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Abstract: We consider the bipolaron in the Pekar–Tomasevich approximation and ad-
dress the question whether the ground state is spherically symmetric or not. Numerical
analysis has, so far, not completely settled the question. Our contribution is to prove rig-
orously that the ground state remains spherical for small values of the electron-electron
Coulomb repulsion.

1. Introduction

In this paper we shall be concerned with properties of the bound state of two polarons.
We do this in the context of the Pekar–Tomasevich model [18,19] of the large polaron,
which, in turn, is based on Fröhlich’s polaron model [5]. In the latter model two electrons
interact with a quantized electric field generated by the displacement of the nuclei in
a polar lattice. There are two coupling constants in Fröhlich’s model. The coupling to
the field, α, and the Coulomb repulsion among the electrons, denoted by U . Pekar’s
approximation is to assert that the wave function is a product of a two-particle electron
wave functionψ times a field function�. After eliminating the field one is led to Pekar’s
energy expression for ψ ,

EU [ψ] =
∫∫

R3×R3

(
|∇xψ |2 + |∇yψ |2 +

U

|x − y| |ψ |2
)

dx dy − 2αD[ρψ, ρψ ].
(1.1)

The electron coordinates are x and y and the electron spin does not appear explicitly,
except that ψ is symmetric for the ground state, which is a singlet state. (The reason
that it is a singlet is that the ground state is a positive function and must, therefore, be
symmetric – an observation that goes back to Wigner many years ago.)

Copyright © 2012 by the authors. This paper may be reproduced, in its entirety, for non-commercial
purposes.
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In (1.1) ρψ denotes the electron density, given by

ρψ(x) =
∫

R3
|ψ(x, y)|2 dy +

∫
R3

|ψ(y, x)|2 dy ,

and D[ρ, ρ] is the Coulomb energy of a charge distribution ρ,

D[ρ, ρ] = 1

2

∫∫
R3×R3

ρ(x) ρ(x ′)
|x − x ′| dx dx ′.

Note the minus sign in (1.1); the induced interaction is attractive.
The Pekar energy is

eU = inf{EU [ψ] : ψ ∈ H1(R6) , ‖ψ‖ = 1} , (1.2)

with ‖ψ‖ denoting the L2 norm of ψ and H1 denoting the Sobolev space, i.e., square-
integrable functions whose gradient is also square-integrable. This energy is more than
just an approximation, for it is asymptotically exact as α and U tend to infinity with U/α
fixed. This is stated in [17], following the technique of [16]; see also [2].

A benchmark for the bipolaron problem is the energy of a single polaron. It is defined
in the manner of Eq. (1.1)

E[ψ] =
∫

R3
|∇ψ |2 dx − 2αD[|ψ |2, |ψ |2] ,

and

e = inf{E[ψ] : ψ ∈ H1(R3) , ‖ψ‖ = 1}. (1.3)

It is known that there is a minimizing ψ for this single polaron problem, that it is a
symmetric decreasing radial function and that it is unique, up to translations in R

3 and
multiplication by a constant phase [14].

By scaling we can always reduce to the case α = 1/2 and we shall do so henceforth.
There is a considerable literature on the subject of rotation invariance of the bipolaron

energy minimizer, usually formulated in the language of ‘one-center bipolaron versus
two-center bipolaron’; see, e.g., [8–10,20] and references therein. The analyses are all
based on variational calculations. While there seems to be general agreement that the
one-center bipolaron has the lower energy, it is not completely clear that a more sophis-
ticated variational treatment will preserve rotational symmetry, especially near the value
of U where the bipolaron ceases to be bound. We have shown rigorously that there is
such a critical Uc [3]. Numerical variational data seems to indicate that the critical Uc is
rather close to 1, namely, Uc ∼ 1.15. This tells us that binding is a delicate matter and,
indeed, the existence of such a Uc was an open question for some time.

A minimizer also exists for a bipolaron provided the energy is below the energy of
twice the single polaron energy [12]. Interestingly, the bipolaron has a minimizer with
finite radius at the critical value U = Uc [4]. (The same holds for a helium atom for
the critical value of the nuclear charge.) The existence of a minimizer implies that the
translation invariance of the Pekar minimization problem is broken. It is, therefore, not
out of the question that the minimizer for two polarons might break rotational symmetry
as well in order to lessen the Coulomb repulsion.

The value of U determined by physical electrostatic considerations is always U ≥ 1.
Nevertheless, one can consider the mathematical question for small, but positive U and
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ask whether there is a possible lack of rotational invariance in that case. After all, a
rotating object like the earth becomes oblate even for the smallest amount of rotation.

In this paper we will prove that there is no breaking of rotational symmetry for small
U . Our strategy for proving the lack of symmetry-breaking for small U is based on
the following consideration. For any small U the minimization problem, restricted to
rotation invariant functions, has an energy minimizer, as we shall prove. The ques-
tion is whether there is a better minimizer without rotation invariance. Since U is
small, both minimizers would have to be very close to the unique (up to transla-
tions) U = 0 minimizer, and so we can discuss the existence of a symmetry break-
ing minimizer by means of rigorously controlled perturbation theory. It is evident that
the benefit of symmetry breaking to the repulsive energy will be proportional to −δ2,
where δ measures the non-sphericity, but this contribution is multiplied by U . On the
other hand, the increase in the rest of the energy is presumably also of the form Aδ2,
where A ≥ 0 is some U independent number. If A > 0 then δ wants to be zero for
small U .

The problem with this argument is that A could be zero, in which case the −Uδ2

energy would always win, no matter how small U is. Most of what we do in the paper,
from the mathematical point of view, is to show rigorously that A is not zero, and thus
there is no distortion for small U .

Even utilizing the result that A > 0 for the single polaron [11], the proof given here
for the bipolaron will not be a short one. One of the complexities faced in this proof is
the fact that a simple translation is a distortion that costs no energy, i.e., there are zero
modes. While these are physically trivial distortions it is not a trivial matter to separate
their contribution, mathematically, from the relevant ones.

Theorem 1. There is a Us > 0 such that for all U < Us the minimizer of EU is unique
up to translations and multiplication by a constant phase. In particular, after a transla-
tion it is rotation invariant, that is, ψ(Rx,Ry) = ψ(x, y) for any x, y ∈ R

3 and any
R ∈ O(3).

It remains an open problem to decide whether the ground state ceases to be rotation
invariant for U close to the critical value Uc.

The rest of this paper has two parts. In Part A, we reduce the proof of Theorem 1
to a problem in second-order perturbation theory, namely the question of the distortion
coefficient A. In Part B, we complete the proof of Theorem 1 by showing that A is
positive and that zero modes play no important role.

2. Proof of Theorem 1. Part A

2.1. Some preparations. Step 1. In searching for the minimum in (1.2) we can confine
our attention to non-negative, symmetric (i.e.,ψ(x, y) = ψ(y, x)) functions. The reason
is that we can replace any ψ by

ψ̃(x, y) =
√

1

2
(|ψ(x, y)|2 + |ψ(y, x)|2). (2.1)

The potential energy terms remain the same and the kinetic energy term does not increase
[15, Thm. 7.8].
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Step 2. An important step is to reformulate the energy minimization problem in the
following way: Define

EU [ψ,�]
:=

∫∫
R3×R3

(
|∇xψ |2 + |∇yψ |2 −�(x)|ψ |2 −�(y)|ψ |2 +

U

|x − y| |ψ |2
)

dx dy

+
1

8π

∫
R3

|∇�|2 dx
∫∫

R3×R3
|ψ |2 dx dy (2.2)

for ψ ∈ H1(R6) and � ∈ Ḣ1(R3). Then

EU [ψ,�] ≥ ‖ψ‖2EU [‖ψ‖−1ψ] (2.3)

with equality if and only if � = |x |−1 ∗ ρψ/‖ψ‖.

One advantage of this reformulation is that one can see immediately that there is a
unique (up to translations) minimizer for the U = 0 problem. For a given � we have,
in this case, a Schrödinger minimization problem for two independent particles, so the
best ψ is a product, ψ(x, y) = f (x) f (y), in which case ρψ = 2| f |2 and the optimal�
is 2|x |−1 ∗ | f |2. The problem therefore becomes

e0 = inf

{
2

∫
R3

|∇ f |2 dx − 4D[| f |2, | f |2] : ‖ f ‖ = 1

}
,

which coincides, up to a rescaling, with problem (1.3). We conclude that e0 = 8e and
that the minimizing f is unique up to translations and multiplication by a constant
phase [14].

Another advantage of this reformulation is that one sees that for any U ≥ 0 an opti-
mizer ψ , if it exists, is the ground state of a two-body Schrödinger operator. Therefore,
ψ is a multiple of a strictly positive function [15, Thm. 9.10]. This, in turn, implies that
ψ is symmetric (i.e.,ψ(x, y) = ψ(y, x)), because otherwise replacingψ by (2.1) would
strictly lower the kinetic energy [15, Thm. 7.8].

Step 3. In addition to the global minimization problem (1.2) one can define the rotation-
ally symmetric minimization problem, that is,

esymm
U = inf

{
EU [ψ] : ψ ∈ H1(R6) , ‖ψ‖=1, ψ rotation invariant with respect to 0

}
.

(2.4)

N.B.: From now on ‘symmetry’ refers to ‘rotation symmetry’ and not to symmetry in
x and y. We recall that the rotation invariance of ψ means that ψ(Rx,Ry) = ψ(x, y)
for any x, y ∈ R

3 and any R ∈ O(3). The density ρψ of such ψ is, of course, radial
and, by Newton’s theorem, its potential ρψ ∗ |x |−1 is a symmetric decreasing function
bounded by 2|x |−1.

Of course, eU ≤ esymm
U , and our goal in this paper is to investigate whether equality

holds. We collect some properties of these energies. Both eU and esymm
U are non-decreas-

ing, concave functions of U (as infima of non-decreasing, linear functions). Because of
Step 2, e0 = esymm

0 for U = 0. Moreover, simple trial function arguments show that
eU ≤ 2e and esymm

U ≤ e for all U . Lewin [12] has shown that the infimum eU is attained
provided eU < 2e. In the Appendix of this paper we shall prove an analogous result for
the rotation invariant problem, with a different condition, however, namely, esymm

U < e.
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Proposition 2. If esymm
U < e, then the infimum in (2.4) is attained.

The reason for the discrepancy between 2e for eU and e for esymm
U is that spherical

symmetry prevents the formation of two more or less separate polarons. In other words,
the second polaron density has to be far away from the first, and in a radial shell, which
makes it impossible to retain an energy 2e with an essentially unbound pair of polarons,
both of which are spherically symmetric with respect to a common center.

Proposition 2 shows the fact that for some values of U the rotation invariant mini-
mizer is not the true minimizer. A rotation invariant minimizer is necessarily a critical
point of the Pekar–Tomasevich functional. If it is a ‘false’ minimum (i.e., its energy is
bigger than the true ground state energy), its existence can possibly lead to computational
difficulties for the true minimizer.

In the Appendix we show two things about the rotation invariant minimization
problem:

(1) There is a critical constantU symm
c with 2−1/

√
2 < U symm

c ≤ 4 such that esymm
U < e

for U < U symm
c and esymm

U = e for U ≥ U symm
c ; see Proposition 8.

(2) The rotation invariant minimizer, if it exists, is a function of |x |, |y| and t =
x · y/|x ||y|. We will show that for fixed |x | and |y| the minimizer is non-increasing
as a function of t . That is, the two particles try to avoid each other; see Proposition 9.

2.2. Beginning of the proof of Theorem 1. After these preparations we are now ready to
give the first part of the proof of Theorem 1. Our strategy is as follows: Let Un > 0 be
a sequence such that Un → 0. For every sufficiently large n there is a global minimizer
ψn and a rotation invariant minimizer ϕn corresponding to (1.2) and (2.4) with U = Un .
We shall prove that for all large n, ϕn and ψn coincide up to a translation and a constant
phase.

This clearly implies the theorem. Indeed, if the theorem were not true we could find
a sequence Un tending to zero, and associated minimizers ψn and ψ̃n which are not
translates or multiples of each other. By what we are going to show, however, they are
both translates and multiples of a rotation invariant minimizer ϕn if n is large, which is
a contradiction.

Thus, from now on we fix a sequence Un > 0 tending to zero. We will only consider
n sufficiently large such that there are a global minimizer ψn and a rotation invari-
ant minimizer ϕn corresponding to (1.2) and (2.4) with U = Un . By Steps 1 and 2
above we may assume that ψn and ϕn are positive and permutation symmetric (i.e.,
ψn(x, y) = ψn(y, x) and similarly for ϕn). Since the global minimization problem is
translation invariant, we may translate ψn in such a way that

αn :=
∫∫

R3×R3
ψn(x, y)ϕn(x, y) dx dy

= max
a∈R3

∫∫
R3×R3

ψn(x − a, y − a)ϕn(x, y) dx dy. (2.5)

With this normalization, our goal is to show that ψn = ϕn for all large n.
We decompose

ψn = αnϕn + jn,
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where, according to the definition of αn and to the maximizing property in (2.5),
∫∫

R3×R3
jnϕn dx dy = 0 and

∫∫
R3×R3

jn �e · (∇x + ∇y)ϕn dx dy = 0 for any �e ∈ S
2. (2.6)

The derivative term comes from differentiating the last double integral in (2.5) with
respect to a.

We next claim that

‖ jn‖H1 → 0 as n → ∞. (2.7)

Indeed, both ψn and ϕn are minimizing sequences for the e0 problem. Since the mini-
mizer for this problem is unique up to translations (see Step 2 above), the results of [12]
imply that

ψn(· − an, · − an) → f ⊗ f and ϕn(· − bn, · − bn) → f ⊗ f in H1(R6)

for some sequences an and bn in R
3. Here f ⊗ f is the e0 minimizer with f chosen

spherically symmetric about the same origin that we fixed to formulate the problem (2.4).
Since the density of ϕn is spherically symmetric, one easily concludes that bn → 0 and,
therefore, ϕn → f ⊗ f in H1 as n → ∞. This, together with the maximizing property
of αn in (2.5), implies also that an → 0 and ψn → f ⊗ f in H1 as n → ∞. Thus
αn → 1 and jn = ψn − αnϕn → 0 in H1, as claimed in (2.7).

We now expand the energy of ψn to second order in ‖ jn‖H1 . A simple but tedious
computation shows that

EUn [ψn] = EUn [ϕn] + ( jn, Ln jn) + O(‖ jn‖3
H1) (2.8)

with the linear operator

Ln =
(

−	x −	y +
Un

|x − y| − ρϕn ∗ 1

|x | − ρϕn ∗ 1

|y| − μn

)
− 4Xϕn .

Here ρϕn ∗|x |−1 is an abbreviation for
(
ρϕn ∗ | · |−1

)
(x), we introducedμn = EUn [ϕn]−

D[ρϕn , ρϕn ] and Xϕn is the integral operator on L2(R6) with the integral kernel

Xϕn (x, y, x ′, y′) = ϕn(x, y)ϕn(x ′, y′)
|x − x ′| +

ϕn(x, y)ϕn(x ′, y′)
|y − y′| .

In order to see that there is no linear term in jn in the computation, we used the Euler–
Lagrange equation for ϕn , that is,

(
−	x −	y +

Un

|x − y| − ρϕn ∗ 1

|x | − ρϕn ∗ 1

|y|
)
ϕn = μnϕn . (2.9)

(From the minimizing property of ϕn one obtains this equation only when integrated
against rotation invariant functions but, since both sides are rotation invariant functions,
it is true even when integrated against any function.) We also used the fact that

αn =
(

1 − ‖ jn‖2
)1/2 = 1 − 1

2
‖ jn‖2 + O(‖ jn‖4).
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In deriving (2.8) we applied standard estimates to bound all terms of higher than quadratic
order by a constant times ‖ jn‖3

H1 .
The way forward is now clear: The quantity A referred to in the Introduction can

be identified as ( j, Ln j)/‖ j‖2 for j’s satisfying (2.6), and we need to prove that this is
non-zero. We will prove that there are constants N ≥ 1 and c > 0 such that

( j, Ln j) ≥ c‖ j‖2 (2.10)

for all n ≥ N and all j satisfying the orthogonality conditions (2.6). We claim that this
implies that, with a possibly smaller constant c̃ > 0,

( j, Ln j) ≥ c̃‖ j‖2
H1 (2.11)

for all n ≥ N and all j satisfying the orthogonality conditions (2.6). Accepting this for
the moment, (2.8) will imply that

EUn [ψn] ≥ EUn [ϕn] + c̃‖ jn‖2
H1 + O(‖ jn‖3

H1).

Recall that, by (2.7), ‖ jn‖H1 → 0. Since ψn is, by assumption, an energy minimizer,
we have necessarily jn = 0 for all large n, which means ψn = ϕn , as we intended to
prove.

We next explain how to deduce (2.11) from (2.10). To do so, we use the fact that
there is a constant M > 0 such that for all n,

Ln ≥ 1

2

(−	x −	y − M
)
.

Thus, if Pn denotes the projection onto the four-dimensional space spanned by ϕn and
�e · (∇x + ∇y)ϕn, e ∈ S

2, then by (2.10)

P⊥
n Ln P⊥

n = (1 − ε)P⊥
n Ln P⊥

n + εP⊥
n Ln P⊥

n

≥ (1 − ε)cP⊥
n +

ε

2
P⊥

n

(−	x −	y − M
)

P⊥
n .

Choosing ε > 0 so small that (1 − ε)c − εM/2 ≥ ε/2 we deduce (2.11).
Thus we are left with proving the lower bound (2.10) on ( j, Ln j). We show this

perturbatively by analyzing the U = 0 case.

2.3. The Hessian. Instead of working directly with the operator Ln , it is more conve-
nient to work with a closely related operator, namely the Hessian Hn of EUn at ϕn . That
is, for any normalized, real-valued j ∈ H1(R6) we define

d2

dε2

∣∣∣∣
ε=0

EUn

[
ϕn + ε j√

1 + 2ε(ϕn, j) + ε2

]
= ( j, Hn j). (2.12)

A similar computation as before shows that

Hn = Ln + |kn〉〈ϕn| + |ϕn〉〈kn| + βn|ϕn〉〈ϕn| ,
where

βn = 4

((
ϕn,

(
−	x −	y +

Un

|x − y|
)
ϕn

)
− 3D[ρϕn , ρϕn ]

)
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and

kn = −2

((
−	x −	y +

Un

|x − y|
)
ϕn − 2ρϕn ∗ |x |−1ϕn − 2ρϕn ∗ |y|−1ϕn

)
.

The expressions for βn and kn can be somewhat simplified using Eq. (2.9) for ϕn , but
we will not need this. The only thing that is relevant for us is that ( j, Hn j) = ( j, Ln j)
if j satisfies the first orthogonality condition (2.6).

We collect two facts about the operators Hn . First, Hn (which commutes with angu-
lar momentum since ϕn is rotation invariant) is non-negative on the subspace of angular
momentum zero. This follows from the minimizing property ofϕn . Second, the functions
ϕn and �e · (∇x +∇y)ϕn, e ∈ S

2, are in the kernel of Hn . For ϕn , this follows immediately
from the Euler–Lagrange equation (2.9) for ϕn , and for �e · (∇x + ∇y)ϕn , this follows by
differentiating Eq. (2.9) for ϕn(x + t �e, y + t �e) (which is the same as that for ϕn) with
respect to t at t = 0.

The following proposition says that, for small Un, Hn is strictly positive away from
the zero modes found above.

Proposition 3. There is a number c > 0 and an N ≥ 1 such that for all n ≥ N and for
all j which are orthogonal to ϕn and to �e · (∇x + ∇y)ϕn, �e ∈ S

2, the following estimate
holds:

( j, Hn j) ≥ c‖ j‖2.

Equivalently, if Pn denotes the projection onto the four-dimensional space spanned by
ϕn and �e · (∇x + ∇y)ϕn, e ∈ S

2, then for n ≥ N,

P⊥
n Hn P⊥

n ≥ cP⊥
n .

Note that, as remarked above, ( j, Hn j) = ( j, Ln j) if (ϕn, j) = 0 and, therefore,
Proposition 3 concludes the proof of Theorem 1. ��

Since ϕn → f ⊗ f in H1(R6) as n → ∞, the operators Hn tend to the corresponding
operator at U = 0 in norm resolvent sense. In particular, the eigenvalues converge and,
therefore, it suffices to prove Proposition 3 in the case U = 0. This is the topic of the
next section.

The reason that we have chosen to work with the operator Hn instead of Ln is that
the operator Ln has a negative eigenvalue. (This follows from the variational principle
since (ϕn, Lnϕn) = −4(ϕn Xϕn , ϕn) < 0 by (2.9).) The positivity of ( j, Ln j) asserted
in Proposition 3 therefore crucially relies on the orthogonality condition (2.6). This con-
dition is not easy to use, however, since ϕn is not an eigenfunction of Ln . In contrast,
it is an eigenfunction of Hn . We also note that Hn is the operator that automatically
takes care of the normalization condition, without any reference to orthogonality, and,
therefore, is most directly connected to the coefficient A mentioned in the Introduction.

3. Proof of Theorem 1. Part B

As explained in Step 2 of the previous section, at U = 0 we have ϕ(x, y) = f (x) f (y),
where f is a radial decreasing function on R

3 with
∫

f 2 dx = 1 and

h f = 0 , h = −	− 2 f 2 ∗ 1

|x | − μ

2
. (3.1)
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Here, μ = e0 − 4D[ f 2, f 2] = 8e − 4D[ f 2, f 2]. The Hessian of E0 at f ⊗ f is the
operator on L2(R6) given by

H = L + |r ⊗ f + f ⊗ r〉〈 f ⊗ f | + | f ⊗ f 〉〈r ⊗ f + f ⊗ r | + β| f ⊗ f 〉〈 f ⊗ f | ,
where

L = hx + hy − 4X f ⊗ f ,

and where β is a constant and r is a function in L2(R3). More precisely,

β = 8
(
( f,−	 f )− 6D[ f 2, f 2]

)

and

r = −2
(
−	− 4 f 2 ∗ |x |−1

)
f.

The main result of this section is the following U = 0 analogue of Proposition 3. We
note that the three-dimensional space spanned by �e · (∇x + ∇y)ϕ, �e ∈ S

2, coincides with
the space spanned by f ⊗ f ′Y1,m + f ′Y1,m ⊗ f,m = −1, 0, 1, where Y1,m are spherical
harmonics of degree one.

Proposition 4. There is a number C > 0 such that for all j ∈ H1(R6) with j (x, y) =
j (y, x) that satisfy

( f ⊗ f, j) = ( f ⊗ f ′Y1,m + f ′Y1,m ⊗ f, j) = 0 for all m = −1, 0, 1,

the following estimate holds:

( j, H j) ≥ C‖ j‖2.

Equivalently, if P denotes the projection onto the four-dimensional space spanned by
f ⊗ f and f ⊗ f ′Y1,m + f ′Y1,m ⊗ f,m = −1, 0, 1, then

P⊥ H P⊥ ≥ C P⊥.
We shall deduce this from a result about the Hessian of the one-particle functional, which
we discuss in the following subsection.

3.1. The one-particle Hessian. We recall that the function f minimizes the one-polaron
functional ∫

R3
|∇ψ |2 dx − 2D[|ψ |2, |ψ |2] (3.2)

and that the corresponding Euler–Lagrange equation reads h f = 0 with h from (3.1).
Moreover, the Hessian of the above one-polaron functional at f reads

H (1) = L(1) + |r〉〈 f | + | f 〉〈r | + γ | f 〉〈 f |
with an explicit constant γ ∈ R and

L(1) = h − 4x f .

Here x f is the operator on L2(R3) with the integral kernel f (x)|x − x ′|−1 f (x ′) and r
is the same function as in the expression of the two-particle operator H . The following
proposition is the one-particle analogue of Proposition 4. Its proof relies heavily on
previous work of Lenzmann [11].
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Proposition 5. There is a number C ′ > 0 such that for all j ∈ H1(R3) that satisfy

( f, j) = ( f ′Y1,m, j) = 0 for all m = −1, 0, 1,

the following estimate holds:

( j, H (1) j) ≥ C ′‖ j‖2.

Similarly as in the discussion before Proposition 3, we note that f and f ′Y1,m are
zero modes of H (1). Thus the proposition says that there are no other zero modes.

Proof. We first note that H (1) is non-negative, since f is a minimizer of the one-polaron
problem. We now argue that L(1) has exactly one negative eigenvalue. Indeed, since
( j, L(1) j) = ( j, H (1) j) if ( f, j) = 0 and since H (1) ≥ 0, the variational principle
implies that L(1) has at most one negative eigenvalue. On the other hand, the Euler–
Lagrange equation for f implies that ( f, L(1) f ) = −4( f, x f f ) < 0, which, again
by the variational principle, means that L(1) has at least one negative eigenvalue. This
proves the claim.

We next recall Lenzmann’s result [11], which states that

ker L(1) = span{ f ′Y1,m : m = −1, 0, 1}. (3.3)

We also note that L(1) commutes with angular momentum. Moreover, its essential spec-
trum starts at −μ/2 > 0 and, therefore, (3.3) implies that there is a constant c′ > 0 such
that

( j, H (1) j) = ( j, L(1) j) ≥ c′‖ j‖2

for all j with angular momentum l ≥ 2 and for all j with angular momentum l = 1
satisfying the additional constraint that ( f ′Y1,m, j) = 0 for all m = −1, 0, 1. (Actually,
the argument of [11] shows that the best constant c′ is achieved either for l = 1 or for
l = 2.)

Since the function r appearing in the definition of H (1) is radial, the operator H (1)

commutes with angular momentum. Therefore, the previous discussion reduces the proof
of Proposition 5 to finding a lower bound on ( j, H (1) j) for radial j satisfying ( f, j) = 0.
In other words, we have to exclude the possibility that 0 is a degenerate eigenvalue of
H (1) restricted to l = 0.

As an aside, before completing the proof, we show that there is a radial function R
such that

L(1)R = μ f

and

(R, f ) = 1

2
.

This is also contained in [11], but we include the short proof for the convenience of the
reader. We define fβ(x) = β2 f (βx) and note that the Euler–Lagrange equation for f
implies the following equation for fβ :

(
−	− 2 f 2

β ∗ 1

|x |
)

fβ = β2μ

2
fβ.
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By differentiating this equation at β = 1 we obtain L(1) d
dβ |β=1 fβ = μ f and thus

R = d

dβ

∣∣∣∣
β=1

fβ = 2 f + x · ∇ f

satisfies the desired equation and is obviously radial. The overlap (R, f ) is computed
by differentiating the identity

∫
fβ(x)2 dx = β at β = 1.

Having found the function R we now conclude the proof by showing that 0 is a
simple eigenvalue of H (1) restricted to radial functions. Thus, let v be a radial function
satisfying H (1)v = 0 and ( f, v) = 0. We need to show that v = 0. By the expression
for H (1),

L(1)v + (r, v) f = 0.

We define ṽ = v +μ−1(r, v)R with R as constructed above. Thus L(1)ṽ = 0. Since ṽ is
radial, Lenzmann’s result (3.3) implies that ṽ = 0. From the orthogonality condition of
v we infer that

0 = ( f, ṽ) = μ−1(r, v)( f, R).

Thus, since ( f, R) �= 0, we have (r, v) = 0, and therefore v = ṽ = 0, as claimed. This
concludes the proof of Proposition 5. ��

3.2. Proof of Proposition 4. We consider the operator H in the subspace L2
symm(R

6)

of all functions j ∈ L2(R6) satisfying j (x, y) = j (y, x). We decompose this space as
L2

symm(R
6) = H0 ⊕ H1, where

H0 = {α f ⊗ f + f ⊗ g + g ⊗ f : α ∈ C, ( f, g) = 0}
and

H1 = span{ f }⊥ ⊗ span{ f }⊥.
Since h f = 0 and since the rank one operators entering in the definition of H only
involve terms of the form k̃ ⊗ f + f ⊗ k̃ (with k̃ being either r or f ), the operator H
leaves both subspaces invariant and we can study it separately on each subspace.

We observe that H coincides with L on H1 and that, moreover, the operator X f ⊗ f
vanishes on that space. Therefore, on H1 the operator L is just a sum of two one-body
operators h. Since f is positive, it is the ground state of h and since the essential spectrum
of h starts at −μ/2 > 0, h has a gap δ > 0 above zero. We conclude that L ≥ 2δ on H1.

We now turn to the space H0. More precisely, we are only interested in the space

H0 ∩ ran P⊥ = { f ⊗ g + g ⊗ f : ( f, g) = ( f ′Y1,m, g) = 0}.
For j = f ⊗ g + g ⊗ f from this space we have

( j, L j) = 2(g, (h − 4x f )g) ,

and by Proposition 5, this is bounded from below by 2C ′‖g‖2 = C ′‖ j‖2. This completes
the proof of Proposition 4. ��
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Appendix A. Existence of a Rotation Invariant Optimizer

Our goal in this section is to prove Proposition 2, that is, the existence of a rotation
invariant optimizer. The heart of the proof is the following lemma.

Lemma 6. Assume that ψn ∈ H1(R6) is a sequence of normalized, rotation invariant
functions such that

√
ρψn has a weak limit

√
ρ in H1(R3). Then

lim inf
n→∞ E0[ψn] ≥ e

(∫
R3
ρ dx

)3

.

Proof. As in Step 2 in Subsect. 2.1 we rewrite the energy in terms of the potential
�n := ρn ∗ |x |−1 generated by ρn := ρψn . By the Hoffmann–Ostenhof inequality [7]
we obtain

E0[ψn] =
∫∫

R3×R3

(
|∇xψn|2 + |∇yψn|2 −�n(x)|ψn|2 −�n(y)|ψn|2

)
dx dz

+
1

8π

∫
R3

|∇�n|2 dx

≥
∫

R3

(
|∇√

ρn|2 −�nρn

)
dx +

1

8π

∫
R3

|∇�n|2 dx . (A.1)

Of course, we may pass to a subsequence and assume that E0[ψn] has a finite limit.
Thus we infer that the sequence �n is bounded in Ḣ1(R3) and, after passing to another
subsequence if necessary, we may assume it has a weak limit � in Ḣ1(R3). Below we
shall argue that

lim
n→∞

∫
R3
(�nρn −�ρ) dx = 0. (A.2)

Once this is proved, we conclude from (A.1) and the lower semi-continuity of the terms∫ |∇√
ρn|2 dx and

∫ |∇�n|2 dx that

lim inf
n→∞ E0[ψn] ≥

∫
R3

(
|∇√

ρ|2 −�ρ
)

dx +
1

8π

∫
R3

|∇�|2 dx .

By the same argument as in (2.3) and by the definition of the single-polaron energy we
find that ∫

R3

(
|∇√

ρ|2 −�ρ
)

dx +
1

8π

∫
R3

|∇�|2 dx

≥
∫

R3
|∇√

ρ|2 dx − D[ρ, ρ] ≥ e

(∫
R3
ρ dx

)3

.

The last inequality follows by scaling ρ. This is the claimed lower bound.
We are left with proving (A.2). First, by Sobolev embeddings �n converges to �

weakly in L6 and we have ρ ∈ L1 ∩ L3 ⊂ L6/5. Thus, we only need to prove

lim
n→∞

∫
R3
�n (ρn − ρ) dx = 0.
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At this point we use the spherical symmetry of ρn and �n . Newton’s theorem implies
that 0 ≤ �n(x) ≤ 2|x |−1. Thus, for any R > 0,∣∣∣∣

∫
|x |>R

�n (ρn − ρ) dx

∣∣∣∣ ≤ 8R−1 ,

which can be made arbitrarily small, uniformly in n, by choosing R large. On the other
hand, ∣∣∣∣

∫
|x |≤R

�n (ρn − ρ) dx

∣∣∣∣
≤

(∫
R3
�2

n

(√
ρn +

√
ρ
)2

dx

)1/2 (∫
|x |≤R

(√
ρn − √

ρ
)2

dx

)1/2

.

By Rellich–Kondrashov the second term on the right side tends to zero as n → ∞ for
every fixed R > 0. Moreover, the first term is bounded uniformly in n, since

∫
R3
�2

n

(√
ρn +

√
ρ
)2

dx ≤
(∫

R3
�6

n dx

)1/3 (∫
R3

(√
ρn +

√
ρ
)3

dx

)2/3

.

(The fact that the ρn-term is uniformly bounded follows from the fact that ρn is uniformly
bounded in L1 ∩ L3 by Sobolev inequalities.) This concludes the proof of (A.2), and
therefore the lemma is proven. ��

The following lemma is well known. We include the proof for the convenience of
the reader. An instructive example to keep in mind is where ψn(x, y) = f (x)gn(y) +
gn(x) f (y), where gn and f are H1(R3) functions with disjoint support and where gn
converges weakly to zero in H1(R3).

Lemma 7. Assume that ψn is normalized and converges weakly to zero in H1(R6) and
assume that

√
ρψn converges weakly in H1(R3) to some

√
ρ. Then

∫
R3 ρ dx ≤ 1.

Proof. For any R > 0 we write∫
|x |<R

ρψn (x) dx

=
∫∫

|x |<R
|ψn(x, y)|2 dx dy +

∫∫
|y|<R

|ψn(x, y)|2 dx dy

= 1 −
∫∫

|x |>R,|y|>R
|ψn(x, y)|2 dx dy +

∫∫
|x |<R,|y|<R

|ψn(x, y)|2 dx dy

≤ 1 +
∫∫

|x |<R,|y|<R
|ψn(x, y)|2 dx dy.

Sinceψn converges weakly to zero in H1(R6), the Rellich–Kondrashov theorem implies
that the last double integral on the right side tends to zero as n → ∞. Thus, again by
the Rellich–Kondrashov theorem now applied to

√
ρψn ,

∫
|x |<R

ρ(x) dx = lim
n→∞

∫
|x |<R

ρψn (x) dx ≤ 1.

Since this is true for any R > 0, we obtain the assertion. ��
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Proof of Proposition 2. Let ψn be a minimizing sequence for esymm
U with esymm

U < e.
Since EU [ψn] is bounded, ψn is bounded in H1 and, after passing to a subsequence, it
converges weakly in H1(R6) to a function ψ . We decompose ψn = ψ + ψ̃n , where now
ψ̃n converges weakly to zero in H1(R6), and note that

1 = ‖ψn‖2 = ‖ψ‖2 + ‖ψ̃n‖2 + o(1). (A.3)

We claim that asymptotically, the energy of the minimizing sequence splits as follows:

EU [ψn] = EU [ψ,�n] + EU [ψ̃n,�n] + o(1). (A.4)

Here �n = ρψn ∗ |x |−1, and we recall that the notation EU [ψ,�] was introduced in
(2.2). The proof of (A.4) relies on the weak convergence in H1 for the positive terms in
the energy functional and on the fact that

∫∫
R3×R3

�n(x)ψ̃n(x, y)ψ(x, y) dx dy = o(1).

The proof of the latter relation also uses the weak convergence in H1, together with the
fact that �n is bounded in L∞. The details are as in [4, Eq. (5.13)] and are omitted.

It follows from (A.4), together with (2.3) and (A.3) that

EU [ψn] ≥ ‖ψ‖2EU [‖ψ‖−1ψ] + (1 − ‖ψ‖2)EU [vn] + o(1) , (A.5)

where vn = ‖ψ̃n‖−1ψ̃n . Here we interpret EU [‖ψ‖−1ψ] as zero if ψ ≡ 0, and similarly
for EU [vn].

Given (A.5), it is easy to deduce that ‖ψ‖ = 1. Indeed, we argue by contradiction
and assume that ‖ψ‖ < 1, which is the same, by (A.3), as assuming that ‖ψ̃n‖ has a
non-zero limit. Hence vn converges weakly to zero in H1(R6). By the Hoffmann-Osten-
hof inequality [7] the square roots of the corresponding densities σn = ρvn are bounded
in H1(R3) and hence, after passing to a subsequence, have a weak limit

√
σ in H1(R3).

Since all vn are rotation invariant, we learn from Lemmas 6 and 7 that

lim inf
n→∞ EU [vn] ≥ e

(∫
R3
σ dx

)3

≥ e.

On the other hand, we trivially have EU [‖ψ‖−1ψ] ≥ esymm
U . (This also holds if ψ ≡ 0

with our convention.) Thus (A.5) implies that

esymm
U = lim

n→∞ EU [ψn] ≥ ‖ψ‖2esymm
U + (1 − ‖ψ‖2)e.

Since ‖ψ‖ < 1, this contradicts our assumption that esymm
U < e.

Thus we have shown that ‖ψ‖ = 1, and now (A.5) implies that EU [ψn] ≥ EU [ψ] +
o(1), from which we deduce that esymm

U ≥ EU [ψ], that is, ψ is a minimizer. This com-
pletes the proof of Proposition 2.
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Appendix B. On the Rotation Invariant Optimization Problem

In the next two propositions we present some interesting facts about the rotation invariant
minimizers. This Appendix is not needed in the rest of the paper.

Proposition 8. If U ≤ 2 − 1/
√

2, then esymm
U < e. On the other hand, if (2.9) has a

rotation-invariant solution 0 �≡ ϕ ∈ H1(R6), then U < 4. In particular, esymm
U = e for

U ≥ 4.

Proof. The first part of the proposition follows by a simple variational computa-
tion in the manner of [6]. We take the rotation invariant function ψ(x1, x2) =
2−3/2 f (x1/

√
2) f (x2/

√
2), where f is the one-polaron minimizer in (1.3), and com-

pute that EU [ψ] = e for U = 2 − 1/
√

2. This obviously implies that esymm
U < e for

U < 2−1/
√

2. It also implies that esymm
U < e for U = 2−1/

√
2, because otherwise the

product function ψ would be a minimizer and hence a solution to the Euler–Lagrange
equation, which it is not because of the singularity in the |x1 − x2|−1 term.

The second part is an adaptation of the N < 2Z + 1 theorem in [13, Sec. VI.a]. In
the present situation N = 2 and the effective Z = ∫

ρϕ dx/U = 2/U . ��
Our second result in this section concerns the correlation of the particles in the opti-

mizing rotation invariant state. We state this in form of a rearrangement inequality, where
the rearrangement is defined as follows. We identify a rotation invariant functionψ(x, y)
with a function u(r, s, t), where r = |x |, s = |y| and t = x · y/|x ||y|. For fixed r, s ≥ 0,
we denote by u∗(r, s, ·) the unique, non-increasing function on [−1, 1] which is equi-
measurable with |u(r, s, ·)| (in the sense of Lebesgue measure on [−1, 1]). If u(r, s, t)
came from a function ψ(x, y), we also use the notation ψ∗(x, y) for u∗(r, s, t). Then
|ψ | and ψ∗ are equi-measurable and, in particular, ‖ψ‖ = ‖ψ∗‖.

Proposition 9. For any U > 0 and any rotation invariant ψ ∈ H1(R6) with ‖ψ‖ = 1
one has EU [ψ∗] < EU [ψ] unless ψ = ψ∗ a.e.

In particular, if ψ is an optimizer for esymm
U , then for any fixed |x | and |y|, ψ(x, y)

is a non-increasing function of x · y/|x ||y|.
Proof. Since ρψ = ρψ∗ because of equi-measurability, the D[ρ, ρ] term in the energy
functional does not change when ψ is replaced by ψ∗. Moreover, the repulsion term
improves (unless ψ = ψ∗) since, for fixed r, s > 0,∫ 1

−1

|u(r, s, t)|2
(r2 − 2rst + s2)1/2

dt >
∫ 1

−1

|u∗(r, s, t)|2
(r2 − 2rst + s2)1/2

dt

unless u(r, s, t) = u∗(r, s, t). This is a simple rearrangement inequality proved as in
[15, Thm. 3.4]. It uses the fact that (r2 − 2rst + s2)−1/2 is an increasing function of t .

For the kinetic energy we compute

|∇xψ |2 =
∣∣∣∣∂u

∂r

∣∣∣∣
2

+
1

r2 (1 − t2)

∣∣∣∣∂u

∂t

∣∣∣∣
2

,

and similarly for ∇yψ , so that∫∫
R3×R3

(
|∇xψ |2 + |∇yψ |2

)
dx dy

= 8π2
∫ ∞

0

∫ ∞

0

∫ 1

−1

(∣∣∣∣∂u

∂r

∣∣∣∣
2

+

∣∣∣∣∂u

∂s

∣∣∣∣
2

+

(
1

r2 +
1

s2

)
(1 − t2)

∣∣∣∣∂u

∂t

∣∣∣∣
2
)

r2s2 dt ds dr.
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We now argue that for any fixed r and s, one has

∫ 1

−1

∣∣∣∣∂u

∂r

∣∣∣∣
2

dt ≥
∫ 1

−1

∣∣∣∣∂u∗

∂r

∣∣∣∣
2

dt ,

and similarly for ∂u
∂s , and

∫ 1

−1
(1 − t2)

∣∣∣∣∂u

∂t

∣∣∣∣
2

dt ≥
∫ 1

−1
(1 − t2)

∣∣∣∣∂u∗

∂t

∣∣∣∣
2

dt.

Of course, these two inequalities will complete the proof of the proposition. For the
proof of the first inequality we approximate ∂u

∂r (r, s, t) by h−1(u(r + h, s, t)−u(r, s, t)).
Then the t-integrals of the terms |u(r + h, s, t)|2 and |u(r, s, t)|2 do not change under
symmetrization, whereas

Re
∫ 1

−1
u(r + h, s, t)u(r, s, t) dt ≤

∫ 1

−1
u∗(r + h, s, t)u∗(r, s, t) dt

by a simple rearrangement inequality. As h → 0 we obtain the first one of two claims.
For the proof of the second inequality we consider the function g on S

2, given in spherical
coordinates (ϕ, θ) by g(ϕ, θ) = u(r, s, cos θ). Then

∫
S2

|∇ωg|2 dω = 2π
∫ 1

−1
(1 − t2)

∣∣∣∣∂u

∂t

∣∣∣∣
2

dt.

Since passing from u(r, s, ·) to u∗(r, s, ·) corresponds to the usual symmetrization of g
on the sphere, the latter inequality follows from standard symmetrization results; see,
e.g., [1]. This finishes the proof of Proposition 9. ��
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