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Symmetry of Tangent Stiffness Matrices of 3D Elastic Framea  

B.A. Izzuddin2 

In their paper, the authors contend to have resolved the issues concerning the symmetry of the 

tangent stiffness matrix for spatial elastic beam elements and frames, suggesting that the 

element tangent stiffness matrix is invariably asymmetric. Furthermore, they suggest that an 

asymmetric geometric stiffness 'correction' matrix is required for the detection of the lowest 

buckling mode of a space dome, citing the failure of several other researchers, including the 

discusser (Izzuddin and Elnashai, 1993), to detect this mode. The discusser has two 

contributions to make in connection with the aforementioned claims of the authors. 

1. Asymmetry of Element Tangent Stiffness Matrices 

In order to generalise regarding the symmetry of the tangent stiffness matrix of spatial elastic 

beam elements and frames, an unambiguous definition of the 'scope' of the tangent stiffness 

matrix is required, which is not provided by the authors. This particularly concerns the nature 

of 'applied' loading (particularly moments) and system freedoms (particularly rotations) which 

the tangent stiffness matrix is associated with. More clearly, the system tangent stiffness 

matrix (K) can be considered to reflect the infinitesimal variation of out-of-balance forces and 

moments (G) with system translational and rotational freedoms (U), as expressed by: 

  

Ki, j =
∂Gi

∂Uj

 (1) 
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Adopting a variational formulation, G can be related to the first derivative of the total 

potential energy (Π) of the system (which is the sum of the system strain energy (U) and the 

load potential energy (–W)) with respect to U: 

  

Gi =
∂Π
∂Ui

=
∂U

∂Ui

−
∂W

∂Ui

= Ri − Pi
e
 (2) 

In the above, R represents the resistance forces (which are work conjugate with U) and Pe
 

represents 'equivalent' nodal loading. Pe
 is identical to the actual applied loading (P) if the 

latter is work conjugate with U (i.e. W=PT
 U), but otherwise Pe

 would be a function of P and 

possibly U (P is taken to be independent of U). 

An alternative approach is to re-arrange (2) so that G is defined as the difference between 

'equivalent' resistance forces (Re
) and the actual applied nodal loading (P): 

  Gi = Ri
e − Pi  (3) 

In both approaches, G can be considered to represent the errors in the equilibrium equations. 

Clearly, the use of the former approach represented by (2) always results in a symmetric 

tangent stiffness matrix, provided that the elastic system is subjected to conservative loading 

(leading to a continuous Π which is uniquely defined in terms of U), since: 

  

Ki, j =
∂2Π

∂Ui ∂Uj

=
∂2Π

∂Uj ∂Ui

= K j, i  (4) 

If P is not work conjugate with U, the two approaches (2) and (3) result in different 

equilibrium equations, and the tangent stiffness matrix required for the latter approach 

according to (1) may be asymmetric. However, it must be emphasised that both approaches 

lead to identical solutions if the same deformation modes and strain-displacement 

relationships are employed, and hence it is always possible to achieve a symmetric tangent 

stiffness matrix for a conservative elastic system by adopting the first approach. 
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Accordingly, the discusser proposes that asymmetry in the tangent stiffness matrix arises only 

with the second approach and only if the applied loading (P) is not work conjugate with the 

system freedoms (U). Therefore, in the context of spatial elastic frames, asymmetry of the 

tangent stiffness matrix, both on the element and overall system levels, arises only with the 

second approach and only if the 'applied' moments in P are not work conjugate with the 

rotational freedoms in U (assuming that the 'applied' forces in P are work conjugate with the 

translational freedoms in U). 

In his work on spatial frames (Izzuddin, 1991; Izzuddin and Elnashai, 1993), the discusser 

adopted the first approach, formulating the element strain energy in a convected (co-

rotational) framework, and achieving a symmetric tangent stiffness matrix both on the 

element and system levels. The discusser simplified this approach further by assuming that all 

'applied' moments in P are zero, thus leading to considerable simplification in determining 

Pe
, where the equivalent nodal moments in Pe

 become also zero (Izzuddin and Elnashai, 

1993). Consequently, the nature of the resistance moments in R become only of academic 

interest, although the discusser showed that, for the adopted definition of rotational freedoms 

in U, the moments in R are of the semi-tangential type but considered in an incremental 

context (Izzuddin and Elnashai, 1993). Since most realistic spatial framed structures are not 

subjected to directly 'applied' moments, and since, in any case, most conservative 'applied' 

moments can be represented by conservative forces acting on rigid links, the aforementioned 

simplification is justified. 

The discusser disagrees with authors on the significance of the nature of 'internal' bending 

moments for the symmetry of the element and system tangent stiffness matrix. Only the 

nature of 'applied' moments in relation to the assumed definition of rotational freedoms is 

relevant in this respect, and only if the variational approach in (2) is not adopted. The 

discusser contends that 'internal' bending moments should only be considered as generalised 

stresses which are work conjugate with curvature generalised strains, and that the assertion by 

the authors that 'internal' bending moments are work conjugate with vectorial rotations is 

misleading. The accusation by the authors of "many other researchers ..." of "... ignorance of 



 4

the fact that bending moments are work conjugate with vectorial rotations, not with 

transverse displacement derivatives." is ill-founded. In fact, the discusser showed that the 

assumption of work conjugacy between bending moments and the second derivatives of 

transverse displacements (approximating curvatures) is fully justified if a convected (co-

rotational) framework is adopted for the formulation of the element strain energy and a 

sufficient number of elements is used per member (Izzuddin and Lloyd Smith, 1996). The 

accuracy of this assumption and the success of the discusser's approach is further illustrated 

with the space dome example used by the authors. 

2. Space Dome Example 

The authors suggest that an asymmetric 'correction' geometric stiffness matrix is necessary to 

predict the lowest buckling mode of a space dome structure. They also imply that many other 

researchers, including the discusser (Izzuddin and Elnashai, 1993), could not detect this mode 

due to a serious "ignorance", as mentioned previously. While, in their nonlinear analysis, the 

authors employed a specific technique for detecting bifurcation equilibrium states, the 

discusser undertook the nonlinear analysis on a perfect dome without employing such a 

technique, which explains the previous results of the discusser. In order to illustrate the 

accuracy of the discusser's method (Izzuddin, 1991; Izzuddin and Elnashai, 1993), which 

does not require an asymmetric 'correction' matrix, the nonlinear analysis is performed here 

on an imperfect dome, and the results are shown alongside the predictions from the previous 

perfect dome in Figure A. Random imperfections are introduced to the nodal positions, which 

vary between 0.001 and 0.003 units, thus enabling a close approximation of the secondary 

equilibrium path without the need for a bifurcation detection technique. The nonlinear 

analysis is undertaken with one and two elastic quartic elements (Izzuddin, 1991; Izzuddin, 

1996) per member, respectively, where an excellent comparison is obtained between the two 

sets of results for both the prefect and imperfect space domes. With only one element per 

member, the discusser's method provides a good comparison against the authors' predictions 

for both the primary and secondary equilibrium paths, thus illustrating the accuracy of the 
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discusser's method, which is completely based on symmetric tangent stiffness matrices for the 

element and for the overall system. 
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Figure A. Nonlinear response of perfect and imperfect space dome 


