus is a boson, the nuclear spin wave function is sym-
metric under interchange of the nuclei. By Bose–Einstein sta-
tistics, the overall wave function must be symmetric under
such interchange. Since the nuclear spin wave function is
symmetric, and the ground electronic state (3�−

g ) is odd,
the rotational wave function must be antisymmetric (odd).
Therefore, half of the rotational quantum numbers J (the
even ones) are missing [9]. In the classical limit where sums
over rotational levels are replaced by an integral [10], half
of the levels being missing decreases the rotational partition
function by a factor of two. At low temperature where only
a few rotational levels are populated, the factor of two is
only approximately correct. In practice, the inclusion of the
inaccessible J = 0 state would cause a very large error at
very low temperature. This is illustrated in Table 1, which
first shows the ratio of the partition function calculated using
Eq. (3a) to the accurate one, and then shows the ratio of the
hypothetical partition function for all J to the accurate one.
The table shows that the symmetry factor is very close to 2 at
most temperatures of interest. The classical approximation is
so good that one almost always uses it—the main exception
being H2 below room temperature.

When the identical nuclei are fermions, the situation is
more complicated. H2 provide the classic example. Since it
is treated in most statistical mechanics texts [10], we just
summarize the result. It turns out that one fourth of the
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nuclear spin states are forbidden for odd J and three fourths
are forbidden for even J . Averaging over many states again
decreases the partition function by a factor of two.

Polyatomic molecules are more complicated, because
there can be more than two identical nuclei, because the
vibrational wave functions are not all symmetric, and because
the rotational wave functions are more complicated. Con-
sider methane (CH4) as an example. The total wave function
must be antisymmetric with respect to the exchange of both
coordinates and spins of the hydrogen nuclei because they
are fermions. As discussed in detail elsewhere [11–13], in
order to find the correct nuclear degeneracy associated with
each rovibrational state, one has to evaluate a direct product
between the permutation group symmetries of the rovibra-
tional states and the nuclear spin wave functions. The net
result is that, on average, the molecule has only 1/12 as many
states as it would have if the nuclear permutation antisym-
metry were not enforced.

In the rest of this article, except briefly in the discussion
of the H + H2 reaction, we shall simply use the classical
symmetry factors without considering nuclear spin states or
very low temperatures where the classical limit breaks down.

Equation (4) and the product rule given right below it usu-
ally suffice, but exceptions arise when reactants in a bimole-
cular reaction are indistinguishable, when species are chiral,
when a reaction is symmetric (sometimes called a degenerate
rearrangement), or when TST is used to account for multiple
elementary reactions. Continuing along the line of the article
of Pollak and Pechukas, it is the objective of this paper to
show by examples how to calculate the reaction-path sym-
metry number of Eq. (1) for any unimolecular or bimolecular
reaction.

To evaluate the symmetry number of Eq. (1) the first step
is to calculate the rotational symmetry number of the reac-
tants and the transition state. This is explained in Sect. 2.
Section 3 illustrates by means of examples how to calculate
the symmetry numbers for chemical reactions with additional

complications such as chiral isomers, symmetric reactions,
low-energy conformers, and internal rotation.

2 Symmetry numbers and rotation

Consider the molecules depicted in Structure 1 in their equi-
librium configurations: water, ammonia, and the methyl rad-
ical. If all of the indistinguishable atoms are labelled and
treated as distinguishable and the molecule is fixed in space,
the configurations shown in Structure 1 are obtained.

That is, there are two possible configurations for water and
six each for nonplanar ammonia and planar methyl radical.
In general, the total number of possible configurations equals
the m! permutations of the m equivalent atoms. Of those, we
would like to know which of them cannot be transformed into
each other by rotation or translation of the whole molecule.

The water molecule, labelled as a2 in Structure 1, can
be transformed into a1 by a rotation of 180◦ and, therefore,
there is only one unique configuration. In the case of ammo-
nia b5 and b4 are transformed into b1 by clockwise rota-
tions of 120◦ and 240◦, respectively, whereas b3 and b6 can
be transformed into b2. However, it is not possible to find
any combination of rotation and translation of the ammonia
molecule that transforms b1 into b2 and, therefore, these two
structures are each unique configurations. For the methyl rad-
ical c2, c3 and c6 can be transformed into c1 by rotations of
180 degrees around the C–Ha, C–Hc and C–Hb axes, respec-
tively; additionally c4 and c5 are identical to c1 by rotations
of 120◦ and 240◦ about an axis that is perpendicular to the
molecule and that passes through the central atom. Therefore,
there is only one unique configuration of the methyl radical.
The rotational symmetry number is given by the number of
permutations of m atoms of the same type divided by the
number of unique configurations, nd, that remain different
under rotation of the molecule, i.e.,

σrot = m!
nd

(5)

O
Ha Hb

O
Hb Ha

N

HbHc

HaN

HcHb

Ha
N

HcHa

Hb
N

HbHa

HcN

HaHc

Hb
N

HaHb

Hc

C Ha

Hb

Hc

C Ha

Hc

Hb

C Hb

Ha

Hc
C Hb

Hc

Ha

C Hc

Ha

Hb

C Hc

Hb

Ha

water

ammonia

methyl radical

a1 a2

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6

Structure 1

123



816 Theor Chem Account (2007) 118:813–826

From these examples we find that for water, ammonia, and
the methyl radical the symmetry number is two, three and six,
respectively. The symmetry number is uniquely determined
by the point group symmetry of the molecule. A molecule
without any symmetry (denoted as C1) has a rotational sym-
metry number of one. The water molecule with C2v point
group symmetry in the equilibrium configuration has a rota-
tional symmetry number of two because of the C2 and E sym-
metry operations. The methyl radical with D3h point group
symmetry has a rotational symmetry number of 6 because of
the identity operation, E , three C2 rotation axes along any of
the C–H bonds, and C3 (rotation of 120◦) and C2

3 (rotation
of 240◦) operations. This makes a total of six rotational sym-
metry operations. In the same way ammonia, which has C3v

symmetry, has a symmetry number of three. Therefore, as
a general rule, the symmetry number of rotation for a given
molecule equals the number of rotational symmetry opera-
tions. As a final example let us consider ferrocene, a molecule
with D5h point group symmetry. For this molecule the sym-
metry number of rotation is ten (E + 2C5 + 2C2

5 + 5C ′
2).

As stated above, the symmetry number of reactants for a
bimolecular reaction (A + B → Products) is usually given
by the product σrot,R = σrot,Aσrot,B, with σrot,A and σrot,B

being the rotation symmetry numbers of A and B, respec-
tively. However, a bimolecular reaction of the type A + A →
Products constitutes a special case. In this case the symme-
try number of reactants is given by σr−t,R = 2σ 2

A. The fac-
tor of two appears because of the ability of the reactants
to exchange positions between molecules by translation. For
instance, let’s consider the reaction of a water molecule react-
ing with another water molecule. The number of possible
configurations with labelled hydrogen and oxygen is 2!4!
= 48. Of those, only the 12 depicted in Structure 2 cannot
be superimposed by rotation, but only six configurations are
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really distinguishable, because w1 = w9, w2 = w7, w3 = w8,
w4 = w11, w5 = w12, and w6= w10 by simply translating the
first water molecule to the place of the second and vice versa.
Therefore, symmetry number is 48/6 = 8. In this particular
case we talk about a symmetry number of rotation-translation
σr−t,R which is given by σr−t,R = 2σ 2

rot,A , which in this case
is σr−t,R = 2(2)2 = 8.

In some cases the symmetry number of the molecule has
a counterintuitive value. For example, consider the molecule
of methane, which is depicted in Structure 3. There are four
equivalent hydrogen atoms; however, the rotational symme-
try number is not four. For methane the number of possible
configurations is 4! = 24 of which only two cannot be super-
imposed by rotation as indicated below in Structure 4. Thus,
the symmetry number is 24/2 = 12. Again this agrees with
what is inferred from the point group symmetry of the mole-
cule, which is Td, because Td has 12 rotational symmetry
operations (E + 8C3 + 3C2).

Ha

HbHd

Hc

Hb

HaHd

Hc

d1 d2

Structure 4

In other cases the symmetry number corresponds to the
number of equivalent atoms, such as the symmetry number
for ethane (D3d symmetry), which has six equivalent hydro-
gen atoms and also have a rotational symmetry number of
six. Table 2 lists the rotation symmetry number for the most
common point groups.

3 The symmetry number in chemical reactions

Below we illustrate how to calculate the symmetry numbers
for a given chemical reaction. This section involves the rota-
tional symmetry numbers of Sect. 2.

3.1 Some easy examples

Structure 5 illustrates the bimolecular abstraction of hydro-
gen from methane by a hydrogen atom.

The symmetry number for the forward reaction, σf , mak-
ing use of Table 2 and Eq. (4), is given by
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Table 2 Rotational symmetry
number, σrot , of the most com-
mon point groups of symmetry

Point group σrot

C1 1

Cs 1

C2 2

C2v 2

C3v 3

C∞v 1

D2h 4

D3h 6

D5h 10

D∞h 2

D3d 6

Td 12

Oh 24

σf = σrot,R

σrot,TS
= σHσrot,CH4(Td)

σrot,TS(C3v)

= 1 × 12

3
= 4 (6)

which matches the intuitive answer because there are four
equivalent hydrogen atoms to abstract. However, sometimes
the symmetry number for a reaction is not intuitive. If the
hydrogen is abstracted by the CF3 radical (which has C3v

symmetry in its equilibrium configuration), then the symme-
try number is 12 because

σf = σrot,R

σrot,TS
= σrot,CF3(C3v)σrot,CH4(Td)

σrot,TS(C3v)

= 3×12

3
=12

(7)

This can be difficult to comprehend if the symmetry numbers
are visualized in terms of the number of equivalent reactions,
because in classical mechanics there are four different hydro-
gen atoms to abstract. However, when it is recognized that
there is only one transition state that is quantum mechan-
ically distinguishable, it becomes clear that the symmetry
number of 12 arises entirely from the effect that symme-
try has on the rotational partition functions of reactants and
the transition state. The reader should keep in mind that the
symmetry number results from certain rotational states (that
would be present for distinguishable particles) being miss-
ing in quantum mechanics. It should be noticed that the dif-
ference of a factor of three when comparing Eq. (6) with
Eq. (7) is unrelated to the internal rotation of the CH3 frag-

ment around the CF3 as one may be tempted to think. The
relation between internal rotation and symmetry numbers is
discussed in Sect. 3.5.

3.2 Symmetric reactions

An example of a symmetric reaction is H + H2 → H2 + H.
The rotational symmetry numbers for H, H2, and the linear
transition state are one, two, and two, respectively. Therefore,
the symmetry number for the reaction is naively expected to
be one. However, it is important to be more precise, and ask
precisely what observable one is calculating. In fact, the reac-
tion of H with H2 is not observable as a macroscopic reaction
rate. It could, however, be observed by measuring the rate of
interconversion of ortho and para hydrogen, and this topic is
discussed elsewhere [14]. Similar reactions interconverting
the two modifications [9,15] of other molecules, e.g., N2,
may also be imagined, although these are not as well known.

The H + H2 reaction provides one of the rare examples of
a case where calculations of the effect of nuclear identical-
particle symmetry have gone beyond the symmetry-number
approximation. In particular, Schatz and Kuppermann [16]
used the technique of postantisymmetrization [17] to calcu-
late nuclear-motion wave functions with the correct permuta-
tion symmetry for H + H2 with zero total angular momentum.
Para-to-ortho rate constants calculated from distinguishable-
atom rate constants with appropriate classical symmetry
numbers differ from those calculated with a proper treat-
ment of permutation symmetry by 0.8, 1.6, 3, 5, and 26% at
400, 300, 250, 200, and 100 K, respectively. Just as nonclas-
sical symmetry effects on rotational partition functions are
much smaller for all other molecules than for H2, nonclas-
sical symmetry effects on reaction rates are expected to be
much smaller for other reactions than for H + H2.

In general, any symmetric reaction with just one transition
state between reactants and products is unobservable as a
macroscopic rate phenomenon, unless one resolves quantum
states as in the ortho–para conversion of hydrogen.

3.3 Chiral species

In the previous examples none of the species are chiral, so the
symmetry number for any nonsymmetric reaction is given
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by Eq. (4). In this section we consider chiral species. We
note that some of the species in this section are not consid-
ered optically active in the traditional sense because they are
short-lived or have low barriers of conversion between the
two mirror images. Because of this, we will avoid the words
optically active and enantiomer, and instead use the word chi-
ral, which describes any three-dimensional object that cannot
be rotated to coincide with its mirror image. An illustrative
example of chiral transition states is the elimination reac-
tion of HNO in the cis-methylnitrite molecule (showed in
Structure 6). This elimination reaction has a reactant with Cs

symmetry in the equilibrium configuration and a four-center
transition state with C1 symmetry as indicated in Structure 6.

In the transition state of Structure 6 the oxygen atom is
not coplanar with the C, O, H, and N atoms. There is another
transition state e1*, with the same energy as e1, for which
the oxygen is on the opposite side the plane as indicated in
Structure 7.

O

H

H

H

N

O
e1

O

H

H

H

N

O
e1*

Structure 7

The structures e1 and e1* are chiral, i.e., they are mirror
images that cannot be superimposed by rotation. (It should be

noticed that there is no possibility of having chirality when
the molecule has one or more planes of symmetry.) There
are two separate elementary reactions leading to products
from a common reactant, and therefore the total forward rate
constant kf is

kf = ke1 + ke1∗ (8)

where ke1 and ke1∗ are the rate constants for the passage
to products from the e1 and e1∗ transition state structures,
respectively. Both rate constants are equal, so the previous
equation can be written as

kf = 2ke1 (9)

Another example of a chiral transition state is the hydro-
gen abstraction reaction from methanol by a hydrogen atom.
The rotational symmetry number for reactants is one. The
transition state has C1 symmetry and therefore the symmetry
number for the elementary reaction is one. However, Chuang
et al. [20] have calculated two possible transition states, f1
and f1*, which are chiral (see Structure 8). As in the pre-
vious example, there are two elementary reactions with rate
constants that are equal, so the total forward rate constant is
given by

kf = 2kf1 (10)

An example in which the reactants are chiral is the hydro-
gen abstraction by a hydrogen atom from the C(I)(Br)(Cl)H
molecule. This molecule would be present as a racemic
mixture of the two possible chiral isomers, as shown in
Structure 9.

H

H H

H +
H

O

H

H2

H

H
H2H

Reactants Products

TS
f1 f1*

+H

H H H H

Structure 8
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The hydrogen abstraction reaction from g1 and g1* would
lead to the two chiral transition states shown in Structure 10.

Cl

Br
I

H

Br

Cl
I

TS1 TS1*

H H H

Structure 10

TS1 is only accessible from g1, and TS1∗ is only acces-
sible from g1∗. There are two distinct reactions with unique
reactants and transition states that lead to the same products.
The rate constant for passage through TS1, kTS1(T ) would
be

kTS1(T )= kB T

h

1

�
H,CHClBrI
rel (T )

QTS1(T )

Qg1(T )
exp

[
−V ‡/kBT

]

(11)

where �
H,CHClBrI
rel (T ) is the relative translational energy per

unit of volume and Qg1(T ) is the partition function of g1
excluding translation. In the same way, the rate constant for
passage through TS1*, which can be reached only from g1*,
would be

kTS1∗(T )= kB T

h

1

�
H,CHClBrI
rel (T )

QTS1∗(T )

Qg1∗(T )
exp

[
−V ‡/kBT

]

(12)

When using the rate constant to calculate a reaction rate,
it is important to recognize what the rate constant refers to.
In this example, the overall reaction rate for the formation
of products is given by kTS1(T )[g1][H]+kTS1∗(T )[g1∗][H],
where [g1], [g1∗] and [H] are the concentrations of g1, g1*
and H, respectively. Therefore, after one recognizes the
unique elementary reactions, the symmetry number is cal-
culated normally using Eq. (4).

Another example involving a chiral transition state is the
hydrogen abstraction reaction from propane by a hydrogen
atom. Propane in the equilibrium configuration has C2v sym-
metry and has no optical isomers, so the rotational symmetry
is two. In Structure 11, the non-equivalent hydrogen atoms
have been labelled as Ha, Hb and Hc.

HbHb

Hc Hc
HcHc

Ha Ha

Structure 11

There are eight transition state configurations for the for-
mation of H2, which are depicted in Structure 12. The h1 and
h2 transition state configurations correspond to the abstrac-
tion of a central hydrogen atom. These configurations are
superimposable, with the symmetry number for this single
transition state equal to one because the symmetry is Cs. The
same reasoning can be applied to h3 and h4. For the last
four transition state configurations there is no point group
symmetry, but h5 and h8 are superimposable, and so are h6
and h7. However, h5 and h6 cannot be superimposed and
therefore are chiral. The thermal rate constant for hydrogen
abstraction is the sum of the contributions of all the transition
states depicted in Structure 13:

kf = σrot,RnTS(h1)

σrot,TS(h1)nR
kh1 + σrot,RnTS(h3)

σrot,TS(h3)nR
kh3

+σrot,RnTS(h5)

σrot,TS(h5)nR
kh5

= 2 × 1

1 × 1
kh1 + 2 × 1

1 × 1
kh3 + 2 × 2

1 × 1
kh5

= 2kh1 + 2kh3 + 4kh5 (13)

where nR is two for chiral reactants and the unity otherwise,
nTS(h5) is the number of distinct transition state configura-
tions that can be represented by h5, which is two
because h5 and h6 have identical thermodynamic proper-
ties, and both nTS(h1) and nTS(h3) are equal to one because
they do not correspond to a chiral transition state. It should be
noted that because the transitions states h5 and h6 are non-
superimposable, they are part of different elementary reac-
tions. Doubling the rate constant from two to four for the
reaction corresponding to h5 is simply a shortcut that is
utilized by recognizing that mirror images have properties
that are equivalent. Calculating each of the four elementary
reactions separately would yield the same result achieved in
Eq. (13).

The hydrogen abstraction reaction of OH with propane
[18] is calculated in the same manner. For this reaction, the
non-degenerate transition states are in Structure 14, and as
a first approximation the rate constant is calculated using
Eq. (13) Structure 14. However, abstracting with an OH group
rather than an H atom presents a new difficulty because of the
ability of the OH group to rotate. To appropriately model this
reaction, each of the transition states needs to be modelled by
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treating the OH group as a hindered rotor. This is discussed
in Sect. 3.5.

3.4 Reactions with many conformers

This section demonstrates how to calculate rate constants
for reactions in which the reactants have several conforma-
tions. An example is considered where the reactants may be
present in two energetically different conformations j1 and
j2 of which only j2 can lead to products. A model potential
for this type of reaction is depicted in Fig. 1, in which all
energies are relative to the most stable conformer of reac-
tants. The reactant conformations are all stable structures
that cannot be superimposed by rotation and therefore can-
not be taken into account in the rotation symmetry number.

TS

V‡

j2

j1

E
ne

rg
y

∆E1,2

Fig. 1 Schematic illustration showing a model potential for a reaction
with a reactant with two different conformations j1 and j2, of which
only j2 can lead to products through the transition state TS (see text)

The expression for the forward rate constant would be sim-
ilar to Eq. (13), with the difference that there are multiple
reactants instead of multiple transition states, and they are
not necessarily chiral species with the same energy, i.e.

kf(T ) = kB T

h

QTS(T )/σrot,TS

�j1(T )e−�E1,2/kBT /σrot,j1 + �j2(T )/σrot,j2

× exp
[
−V ‡/kBT

]
(14)

where σrot,j1, σrot,j2 and σrot,TS are the rotation symmetry
numbers of j1, j2, and the transition state, respectively, �E1,2

is the energy difference between j1 and j2, i.e., �E1,2 =
E (j1) – E (j2) and V ‡ is the barrier height. For the specific
case that j1 and j2 are nonsuperimposable mirror images of
each other, σrot,j1 = σrot,j2,�E1,2 = 0,�j1(T ) = �j2(T )

and therefore

kf(T ) = σ
kB T

h

QTS(T )

�j1(T )
exp

[
−V ‡/kBT

]
(15)

where σ is given by Eq. (4), but including the factor of two
in the denominator due to the chirality of reactants, i.e.,

σ = σrot,j1

2σrot,TS
(16)

For a general reaction with a set of {R1. . .Ri . . .RN} con-
formers of reactants that can lead to a set of {T1. . .Tj. . .TM}
transition states, which lead to products, the forward rate
constant is given by

kf(T )= kB T

h

∑M
j=1

QT j (T )e
−�ET j

/kB T

σrot,T j

∑N
i=1

�Ri (T )e
−�ERi

/kB T

σrot,Ri

exp
[
−V ‡/kBT

]
(17)

where σrot,Ri , σrot,T j ,�Ri (T ) and QT j (T ) are the rotational
symmetry numbers and partition functions of conformations
Ri and T j , respectively. The value of �ERi is a positive
energy calculated as the difference between the energy of
conformation Ri and the energy of the most stable confor-
mation of reactants. In the same manner, �ET j is the energy
difference between the energy of transition state T j and the
energy of the most stable transition state that leads to prod-
ucts. The value of V ‡ is calculated as the difference between
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the energy of the most stable transition state conformation
and the energy of the most stable reactant conformation. It
should be noticed that the sum also runs over the different
chiral isomers and that all the barriers for interconversions of
reactants should be smaller than V ‡. The above expression
is valid when the potentials in the vicinity of the stationary
points are well described by the harmonic oscillator approx-
imation. Complications may arise from low barriers of con-
version between conformations, which may lead to nearly
free internal rotations and the breakdown of the harmonic
oscillator approximation, which are discussed in Sect. 3.5.

3.5 Symmetry numbers and internal rotation

In this section the implications of internal rotation are consid-
ered. It should be noticed that rotational symmetry numbers
are based on the rotational symmetry of the molecule, i.e.,
they are based on the rotation of the molecule as a whole,
whereas internal rotation involves the rotation of a given part
of the molecule relative to the rest of the molecule, and that
it is actually a vibrational mode.

Torsion approximations can properly account for indis-
tinguishable minima corresponding to a nearly free internal
rotation. This is demonstrated with the example of the hydro-
gen abstraction reaction from methane by the fluorine atom.
For this reaction, some electronic structure calculations pre-
dict a transition state with C3v symmetry (TS1), such as the
one shown in Structure 15.

Therefore, the symmetry number for this reaction σf1 is:

σf1 = σrot,R

σrot,TS1
= σF × σrot,CH4(Td)

σrot,TS1(C3v)

= 1 × 12

3
= 4

(18)

Other electronic structure calculations predict a bent tran-
sition state with Cs symmetry (TS2) as depicted below

TS2

H

H

H

H
F

In this case the symmetry number σf2 is given by

σf2 = σrot,R

σrot,TS2
= σF × σrot,CH4(Td)

σrot,TS2(Cs)

= 1 × 12

1
= 12. (19)

The symmetry numbers are correct in both cases. The
reaction through TS1 has C3v symmetry and the reaction
through TS2 has Cs symmetry, which causes the symmetry
number for the reaction through TS2 to be three times larger.
However, when the internal rotation for TS2 is treated cor-
rectly, the difference in the partition functions at the transition
state will largely reconcile the symmetry number difference.

There are three indistinguishable transition state configu-
rations of the type TS2 for each reactive hydrogen, as shown
in Structure 16. The three transition state configurations can
be obtained from one another through a torsional motion
about the C–H bond. This internal rotation leads to a poten-
tial with three equivalent minima, which coincide with the
above configurations, and to three equivalent maxima, which
correspond to the eclipsed configurations. The crucial aspects
of the potential of internal rotation are the magnitude of both
the vibrational frequency of the torsion, ωtor, and the barrier
height between the minima, Wtor.

In the regime of a high torsional frequency and low tem-
perature, i.e., when kB T << h̄ωtor, the potential is well
represented by an inverted parabola and the harmonic oscil-
lator (HO) partition function is a good approximation for this
torsional mode. Assuming separable HO partition functions
for all the normal modes, the total partition function for TS2
is given by:

Qvib,TS2(T ) = qHO
tor,TS2(T )

3N−8∏
m=1

qHO
m,vib,TS2(T )

=
3N−7∏
m=1

qHO
m,vib,TS2(T ) (20)

where qHO
tor,TS2(T ) and qm,3N−7,TS2(T ) are two names for the

HO vibrational partition function of the torsional mode with
frequency ωtor, and qHO

m,vib,TS2(T ) for m = 1, . . . , 3N − 8
are the HO vibrational partition functions of the other modes.
In this case the thermal rate constant evaluated by the TST
expression is given by:

kTST(T )=12
kB T

h

Q∗
rot,TS2(T )Qvib,TS2(T )

�R(T )
exp

[
−V ‡/kBT

]

(21)
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where Q∗
rot,TS2(T ) is the TS2 rotational partition function for

distinguishable particles given by Eq. (2b) and Qvib,TS2(T )

is given by Eq. (20).
However, when kB T >> Wtor, the rotation around the

C–H bond would be nearly free, therefore the classical free
rotor (FR) partition function is a good approximation. The
FR partition function is given by:

qFR(T ) = (2π I kBT )1/2

h̄σint
= 1

σint
qFR∗(T ) (22)

where I is the effective moment of inertia for internal rota-
tion, qFR∗(T ) is the FR partition function without the sym-
metry number for internal rotation, and σint is the symmetry
number for internal rotation. For the above reaction, σint is
three because the three minima depicted in Structure 16 are
quantum mechanically indistinguishable. In this case the tor-
sional mode is treated as a free rotation instead of a harmonic
vibration, and therefore the TST rate constant is given by:

kTST(T )

= 12
kB T

h

Q∗
rot,TS2(T )

qFR∗
tor,TS2(T )

3

∏3N−8
m=1 qHO

m,vib,TS2(T )

�R(T )

× exp
[
−V ‡/kBT

]

= 4
kB T

h

Q∗
rot,TS2(T )qFR∗

tor,TS2(T )
∏3N−8

m=1 qHO
m,vib,TS2(T )

�R(T )

× exp
[
−V ‡kBT

]
(23)

where the symmetry number of rotation is partially cancelled
out by the internal rotation symmetry number. This result
indicates that a free rotation for the torsional mode is similar

to that for which the transition state is of type TS1, since in
that case:

kTST(T ) = 4
kB T

h

× Q∗
rot,TS1(T )qHO

m,3N−7,TS1(T )
∏3N−8

m=1 qHO
m,vib,TS1(T )

�R(T )

× exp
[
−V ‡/kBT

]
. (24)

The internal rotation for TS2 is very nearly a free rotation,
therefore the factor of three that was lost from the rotational
partition function when the C3v symmetry of TS1was broken
reappears in the vibrational partition function from the inter-
nal rotation. However, the rate constants for TS1 and TS2
will still be different, as they should be because they are dif-
ferent structures. Most importantly, qFR∗

tor,TS2(T ) may not be

similar to qHO
m,3N−7,TS1(T ); additionally the other vibrational

and rotational partition functions will likely be slightly differ-
ent. While the factor of three has been recovered, it depends
on how the change in geometry has influenced the partition
functions as to whether or not the rate constant for TS1 will
be similar to the rate constant for TS2.

It should be noticed that Eq. (21) and Eq. (23) are extreme
cases. An important intermediate regime is when h̄ωtor <<

kB T << Wtor. The partition function for this intermediate
(I) case is given by:

QI(T ) = kBT

h̄ωtor
(25)

For a reaction in which internal rotations may play a role,
it would be desirable to have an expression for the partition
function that is accurate for the two extreme cases of FR and
HO and displays smooth behaviour for intermediate cases.
A function with these characteristics has been given else-
where [19] and has the form:

Q = QHO tanh(QFR/QI) (26)

where QHO, QFR and QI are the partition function for the
HO, FR and intermediate case of Eq. (25), respectively. The
example of this section deals with internal rotations in the
transition state but the same reasoning can be applied to
internal rotations in the reactants or in both reactants and
the transition state.
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The H + CH3OH → H2 + CH2OH abstraction reaction
[20] is a case where an internal rotation approximation is
able to account for multiple configurations. If two of the
three hydrogens of the methyl group were deuterated, the rate
constant for hydrogen abstraction is expected to be approxi-
mately three times smaller than that involving the undeuter-
ated methanol because there are one third as many reactive
atoms. The rate constant of interest is for the H+HCD2OH→
H2 +CD2OH process. The molecule HCD2OH has the three
conformers depicted in Structure 17, where k1 and k1* are
chiral.

H

D

D

H

H

D
H

D

H

k1 k2 k1*

H D D

Structure 17

Structure 18 depicts the two lowest-energy transition states
starting from the above reactants

H2

D

H
H2

D

H

Tk1 Tk1*
D D

Structure 18

For this case Eq. (17) leads to the following expression:

kTST(T ) = kB T

h

1

�
H,HCD2OH
rel

exp
[
−V ‡/kBT

] Q∗
rot,Tk1(T )Qvib,Tk1(T ) + Q∗

rot,Tk1∗(T )Qvib,Tk1∗(T )

Q∗
rot,k1(T )Qvib,k1(T ) + Q∗

rot,k2(T )Qvib,k2(T ) + Q∗
rot,k1∗(T )Qvib,k1∗(T )

= kB T

h

1

�
H,HCD2OH
rel

2Q∗
rot,Tk1(T )Qvib,Tk1(T )

2Q∗
rot,k1(T )Qvib,k1(T ) + Q∗

rot,k2(T )Qvib,k2(T )
exp

[
−V ‡/kBT

]
(27)

where �
H,HCD2OH
rel is the relative translational partition func-

tion per unit of volume as mentioned in the Introduction.
Noticed that this rate constant is about one third the rate con-
stant obtained for the undeuterated reaction as it should be.
For distinguishable conformers, as is the case here, it may
be desirable to use a torsional method that accounts for the
multiple wells of the reactant and/or transition state regions
instead of using a simple HO approximation. Specifically,
the HO approximation for the torsional mode is replaced by
the multiconformer HO (MC–HO) treatment: [21,22]

QMC - HO
tor =

P∑
j=1

e−β(U j +h̄ωtor, j /2)

1 − e−βh̄ωtor, j
(28)

where P is the number of distinguishable minima, ωtor, j is
the harmonic frequency at minimum j of the torsional mode,
and U j is the energy of well j of this mode relative to the
lowest well of this mode. In this example we have labeled
the torsional mode as 3N −7 in the transition state and 3N −
8 in reactants In the case of the deuterated methanol, all
of the wells have the same energy so U j = 0 in all cases,
but k2 does have a frequency for the torsional mode that is
different than k1 and k1*. In the same manner, the MC–HO
method is used as part of the torsional method to calculate the
partition function for the transition state. However, because
the multiple transition state configurations are now accounted
for using the torsional method, the symmetry number for the
transition state is no longer equal to two, rather it is equal to
one. This MC–HO partition function for the torsion is then
used in the equations given above and the TST rate constant
is given by Eq. (29),

kTST(T ) = kB T

h

1

�
H,HCD2OH
rel

QMC−HO
3N−7,TS(T )Q∗

rot,Tk1(T )
∏3N−8

m=1 qm,vib,Tk1(T )

QMC−HO
3N−6,R (T )Q∗

rot,k1(T )
∏3N−7

m=1 qm,vib,k1(T )
exp

[
−V ‡/kBT

]

= kB T

h

1

�
H,HCD2OH
rel

∑2
j=1

(
e−βh̄ω3N−7, j /2

1−e−βh̄ω3N−7, j

)
× Q∗

rot,Tk1(T )
∏3N−8

m=1 qm,vib,Tk1(T )

∑3
j=1

(
e−βh̄ω3N−6, j /2

1−e−βh̄ω3N−6, j

)
× Q∗

rot,k1(T )
∏3N−7

m=1 qm,vib,k1(T )
exp

[
−V ‡/kBT

]

= kB T

h

1

�
H,HCD2OH
rel

exp
[
−V ‡/kBT

] 2 e−βh̄ω3N−7,Tk1/2

1−e−βh̄ω3N−7,Tk1
Q∗

rot,Tk1(T )
∏3N−8

m=1 qm,vib,Tk1(T )
(

2 e−βh̄ω3N−6,k1/2

1−e−βh̄ω3N−6,k1
+ e−βh̄ω3N−6,k2/2

1−e−βh̄ω3N−6,k2

)
×Q∗

rot,k1(T )
∏3N−7

m=1 qm,vib,k1(T )
(29)
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Because the summation accounts for three degenerate
wells, the torsional treatment causes the reactant partition
function to be approximately three times as large as the par-
tition function for undeuterated methanol, which causes the
rate constant for the deuterated methanol to be about 1/3 as
large, just as expected.

While the rate constant for undeuterated methanol was
calculated in an earlier example by accounting for the two
nonsuperimposable transition states that were low in energy,
a better way to account for the entire range of motion is
to use a torsional method for the transition state as well.
Note that the strategy used for this example is very similar
to the strategy discussed in Sect. 3.4. The difference is that
in Sect. 3.4, the vibrations were only calculated using the
HO approximation, whereas this example uses the MC-HO
partition function in conjunction with Eq. (26). Therefore,
as the motion becomes more like a free internal rotation, the
rotational partition function calculated by Eq. (26) remains
qualitatively correct. If the multiple conformations of the
torsion were calculated using the strategy in Sect. 3.4, there
would be substantial error in regions where the HO approx-
imation was not valid. The drawback of Eq. (29) is that the
rotational and vibrational partition functions, with exception
of the torsional mode, are considered to be equal for all con-
formers.

For further details on the treatment of internal rotation, we
refer to references [19–22].

3.6 An example involving an achiral diasteromer

Tartaric acid is an organic acid that is naturally occurring
in the l-(-)-tartaric acid form [23,24]. Tartaric acid has two
carbon stereocenters and which allows it to be synthesized in
three distinguishable configurations. There is a set of enan-
tiomers, and there is also a meso complex. These configura-
tions are shown in Structure 19.

While l-tartaric acid and d-tartaric acid are distinguish-
able, the two drawings of mesotartaric acid are superimpos-
able, so there is only a single distinguishable configuration
for mesotartaric acid. That is, there are three stereoisomers
of tartaric acid; two of them are enantiomers, and the third is
an achiral diastereomer.

For a reaction where the acidic proton is abstracted by
OH− to create the conjugate base, we illustrate the transition

states (this time explicitly drawing the carboxyl group on the
reacting carbon).
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HO COOH

O

CO-H-OH-

O

COOHHO

HO CO-H-OH-
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Structure 20

The transition states have been labelled according to which
reactant they originated from, where l-indicates that it origi-
nated from l-tartaric acid, d-indicates that it originated from
d-tartaric acid, and m- indicated that is originated from meso-
tartaric acid. The transition states that originate from the meso
reactant are labelled with m-instead of meso- because they
are not superimposable. l-TS1 and l-TS2 are superimpos-
able by a rotation, so there is only a single indistinguishable
transition state for this reaction. This is also true for d-TS1
and d-TS2. For the l- and d-enantiomers, there is a single
elementary reaction leading to a single product for each enan-
tiomer, as shown in Structure 21.

The two transition states for mesotartaric acid are not
superimposable. There are two elementary reactions with

123



Theor Chem Account (2007) 118:813–826 825

CO-H-OH

COOH

HO

HO

L-TS

O

COOH

COOH

HO

HO

L-tartaric acid

+ OH

CO

COOH

HO

HO

L-Product

O

+ H2O

CO-H-OH

COOH

HO

HO

O

COOH

COOH

HO

HO

D-tartaric acid

+ OH

CO

COOH

HO

HO

D-Product

O

+ H2O

D-TS

Structure 21

CO-H-OH

COOH

HO

HO

m-TS1

O

COOH

COOH

HO

HO

mesotartaric acid

+ OH

CO

COOH

HO

HO

m-Product1

O

+ H2O

COOH

COOH

HO

HO

mesotartaric acid

+ OH + H2O

COOH

CO-H-OH

HO

HO

m-TS2
O

COOH

CO

HO

HO

m-Product2
O

Structure 22

distinct transition states that lead to distinct products. These
are shown in Structure 22.

Now that the elementary reactions have all been deter-
mined, the symmetry numbers for the rate constants can be
calculated. For l-tartaric acid, the reactant has C2 symme-
try and the transition state has C1 symmetry, which yields a
symmetry number of 2. Therefore, the forward rate constant
for the formation of l-product is

kL(T )=2
kB T

h

1

�
L−R,OH−
rel

QL - TS(T )

QL−R(T )QOH -
exp

[
−V ‡/kBT

]

(30)

where QL−R(T ) is the reactant partition function for

l-tartaric acid excluding translation and �
L−R,OH−
rel is the

relative translational partition function per unit volume as
stated in Sect. 1. Similarly, the forward rate constant for the
formation of d-product is

kD(T )=2
kB T

h

1

�
D−R,OH−
rel

QD - TS(T )

QD−R(T )QOH -
exp

[
−V ‡/kBT

]

(31)

where QD−R(T ) is the reactant partition function for
d-tartaric acid. At this point, we are able to take advantage
of mirror images, and we find that QL−TS(T ) = QD−TS(T ),

QL−R(T ) = QD−R(T ), and the barrier heights are the same,
therefore kL(T ) = kD(T ).

For mesotartaric acid, the reactant has Cs symmetry, and
both of the transition states have C1 symmetry, which yield a
rotational symmetry number of 1. However, the chiral transi-
tion states present an additional difficulty, because the single
reactant can follow two different elementary reactions, so
the symmetry number for the formation of the two products
is two. Therefore, each elementary reaction has a symmetry
number of one due to the chirality of the transition states [7].
The rate constants for meso-product1 and meso-product2 are

km - 1(T )= kB T

h

1

�
m−R,OH−
rel

Qm - TS1(T )

Qm−R(T )QOH -
exp

[
−V ‡/kBT

]

(32)

km - 2(T )= kB T

h

1

�
m−R,OH−
rel

Qm - TS2(T )

Qm−R(T )QOH -
exp

[
−V ‡/kBT

]

(33)
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where Qm−R(T ) is the reactant partition function for meso-
tartaric acid. Once again, we may take advantage of the mirror
images to find that Qm−TS1(T ) = Qm−TS2(T ), and therefore
km−1(T ) = km−2(T ).

For tartaric acid, there are three possible reactants that can
form four possible products. Each product is only accessible
from a single reactant. The properties of mirror images can
be used to decrease the number of quantities that must be cal-
culated. It is advisable not to employ any additional shortcuts
when dealing with a complicated system like this one. We
recommend for the rate constants to be used exclusively with
their corresponding reactants and products and not to use for-
mulas like Eq. (17) in any case where it may be conceptually
difficult.

4 Summary

The present article shows how to calculate the rotational sym-
metry numbers for various molecular configurations and how
to apply these symmetry numbers to transition state theory.
For most reactions, the overall symmetry number is given by
the ratio of the reactant and transition state rotational symme-
try numbers, as given by Eq. (4). For bimolecular reactions
where the two reactants are equivalent, the symmetry number
is a rotational-translational symmetry number, which gives
rise to an additional factor of two.

Section 3 contains several examples for calculating the
symmetry number for reaction rate constants. Section 3.1
gives examples for symmetry numbers that are both intuitive
and nonintuitive. Section 3.2 illustrates that Eq. (4) is techni-
cally valid for symmetric reactions, but the number of interest
is typically twice as large as predicted by Eq. (4) because both
the forward and reverse flux contribute equally. Section 3.3
illustrates how to account for chiral isomers using the symme-
try number. Multiple conformers for reactants and/or transi-
tion states are illustrated in Sect. 3.4, and Sect. 3.5 deals with
internal rotation, where the treatment used in some previous
examples is improved upon. Section 3.6 gives an example
involving an achiral diasteromer.

Many of the typical problems that arise when using
symmetry numbers have been highlighted. Even complicated
scenarios are treated systematically by properly calculating
rotational symmetry numbers and differentiating between
distinguishable and indistinguishable reaction paths.
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