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Summary. The symmetry of the differential system for elastic waves, 
previously noted for plane geometry, is extended to any linear differential 
system and, in particular, the elastic-gravitational vibrations in a spherical 
earth. The result remains valid in a linearly viscoelastic medium. The 
symmetry allows the inverse of the propagator matrix to be obtained by 
simply ‘transposing’ the elements of the propagator. With t h i s  result, it is 
shown how the source excitation using a particular integral can be put in a 
more instructive form, comparable with the result for the excitation of 
normal modes. 

1 Introduction 

Symmetries of the wave equation and its solutions have been noted by several authors. Most 
fundamental of these is Betti’s reciprocal theorem (Love 1944, pp. 173-174). In this 
research note we consider properties of the transformed wave equation in vertically in- 
homogeneous media. 

Woodhouse (1974) first noted that symmetries of the differential system resulted in 
similar symmetries between the propagator and its inverse (we use the terminology intro- 
duced by Gilbert & Backus 1966). His results were for a plane, non-gravitating model and in 
this research note we extend these results to the spherical, gravitating system. In addition, 
we note that the symmetry of the propagator and its inverse allows a close analogy to be 
drawn between two different methods of calculating the source excitation. One technique 
includes the source in an inhomogeneous term in the differential system and finds the 
excitation from the particular integral (Gantmacher 1959, p. 131; Gilbert & Backus 1966; 
equation (21) below), and the other uses the complete set of orthogonal normal modes to 
represent the solution (Rayleigh 1877; Gilbert 1971 ; equation (22) below). 

In the next section we give a general proof of the symmetry relationship previously 
proved only for the plane, non-gravitating system (Woodhouse 1974; Budden & Smith 1976; 
Kennett, Kerry & Woodhouse 1978). Earlier, Herrera (1964) and Alsop (1968) had investi- 
gated an orthogonality condition for the same case. Woodhouse (1980) has noted that the 
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solution symmetry allows the sixth-order minor differential system to be reduced to a 
fifth-order system, a property first used by Watson (1970). The symmetry of the solution 
and its inverse in the spherical, non-gravitating system had previously been noted for 
homogeneous layers (Chapman 1969; Teng 1970) and extended to approximate solutions 
for inhomogeneous layers by Frazer (1977), but no exact, general proof has been given. In 
the final section of this note, we compare the two standard techniques for representing the 
seismic source. The particular integral (Gilbert & Backus 1966) and the normal mode 
representation (Gilbert 1971) are different. Using the solution symmetry, the equivalence 
can be illustrated. For plane stratified media the connection between the two methods of 
incorporating the source has recently been elaborated by Woodhouse (1980). 

C H. Chapman and J. H. Woodhouse 

2 Symmetry of the wave equation 

The transformed wave equations can be obtained using a variational principle. To obtain a 
linear, homogeneous system of equations the Lagrangian must be quadratic. Consider the 
most general quadratic Lagrangian: 

where q is an n-vector of ‘coordinates’, X and Y are, without loss of generality, symmetric 
matrices and W is an arbitrary matrix. The dot represents differentiation with respect to the 
vertical coordinate. Details for the plane system can be found in Kennett (1974) and 
Woodhouse (1974), and for the gravitating, spherical system in Pekeris & Jarosch (1958). 
From the Lagrangian ( I ) ,  we obtain the ‘conjugate momenta’ 

aL 

aq 
p = 7 = Yq + wq 

and Lagrange’s equations are 

T .  aL 

aq 
p = -= x q  + w q. 

These equations can be rewritten in the standard form (Gilbert & Backus 1966) 

y = A y  

where y is the 2n-vector of ‘coordinates’ and ‘momenta’ 

Y=(;). 

The 2n x 2n coefficient matrix A has the structure 

where the n x n sub-matrices are 

T = Y-’W 
c = y-1 

s = x - WTY -1w. 
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Symmetry of the wave equation 779 

As C and S are symmetric, it follows that 

J A +  A ~ J  = o (8) 

where 

and I is the unit n x n matrix. Using J-’ = - J, and defining the ‘transformation’ 

A = - J A ~ J  (1 0) 

we obtain the ‘symmetry’ 
- 

A = - A .  (1 1) 

The ‘symmetry’ of A can be used to obtain ‘orthogonality’ conditions for the solutions 
of (4). If y and y’ are any two solutions of (4), it follows that 

bTJy’)’ = 0. (1 2 )  

Applying (12) to the columns of the propagator matrix, P(g, C), we obtain 

PTJP = J (13) 

where the constant of integration is obtained from Pa,{) = I. Expression (13) is equivalent 
to the ‘orthonormality’ condition 
- 
P P = I  (14) 

p-%, 5 )  = p a ,  8 = & 5). 

and we have the inverse propagator matrix 

(1 5) 

These symmetries, (11) and (14), are equivalent to Woodhouse’s (1974) but are established 
here as general properties of linear differential systems, in particular the spherical, gravitating 
system. The explicit form of the matrix A for the plane case has already appeared in the 
literature (Woodhouse 1974) and we will not repeat it. For the spheroidal mode equations 
we follow the notation of Pekeris & Jarosch (1958) and use U, V and P to expand the dis- 
placement and gravitational potential. Many choices for the ‘coordinates’ q are possible, but 
the following is useful as it emphasizes the similarities with the plane differential system: 

q1 = rU, qz = vrV, q3 = rP, (16) 

where v = [n(n + 1)]1’2 (the factor of r is introduced to remove the radial scaling of the 
solution, and v is introduced as the spherical harmonics are not fully normalized). Using (2), 
we find the ‘conjugate momenta’ are 

p1 = - (A + 2p)rU - A ( ~ U  - v2 V )  

p z =  - vp(rV-- V +  U) 

p 3 =  - r [P + (n + 1)P/r - 4 ? r ~ p ~ ] / 4 n ~ .  

(1 7) 
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The non-zero elements of the matrices (7) are then 
C H Chapman and J. H. Woodhouse 

A - 2 p  1 
h t 2 p  r 

T11=- - 

2 

r 
T =-  

22 

1 c,1=-- 
h t 2 p  

1 c = - -  
I-( 

c33 = - 4nc 

22 

r 

where y = 2p(3h t 2p)/(h + 2p). We omit details of the toroidal mode equations as they are 
very simple. 

Because the variational principle (equations (1) to (3)) is real, the above results remain 
valid in anelastic media, i.e. if the elastic moduli, A and /.I, are complex, and if the frequency 
or wavenumber is complex. More usually, the variational principle and ‘orthogonality’ 
condition (12) include complex conjugation (Herrera 1964; Alsop 1968; Kennett 1974). In a 
perfectly elastic medium the matrix A is real, and result (12) can be replaced by 

(ytJy’)‘ = 0 (19) 

(where t denotes the Hermitian conjugate). However, this form of the ‘orthogonality’ 
condition is only valid in perfectly elastic media (and is equivalent to the conservation of 
energy), while (12) remains valid in lossy media (and also if the frequency or wavenumber 
is complex). 
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Symmety of the wave equation 78 1 
3 Excitation of body waves 

Two different techniques have been used to evaluate the source excitation. If the source 
terms are included in the equations of motion, an inhomogeneous term is included in the 
differential system (4), i.e. 

y = A y t w .  (20) 

The source vector, w, is derived by transforming the body forces, f, and the stress glut, T. 
Details have been given by Kennett & Kerry (1979) and Ward (1980) for a point force and 
moment tensor source in plane and spherical geometries, respectively. The standard 
technique for solving the inhomogeneous equation (20) is to use the solutions of the 
homogeneous equation (4) and a particular integral (Gantmacher 1959, p. 131; Gilbert & 
Backus 1966). Thus 

Y(S) = P(S, Sn)Y(S,) i- P(S, E)w(E)dt. (21) s:: 
An alternative technique is to represent the solution in terms of the normal modes. Then the 
solution is (Gilbert 1971) 

The orthonormalized normal mode, un( c ) ,  has frequency w,, where n is an index used to 
enumerate the modes. The strain tensor, E,, is derived from the displacement, u,, in the 
usual fashion. Following Gilbert (1971), we shall assume that the modes are for a perfectly 
elastic body, so, without loss in generality, the conjugation in the orthonormality condition 
and equation (22) can be ignored provided the eigenfunctions are chosen to be real (i.e. 
real spherical harmonics are used). As the source vector, w, in (21) depends on the body 
forces, F, and the stress glut, T, there is a superficial similarity between results (21) and (22). 
However, whereas in (22) each source component multiplies a different component of the 
mode, in (21) the different source components multiply different columns of the propagator 
which are the same components of different solutions, not different components of a 
solution (also, of course, the columns of P(S, E) are solutions at S, not [). Using the 
reciprocal relation (15), result (21) can be rewritten 

But F(t, 5) is obtained from P(4, S) using the transformation rule (10). If we expand P(t, I) 
into its sub-matrices 

we obtain 

- p = (  - Q Z ) .  
- QT 

It is now readily apparent that the columns of F, which multiply each component of the 
Source vector, w(g), in (23) correspond to components of the solution at t .  By straight- 
forward but very tedious algebra, it can be shown that each source component in expressions 
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(22) and (23) is completely analogous. For instance, the radial body-force term is contained 
in the fourth component of ~ ( 5 ) .  For a point source it contains the term &S(E - ro)/E. In 
expression (23) t h i s  multiplies the fourth column of P which corresponds to the first row of 
P, i.e. EV(E) from (16). Combining these terms we immediately obtain a term equivalent to 
the first element in the scalar product in (22). In a forthcoming paper, Ward (1981) has 
elaborated on the connection between expressions (22) and (23). 
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