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SYMMETRY OF SOLUTIONS TO SOME SYSTEMS
OF INTEGRAL EQUATIONS

CHAO JIN AND CONGMING LI

(Communicated by David S. Tartakoff)

Abstract. In this paper, we study some systems of integral equations, in-
cluding those related to Hardy-Littlewood-Sobolev (HLS) inequalities. We
prove that, under some integrability conditions, the positive regular solu-
tions to the systems are radially symmetric and monotone about some point.
In particular, we established the radial symmetry of the solutions to the

Euler-Lagrange equations associated with the classical and weighted Hardy-
Littlewood-Sobolev inequality.

1. Introduction

Let Rn be the n-dimensional Euclidean space, and let α be a real number satis-
fying 0 < α < n. Consider the integral equation:

(1.1) u(x) =
∫

Rn

|x − y|α−nu(y)
n+α
n−α dy, u > 0 in Rn.

It arises as an Euler-Lagrange equation for a functional under a constraint in the
context of the Hardy-Littlewood-Sobolev inequality. In [14], Lieb classified the
maximizers of the functional, and thus obtained the best constant in the HLS
inequality. He then posed the classification of all the critical points of the functional,
i.e. the solutions of the integral equation (1.1), as an open problem.

This integral equation is closely related to the following well-known family of
semi-linear partial differential equations

(1.2) (−∆)α/2u = u(n+α)/(n−α), u > 0, in Rn.

In the special case n ≥ 3 and α = 2, (1.2) becomes

(1.3) −∆u = u(n+2)/(n−2), u > 0, in Rn.

Solutions to (1.3) were studied by Gidas, Ni, and Nirenberg [12] and classified
under some decay condition at infinity.

Later, Caffarelli, Gidas, and Spruck [5] removed the decay condition and obtained
the same result. Then Chen and Li [7], and Li [13] simplified their proof. Recently,
Wei and Xu [19] generalized this result to the solutions of the more general equation
(1.2) with α being any even numbers between 0 and n.
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1662 CHAO JIN AND CONGMING LI

After this, Chen, Li, and Ou [8] solved Lieb’s open problem by using the method
of moving planes and proved that every positive solution u(x) of (1.1) is radially
symmetric and decreasing about some point xo. They also showed the equivalence
between the integral equation (1.1) and the differential equation (1.2), and therefore
classified all the solutions of the semi-linear differential equation (1.2).

Furthermore, another paper from Chen, Li, an Ou [9] discussed the actual system
of integral equations that maximize the constant in the Hardy-Littlewood-Sobolev
inequality. They presented and proved:

Theorem. Let the pair (u, v) be a solution of the system of integral equations:

(1.4)
{

u(x) =
∫

Rn |x − y|α−nvq(y)dy,
v(x) =

∫
Rn |x − y|α−nup(y)dy

with 1
q+1 + 1

p+1 = n−α
n ; p, q ≥ 1, 0 < α < n.

Assume that u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn). Then u and v are radially
symmetric and decreasing about some point xo.

In this paper, we will study the system of integral equations which is in a more
general form:

(1.5) U(x) =
∫

Rn

L(|x|, |x − y|)H(|y|)F(U(y))dy.

Here,

U(x) = {u1(x), u2(x), . . . , um(x)}, F(z) = {f1(z), f2(z), . . . , fm(z)},
L(|x|, |x − y|) = {l1(|x|, |x − y|), l2(|x|, |x − y|), . . . , lm(|x|, |x − y|)} ,

H(|x|) = {h1(|x|), h2(|x|), . . . , hm(|x|)} where x, y ∈ Rn, z ∈ Rm.

This system covers the Euler-Lagrange system from not only the classical HLS in-
equality, which has been studied by many researchers, but also the double weighted
HLS inequality (see section 2 for more details).

Before presenting the theorem, we first give a definition.

Definition 1.1. We say that f1, f2, . . . , fm are essentially related if

(1.6)
lo∑

l=1

fil
(u1, u2, . . . , um) �=

lo∑
l=1

fil
(v1, v2, . . . , vm)

provided that ui ≤ vi for i = 1, . . . , m and uj < vj for j ∈ S, where S =
{1, . . . , m}\{i1, . . . , ilo}.

This definition is a simple way to say that the system (1.5) can’t be divided into
two or more independent subsystems. In this paper, we say that system (1.5) is
essentially related when f1, f2, . . . , fm are essentially related.

To be able to prove that the solutions u1, ..., un are radially symmetric around
a common center xo, this kind of assumption is necessary.

Theorem 1.2. Let U(x) be the positive regular solutions of the essentially related
system (1.5), 0 < αi < n, and βj > 0 for i, j = 1, . . . , m. Assume that:

(1) li(s, t) ≤ C
tn−αi

, ∂fi

∂uj
(u) ≤ Ci,j |u|βj and li(s1, t1) < li(s2, t2) provided s1 <

s2 and t1 < t2;
(2) li(s, t) and hi(t) are positive nonincreasing in s, t; fi(z) ≥ 0 and is nonde-

creasing in all variables for i = 1, 2, . . . , m;
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(3) hi(|y|)(uj)βj ∈ Lpi,j where pi,j = nqiqj

qjqiαi+n(qj−qi)
, qi > n

n−αi
, qj > n

n−αj
for

any i, j = 1, 2, ...m;
Then all ui(x) are symmetric and decreasing about some point xo.

Remark 1.3. In most cases, the center is at the origin. For example, in the case
that H is not constant, L �= 0, and f(u) �= 0 for u �= 0, the center is at the origin.

Remark 1.4. In many applications, most of the Ci,j are zero, i.e., the systems
related to the classical HLS inequality and the weighted HLS inequality.

Remark 1.5. This theorem is a generalization of the results in [9] and [8] about the
classification of nonnegative solutions.

In particular, the result of Theorem 1.2 holds for the single integral equation:

(1.7) u(x) =
∫

Rn

L(|x|, |x − y|)H(|y|)f [u(y)]dy.

We present it as the following:

Theorem 1.6. Let u(x) be a positive regular solution of (1.7) and 0 < α < n. As-
sume that L(s, t) and H(t) are nonnegative and nonincreasing, f(s) is nonnegative
nondecreasing, L(s, t) ≤ C

tn−α , f ′(u) ≤ C|u|β, β > 0 and u(x)βH(|y|) ∈ L
n
α (Rn).

Then u(x) is radially symmetric and decreasing about some point xo.

The following is the system of Euler-Lagrange equations for the weighted HLS
inequality:

(1.8)

{
u(x) = 1

|x|α
∫

Rn

v(y)q

|y|β |x−y|λ dy,

v(x) = 1
|x|β

∫
Rn

u(y)p

|y|α|x−y|λ dy

where 0 < p, q < ∞, 0 < λ < n, β ≥ 0, 0 ≤ α
n < 1

p+1 < λ+α
n , and 1

p+1 + 1
q+1 =

λ+α+β
n .

Theorem 1.7. Let the pair (u, v) be a positive solution of system (1.8) and p, q ≥
1, pq �= 1. Then u and v are radially symmetric and decreasing about some point
xo.

In section 2, we present some background knowledge about Hardy-Littlewood-
Sobolev inequalities. In section 3, we present the proof of Theorem 1.7, which is
similar to but much simpler than the proof of Theorem 1.2 . In section 4, we prove
Theorems 1.2 and 1.6.

2. Hardy-Littlewood-Sobolev inequalities

2.1. The classical Hardy-Littlewood-Sobolev inequality. Let 0 < α < n,
s, r > 1 such that 1

r + 1
s = n+α

n . The well-known Hardy-Littlewood-Sobolev in-
equality states that:

(2.1)
∫

Rn

∫
Rn

f(x)|x − y|α−ng(y)dxdy ≤ C(n, s, α)||f ||r||g||s

for any f ∈ Lr(Rn) and g ∈ Ls(Rn).
Let Tg(x) =

∫
Rn |x − y|α−ng(y)dy. Then the above inequality implies that:

〈f, Tg〉 = 〈Tf, g〉 ≤ C(n, s, α) ‖f‖r ‖g‖s .
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Consequently, ‖Tg‖p = Sup‖f‖r=1〈f, Tg〉 ≤ C(n, s, α)‖g‖s, where{ 1
p + 1

r = 1
1
r + 1

s = n+α
n

.

Solving for p, p = ns
n−sα .

Thus, ‖Tg‖ ns
n−s

≤ C(n, s, α)‖g‖s, where 1 < s < n
α . Similarly,

(2.2) ‖Tg‖p ≤ C(n, p, α)‖g‖ np
n+αp

, where
n

n − α
< p < ∞.

To find the best constant C = C(n, s, α) in (2.1), one can maximize the functional

(2.3) J(f, g) =
∫

Rn

∫
Rn

f(x)|x − y|α−ng(y)dxdy

under the constraints: ‖f‖r = ‖g‖s = 1.
Letting I(f) =

∫
Rn f(x)rdx, by the Lagrange multiplier, DfJ(f, g)(v) =

λ1DI(f)(v), which gives the first equation:

(2.4)
∫

Rn

|x − y|α−ng(y)dy = λ1rf(x)r−1.

If we multiply both sides by f(x) and then integrate, we obtain λ1r = 1
J(f,g) .

Similarly, for I(g) =
∫

Rn g(x)sdx, we have

(2.5)
∫

Rn

|x − y|α−nf(y)dy = λ2sg(x)s−1 and λ2s =
1

J(f, g)
.

Let u = c1f
r−1, v = c2 gs−1, p = 1

r−1 and q = 1
s−1 . By a proper choice

of constants c1 and c2, (2.4) and (2.5) turn into the system of Euler-Lagrange
equations for the HLS inequality:

(2.6)
{

u(x) =
∫

Rn |x − y|α−nvq(y)dy,
v(x) =

∫
Rn |x − y|α−nup(y)dy

with 0 < p < ∞, 0 < q < ∞, 1
p+1 + 1

q+1 = n−α
n , u ∈ Lp+1 and v ∈ Lq+1.

Later in section 4, we will see how our Theorem 1.2 applies to this system.

2.2. The weighted Hardy-Littlewood-Sobolev inequality. Let 1 < s, r < ∞,
0 < λ < n, α + β ≥ 0, 1

r + 1
s + λ+α+β

n = 2 and 1 − 1
r − λ

n ≤ α
n < 1 − 1

r . Then the
weighted HLS inequality states

(2.7)
∣∣∣∣
∫

Rn

∫
Rn

f(x)g(y)
|x|α|x − y|λ|y|β dxdy

∣∣∣∣ ≤ Cα,β,s,λ,n‖f‖r‖g‖s.

We can also write the weighted HLS inequality in another form. Let Tg(x) =∫
Rn

g(y)
|x|α|x−y|λ|y|β dy. Then

(2.8) ‖Tg(x)‖p = Sup‖f‖r=1〈Tg(x), f(x)〉 ≤ C‖g(y)‖s

where 1+ 1
p = 1

s + λ+α+β
n , 1 < s, p < ∞, α+β ≥ 0, 0 < λ < n and 1

p − λ
n < α

n < 1
p .

Similarly, the corresponding system of Euler-Lagrange equations is:

(2.9)

{
λ1rf(x)r−1 = 1

|x|α
∫

Rn

g(y)
|y|β |x−y|λ dy,

λ2sg(x)s−1 = 1
|x|β

∫
Rn

f(y)
|y|α|x−y|λ dy

where λ1r = λ2s = J(f, g).
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Let u = c1f
r−1, v = c2g

s−1, p = 1
r−1 , q = 1

s−1 . When pq �= 1, (2.9) turns into

(2.10)

{
u(x) = 1

|x|α
∫

Rn

v(y)q

|y|β |x−y|λ dy,

v(x) = 1
|x|β

∫
Rn

u(y)p

|y|α|x−y|λ dy

where 0 < p, q < ∞, 0 < λ < n, α + β ≥ 0, 1
p+1 − λ

n < α
n < 1

p+1 and 1
p+1 + 1

q+1 =
λ+α+β

n .

3. On the system related to the weighted HLS inequality

In this section, we present the proof of Theorem 1.7. We prove a lemma first.
For a given real number κ, define

Σκ = {x = (x1, . . . , xn) | x1 ≥ κ}, xκ = (2κ − x1, x2, . . . , xn), uκ(x) = u(xκ).

Lemma 3.1. For any solution u(x) of (1.7), we have

uκ(x)−u(x) =
∫

Σκ

[L(|x|, |x−y|)−L(|xκ|, |xκ−y|)]H(|yκ|)[f(uκ)−f(u)]dy+E(x, κ)

where

E(x, κ) = −
∫

Σκ

[L(|x|, |x − y|) − L(|xκ|, |xκ − y|)][H(|y|) − H(|yκ|)]f(u)dy

−
∫

Σκ

[L(|x|, |x − y|) − L(|xκ|, |x − y|)]H(|yκ|)f(uκ)dy

−
∫

Σκ

[L(|x|, |xκ − y|) − L(|xκ|, |xκ − y|)]H(|yκ|)f(uκ)dy.

Proof. Since |x − yκ| = |xκ − y|, we have

u(x) =
∫

Σκ

L(|x|, |x − y|)H(|y|)f(u)dy +
∫

Σκ

L(|x|, |xκ − y|)H(|yκ|)f(uκ)dy,

uκ(x) =
∫

Σκ

L(|xκ|, |xκ − y|)H(|y|)f(u)dy +
∫

Σκ

L(|xκ|, |x − y|)H(|yκ|)f(uκ)dy.

Then, it is easy to verify the lemma. �

To prove Theorem 1.7, we compare u(x) with uκ(x) and v(x) with vκ(x) on Σκ.
The proof consists of two steps. In step 1, we show there exists a real number R < 0
such that for κ ≤ R and x ∈ Σκ, we have

(3.1) uκ(x) ≤ u(x) and vκ(x) ≤ v(x) a.e.

Thus, we can start moving the plane from κ ≤ R to the right as long as (3.1) holds.
In step 2, we show that if the plane stops at x1 = κo for some κo < 0, then u(x)
and v(x) must be symmetric and monotone about the plane x1 = κo; otherwise,
we can move the plane all the way to x1 = 0. Since the direction of x1 can be
chosen arbitrarily, we deduce that u(x) and v(x) must be radially symmetric and
decreasing about some point.

Proof. Step 1. Define

Σu
κ = {x ∈ Σκ |u(x) < uκ(x)} and Σv

κ = {x ∈ Σκ | v(x) < vκ(x)}.
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Similar to the calculation of Lemma 3.1, we can obtain

uκ(x) − u(x) ≤ C

∫
Σv

κ

1
|x|α|x − y|λ|y|β vq−1

κ (y)[vκ(y) − v(y)]dy.

By the weighted Hardy-Littlewood-Sobolev inequality (2.8),

(3.2) ‖uκ − u‖Lp+1(Σu
κ) ≤ C

∥∥vq−1
κ (vκ − v)

∥∥
L(q+1)/q(Σv

κ)
.

Then by the Hölder inequality,

(3.3) ‖uκ − u‖Lp+1(Σu
κ) ≤ C ‖vκ‖q−1

Lq+1(Σv
κ) ‖(vκ − v)‖Lq+1(Σv

κ) .

Similarly, we have

(3.4) ‖vκ − v‖Lq+1(Σv
κ) ≤ C ‖uκ‖p−1

Lp+1(Σu
κ) ‖(uκ − u)‖Lp+1(Σu

κ) .

Combining (3.3) and (3.4),

‖uκ − u‖Lp+1(Σu
κ) ≤ C ‖vκ‖q−1

Lq+1(Σv
κ) ‖uκ‖p−1

Lp+1(Σu
κ) ‖uκ − u‖Lp+1(Σu

κ).

Since u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn), we can choose a sufficiently large |R|
with R < 0 such that for κ ≤ R < 0,

C ‖vκ‖q−1
Lq+1(Σv

κ) ‖uκ‖p−1
Lp+1(Σu

κ) ≤ C ‖v‖q−1
Lq+1(ΣC

κ ) ‖u‖
p−1
Lp+1(ΣC

κ ) ≤
1
2

where ΣC
κ is the complement of Σκ in Rn.

So, ‖uκ − u‖Lp+1(Σu
κ) ≤ 1

2‖uκ − u‖Lp+1(Σu
κ). Similarly,

‖vκ − v‖Lq+1(Σv
κ) ≤

1
2
‖vκ − v‖Lq+1(Σv

κ).

These imply that ‖uκ −u‖Lp+1(Σu
κ) = 0 and ‖vκ −v‖Lq+1(Σv

κ) = 0. Therefore, the
measure of Σu

κ and Σv
κ must be zero, i.e. (3.1).

Step 2. We now move x1 = κ to the right as long as (3.1) holds. Suppose that
at a point κo < 0, we have, on Σκo

,

u(x) ≥ uκo
(x) and v(x) ≥ vκo

(x), but u(x) �≡ uκo
(x) or v(x) �≡ vκo

(x).

Then the plane can be moved further to the right. More precisely, there exists an
ε such that

(3.5) u(x) ≥ uκ(x) and v(x) ≥ vκ(x) on Σκ for all κ ∈ [κo, κo + ε).

In the case that v(x) �≡ vκo
(x) on Σκo

, similarly as Lemma 3.1 indicates, we have
in fact u(x) > uκo

(x) in the interior of Σκo
. Let

Φu
κo

= {x ∈ Σκo
|u(x) ≤ uκo

(x)} and Φv
κo

= {x ∈ Σκo
| v(x) ≤ vκo

(x)}.
Then, obviously Φu

κo
has measure zero and lim supκ→κo

Σu
κ ⊂ Φu

κo
. The same is

true for that of v. Let D∗ be the reflection of the set D about the plane x1 = κ.
By (3.3) and (3.4),

‖uκ − u‖Lp+1(Σu
κ) ≤ C ‖vκ‖q−1

Lq+1(Σv
κ) ‖uκ‖p−1

Lp+1(Σu
κ) ‖uκ − u‖Lp+1(Σu

κ).

The integrability conditions u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn) ensure that one
can choose ε sufficiently small, so that for all κ in [κo, κo + ε),

C ‖vκ‖q−1
Lq+1(Σv

κ) ‖uκ‖p−1
Lp+1(Σu

κ) = C‖u‖p−1
Lp+1((Σu

κ)∗)‖v‖
q−1
Lq+1((Σv

κ)∗) ≤
1
2
.
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So, ‖uκ − u‖Lp+1(Σu
κ) ≤ 1

2‖uκ − u‖Lp+1(Σu
κ). Similarly, we can obtain

‖vκ − v‖Lq+1(Σv
κ) ≤

1
2
‖vκ − v‖Lq+1(Σv

κ).

These imply ‖uκ−u‖Lp+1(Σu
κ) = 0 and ‖vκ−v‖Lq+1(Σv

κ) = 0 for all κ in [κo, κo+ε).
Therefore the measure of Σu

κ and Σv
κ must be zero. This verifies (3.5), and therefore

completes the proof of the theorem. �

4. Proof of the main theorem

In this section, we present the proof of Theorem 1.2.

Proof. Define Σi
κ = {x ∈ Σκ, ui(xκ) > ui(x)}, i = 1, 2, . . . , m, uκ

i = ui(xκ) and let
ΣC

κ be the complement of Σκ.
Step 1. We prove that there exists a real number R < 0, such that for κ ≤ R,

we have ui(x) ≥ ui(xκ), i = 1, 2, . . . , m a.e.
As a result of Lemma 3.1, if we compare ui(x) and uκ

i (x) on Σκ with κ < 0,
which implies |xκ| ≥ |x| and |xκ − y| ≥ |x − y|, then we can obtain:

ui(xκ) − ui(x) ≤
m∑

j=1

∫
Σj

κ

[li(|x|, |x − y|) − li(|xκ|, |xκ − y|)] hi(|yκ|)Ki,j(y, κ)dy

≤
m∑

j=1

∫
Σj

κ

li(|x|, |x − y|)hi(|yκ|)Ki,j(y, κ)dy(4.1)

where Ki,j(y, κ) = fi(u1, u2, . . . , u
κ
j , uκ

j+1, . . . , u
κ
m)−fi(u1, u2, . . . , uj , u

κ
j+1, . . . , u

κ
m).

By the assumptions, 0 ≤ Ki,j(y, κ) ≤ (uκ
j )βj (uκ

j − uj), combining with those
estimates about li, hi, fi together, we obtain:

(4.2) ui(xκ) − ui(x) ≤
m∑

j=1

∫
Σj

κ

C

|x − y|n−αi
hi(|yκ|)(uκ

j )βj (uκ
j − uj)dy.

We apply the Hardy-Littlewood-Sobolev inequality (2.2) to each mode. For
qi > n

n−αi
, i = 1, . . . , m:

‖ui(xκ) − ui(x)‖Lqi (Σκ
i) ≤

m∑
j=1

∥∥∥∥
∫

Σj
κ

Ci

|x − y|n−αi
hi(|yκ|)(uκ

j )βj (uκ
j − uj)dy

∥∥∥∥
Lqi (Σi

κ)

≤
m∑

j=1

C
∥∥hi(|yκ|)(uκ

j )βj (uκ
j − uj)

∥∥
L

nqi
qiαi+n (Σj

κ)
.

Then, by the Hölder inequality,∥∥hi(|yκ|)(uκ
j )βj (uκ

j − uj)
∥∥

L
nqi

qiαi+n (Σj
κ)

≤
∥∥hi(|yκ|)(uκ

j )βj
∥∥

Lpi,j (Σj
κ)

∥∥uκ
j − uj

∥∥
Lqj (Σj

κ)
(4.3)

≤
∥∥hi(|y|)(uj)βj

∥∥
Lpi,j (ΣC

κ )

∥∥uκ
j − uj

∥∥
Lqj (Σj

κ)

where pi,j = nqiqj

qjqiαi+n(qj−qi)
, qi > n

n−αi
, qj > n

n−αj
, i, j = 1, . . . , m.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1668 CHAO JIN AND CONGMING LI

Thus,

(4.4) ‖uκ
i − ui‖Lqi (Σi

κ) ≤
m∑

j=1

C
∥∥hi(|y|)(uj)βj

∥∥
Lpi,j (ΣC

κ )

∥∥uκ
j − uj

∥∥
Lqj (Σj

κ)
.

By corresponding integrability assumptions, we can choose a real number R < 0
with |R| large enough, so that for κ ≤ R we have

C
∥∥hi(|y|)(uj)βj

∥∥
Lpi,j (ΣC

κ )
≤ 1

2m
, for all i, j.

Then by (4.4),

m∑
i=1

‖uκ
i − ui‖Lqi (Σi

κ) ≤
m∑

i=1

⎡
⎣ 1

2m

m∑
j=1

‖uκ
j − uj‖L(qj)(Σj

κ)

⎤
⎦ =

1
2

m∑
j=1

‖uκ
j − uj‖Lqj (Σj

κ).

This implies
‖uκ

i − ui‖Lqi (Σi
κ) = 0, i = 1, 2, . . . , m.

Therefore, the measure of Σi
κ must be zero for all i. This completes Step 1.

Step 2. Continuously moving the plane x1 = κ ≤ R to the right.
From step 1, we know that

ui(x) ≥ ui(xκo), i = 1, 2, . . . , m, κ ≤ R, for some R negatively large.

In this step, we increase the value of R to the extreme and show the symmetry
of the solutions about this extreme value of R. In fact, let

Ro = Sup{R | µ(Σi
κ) = 0, κ ≤ R ≤ 0 for i = 1, . . . , m} < ∞,

where µ is the notation of measure. We show that ui, i = 1, . . . , m, are symmetric
about x1 = Ro. Note if Ro = 0, we just choose to move the plane from positive
infinity to the origin. For this reason, we make R ≤ 0.

Now we assume, without loss of generality, that U is not symmetric about Ro.
Then we can derive a contradiction.

Letting Ej = {x ∈ ΣRo
|uj(x) = uj(xRo)}, j = 1, . . . , m, and E =

⋂m
j=1 Ej =

{x ∈ ΣRo
|U(x) = U(xRo)}, from the assumption, we know µ(ΣRo

\E) �= 0. Now,
we claim µ(Ej) = 0, j = 1, . . . , m.

Proof of the claim. Assume that µ(Eil
) > 0, l = 1, . . . , lo, 1 ≤ lo ≤ m, and

µ(Eik
) = 0, ik ∈ S = {1, 2, . . . , m}\{i1, i2, . . . , ilo}.

For x ∈ Eil
, l = 1, . . . , lo,

0 ≡ uil
(xRo) − uil

(x)

≤
∫

ΣRo

[
lil

(|x|, |x − y|) − lil
(|xRo |, |xRo − y|)

]
hil

(|yRo |) (fil
(URo

) − fil
(U)) dy

≤ 0

where URo
= {u1(yRo), u2(yRo), . . . , um(yRo)}.

In the interior of ΣRo
, |x| < |xRo | and |x − y| < |xRo − y|, so lil

(|x|, |x − y|) −
lil

(|xRo |, |xRo − y|) < 0. hil
is positive, thus,

fil
(URo

) ≡ fil
(U) on ΣRo

, for l = 1, . . . , lo.

If lo = m, notice that µ(ΣRo
\E) �= 0, so

∑m
i=1 fi(U(x)) <

∑m
i=1 fi(U(xRo)).

This is contradictory to fi(U) = fi(URo
) for i = 1, . . . , m.
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If lo �= m, by the definition of “essentially related” (1.6), we obtain the contra-
diction:

(4.5) 0 ≡
lo∑

l=1

(fil
(URo

) − fil
(U)) < 0,

in which uj(x) > uj(xRo) for j ∈ S.
Thus, we proved our claim µ(Ej) = 0, j = 1, . . . , m. �

In the following, we show that Uκ ≤ U on Σκ for κ ≤ Ro + ε, which is a
contradiction to the definition of Ro. More precisely, there exists an ε > 0 depending
on n, βj and the solution ui(x) itself such that

(4.6) ui(x) ≥ ui(xκ) on Σκ for all κ in [Ro, Ro + ε).

Letting Φi
Ro

= {x ∈ ΣRo
|ui(x) ≤ ui(xRo)}, by the fact that ui(x) > ui(xκ) for

all i in the interior of ΣRo
, we know Φi

Ro
has measure zero, and lim supκ→Ro

Σi
κ ⊂

Φi
Ro

. Let Σi
Ro

∗ be the reflection of the set Σi
Ro

about the plane x1 = Ro. From
(4.3) and (4.4), we deduce

(4.7) ‖uκ
i − ui‖Lqi (Σi

λ) ≤
m∑

j=1

C
∥∥hi(|y|)(uj)βj

∥∥
Lpi,j (Σj

λ

∗
)

∥∥uκ
j − uj

∥∥
Lqj (Σj

λ)
.

The integrability conditions ensure that one can choose ε sufficiently small, so
that for all κ in [κo, κo + ε),

C
∥∥hi(|y|)(uj)βj

∥∥
Lpi,j (Σj

λ

∗
)
≤ 1

2m
, for all i, j.

Now by (4.7), we have

m∑
i=1

‖uκ
i − ui‖Lqi (Σi

λ) ≤
m∑

i=1

⎡
⎣ 1

2m

m∑
j=1

‖uκ
j − uj‖Lqj (Σj

λ)

⎤
⎦ =

1
2

m∑
j=1

‖uκ
j − uj‖Lqj (Σj

λ).

This implies ‖uκ
i − ui‖Lqi (Σi

λ) = 0 for i = 1, 2, . . . , m. Therefore, the measure of
Σi

κ must be zero for all i, i.e. (4.6) holds.
This completes our proof for Theorem 1.2. �

Another application of Theorem 1.2 is the classification of the system (1.4), which
has been discussed thoroughly in [9]. In this system, the integrability conditions
are u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn). To apply Theorem 1.2 to this system, we
simply let

u1 = u, u2 = v, L(|x|, |x − y|) = |x − y|α−n, H(y) = 1,

β1 = p − 1, β2 = q − 1, q1 = p + 1, q2 = q + 1, f1(u, v) = vq and f2(u, v) = up.

When the system of integral equations (1.5) has only one equation, i.e. (1.7), it
is the case stated in Theorem 1.6. As a special case of Theorem 1.2, the proof of
Theorem 1.6 is easy. Here, we skip it.
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