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Abstract

We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas
considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical
studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry
energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this
bound leads to a lower limit to the volume symmetry energy parameter S0. In addition, for assumed values of S0
above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L,
which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter
incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the
energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of
state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in
nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds.
Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to
the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter
and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-
rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit
to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

Key words: dense matter – equation of state – stars: neutron

1. Introduction

The nuclear symmetry energy (S(u)) is one of the decisive
ingredients in compact-star astrophysics as well as in nuclear
physics. It provides the pressure of neutron-star matter, which
is nearly pure neutron matter (PNM) near the saturation density
n0;0.16 fm−3, and largely determines neutron-star radii
(Lattimer & Prakash 2001) and therefore properties of their
crusts, moments of inertia, tidal polarizabilities, and binding
energies (Lattimer & Prakash 2007). The symmetry energy is
also important in calculations of the r-process (Mumpower
et al. 2016), supernovae (Fischer et al. 2014), and neutron-star
mergers (Bauswein et al. 2016). Terrestrial experiments
measuring nuclear masses, dipole resonances, and neutron-
skin thicknesses can constrain the symmetry energy (Lattimer
& Lim 2013), as can experiments using normal and radioactive
nuclear beams (Oertel et al. 2017).

The symmetry energy can be obtained from the energy per
particle in nuclear matter, E(u, x), where x is the proton fraction
and u=n/n0 is the density in units of saturation density n0.
The energy per particle at a given density varies between a
minimum, symmetric nuclear matter (SNM, x=0.5), and a
maximum, PNM (x=0). The symmetry energy is defined as
the difference of these energies:

S u E u E u, 0 , 1 2 . 1= -( ) ( ) ( ) ( )

One can expand the E(u, x) in terms of the neutron excess

(1− 2x). From the symmetry properties of nuclear matter, there

are no terms with odd powers of the neutron excess, so the

lowest-order term in the expansion is quadratic, i.e.,
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There is little experimental evidence concerning the magnitude

of quartic and higher-order terms because laboratory nuclei

are nearly symmetric. Studies suggest that these terms

are small (Carbone et al. 2014; Wellenhofer et al. 2016). If

the energy is divided into kinetic and potential contributions,

then the kinetic energy of degenerate noninteracting fermions

can be expanded as
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instead only the quadratic term in Equation (2), one would

obtain
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so the kinetic contributions to the symmetry energy to quadratic

order would differ by
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This difference would have to be made up from quartic and

higher-order terms. Indeed, the quartic contribution to the

kinetic symmetry energy contributes 5T/243=0.021T, about
2/3 of the missing amount.

Most theoretical calculations of the potential contribution to
the symmetry energy also find only small corrections beyond
the quadratic term (Carbone et al. 2014; Wellenhofer et al.
2016). Recent calculations of neutron-rich matter (Drischler
et al. 2016b) have shown that up to densities approaching
u∼1.5 the quadratic assumption is accurate to better than
1MeV in the symmetry energy per particle for all values of x.
However, note that the kinetic contributions to quartic and
higher-order terms vary as u2/3 and potential contributions vary
with higher powers of u. Thus when u?1, the neglect of
these terms may be unjustified.

Keeping only the quadratic term for the entire range of
proton fractions, i.e., assuming S(u)=S2(u), the energy and
pressure of PNM can be expressed through the traditional
symmetry energy parameters
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The symmetry energy can then be Taylor expanded around the

saturation density, u=1,
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The most important parameters are S0 and L, the symmetry

energy, and its slope at u=1. Ksym and Qsym are the

incompressibility and skewness parameters, respectively.
An abundance of information concerning the allowed ranges

for S0 and L exists from nuclear experiments and theoretical
studies of neutron matter. In particular, a strong positive
correlation between their values can be deduced in a nearly
model-independent manner from nuclear binding energies
(Lattimer & Lim 2013). Ksym describes the curvature of S near
u=1 and can be probed in a limited way using the giant
monopole resonance; see Blaizot (1980), Farine et al. (1997),
and Stone et al. (2015). Qsym describes the skewness of S near
u=1, but it is extremely difficult to infer its value from
experimental data. Thus, experimental and theoretical knowl-
edge of Ksym and Qsym is poor.

With knowledge of the binding energy of SNM at saturation,
E0;−16±0.5MeV, S0 determines the energy per particle of
PNM at the same density: E S E1, 0 0 0= +( ) . In addition, the
pressure p(u, x) of PNM is directly related to L: p(1, 0)=
Ln0/3. PNM is a system of relevance for astrophysics because
neutron-star matter is very close to PNM due to the small

proton fractions in β-equilibrium near the nuclear saturation
density. There have been many microscopical determinations
of the neutron-matter equation of state, using a multitude of
nuclear Hamiltonians and many-body methods. These include,
e.g., self-consistent Green’s function (SCGF) methods (see
Drischler et al. 2016a for recent results), Quantum Monte Carlo
(QMC) calculations (Gezerlis & Carlson 2010; Gandolfi
et al. 2012; Lynn et al. 2016), many-body perturbation theory
(MBPT) calculations (Hebeler & Schwenk 2010; Tews et al.
2013), and variational methods (Friedman & Pandharipande
1981; Akmal et al. 1998; Togashi & Takano 2013). Based on
these calculations one can obtain constraints on the symmetry
energy parameters if one assumes the quadratic expansion to
be approximately valid. The extracted symmetry energy
parameters are consistent with experimental determinations
(Lattimer & Lim 2013; Tews et al. 2013). Due to the intimate
connection of PNM with the symmetry energy, any additional
information about PNM translates into additional constraints on
S0 and L. Establishing a lower limit for the energy of PNM,
e.g., would result in general limits to the symmetry energy
parameters that so far have not been considered.
One possiblilty of a general lower limit could come from the

unitary gas (UG). Universal behavior emerges for fermions
interacting via pairwise s-wave interactions with an infinite
scattering length (as) and a vanishing effective range (reff), i.e.,
the UG (see (Zwierlein 2015) for an historical review). Since in
this case the average particle distance is the only length scale of
the system, the ground state energy per particle in the UG, EUG,

is proportional to the Fermi energy EF, E EUG
3

5 F 0x= , where

the Bertsch parameter ξ0 has the experimentally measured
value of ξ0;0.37 (Ku et al. 2012; Zürn et al. 2013).
PNM at very low densities, e.g., n∼0.01 n0, where only

s-wave contributions are important, is considered to show
crossover behavior (Matsuo 2006) and to be close to the
unitary limit since the s-wave scattering length of the nn
system is as= −18.9 fm (Machleidt & Slaus 2001). This
corresponds to a k 0.15 0.025s F

1 - -- ( ) ( ) at n n0.01 20 0( ),
where k n3F

2 1 3p= ( ) is the neutron Fermi momentum,
whereas the UG limit is a k 0s F

1 =-( ) . However, at large
densities, differences in the underlying interactions become
important and lead to different effects in both systems. This
includes effective-range effects, interactions in higher partial
waves, tensor contributions, etc. As an example, while the
UG has a vanishing effective range, neutrons have an
effective range of reff∼2.7 fm (Machleidt & Slaus 2001).
While it has been suggested before that the UG is lower in

energy than PNM, e.g., Carlson et al. (2002, 2012) and
Gandolfi et al. (2015), it has so far not been applied to obtain
limits on the symmetry energy parameters. We therefore follow
the implications of making that conjecture,

E n E n 12FPNM
3

5 0
 x( ) ( ) ( )

at densities of n1.5 n0. We demonstrate that the nuclear

symmetry energy parameters are thereby significantly constrained

by the UG energy.

2. The UG as a Lower Energy Limit to
Pure Neutron Matter

Nucleon–nucleon (NN) scattering can be described in terms
of phase shifts in different partial waves. A positive phase
shift in a particular scattering channel indicates attractive

2
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interactions, while a negative phase shift signals repulsive
interactions in that channel. For neutrons at low energies,
Schwinger (1947) showed that the phase shift δ can be related
to the the neutron momentum k via the effective-range
expansion, which is given for s-wave interactions by

k
a

r k kcot
1 1

2
, 13S

s

eff
2 4d = - + +( ) ( ) ( )

with the s-wave scattering length as and the effective range reff.
Mathematically, the scattering length as describes the slope

of the phase shift at k=0. In particular, we use the common
convention that negative signs of as correspond to positive
slopes and vice versa. Then a positive s-wave scattering
length signals the existence of a bound state, c.f., the nuclear
3
S1 partial wave, and a negative as indicates no bound state, c.
f., the 1S0 partial wave. Starting from a negative as, increasing
the attraction of the interaction leads to a growing as∣ ∣. If
as  ¥∣ ∣ , then a bound state appears at the threshold.
For neutron matter, reff≈2.7 fm and as=−18.9 fm. Thus,

the neutron–neutron interaction leads to no bound state in the
s-wave channel but is nevertheless strongly attractive. At very
low densities, k 1F  , the interparticle spacing is much larger
than the effective range of the interaction. The system is then
fully described by kF and as. Systems with a similar as and the
same Fermi momentum kF will experience the same physics. If
in addition as can be considered very large, or a k 0s F

1 -(∣ ∣) ,
then the system is completely described by the density or kF.
This regime is called the universal regime, and the system’s
energy must be proportional to the energy of a free Fermi gas,
hence

E n E n . 140 FGx=( ) ( ) ( )

The UG, with as  ¥ and reff=0, has universal behavior

but also will any dilute fermionic system with r k aseff F
1-  ∣ ∣,

e.g., neutron matter at low densities. In the unitary limit, the

properties of the potential, e.g., its shape, become irrelevant and

the system is completely described by the dimensionless

combination askF. ξ0 can be measured in experiments with

ultracold atoms (Ku et al. 2012; Zürn et al. 2013) around a

Feshbach resonance. In this resonance, as can be tuned over

several orders of magnitude by varying the magnetic field.
For any fermionic system, unitary or not, we define

ξ=E/EFG. Lee & Yang (1957) showed that in the limit of
zero density, k 0F  and k a 1F 0

1 -- ( ) , which is far from the
unitary limit:

k a k a1
10
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11 2 ln 2
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. 15F 0 2 F 0
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p p
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Here, a0 is the scattering length in the relevant channel. Near

unitarity, k aF 0  ¥∣ ∣ , cold atom experiments (Navon et al.

2010) show that ξ changes linearly with k aF 0
1-( ) for

k a 50;F 0 ∣ ∣ approximately

k a0.93 , 160 F 0
1x x - +- ( ) ( )

which also compares favorably with theoretical predictions

from QMC calculations of cold atoms (Carlson et al. 2012).

Thus, forces with a finite negative as at very low densities have

ξ>ξ0 and higher energies than the UG. Then for spin-one-half
fermions interacting solely via the s-wave interactions that do

not produce two-body bound states (as<0), the unitary limit,

as  -¥ and r 0eff  , indicates the largest attraction. At very

low densities, when neutron matter can be described solely by

its as, the UG energy serves as a lower bound for EPNM because

the magnitude of the neutron as is smaller, as < ¥∣ ∣ , which

indicates less attraction (Carlson et al. 2012; Gandolfi et al.

2015).
As stated above, at higher densities s-wave effective-range

effects are not negligible anymore (e.g., k r 4.53F eff = at n0).
However, a finite effective range reduces the attraction and
increases the energy per particle. For example, when k r 0.35F eff  ,
the energy increases with density as E E EFG FG 0x x= = +(

k r0.12 3 ...F eff +( ) ) (Gandolfi et al. 2015). At higher densities, up
to at least k r 5F eff = , correspondingly larger increases in ξ have
been found (Schwenk & Pethick 2005). Because a finite a ks F

1-( )

and a finite reff both lead to an increase of the effective Bertsch
parameter ξ, the energy of neutron matter is higher than for the UG,
at least when only realistic s-wave interactions are considered.
At even higher densities, p- and higher partial wave interactions

may spoil this bound: the average p-wave interaction is very small
but attractive, as are d-wave contributions to neutron matter.
When comparing the UG with neutron-matter calculations

using only the full NN interactions, one finds that the energies
of neutron matter for nn0 and the UG are comparable
although the underlying interactions are very different. Softer
(harder) NN interactions lead to slightly more (less) attraction
compared to the UG. This may be due to fewer short-range
correlations for softer interactions. In the NN-only results of
Tews et al. (2013), using soft chiral Hamiltonians, the neutron-
matter energy at n0 was found to be approximately 2MeV
below that of the UG.
Because we found that some soft Hamiltonians violate the

UG bound on the NN-only level, we performed additional
MBPT calculations at third order similar to Tews et al. (2013),
using two soft Hamiltonians and including only s-wave, s+
p-wave, and s+p+d-wave interactions. When considering
only s-wave interactions we found that the energy per neutron
lies 5–6 MeV above the UG bound at n0. This supports our
justification for realistic s-wave interactions. For a finite ℓ, we
found that p- and d-wave interactions contribute attractively
and lower the energy to 2 MeV below the UG at n0. Higher
partial waves (ℓ>2) add only a small contribution.
In neutron matter, however, several ab initio calculations

have shown the importance of three-body (3N) forces, which
lead to, in net, additional repulsion, and increase the neutron-
matter energy by several MeV at n0. The inclusion of 3N
forces is sufficient to more than compensate for the p- and
d-wave attraction, so that the neutron-matter energy has
values above the UG. In Figure 1 we show a comparison of
the UG bound with several ab initio calculations for PNM,
including both NN and 3N forces, of Drischler et al. (2016a),
Lynn et al. (2016), Togashi & Takano (2013), Gandolfi et al.
(2012), Hebeler & Schwenk (2010), Gezerlis & Carlson
(2010), Akmal et al. (1998), and Friedman & Pandharipande
(1981). Only one calculation violates the UG constraint within
its uncertainty band: a QMC N2LO calculation using soft
chiral forces (Lynn et al. 2016). This is due to artifacts from
local regulators, which lead to less repulsion from 3N forces
(Dyhdalo et al. 2016; Tews et al. 2016), and is peculiar to that
interaction.
We emphasize the fact that ab initio calculations with

realistic NN and 3N forces support our conjecture that
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EPNM>EUG. Although the underlying interactions in both
systems are rather different and thus it cannot be strictly proven
that the UG is a lower bound for the neutron-matter energy at
all densities, the combination of effective-range effects, small
p-wave and tensor interactions, and repulsive 3N forces in
neutron matter strongly suggests that this conjecture is justified.
It is the consequence of a realistic nuclear Hamiltonian and is
not altered by the differences in interactions and wave
functions within the two systems.

3. The Minimal Constraint on the Symmetry Energy

We now show what the inequality in Equation(12) implies
for the symmetry energy parameters. At a baryon density of
n=u n0, the UG energy is

E u E u
k

m
E u

3

5

3

10
, 17

n

UG F 0

2
F
2

0 UG
0 2 3

x x= = =( ) ( ) ( )

where mn is the neutron mass and E E u 1 12.6UG
0

UG= = ( )

MeV. The SNM energy (ESNM) can be expanded as

E u E
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u
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u

u

18
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1
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where E0;−16MeV and K0;230MeV are the saturation

energy and incompressibility parameters, respectively. The

parameter Q0∼−300MeV is the skewness parameter, whose

value is not well known. Using Equation (1) for the definition

of the symmetry energy, the conjecture (12) yields the lower

bound SLB(u):

S u E u E
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u

Q
u S u
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0 2 3
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In Figure 2, we show the lower bound on the symmetry

energy imposed by the UG constraint using typical values for

the nuclear parameters (E0=−16MeV, K0=230MeV,

Q0=−300MeV, and EUG
0 =12.6 MeV). The shaded area

shows the excluded region, inside which the symmetry energy

should not enter. The boundary of this region is quite

insensitive to the values of K0 and Q0: variations of

ΔK0=±30MeV and ΔQ0=±300MeV each move the

boundary at u=0.2 by only about ±1MeV, and less for

values of u closer to 1.
From Equation (19), it is clear that S S u 10 º =( ) is

bounded from below: S E E S0 UG
0

0 0
LB - º . Because the

symmetry energy should not enter the excluded area, at

S S0 0
LB= the slopes of S(u) and S uLB( ) must agree, as shown

by the tangential red-dashed line in Figure 2. We thus find

L u
dS

du
E L3 2 . 20

u

LB

1

UG
0

0= = º
=

( )

It also follows that the curvature of S at u=1 must be greater

than that of SLB (which is negative), or else S could penetrate

Figure 1. UG bound with ξ0=0.37 compared to ab initio calculations of
Drischler et al. (2016a) (SCGF), Lynn et al. (2016) (Lynn et al.), Hebeler &
Schwenk (2010) (Hebeler et al.), Togashi & Takano (2013) (TT), Gandolfi
et al. (2012) (GCR), Gezerlis & Carlson (2010) (GC), Akmal et al. (1998)
(APR), and Friedman & Pandharipande (1981) (FP).

Figure 2. UG bound on the symmetry energy, using Equation (19) and typical
parameters as described in the text. The shaded area is the region excluded for
S L u 1 30 + -( ) . The dashed red curve shows the tangent curve to the

boundary S0
LB at ut=1, for which S S ;0 0

LB= other solid lines show the tangent
curves for various values of ut (and S0). The green curves show one particular

case for S S0 0
LB> : the solid green curve has ut=0.6 and the dotted green

curve has ut>1.
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into the excluded region for u 1¹ . This implies

K u
d S

du
E K K

K E K

9 2 ,
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n n

sym
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0 sym,0
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where K K Kn 0 sym= + is the incompressibility of PNM at

saturation density. We also define the skewness of PNM at

u=1, Q Q Qn 0 sym= + . We find that S L,0
LB

0, and Kn,0 are

independent of K0 and Q0, the most uncertain of the saturation

parameters, and thus appear to be very general.
By choosing the UG as a lower bound for neutron matter, we

also pick a specific density dependence. We stress that a more
realistic density dependence for the lower bound would be
steeper than u2/3 and lead to a less concave symmetry energy.7

In turn, this would lead to even more stringent constraints.
Thus by choosing the particular density dependence u2/3, we
are suggesting a more conservative bound and are under-
estimating our constraint.

Using the expansion for S(u) of Equation (11), allows
Equation (19) to be expressed as

S
L
u E u E

K
u

Q
u

3
1

18
1

162
1 . 22

n

n

0 UG
0 2 3

0
2

3

+ - - + -

+ -

⎡

⎣⎢

⎤

⎦⎥

( ) ( )

( ) ( )

If we choose a value of S0 that is greater than S0
LB, there exist

two curves for S(u) that can become tangent to S uLB( ): one at a
density of ut>1 and the other at a density of ut<1. Each
curve thereby satisfies the inequality in Equation (22). For
every value of S S0 0

LB> , there are thus two limiting values for
L that are each proportional to the slope of these tangential
symmetry energy curves at u=1. The upper (or lower) bound
for L has a tangency density of ut<1 (or ut>1), as shown by
the green lines in Figure 2.8 The conditions

S u S u
dS

du

dS

du
and 23t t

u u

LB
LB

t t

= =( ) ( ) ( )

at the tangency densities ut lead to the parametric equations
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u
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u
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u

K
u

Q
u

3
2

18
1

81
1 ,

2

3
1

18
1 .

24

t

t
n

t
n

t

t

n
t

n
t

0
UG
0

1 3
2 3

0
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When ut=1, we recover the bounds S S0 0
LB= and L=L0.

For every value of u 1t ¹ , one can then determine a point of the

boundary of the excluded region for S0(L), as shown in

Figure 3.9

The (S0, L) boundary depends on the saturation and UG
parameters n0, E0, Kn, Qn, and ξ0 and becomes less

exclusionary the smaller E nUG
0

0
2 3

0xµ , or the larger E0 and

Kn, or the smaller (larger) Qn for ut<1 (ut>1).
The Bertsch parameter for spin-half fermions is experimentally

measured to be ξ0=0.376±0.004 (Ku et al. 2012) or ξ0=
0.370±0.005±0.008 (Zürn et al. 2013). The values of the

saturation parameters are E0=−15.9±0.4MeV, n0=
0.164±0.007 fm−3

(Drischler et al. 2016b), and K0=240±
20MeV (Shlomo et al. 2006; Piekarewicz 2010) or K0=230±
40MeV (Khan et al. 2012). In general, Ksym<0 for realistic

relativistic mean-field (RMF) and Skyrme forces, i.e., those that

have been fit to properties of laboratory nuclei. Realistic

microscopic interactions also suggest Ksym<0: e.g., N
3LO chiral

EFT calculations (Tews et al. 2013) yield Kn=119± 101MeV

(Margueron et al. 2017). The neutron matter calculations of

Drischler et al. (2016b) yield −70MeV>Ksym>−240MeV

and 10MeV<Kn<100MeV. Since both experimental data and

theoretical neutron matter calculations indicate that Ksym<0, it
follows that K0>Kn>Kn,0.
Experimental constraints on Q0 are weak. Cai & Chen (2014)

have argued, based on heavy-ion flow data analyzed by

Danielewicz et al. (2002) and the existence of 2Me neutron

stars, that −494MeV<Q0<−10MeV. This range is con-

sistent with that suggested by the neutron matter calculations of

Drischler et al. (2016b), −450MeV<Q0<−50MeV. Fitting

the energies of the giant monopole resonance, Farine et al.

(1997) argue that −1200MeV<Q0<−200MeV, which is

also consistent with these other results. Constraints on Qsym and

Qn are even weaker than for Kn, but the neutron matter

Figure 3. Exclusion boundaries from the conjecture EPNM>EUG. The solid
red curve shows the fiducial bound from Equation (24) with the parameters of
Equation (25); the shaded region is excluded. The dotted curve shows the
analytic bound from Equation (32), and the dashed curve shows the bound as
modified by Equations (33) and (34). Triangles along the curves, from top to
bottom, show the points where ut=[0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0] (along
the solid and dashed curves the points begin with ut=0.5, and along the
solid (dashed) curve no points with ut>1.5 (2.0) are displayed). For
reference, symmetry parameters from the compilations of Dutra et al. (2012,
2014) are indicated. The plus and open circle symbols (denoted “r”) show
interactions that were rejected, and the filled circles and open diamonds
(denoted “a”) show interactions that were accepted, as discussed later in
Section 4.

7
Equation (16) shows that dξ/du>0.

8
Note that for this example the lower bound for L is negative.

9
By expanding EUG(u) around u=1 to the second order and dropping the

skewness terms, one can obtain an approximate but analytic form of this
boundary as S E E L E E K2 2 2 n0 UG

0
0 UG

0 2
UG
0= - + - +( ) [ ( )].
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calculations of Drischler et al. (2016b) give −750MeV<Qn<
−250MeV.

From these parameter ranges and Equation (22), Kn=K0 is
a conservative (least exclusionary) choice for the bound. Since
(ut−1) changes sign at ut=1, Qn=0 is a conservative
choice for ut>1 while Qn=−750MeV is a conservative
choice for ut<1. Thus we adopt

E n K K

K Q

15.5 MeV, 0.157 fm , 270 MeV,

0, 0 MeV or 750 MeV, 0.365

25

n

n

0 0
3

0

sym 0x
=- = = =
= = - =

-

( )

as the fiducial conservative parameter set. This results in

EUG
0 =12.64MeV, S 28.14 MeV0

LB = , L0=25.28MeV, and

Kn,0=−25.28MeV.
Figure 3 shows the bounds on S0 and L from the UG

constraint with the fiducial parameter set. Points for several
values of ut are shown, e.g., the point where ut=1/2 is
indicated, for which L;87MeV and S0;33.6MeV. This
value of ut could represent a plausible limit of applicability of
the Taylor expansion of Equation (11).10 From Equation (24)
one finds that L=0MeV when ut=1.26. Therefore, it
appears that our bounds should be reliable for most of the
figure since ut remains relatively close to unity throughout.

Figure 4 shows the effect of changing assumptions about the
saturation and unitarity parameters. Note that only variations in

E0, Kn, Qn, and EUG
0 need to be considered. Results are shown

for the variations ΔEUG
0 =+1MeV, ΔE0=−0.5 MeV,and

ΔKn=−40MeV, as well as for ΔQn=+750MeV when
ut<1. Variations caused by Q 300 MeVnD ~∣ ∣ are similar to

those from changing Kn by about 30MeV. Varying E0 or EUG
0

translates directly into a movement of the point S L,0
UB

0( ) and

thus produces the largest variations in the exclusion boundary
near ut∼1. In this region, variations within the large
uncertainties for Kn and Qn are negligible. These uncertainties
only become significant when ut is appreciably different from
unity, where the validity of our bounds is not assured.
Nevertheless, variations of Kn of the order of 30MeV and Qn

of the order of 300MeV translate into boundary shifts of no
more than ∼1MeV in S0 for a given value of L,or ∼3MeV in L
for a given value of S0, even for the extreme case
u 1 0.8t - ∣ ∣ . We conclude that the fiducial boundary is
remarkably insensitive to uncertainties in the saturation
parameters and the Bertsch parameter.
Zhang et al. (2017) recently argued that the symmetry energy

bounds are much more uncertain than we have suggested
because the uncertainties in ξ0, K0, Ksym, Q0, and Qsym are
much greater than proposed here. For example, Zhang et al.
(2017) argued that the uncertainty in ξ0 is about 0.1, but this is
not supported by recent cold atom experiments, as discussed in
this section. Furthermore, we have found that the individual
parameters K0, Ksym, Q0, and Qsym themselves are not
particularly relevant for the symmetry bounds. Rather, it is
the combinations Kn=K0+Ksym and Qn=Q0+Qsym that
directly appear. Moreover, the bulk of nuclear interactions
developed over decades to fit nuclear properties show
pronounced correlations among Kn, Qn, and L. As a result,
the large individual parameter uncertainties do not play as
important a role as may have been thought. A more realistic
symmetry bound incorporating these correlations is addressed
in the next section.

4. More Realistic Constraints on the Symmetry
Energy Parameters

The previous section described a minimal constraint for the
symmetry energy parameters as obtained from relatively
conservative choices for the saturation properties of matter

Figure 4. Left panel: The parameter dependence of the bound for the symmetry energy. Right panel: The parameter dependence of the bounds for the symmetry
energy parameters S0 and L. In each panel, the solid curve shows the bound with the conservative parameter set, per Equation (25). Dotted–dashed, thin solid, dashed,

and dotted lines show the bounds with ΔQn=750 MeV (for ut < 1), ΔEUG
0 =1 MeV, ΔE0=−0.5 MeV, and ΔKn=−40 MeV, respectively.

10
Equation (11) predicts S u S L K Q0 3 18 1620 sym sym = - + -( ) ,

whereas S u 0( ) should in fact vanish.
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and the Bertsch parameter. The largest parameter uncertainties
exist for Ksym, Q0, and Qsym. In this section, we discuss the
evidence that these parameters are correlated with each other
and with L. Such collective correlations can reduce the
variations introduced by the uncertainties of the individual
parameters. The use of these correlations results in a more
phenomenological but possibly more realistic symmetry energy
bound.

In our fiducial estimate, we conservatively chose Ksym=0.
More realistically, however, Ksym<0. It has also been found
that realistic forces of both nonrelativistic potential and
relativistic field-theoretical types that are calibrated by fitting
energies and charge radii of laboratory nuclei show a linear
correlation between Ksym/S0 and L/S0 (Danielewicz &
Lee 2009) or between Ksym and L (Chen et al. 2009; Vidaña
et al. 2009; Ducoin et al. 2011).11 Specifically, Danielewicz &
Lee (2009) studied 118 Skyrme forces and found the
correlations to be bracketed by the expressions

K S L S K S L S6 18 and 4 10,

26

sym 0 0 sym 0 0= - = -
( )

while Chen et al. (2009) studied 63 Skyrme interactions and the

MDI force and found the bracketing expressions

K L K L5 500 MeV and 4 250 MeV.

27

sym sym= - = -
( )

However, studying the same interactions as Danielewicz &
Lee (2009), we have found the correlation

K L r3.69 331.2 41.5 MeV, 0.923. 28sym -  = ( )

The poor quality of this correlation is largely due to the wide

range of K0 values among the forces. As observed in Figure 5,

when interactions with K0>275 (250)MeVare excluded

from consideration, the correlation is considerably tightened.

We have found

K L

r K

3.41 306.0 28.3 MeV,

0.968 275 MeV , 29

sym

0

- 
= <


( ) ( )

K L

r K

3.46 305.5 26.4 MeV,

0.973 250 MeV , 30

sym

0

- 
= <


( ) ( )

where the uncertainty is such that 68.3% of the interactions

with K0�275 (250)MeV lie within these bounds. We

verified that similar correlations also exist between Ksym/S0
and L/S0, which are slightly more significant.
The facts that the intercept of this correlation is close to our

upper limit to K0 and that the slope is close to 3 fortuitously
allow the simplification Kn;3L. With this expression, the
boundary in Equation (24) can be analytically expressed (still
assuming Qn=0) as

S
E u

u
E L

E

u3

1 2
,

2
. 31t

t t

0
UG
0 2

4 3 0
UG
0

4 3
=

+
- = ( )

Eliminating ut, one finds, simply,

S
L E

L
E

6
1 2

2
. 320

UG
0 3 2

0= + -
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

( )

This analytic exclusion boundary is compared to the fiducial

conservative boundary in Figure 3. We note that the analytic

exclusion boundary does not allow negative values of L.
We now examine correlations among the parameters in

more detail. A collection of 240 Skyrme forces was studied
by Dutra et al. (2012) and another collection of 263 RMF
forces by Dutra et al. (2014). Using these compilations, we
have found that Kn, Qn, and L are strongly correlated.
However, these compilations, especially the one containing
RMF interactions, include many parametrizations with very
unrealistic saturation properties. Keeping the 188 Skyrme and
73 RMF interactions with 0.149 fm−3<ρ0<0.17 fm

−3,
−17 MeV<E0<−15 MeV, 25MeV<S0<36 MeV, and
180 MeV< K0< 275 MeV(accepted interactions) and reject-
ing the others, we find the following correlations with the
respective correlation coefficients r:

K L

r

3.534 74.02 21.17 61.84 MeV,

0.96, 33

n = - 
=

( [ ])

( )

and

Q L

r

7.313 354.03 133.16 216.3 MeV,

0.78. 34

n = - + 
= -

( [ ])

( )

The quoted errors correspond to displacements in a correlation

line that will enclose 68.3% of the interactions (95.4% for the

error displayed in square brackets). We show correlations in

Figure 6. In this figure, as well as in Figures 3, 7 and 8, many of

the “rejected” interactions fall outside the boundaries of

the plot.
Note that Kn and L are especially highly correlated

(r=0.96). Furthermore, these results indicate that Kn and Qn

are negatively correlated while their errors are positively
correlated: an interaction that has a Kn value greater than the
mean for its L value also tends to have a Qn value larger than

Figure 5. Correlations between Ksym and L for 118 Skyrme forces studied by
Danielewicz & Lee (2009). Colors distinguish forces according to the
incompressibility parameters K0. Their respective correlation coefficients are
given by r.

11
Since the variation of S0 among different forces is relatively small, these

correlations are essentially the same.
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the mean. In the left panel of Figure 6, we also indicate the
minimum value of Kn permitted by the conjecture that
EPNM�EUG, namely Kn,0=−25.28MeV. Using the correla-
tion of Equation (33), this implies a lower limit to L,
−3.7 MeV.

In a similar way, the parameters S0, Ksym, Qsym, and L are
also strongly correlated:

L S r11.969 319.55 19.83 41.56 MeV, 0.74,

35

0= -  =( [ ])

( )

K L

r

3.501 305.67 24.26 56.59 MeV,

0.96, 36

sym = - 
=

( [ ])

( )

and

Q L

r

6.443 708.74 118.14 171.34 MeV,

0.86,

37

sym = - + 
= -

( [ ])

( )

as depicted in Figures 7 and 8. Note that the correlation

between Ksym and L is not surprisingly nearly the same as that

found from the compilation of Danielewicz & Lee (2009),

Equation (30). As for Kn and Qn, there is a negative correlation

between Ksym and Qsym as well as a positive correlation in their

errors.
Note that correlations among the parameters are not as strong

for RMF approaches as they are for the nonrelativistic Skyrme
models. It is also noteworthy that a large fraction of these
Skyrme interactions (22%) but an even larger fraction of the
RMF forces (73%) have unrealistic saturation properties as
established from fitting nuclear masses, e.g., using liquid-
droplet mass formula fits (and we have, hence, “rejected”
them). Therefore, such compilations should be used with
caution. Zhang et al. (2017) used the same compilations to
argue that uncertainties in Kn and Qn are too large to definitely

constrain the parameters S0 and L from UG arguments, but they
did not reject unrealistic interactions. Curiously, the correlation
between Kn and Qn is apparent in their study even without any
rejections, although it was not utilized.
Finally, a more realistic exclusion boundary is obtained by

substituting Equations (33) and (34), both with their upper
95.4% error bars, into Equation (24). This allows the
elimination of Kn and Qn so that once again S0 and L are
solely related through the parametric variable ut.This modified
boundary is also shown in Figure 3 in comparison to the
fiducial boundary from Equation (24) and the analytic
boundary given by Equation (32). The modified boundary
closely follows the analytic boundary. We emphasize that the
errors of the correlations between Kn and L and between Qn and
L are small enough that these boundaries are affected at the
1MeV level only for u 1 0.2t -∣ ∣ , at which point the Taylor
expansion of the energies is probably unreliable. Thus the
analytic boundary in Equation (32) is a good approximation for
the realistic boundary provided by UG constraints plus
correlations among Kn, Qn, and L.

5. Comparison with Experimental Constraints

The most abundant, accurate, and model-free experimental
constraint on symmetry energy parameters comes from nuclear
binding energies. As discussed by Lattimer & Lim (2013), the
resulting correlation between S0 and L is nearly linear. A recent
Hartree–Fock study by the UNEDF collaboration (Kortelainen
et al. 2010) found the confidence ellipse shown in Figure 8,
assuming a fiducial fitting error of 2 MeV for the nuclear
binding energies. A nearly identical result was found from a
liquid-droplet analysis (Lattimer & Lim 2013). This confidence
ellipse is essentially compatible with the UG constraint (for
positive values of L). Even though a large fraction of the
parameter sets taken from the compilations of Dutra et al.

Figure 6. The left (right) panel shows the neutron-matter incompressibility Kn (skewness Qn) vs. the symmetry parameter L for 240 Skyrme interactions compiled by
Dutra et al. (2012) and 263 RMF forces compiled by Dutra et al. (2014). The solid lines show the correlations obtained from the “accepted” (a) realistic interactions
after excluding the “rejected” (r) interactions; the dashed lines enclose, respectively, 68.3% and 95.4% of the accepted interactions. The dotted line in the left panel
shows the minimum value −25.28 MeV for Kn permitted by the conjecture that EPNM�EUG.
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(2012, 2014) do not satisfy the UG constraint, a larger fraction

of the accepted parameter sets do obey this constraint;

furthermore, they show almost exactly the same correlation

as in the analysis of Kortelainen et al. (2010). Combined, the

UG and nuclear binding-energy constraints imply that
L<100MeV and S0<35MeV.
Other experimental constraints on symmetry energy para-

meters are reviewed in Lattimer & Lim (2013) and Oertel et al.
(2017). They indicate that consistency with measurements of
nuclear masses, giant dipole resonances and dipole polariz-
abilities, neutron-skin thicknesses, and flows in heavy-ion
collisions is achieved for 30MeV�S0�32MeV and
40MeV�L�60MeV (left panel of Figure 9).12 It is
observed that these ranges for S0 and L are compatible with
neutron-matter calculations and both conservative and realistic
UG bounds. Recently, Danielewicz et al. (2017) have argued,
using isobaric analog states and isovector skins on neutron-rich
nuclei, that both symmetry parameters may be larger than this
consensus. Their 68% confidence region, depicted in the left
panel of Figure 9, does not coincide with the overlap region
from Lattimer & Lim (2013) but is still mostly compatible with
our UG constraint. This figure emphasizes the importance of
both theoretical neutron-matter calculations, suitably calibrated
by the energies of light nuclei, and measurements of neutron-
skin thicknesses in establishing an upper limit to the
parameter L.

6. Applications

In the following we demonstrate the significance of the UG
bound for astrophysics. In the right panel of Figure 9 we plot
the values of the symmetry energy parameters for 10 tabulated
equations of state (Fischer et al. 2014) frequently used for
astrophysical simulations. Note that half of them violate the
bound, which highlights the need for additional equation of

Figure 7. The left (right) panel shows the symmetry incompressibility Ksym (skewness Qsym) vs. the symmetry parameter L for 240 Skyrme interactions compiled by
Dutra et al. (2012) and 263 RMF forces compiled by Dutra et al. (2014). The solid lines show the correlations obtained from the “accepted” (a) realistic interactions
after excluding the “rejected” (r) interactions; the dashed lines enclose, respectively, 68.3% and 95.4% of the accepted interactions.

Figure 8. The confidence ellipse for the S0–L correlation as determined by
Kortelainen et al. (2010) for an assumed fiducial binding energy error of
2 MeV. The solid red curve shows the conservative fiducial exclusion
boundary from Equation (24) with the parameter set from Equation (25). For
reference, the symmetry parameters from the compilations of Dutra et al.
(2012, 2014) are indicated, as in Figure 6. The correlation between these
parameters for the “accepted” interactions of Equation (35) is shown as the
solid line, together with the dashed lines showing 68.3% and 95.4% enclosures.

12
In the left panel of Figure 9, the results of Kortelainen et al. (2010) are

displayed using a fiducial fitting error of 1 MeV, as using 2 MeV leads to
negative L values for small S0.
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state tables that satisfy these conservative constraints. We also
display the results for other interactions (Klähn et al. 2006;
Maslov et al. 2016) commonly used in astrophysics and heavy-
ion physics, among which a nontrivial number are found to
violate the bound. We emphasize that realistic uncertainties in
the relevant parameters ξ0, n0, E0, Kn, and Qn do not affect
these conclusions in any significant fashion.

Furthermore, the lower limit on the symmetry energy,
implied by the UG constraint for u<1, has implications for
the surface energy of nuclei, the location of the crust–core
boundary, and the radii and moments of inertia of neutron stars.
We show herein that this lower limit will establish maxima to
the surface symmetry energy parameter SS and minima to
neutron-star radii and moments of inertia. Curiously, although
our conjecture EPNM>EUG essentially determines a minimum
for the symmetry energy, it also implies a maximum limiting
behavior for u�1. This has implications for the threshold
density for the onset of rapid neutrino cooling due to the
nucleon Urca process and, thus, for neutron-star cooling.

To investigate these applications of the UG bound, we
require a better parameterization of S than that given by the
expansion of Equation (11), which fails in the limits of both
small and large u. Instead, we model the symmetric matter and
symmetry energy using these expressions:

E T u a u b u c u d u 38SNM
2 3 4 3 5 3 2= + ¢ + ¢ + ¢ + ¢[ ] ( )

and

S u T u au bu cu du2 1 .

39

2 3 2 3 4 3 5 3 2= - + + + +( ) [( ) ]

( )

The parameters are fit to properties of matter at saturation

density (u=1):
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Because the value of Q0 is quite uncertain we use d′=0,
which implies Q0=−432.3 MeV for the typical values

E0=−16MeV, K0=220MeV, and n0=0.16 fm
−3. This

value matches the means of the values of Q Qn sym- for the

interactions displayed in Figures 6 and 7 for L∼50MeV.
In this section, we always make use of this parametrization

for the symmetry energy. While this parametrization allows the
use of any reasonable value for the empirical parameters and
thus does not automatically lead to any correlations between
these parameters, this does not necessarily imply the absence of

Figure 9. UG bounds on symmetry energy parameters. The thick lines show the bound Equation (24) using the conservative parameter set of Equation (25). Excluded
regions are shown by shading. Left panel: Experimental constraints are from Lattimer & Lim (2013) and Lattimer & Steiner (2014), supplemented by isobaric analog
states and isovector skin (IAS+ΔR) results from Danielewicz et al. (2017). The thick dashed curve shows the analytic bound from Equation (32). Right panel: Filled

circles show the point S L,0
LB

0( ) at the tangent density ut=1 and the point where ut=1/2. Triangles show values for interactions commonly used in tabulated
equations of state for astrophysical simulations (notation and data from Fischer et al. 2014), and open squares (from Klähn et al. 2006) and the inverted triangle (from
Maslov et al. 2016) show those of other frequently used interactions. The shaded regions TKHS, GCR, and HS show the parameter ranges inferred from the PNM
calculations of Tews et al. (2013), Gandolfi et al. (2012), and Hebeler et al. (2010), respectively.

10

The Astrophysical Journal, 848:105 (15pp), 2017 October 20 Tews et al.

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



physical correlations between the parameters. These correla-

tions, as suggested by other realistic parametrizations investi-
gated in Section 4, are a result of correctly describing nuclear

systems. In other words, some parameter choices in
Equation (40) will lead to unphysical behavior. Thus in the

following, we utilize in addition the correlations between Ksym,

Qsym, and L. Then one can find the UG bound L(S0) using the
tangency conditions of Equation (23). For a given value of

ut,this results in two equations linear in S0 and L. The most
conservative bound is found utilizing the upper 95.4% errors

for these correlations—see Figure 10—and compares favorably
with but is slightly less restrictive than the analytic bound from

Equation (32). Figure 10 also shows the dependence of the
bounds on the assumed value of n0.

We now discuss bounds on the symmetry energy as a
function of density, S(u). The lower bound to S(u) is just the

UG bound and was already presented in Figure 2. Regarding
the upper bound, we first consider the case when u�1. In this

case, a conservative upper bound, Smax, to S(u) can be found for
each value of S0 by using the upper bound to L for that S0 and

the upper 95.4% confidence limits for the Ksym–L and Qsym–L

correlations from Equations (36) and (37). We show these Smax

bounds for several values of S0 in Figure 11. We also show a
more realistic upper limit when the central values of the Ksym–L

and Qsym–L correlations are used. The same procedure leads to

an effective lower limit to S(u) for u�1, Smin, for each value
of S0. We stress that this effective lower limit is not a strict

lower limit but a good approximation with desirable properties:
as seen in Figure 11, this procedure does not violate the UG

bound, smoothly converges to the UG bound as u→0, and has
the correct noninteracting limiting behavior as u→0. For

u�1 there is no practical upper bound to S(u) because L has a
very small, and possibly negative, lower bound.

6.1. Nuclear Surface Symmetry Energy

Our UG bound has direct implications for the symmetry
properties of the nuclear surface. For example, an effective
maximum value of the surface symmetry energy parameter SS
can be estimated by making the following argument. We
assume a potential model for the total free energy of semi-
infinite symmetric matter in which the total energy density u( )
is the sum of bulk and gradient contributions:

u un E u Qn
du

dz
, 410 SNM 0

2
2

 = +
⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( )

where z is the distance from the surface and Q is a constant.

Minimizing the total energy per unit surface area u dzò-¥
¥

( )

with respect to u(z) for a fixed number of baryons introduces

the Lagrangian parameter μ and results in

u E u Qn
du

dz
; 42SNM 0

2

m- =
⎛

⎝
⎜

⎞

⎠
⎟( ( ) ) ( )

see Ravenhall et al. (1983). One must have μ=ESNM(1)=E0

so that the gradient vanishes at the nuclear center

(u z1,=  -¥). A typical surface thickness parameter

t
du

du dz

Qn

T
I

I
du

f u

,

43

t

t

B

90 10
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0.9

ò

ò
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=

-
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Figure 10. Constraints on the symmetry parameters from the power-law
energy-density functionals of Equations (38) and (39) are shown by solid and
dashed black (red) curves for n0=0.164 (0.157) fm−3 and E0=−15.5 MeV.
The solid (dashed) curves correspond to the incorporation of the Kn−L and
Qn−L central (upper 95%) correlations. The black (red) dotted curves show
the corresponding analytic constraints from Equation (32).

Figure 11. Upper and lower limits to the symmetry energy from the UG
constraint. Each solid (dashed) curve denotes the results for different choices of
S0 and uses the upper 95.4% confidence errors (central values) of the
correlations between Ksym and L and between Qsym and L.For u�1, the solid
curves denote Smax, an effective upper limit to S(u) as discussed in the text. For
u�1, the solid curves denote an effective lower limit Smin and approach the
UG bound (lower dotted curve) as u→0. The upper dotted (dotted–dashed)
curve indicates the threshold for the onset of the direct nucleon Urca process
without (with) the inclusion of muons.
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can be defined where, phenomenologically, t90−10;2.5 fm and

f u u
E u

T

u u a u b u c u d u
E

T
.

44

B
SNM
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m
=

-

= + ¢ + ¢ + ¢ + ¢ -
⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

The surface tension of asymmetric matter can be expanded in
terms of the neutron excess δ=1−2x at the center of the
nucleus,

, 45s
2s s s d= - d ( )

so the surface symmetry energy is S A r A4S o
2 3 2 2 3p s= d . It can

be shown that

S n u
S

S u
dz S n

Qn

T
I

I
u

f u

S

S u
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1 ,

1 , 46
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which can also be written as S r n S t I I4S o t
2

0 0 90 10p= d- ( ). Note

that the integrand of Iδ varies as u−1/6 in the limit u→0,
which is why a Taylor expansion of S about u=1 should not

be used to evaluate this integral. The surface symmetry energy

scales roughly as K0
1/11, E0

1 8-∣ ∣ , and n0
3 10. It is clear that a

maximum value of the surface symmetry parameter can be

determined if the minimum allowed S(u) for u�1 is used in

Equation (46) for each value of S0. Figure 12 illustrates the

resulting maximum value of SS, which for S0<33MeV has an

upper limit of about 80MeV.

6.2. The Crust–Core Boundary of Neutron Stars

An approximate method of determining the location of the
crust–core boundary is to consider the stability of a
homogeneous fluid of nucleons in beta equilibrium. Baym
et al. (1971) showed that small density fluctuations in an
otherwise uniform fluid lead to instability when

c n4 4 9 0, 47pp pn nn p
2 1 2 1 3m m m pha ha p- + - =- ( ) ( )

where μij=∂μi/∂nj and μi and ni are the chemical potential

and number density, respectively, of neutrons, protons, or

electrons. In the following, we use that μpn=μnp due to the

commutativity of the derivative. The parameter α;1/137 is

the fine-structure constant, and η is determined by density-

gradient terms in the nuclear Hamiltonian and can be

approximated by D 1 4 np nn np nn
2h m m m m= - +[ ( ) ], where

D=4Q/3;81MeV fm5
(Hebeler et al. 2013). The chemical

potentials and derivatives in Equation (47) are equivalent to
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We assume a quadratic symmetry energy so that
E u x E u x S u, 1 2SNM

2= + -( ) ( ) ( ) ( ). The matter will be in
β-equilibrum, for which x(u) is determined by

S u x c n ux4 1 2 3 . 49n p e
2

0
1 3m m m p- = - = =( )( ) ( ) ( )

At the densities of interest for the crust–core boundary, PNM is

very similar to neutron-star matter since proton fractions are of

the order 2.5%–5%.
If one employs the minimum value of S(u) in the range

0<u<1, the resulting crust–core transition density is
maximized; see Figure 13. We find that the crust–core
transition density decreases with an increasing S0 and/or a
decreasing K0. The transition density is roughly proportional to
the assumed value of n0 but is insensitive to E0 and is generally
less than 0.1 fm−3. This reinforces the notion that the transition
density is larger than the approximate lower limit where
nuclear pasta possibly exists, u≈1/3 (Oyamatsu & Iida
2007).

6.3. The Direct Urca Process

The direct Urca process in neutron stars, in which the
degenerate nucleons beta decay leading to subsequent cooling
due to the loss of neutrinos and antineutrinos, requires a
minimum fraction of protons, x=1/9, in the low-temperature
limit and in the absence of muons due to energy and
momentum conservation (Lattimer et al. 1991). Assuming
again the quadratic approximation for the dependence of the
energy on the neutron excess, this condition, from

Figure 12. The maximum surface symmetry parameter SS as a function of S0.
The solid black curve assumes n0=0.157 fm−3, E0=−15.5 MeV, and
K0=230 MeV. Dotted (dashed) curves instead assume n0=0.164 fm

−3

(E0=−15.9 MeV). The upper (lower) dashed–dotted curves assume
K0=260 (200) MeV.
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Equation (49), is simply

S u

u
c

n9

28 3
51.2 MeV, 50

1 3

2
0

1 3

 p 
⎛

⎝
⎜

⎞

⎠
⎟

( )
( )

if the presence of muons is ignored. Muons appear around the

nuclear saturation density but do not change this condition

significantly.
The threshold densities for the onset of the direct nucleon

Urca process are shown in Figure 11, for both the conservative

and realistic maximum symmetry energies implied by the UG

constraint. The Urca process is always disallowed for u2 as

long as S0<33.5 MeV, irrespective of assumptions concern-

ing the maximum symmetry energy. For conservative (realistic)

assumptions, and S029.5 (31.6)MeV, the Urca threshold

density is u4, near the maximum central densities of

maximum-mass stars. This means that only the highest-mass

neutron stars could become capable of rapid neutrino cooling

due to the Urca process. Current estimates of the temperatures

and ages of observed neutron stars are consistent with the

interpretation that only a small fraction have cooled rapidly

(Page et al. 2004). If mass is the most important parameter

controlling neutron-star thermal evolution, then this small

fraction implies that only very high-mass neutron stars cool

rapidly, providing empirical evidence that S032MeV.

6.4. Neutron-star Radii and Neutron-skin Thicknesses

The UG bounds directly impact predictions for both the

neutron-star radii and the neutron-skin thickness of neutron-

rich nuclei, such as 208Pb and 48Ca. From Lattimer & Lim

(2013), the correlation between R1.4, the radius of a 1.4Me

neutron star, and the pressure of PNM at the saturation density

(pPNM(n0)) is

R
fp n

9.52 0.49
MeV fm

km, 511.4
PNM 0

3

1 4


-


⎛

⎝
⎜

⎞

⎠
⎟( )

( )
( )

where f=0.94±0.02 is a factor that corrects for the finite

proton fraction of neutron-star matter. Since p n Ln 3PNM 0 0=( ) ,

one finds, using n0=0.164±0.07 fm
−3, that

R
L

4.51 0.26
MeV

km. 521.4

1 4

 ⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( )

With the upper limit L∼80MeV for S0�33MeV, consistent

with nuclear-mass measurements, we obtain R1.4<14.0 km.

The lower limit to L, L0 for S S0 0
LB= , suggests that

R1.4>9.5 km. These limits are compatible with most estimates

of neutron-star radii, but interpretations of currently proposed

radius observations will probably not be significantly impacted

by the UG constraint.
However, that is not the situation for the proposed neutron-

skin thickness experiments. Brown (2000) and Typel & Brown
(2001) found that the neutron-skin thickness rnp of 208Pb is
related to pPNM by

r
p n

0.060 0.015 0.12
0.1 fm

MeV fm
fm.

53

np
PNM

3

3
 +

= -

-

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⎠
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The minimum pressure of PNM, using the constraint

E EPNM UG , is

p n E n
n

n

2

3
, 54PNM,min UG

0

0

2 3

=
⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

which is independent of assumptions about the value of n0. At the

nominal density n=0.1 fm−3, pPNM,min=0.624MeV fm−3.
As previously mentioned, we cannot use either the Taylor

expansions of Equations (18) and (11) or the power-law
expressions of Equations (38) and (39) to estimate an upper
limit to the energy or pressure of PNM because of the lack of
an effective lower limit to L as a function of S0. However, the
energy of PNM must be less than the Fermi-gas energy
T n n2 0

2 3( ) because the interactions are attractive at densities
less than n0. This results in

p n n
E

n
Tn

n

n

2

3

2

1.701 MeV fm , 55

PNM,max
2 PNM,max

0

2 3

3

=
¶
¶

=

= -

⎛

⎝
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⎞

⎠
⎟( )

( )

which has been evaluated at the nominal density and is also

independent of assumptions concerning n0. One therefore finds

0.12 fm<rnp<0.28 fm, independent of assumptions con-

cerning S0. While this is consistent with most experimental

results for 208Pb, rnp=0.159±0.041 (Danielewicz &

Lee 2009) (but see Danielewicz et al. (2017), who find

rnp=0.223± 0.018 fm), the most recent neutron-skin thick-

ness measurement from the PREX experiment (Abrahamyan

et al. 2012) is r 0.33np 0.18
0.16= -
+ fm and thus the mean value is

larger than our upper bound. The proposed PREX-II experi-

ment will have an estimated error in rnp of about ±0.06 fm

Figure 13. The maximum value of the crust–core transition density as a
function of S0. Curves are labeled as in Figure 12.
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(Horowitz et al. 2014). This should be sufficient to resolve the

tension with our upper limit.

7. Conclusions

We presented new bounds on the symmetry energy
parameters S L,0( ) based on the conjecture that the energy of
the UG is less than the energy of PNM. Specifically, we
determined a minimum value for the volume symmetry
parameter S0 (equivalent to the liquid drop parameter J),
S0
LB;28.1 MeV, as well as both minimum and maximum

values of the symmetry energy slope parameter L for values of
S S0 0

LB . We also determined a minimum value for the
symmetry incompressibility parameter Ksym as a function of S0.
These parameters are all evaluated at nuclear saturation density
n0, but in addition, we established a minimum for the bulk
symmetry energy S(u) as a function of density in the vicinity of
the saturation density n0.

This conjecture is in agreement with ab initio calculations of
PNM with NN and 3N forces. Using conservative values for
the Bertsch parameter ξ0, as well as the saturation properties E0,
n0, K0, Ksym Q0, and Qsym of nuclear forces, we find that
symmetry energy parameter constraints from various nuclear
experiments are consistent with the UG bound. However,
several theoretical interactions in active use for both theoretical
calculations of dense matter and tabulated equations of state
used in astrophysical simulations of supernovae and neutron-
star mergers violate the UG constraint. In addition, less than
52% of the more than 500 nonrelativistic potential and RMF
interactions in recent compilations (Dutra et al. 2012, 2014)
satisfy our constraint.

Because the conjecture establishes a maximum value of L for
each S0, and because both Ksym and the symmetry skewness
parameter Qsym are highly correlated with L, a maximum
symmetry energy S(n) for nn0 may be found for each
assumed value of S0. In addition, a minimum symmetry energy
S(n) for n<n0 may also be obtained for each assumed value of
S0. Our results thus have important consequences not only for
astrophysical simulations but also for nuclear structure and
neutron-star structure. In particular, we obtain upper limits to
the liquid-droplet surface symmetry energy parameter and the
neutron-star crust–core transition density, and both upper and
lower limits to the neutron-skin thickness of neutron-rich nuclei
and typical neutron-star radii. We can also impose constraints
on the operation of the nucleon direct Urca process in cooling
neutron stars.

Obtaining experimental results from cold atoms with a finite
scattering length (Hu et al. 2010; Navon et al. 2010; Horikoshi
et al. 2016) will be important and may eventually offer
additional insights and even more stringent constraints.
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Horikoshi and Yoji Ohashi for inspiring suggestions. This
work was supported in part by NSF Grant No. PHY-1430152
(JINA Center for the Evolution of the Elements), U.S.
Department of Energy Grants DE-AC02-87ER40317 and

DE-FG02-00ER41132, JSPS/MEXT KAKENHI Grant Nos.
15K05079, 15H03663, 16K05350, 24105001, 24105008, and
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