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INTROQDUCT TON

In this paper we investigate certain mathematical properties
of the dual tree graph N peoint functions which are related fo their
symmetry properties. These BN funetiona have been given by many
authors ! s, and several different representations are known.

For an investigation of the symmetry properties the dyeclic
symmetric integral representation of Koba and Nielsen 2>’3) is
particularly suitable, and we work with this representation throughout.
We write it as a many-dimensional contour integral, and by integrating

over c¢losed loops and using the symmetry properties of the integral,

“we establish a large set of linear relations for functions which are

very closely related to BN functions for different permutations of

the external particles.

To indicate the character of these relations, 1et us briefiy
consider the (trivial) cage N=4. We extend the integration contour
for the standard integral for the (3 function to a semicircle in
the upper half plane. Using the Cauchy theorem and the changes of

variabhle proposed by Fairlie and Jones 4 y this gives the relaticn

~ (ol ¥4
B (ok,~d) - e,t 58(—d3,-du+6) -e eB(—%,-ofu +8) =0,
{(1.1)

where B(-of_,-&.} is the four-point function, and

o +oly +ofy =—~1-3 .
(1.2)
Clceing Insteas the contour in the lower hall plane we get the same
relation, but with opposite signs in the exponents. One of the funec-

tions, say, B(“dt""(u*B) may be eliminated, giving

ST (ole+ole) B(-o4s ~0urE) + Som7y, B0k, —% ) = O,



This is of course a trivial consequence of Eg. (1.2) and the well-
known properties of the function, and only the simplest example

of the relations we are going to establish.

For IIZE% however, we get non-trivial relations between
the N-1 BN functions having N-1 wparticies in a fixed ordering.

Putting 0(820(12, o(t:d%’ O(u:O(M_, Eq. (1.1) can be seen to

be also of this type. In obvious noitation it is

- 1% {74 1
(5(:234)— ¢ "(s(z:%) ~e (3(13'2.4) =0,

(1.3)

It will be seen that this is just a particular example of the general

relation (3.3).

The derivation of the linear relations made it necessary
to look more carefully into the analyticity properties of the cyclic
symmetric integral. We do this by investigating the conditions on the
analytic gtructure coming from the requirement of cyclic symmetry of
BN—O

levels of integration, and hased on this we establish simple rules

This determines the singularities and the branch cuts at all

for writing down a linear relation whenever at least one integration

contour is closed,

Making simple linear transformations of the integration
variables, we also find a new relationship between the cyeclic sym-
metric contour integral and the "multiperipheral" Chan-type in-

5)

tegral . The integration variables in the latter are usually

2
given as crosgs-ratios of the variables in the former )’3). We show
that they also may be given as simple ratios instead of cross-ratios,

whenn a certain limit is taken.

As an application we consider the signature properties of

B and give itwo simple, different proofs. One uses a particular

NS
linear relation, the other is a result of the new method of going

from the eyeclic symmetric to the "multiperipheral” integral.



In Sectior 2 we define wariables and functions used 1n the
Tollowing Sections. The linear relations are established in Section 3,
and in Section 4 we discuss some of their more important properties.
The alternative interpretation of the cyclic symmetric integral is
consldered in Seection 5. Finally, in Section 6, the signature

properties of B are investigated.

N

THE CYCLIC BSYMMETRIC CONTOUR INTEGRAL FOR BN

OQur work is based upon the manifestly cyclic symmetric

2),3) The external

integral for BN given by Koba and Nielsen
particles are taken to be scalar mesons and we assume for simplicity
that all trajectories are linear. We choose one {arbitrary) permu-
tation as the standard permutation and lahbel the mesons in this
permutaticon from 1 +to N in clockwise direction. The amplitude
correspending to the permutation k1,k2...,kN is denoted

B(kqsz""?kn) or simply B if we need not specify the ordering

N

of the particles. We congider B as & function of the %N(N-B)
*

linearly independent trajectories ) 0(.12,0(123,...,0(23,CK234,...,

etc., defined by

;. . L — o. ’ . L] ll
o(‘;&f,--‘_) = ‘:""”’"‘J + o (Pc ‘*Pu:“‘"‘*ﬁ) ) &€t € M-2,
ce! ‘J‘ EN-1 fird)l,
2 ¢ J'SN'Z 7“" eE/,

(2.1)
A1l trajectories are assumed to have a common slope @'. We further
define the guantities

Ag is customary in the discussions of B the non-linear

N?
constraints are only implicitly taken into account.



r - ':Jl/ J:{,-l-l)
-dl:kj +d£k+O(kJ’ J‘Ek*"(‘-}z,

X; =
J <
—o({tf..-t,.‘}' + O(C‘k;"‘kr + “t,kz--- k"J. —-

- | Pz skt =Cere/
\ C‘gr..gr’, J k}*’ ! ¢ )
(2.2)
Yf,}(;fl,-“J. - - dt"[‘!’...J .
(2.3)
The gquantity Xij corresponds, with a slight modification,

2)

to the quantity g(A,B) defined by Koba and Nielsen ~/,

From the definitions (2.2), (2.3) it follows a number of
useful relations among the == variables. For later use we give
the more important cnes below. Others can be found by relabelling

of the particles:

. x‘zJ < ,z‘f'xl'!"'""' XU‘ 'Px:_-;..:j' "'J"i'?_ , 2 £J. éN-—Z_.

(2.4)
For j=N-2 +this implies

x/lz.‘.m's.}-.... +XIN z N"‘g)
(2.5)

Vo=l *Yis=l ¢+ Xw-l =-2 .

(2.57)



Repeated use of Bg. (2.4) implies

Xs. E et - £ (-2(j-2)

lckd
(2.6)
or
Y:z--- E ()(q-l) +J-—?_ ,
lékcch
(2.61)
both valid for 2€j€N-2. Using Eg. (2.5) N +times, we finally
get
z J(K.L = {'N(N'3) )
/ €kl ¢N
(2.7)
or
P (My-0) =-N
| Sk<LEN
(2.71)
It is convenient to be able to extend the validity of
Egs. (2.6}, (2.6') to j=N-1 and j=N. This is possible if
we define
x?z.“ N OT "I ’
xzz.".ﬁp; = C)_
(z.8)

(2.6) may be considered as the solution of Egss (2.2),
giving 0( variables in terms of x wvariables. We finally define
an x variable for an arbitrary channel of any adjacent or non-

adjacent mesons j1j2...jr by
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. !
::E X ; - 2= (r-1O(r-2) ,
Xjjar Jir Jejo m 2002
l€k<lér
(2.9)
It 1is easily checked that the x variables defined by Egq. (2.9)
satisTy Egs. (2.2) for arbvitrary values of r, Kys ¥pyee.sk . For

linear trajectories

Xojo g = = Rjjureje ¥ Gijarejr
(2.10)

where ojqu,...,jr is & function of the masses of the particles and

the intercepts of the trajectories involved.

later we will need similar relations for the variabples

f:)t(’fj,J',__---Jr - ,)

E, e :

Julz e (2.11)
They of course follow immediately from the x relations above:
= £
{ I Ekr ’ , [¢re N ,
K$r (2.12)

E = (_")"'7' -lT ETJ'&J.-L ’ (2.1%)

Jd2yr 1€kelér

TT gij = C")H . (2.12)

léi_,cjeu
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With these definitions and relations, we are ready to write

down the cyeclic symmetric contour integral for BN' It is

€“l
B(z-n) = [-[d&s TT'deT— (2-2:)
k= l‘kﬁj‘ﬂ
(2.15)

where Zj::exp(iej) are N ordered points on the unit circle in

the complex 2z plane such that

B, << £ By {2,

(2.16)

The ordering of the points 2o ig the same as the ordering of the

particles, and = may be thought of as representing particle k.

k
The differential dG5 is defined by

d 6 - dz-d Zg d 2¢
> Tz (Zez)(2e2)
(2.17)

where Z.s 2.9 Zy are three arbitrary, but fixed points such that

faﬁ < 6;5’ < 626 < f;r +27C .

The integration in the remaining N-3 variables is over tne parts of
the circle consistent with the constraint (2.16). The "division" of
differentials in Eq. {2.15) has been given a rigorous mathematical
meaning by Koba and Nielsen 2)’3). We emphasize that Bq., (2.15) is
independent of the choice of r, s, and t and the values assigned

to 3 z 4 and z

r’ s 1
Expressions very similar to Eq. (2.15) have already been
given 3)’6), but unfortunately the existing literature i1s somewhat

confusing on the relationship between the integral (2.15) and, e-g.,
the conventional "multiperipheral' integral. We will therefore

demonstrate this relationship in some detail.



This is done by introducing the anglies Qj as new variables.

We insert

_ étei*ej). l
22 = e SmE(8-6:)

<o 0
. z(6c+8))
= e Oj¢

into Eq. (2.15). Using Egs. {2.51), (2.7')

Xy-1 <6 Yt
W(ZJ‘-Ze)J =(2<:) rc KT_ d

lgch'sN k=i teu_].cu

Ag dzkzzlzkd@k and

p |
d6. = dOr 46 46,  _ | dF.
k 2° e Ots Ter 23 30

we finally get the real integral

Bl2-) = .1"3{ fdr"'ﬂ'de T G_an-:.

K=t {.‘EL(J.‘:M

(2.18)
Introducing the "multiperipheral variables ui in the standard

way 2 , bne can Tinally show that
(N-3) Xp —|
B(12--N) = gd\l Tl'u ,

where the right-hand side is the integral over the product of

7)

"partitions" as defined by Chan and Tsou with the invariant

measure dV(N-g). Apart from a constant factor, Eg. (2.18) is

equal to the formula given by Koba and Nielsen 8 .
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In writing down Eg. (2.15) we have chosen a particular
ordering of the particles and also a particular one of the 2N per-
mutations which, because of the cyclic sympetry and reflection sym-

metry of B are equivalent ito this. The other 2N-1 permutations

N
are obtained by reversing the sgign of some or all of the differences
Zj_zi' This introduces phase factors Ef;, and the branch cuts in
the integrand must be chosen such that the phases cancel in this

operaticon and really give the cyeclic symmetry. The same applies of

course to Eg. (2.18).

To simplify the notation in the following, for ar arbitrary,

but {fixed ordering kq’kgﬂ""kN of the particles such that

O, £ B, < < B, & O, +RAT

(2.19)

we define the function

~N+3 e X -
(A(kht-l)"')kﬂ) =2' *de“%' lTrdgk Tl_ lcj':'l : .
K=i léCCJ'éN (2.20)

Here d}FSI is obtained by taking the modulus of'the g in

ji
dFB' The (gN functions are of course closely related to the

B functions. Let us define

B(kl)kz;"‘z‘eﬂj "°‘) s B(k‘fkl)"'f‘th') .

The relaticnship is then [for the linear trajectories (2.151,

(S(knkz)“)k“) = B(k‘) k‘)'") K ) -o(-tc) )
(2.21)

where the constants ¢ are defined by Eq. (2.10). In particular,

since ()‘ji>o for @i<@j<gi+27t,

[5(12---:\!) = B(2- N).

(2.22)
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If and only i1f the trajectory functions X gatisfy the "canonical

constraints"

XJ’JI,...J.I, — |Jz Jf‘
(2.23)
for ail the #N(N-3) channels defining B,_ for a particular per-

N
metation k1,k2,...,kN, one has

(&(‘Ch»ki,“ukUJ) = Egc}:h;ki;‘”)‘khJ>.

It 18 trivially irve that the cancnical constraints are sufficient.
That they are also necessary follows for example by the requirement
that the poles in (3 and B should coincide and have identical

polynomial residues,

The attractive property of the ng functions is their

close rclationship to the BN funections, and that they are all
defined by integrals differing only in the integration limits,
such that the ordering of the particles is given by the ordering
of the points &, on the unit circle. Thus the integral (2.15)
with the integration limits defined by the inequalities (2.19) is
simply /3(k1,k2,...,kN) multiplied by a certain phase factor, as
some of the differcnces zj—zi will appear with the wrong sign.
The determination of this phase factor is not trivial and will be

congidered in the following Section.

LINEAR RELATIONS FOR B

2.1 Simple linear relations

We are now prepared to derive the linear relations. To
begin with we only consider the simplest type. More complicated

relations are considered in Secticon 3.2.
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Congider the first integration to be performed in the
integral (2.15). Let it be the z, integration. The integral
ig

22

l’[z’l xl‘!"' A,IN"'I
dz, (22-2) (2w2) - (2u-2) .

Zu

(%.1)

The integrand has branch points at %2,25,-..,ZN. Assume that
this integral corresponds to the permutation B(123,...,N).

The 2 integral for B(23,...,N,1) is then

Yip~ | b I8! Xin -1
Jotz, (202s) (22) - (22

with all the subsequent integrations unchanged. The only
difference between the two integrals is factors («1)XTj_1.

I the branch cuts are chosen such that these factors have one
and the same meaning for all points on the unit circle, it
Tollows from Eg. (2.12) that the phase factors all cancel,

and the two permutations are indeed equivalent. To obtain this
the branch cuts must run along the tangent to the unit circle,
all with the same orientation, e.g., a3 shown in TFig. 1. With

this choice we have

xﬁ‘-l -X%u'l .
(ZJ'-Z,) ) = E"J (zt'zJ) ) ZéJ &N,

(3.2)

which is wvalid also for all points inside the unit circle.

The integrand in (3.1) is then analytic inside the unit
circle. We integrate Z4 around the whole circle and apply
the Cauchy theorem. Consider the integral from 2 to Zyiq e
The ordering of the vpoints is then 2,5.s.e,k,1,k+1,...,0. From
the above digcussior and the definition of the FN. functiona,
it gives ETQE13...E1k:P(2,3,...,k,1,k+1,...,N). Thus, assuming

the integrals converge, the relation is



12 -

F;(IZ-"N) + E,Z(A(ZIZ'--N) + E,,_E,-,F(Z'sw...N).,

4 +Ep B Eper (3(1';.-. N-LILN) =0,
(3.3)
and this is our main result in this Section. Taking the branch
cute in the opposite direction we get the "complex conjugate!

relation

(3(;13.. N) + {:";_'(3(9_13.--“) $oot E",l'g,;'...E;J_'P(Z&-W-U,N) =0,
(3.31)

By analytic continuation these relations are wvalid for all x.

Tater we will refer to Eq. (3.3) as

2+U,‘ 2.-N) =0

and Eq. {3.3') as

Z_(I) !ZN) TO,
(3.5)

where it is indicated the initial permutation which has coef-

(3.4)

ficient 1 and the particle that is "moved around".

Of course gther relations of the same type may be obta’ned
gimply by relabelling the particles. DTue to the relation (2.12)
we get, loosely speaking, Ekj factors when particle k 1is

factors when it is moved to the

moved to the right, and Eéj

left, or vice versa.
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Non-simple linear relations

It was shown in Section 3,1 how to choose the branch cuts
in the first integration to¢ ensure cyclic symmetry of the total
integral., We will now use the same conditicon to determine the
gingularities and the branch cuts in the subsequent integrations.
Knowing this we may close all these contours and obtain other,

more complicated linear relations.

For this purpose it is convenient to write the integral
(2.15) as

N N-t Xkn -1
8 - S.g da;.' T(—JZK ﬂ- (ZN"ZK) " :NA)CZ) ;
N k=t K=t

where

It is implied by this that the integraticns are performed in the
order z1,22,...,zN_3. Agsume the branch cuts in the Z 4 plane
are chosen as before, Eg. (3.2). From the general discussion
of singularities of functions defined by integrals 9), it fol-

lows that the only singularities of

%2 Xin~! -
INT (n-t)
q&z(z,,) = (dzl (zN"Z:) ! (2)
FAY
in the 2z, plane is an end-point singularity at Zy =25 To

exhibit this we make the change of variables zq—:/aq defined
by

2y = ZN +/u'(z?-'zN)- -
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This implies

:ahg ":ZI ==/ﬁln(l230"25z) )

24 -2 = (/4,-0(2»: -Z) .
(3.6)

Using Eq. (2.4) we can write the z, integral as

f a2 (2n-23"% a}u o C/u,—;
Xik—

'ﬂ_ [Ze-2u-p (22720

(3.7)
where the /AT integral is now an analytic function of g

(but not of the other Zj)' As we have used; €.8.,

Y-l Y-t Xinr

(Zn-2) = (2y-22) ’

the branch cuts in the Z o plane are implicitly determined by
this expression. Starting with Eq. (3.2), it Tollows that we

must have

X;N"', Xin-1
(:)‘L') - E;Hd’xtf )
Xz -1 Xz =1
(2n-22) = Evn (Z2-28)
(3.8)
etc. IFf the branch cuts in ﬂ (- 1)( are chosen such that
Yox—t Xak- |
(ZK"ZZ) = Eqx (Z-24) , Re k €N,
(3.9)

we can show that

R(iz--N) = B(3%-NI2).



- 15

We have already shown that B(123...N)=3{(23...§1), i.e., that
the integral (3.7) i1g invariant under the reflections z.—21—+
RIRCEY 2€ j€N. To show that B(234...81)=B(34...812), make

the reflections
ZJ ""27_ & 21""2‘)' ) j:{igfq)'“M-

From Eq. {3.6) we see that the ,ﬁtq integral is invariant

except for the change

Y-t Yin -1
J S

and using Egs. (2.12), (2.13), (3.8), the change in the Z

integral is
-' ""! -, "I
~EunEn by 6 By T L

The minus sign comes from the change in d/u1. This proves our
assertions and also shows that the deitermination of the branch
cuts is consistent. From the point of view of obtaining linear
relations it is of course Eq. (3.9), together with Egq. (3.2)

which are the important results,

At this stage we are able to write down the relation obtained,

€.g8., by the integration limits

with the remaining particles in fixed order. As an exanple,
let us take NW=%5. To write down the relation that follows,
we proceed like this: the particles in fixed order are 345.
Integrating 20 around the c¢losed loop gives the three orderings
2345, 324%, 3425. Finally, in each of the three cases, Z4
must be integrated from z5 to Zgo Each final ordering gives

the corresponding /55 function multiplied by a phase factor
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which is determined by Egs. (3.2), (3.9), We see the importance
of the directions of the branch cuts being correlated. The

relation obtained is

(5(12.'545) + En(g@ﬁ?.%') + E,-;Ezs(s(mw) +

+ Ex EN-F'U 34255 + & 523529(3(3’*25) +En Ewgz'sezv/" (3#125) =0,
In passing we note that as it can he written

Z+(z; 123%5) = E5,E0 65 2 4(4; 43125) = O,

this relation i1s not independent of the simple c¢nes.

Returning now to the general discussion, we can determine
the branch cuts in the =z

. _F" Y
variable /h? defined by

2, 7 2N -&/,(_,_(Z.«;-ZN) ’

and proceed as above. We then get from Egs. (3.2), (3.9) the

3 integral by introducing the new

conditions
Yok -1 Xaig -
(25(‘423) = EEék;(ﬁis-Zhﬁ) 5 <k & A})

which can be shown to ensure B(12345,...,N)=B(45,...,N123),
Introducing consecutively /AB, /1.4, ete., by

EZK. = 2:51'+/ktg (jzx‘l "2!5]) ) I é;lk € Aﬂ'g ,
we finally eand up with the set of conditions

Xie={
(2x-2)) ) (3.10)

which are necegsary and sufiicient to easure the cycelic symmetry

i = .
= J'k(zJ‘-Zx) , féJ(‘(éN

of 3. =g glven by Eq. {(2.15).

a4




- 17 -

This result may at first sight seem trivial, and we want 1o
point out that it cannot be obtained by a simple inspection

of the integral (2.15) ang using Eo. (2.12).

The conditions (3.10) correlate the branch cuts in all the
integrations, and it is no longer necessary, as in Section 3.1,
to keep all particles except one in fixed order. We may now
close the contour at any level of integration and use the
Cauchy theorem. Given the limits of integration for all the
N.3 wvariables integrated over, with at least one closed
contour, the following rules determine the corresponding linear

relation:

1) write down the particles that are kept in fixed order, say,

k1’k2?""kj’ and define a ponsitive direction of rotation;

2) consider the last of the remaining integrations, say,
Idzf,’ and determine all permutations of k1 ,k2 sase ’kj £
consistent with its integration limits. Agssociate to each

permutation @ a phase factor }%(ﬁ) defined by

€
7&(‘#) = eﬂ- E:(a:
¥ (3.11)

where the product is over the set of particles with which
4 has been permuted in ﬁ, and 6':-+1 if the integration
is in the positive direction and € =-1 if it is in the

negative direction;

3) repeat this for the remaining integrations, starting with
the last and ending with the first, always counting the

permutations from the same, fixed permutation ﬂo;
4} the linear relation is symbolically

BRE) =0,
;g&mﬂ>

(z.12)



where the sum is over all permutations @ consistent with
the integration limits and the product is over all phase
factors 'xﬂ(ﬁ) wnich have been asgscciated to =ach final

permutation by 2) and 3) above.

As an extreme cage, consider the relation

é‘?d ﬂ-dzn-ﬂ_ (Z"Z =0.

ldch¢JQ

The left-hand side is the sum of all the H{N-1)! different
(3N funetions, each multiplied by factors Eij corresponding
to the permutations in that particular runction, On the other

hand
x'fj -

S=é 43.3(6,1 anT |2 -2

=| lchJ'eN

is just the sum of all the {SN' funetions without cosfficients.
With the canonical constraints fulfilied, this is the result

o

X Fairiie 6 .

SOME FROPERTIES OF THE LINEAR RELATIONS

The mozl important consequence o the linear relations is
of course that they provide information about (gN Tunections which
arc difficult to investigate by relating them to better known func-
tions. In this way the relations may prove a useful tool for the
investigation of, e.z., the multi-Iegge 1imiy of the Tuwll E  point
amplitude *).

*
) See Ref. 10} for such a treatment of the case N=05.
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Consider the reduction properties of the simple relations
(3.3), (3.3') at non-positive integer values of the x variables.

We introduce the notation

\
e (120§ N) = ResL(i('z"' N3J iz == T

Ry(12-jj# +-N) = Res LB(“'”N)]x,z.. 3.

-

(4.1)

For J=0,
R (12l 8y = a0 jga)pQgteN) , 24 jen-2
Co (12 N-2|N-LND) = 312 N-1)

Only the two first terme in Eq. (3.%) have the 12-pole, so, for

x12::-J 1t follows
' J
s(12|3--N) = (-0 ry(1]3N) =0,

which shows the signature properties of the (QEI and BN functions

for two-particle trajectories. HNextl, consider X0 . =0,
L

+ . ) 2 J
34£7€3-2, 1In this case & (13;12,..,8) reduce to Zi(T,‘I?,...,j-H),

w L= 2!
125000y ] ’
J AU one gets non-trivial relations between the residues of the P-N

as tne pele oxnly ocours in the first ;  Serms. TFor
functionsz, but we have not investigated theze,

One ﬂ funetion may be eliminated between Eas. {3.3),
(3.5‘), giving a real relation beitween N-2 /%N funetions. It seems
likely that there are just N-3 Idinearly independent /%N functions
(this is the case for N=4 and N=5>, but we have not proved this.
Even for N =6 the actual solution of the relations in terms of
three {36 functions seems uamanageable. However, there are more
linear relations of the type (3.3) than different (3N. functions.
Thus they are not all independent and presumably also the non-simple

relations can be derived from the simple ones.
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Except for the trivial four-particle case, the only simple

case is N=5, The B5 funection is simply related to a gemneralized

10),11).

hypergeoumetric 3F2(1) function The LF, functions obey

3 number of two-term and three-term relations\which can be found in
2}

standard hooks on hypergeometric functions ! . A detailed investi-

gation of the B5 funection from this peoint of view has recently been

13)

made s, and it has been shown that the 12 different hypergeometric
series for given parameters just correspond to the 12 different

(35 functions. 1t can easily be seen from this that the present
simple relations for {35 are equivalent to the well-known three-

T

torm relations for functions and thus glve more insight inin

37
the structure of the Llatter.

As an example consider the relation obitained by Bia%as and
1
Poirorski 1 . We car write it down immedizately by eliminating
(5(12453) rom 2. (3;12345) =0 and 2 (3;12345) =0,

B(12345) 5 SIR(AstXa=Xu8) o gy o SR (sy#Xes "’(")p(:zvgs)
SmR (G- Xus) P IMT(Ks-Xn) .
(4.2)
The interpretation of this formula sheould be clear from its diagranmi-
matic representation in Pig. 2 and the discussion in Ref. 11). These
authors also suggest to make Eg. (4.2) the starting point for a phe-
nomenological analysis of five-particle resctions. However, it now
reveals an ugly feature, the existence of a spurious pole at integer

values of x which vanishes only by a non-trivial cancellation

127745
of the two right-hand side ferms at the pole. This is likely fo
make rather diffiecult any approximations to E. based on the above

formula.

On the other side, as B; can be calculated fairly easily
there is may be not much point in doing this. For N 26, however,
this is not so, and it may he that one may find a corresponding

formula in these cages where the spurious poles may bwe avoided.



Finally, et us consider the presence of satellite terms.
In the integral (2.15), satellites appear as the presence of a funce-
tion f(z;x) in the integrand. The function f(z;x) mugt be
irvariant under linear fractional transformations (Mﬁbius trans-
formations) of the points 7 This property of the integrand in
Eq. (2.15) is essential for the interpretation of the integral as
a BN function e « Also, only then iz 1t possible to express
f(z;x) as a function of the conventional HN-3 independent integra-

5
o

Kk for B

tion variables u q
If f(z;x) is analytic such that it can be expanded in
powers of {Zj—zi), the modified integral can be written as a
gatellite series on and inside the unit cirecle. 1If, finally, f(z;x)
has the necessary symmetry properties, the linear relations are

also valid in the presence of satellites.

ALTERNATIVE INTERPRETATION COF THE CYCLIC SYMMETRIC INTEGRAL FOR BN

The standard "multiperipherel" integral representation for
B,, correspoading to the configuration in Fig. 3 may be obtained
f}om Eg. (2.15) by exzprescing its integration variables ui as
cross-ratios of the variables z, 2)’3). In this Section, we will

show that the same integral representation can also be obtained by
expressing the independent ui as simple ratios of the differernces
zj—zi and going to a suitable limit after the integration has been
carried out.

We write Eq. (¢.15) as

2n-t 24
B(12-N) = (Zn-Zn-1)(2n-2:) (Zu-1—2)) Sdzn-z"' dzy
2 &
v N Xik—1
fdz,_ T[—(?«-Z.) be (2)
Z k=2

(5.1)



where

N xkj_'
pul = Il 2™
‘Jzk*l
(5.2}
and perform the successive substitutions 2z, —a/.{k defined by
/M'C = 2k — 21 ) k=2:31"'1N—2 ‘.
Zm-l -2, :
(5.3)
After j-2 substifutions, the JA integral is
Zivt
! Yz..i
jdzj (225 cﬁ,(z) j TTd,uL ..
Z, 0
l(+l"" a4 N (%l
T U-ne T Lzez-um-2]
2¢igk &)t 2wz jui
.4)
where
'lik f'/“t'/“t'-rl" ‘/u&
Now assume all the integrations have been performed, il.e.,
put J=N-1 in Eq ' Ag X]2 K- 1:O [Eq {2.8)] we get
N-2
-l
R(12-N) = ( g T dpe 12 Kokt -
0 =2 /fi //( ]PT- (J-rz )
24 (L KEN-2

Xe, N-t =
O SO [ R SCIS)

(5.5)



_ 2% .

which, except for the curly bracket, is the "multiperipheral"

integral. However, going to the 1imit
2y &y o,
ZN - Zl + o ’

(5.6)
and uveing Eg. (2.4), the curly bracket is simply 1, giving the

desired result.

The necessity of the limit (5.6) to obtain the standard
integral form may be understood in the following way: the trans-
formations (5.%) are mappings of the unit circle described by
2y onte circies described by /Atk. The ceatres of the latter are
at the points F[1+1i cot (6, -0, J]. For 0<K9,, -6, < T the si-
tuation is as indicated in Fig. 4. The integration cortour for
/le is along the lower part of the circle. In the limit (5.6), the
centres of all the circles tend to %+ia), and the /A(k integration
contours tend to the real axis from O +to 1, reproducing the

standard "multiperipheral" integral.

Next we will briefly show how, by essentially the same
method, one may obtaln =m integral representation for the configura-
tion in Fig. 5. The point is to perform the first Jj-2 dintegrations

in opposite order. To be specific, we write

Zpn-t Zyer
B(IZ-' N) = (ZN—ZN-l)(ZN-Z)(ZN-r‘Z,) (al'ZN_l'-- d‘ZJ'
Z Z,
4 3 3 N Xix—1
dz)_ Azs' dzj'l _n_- (ZK—Z‘) ¢K(Z) .
' k=2
Zr 24 Zj2

(5.7)
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As in the previcus case Wwe introduce new variables /L&k’ but now by

Egs, (5.3) for k=3 and by

_ 2] “Zk k2 -
Me = 2 2<k < - (5.8)

for the rest. After the first j-2 {ransformations, the Zj in-

tegral is now

2jel \ it

X)z. ) SFOCTIEO -1
'(dZJ' (_25—2;)' qu(z) ( S z”/‘i/“i )
Zy (=

Xer, e =1 k=l
T (- T T Toermyouata 2]

24 €ké jt (=2 k=

(5.9)

This expression, which will be used in the final Section to
investigate the signature, should be compared to Eg. (5.4).
Performing the remaining substitutions according to Egs. (5.8) and

taking the limit (5.6}, we finally get

' N-2 J-!

. l 'l'
B(\2N) = g i d /‘J&,‘ wj '”' Xig.g |

(T2 lzz- kIJ

X Lk xk,m-l -
-IT ((—q- T_(_, Q_m D Jn(‘-—'{zk)]
26 fkej jémenen-2

(5.190)
which is +the integral represerntation corresponding to the configuration
in Fig. 4. This expression has also been given by Hopkineon and
Chan 14}. The 1imit (5.6) can be given a similar interpretation in

this case.



SIGKATURE PROPERTIES OF B

We will investigate the signature properties of EN in two
different ways: first by using a suitable non-simple linear relation,
secondly by the formalism developed in Section 5. The problem has
already been discussed in the literature 14)_16). In particular,

Koba ané Nielsen have obtained the same results as in the present

paper, but by using a different method.

To investigate the channel 1Z,...,5, we need a linear
relation where only the terms /5 (12,...,N) and p(j,j—‘l, L P S
eee,N) have the 12,...,5 pole. Such a relation is the following

ZJ+1 Z: Y] Zj*t

- Xy =1

.Edgs ]szk "ZJ A2 \ A2 ‘ﬂ_(z& %) =0,
k=j+1 i Z ICKLEN
(6.1)

where 1t is assumed that the particles j+1, j+2,...,8 are kept in
this fixed order. Using the rules establighed in Section 3, we can
immediately write down this relation in terms of N Tunctions.
There is only one trick, in the ferm which eventually gives (3 (12,...,0),
we integrate ?j—2’
direction. Using Eg. (2.13), the resulting relation is

_B,E..,z1 in ‘the negative (antlc$ockw1se)

F(IZN) + En...J rS(J;‘j-’r"Z.bj-rl,--‘N) <+ z = O ,

where :E is the sum of all the terms in Edg,. (6.1) not having the
12y444,3 pole. This implies

3 o
5 (b2t jh N) = 6 (12 Jlyt, - N)

(6.2)
We emphasize that Ty ig the residue of the ng function. Egqua-
tion {6.2) then implies the decoupling of all the cdd daughter tra-

iectories in the 12,...,] channel feor the symmetric combination
J ) | Nj



1
ra
(8]

1

F (12,...,N)+ﬁﬁj,j—1,...,2,1,;]—1,...,N). This is true for the same

combination of B functions if and only if

Ry jeher21] o NY = P21 o1, N

This happens 1f and only if the canonical constraints (2.23} are
satisfied for all the channels in this B function which are dual
to the 12,4.4,J channel. The non-dual variables are of course
the same 1in the two functions, and as the residues are polynomials

of order J 1in the dual variables

Ry(trl M) + (R ijr21flNY = O(%aar ),

such that in the symmetric/antisymmetric combination the odd/even

leading trajectory deccouples. This is the result of Hopkinson and
1

Chan 4). In Fig. & the poles present in the different cases are

indicated.

For the second proof, which also gives a method for actual-
1y calculating the residues, let us turn back to the expressions
5.4} and (5.9). Repeating the derivation of (5.9) for the "twisted"
permutation j,j-1,..4,2,71,5+1,.4.,8 gives instead the expression

dz,(z.-zj))(' ¢J(z) ( Trol/.( /4:(': wg !
ZJ'
K+ ket
1T (-qa " ﬁﬂ-[zk'zf'h 3-2, 1“
24:..‘ka1 =2 k)

i -

' X,
$;= =] (z-2) "

K‘j‘”
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Comparing this to (5.4), one sezs that the dependent parts

are exac-ly identical, and in the remaining part of the integral

1

two residues at x,, jzr-J is the factor (—1)J, which is the
’.I.’

above result. This i1s so because in the residue, z1:=zj. Strangely

enough, the result is not easily seen from the expression (5.10) writ-

% and zj are interchanged. Hence, the only difference of the

ten for the "twisted" permutation.

For the resulis in this Sesction it is obviously a necessary
condition that the trajectories are linear and that all trajectories
dual to the 12,...,j channel have a common slope. This implies
narTow Iresonances (poles) but with the interpretation of the BN
function as a Born term of the physical N point amplitude, this
is not in disagreemrent with experimental evidence. It has been

shown that with a linear trajectory as input in the E furnction,

I
the output trajectory in the terated amplitude is no longer linear
and have resconancas with non-zero widtih associated with it 17)’18).

16),19) have considered in some detail the question

Koba and Nielsen
of thz existence of realistic solutions of the canonical constraints

(2.10) for particular reactions.
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FIGURE CAPTIONS

Branch cuts in the integrand of Eg. (3.1).

Diagram repregenting the relation of Bialas and
Pokoreki. The coefficients 0(1 and 0(2 are
defined by Bq. (4.2).

The multiperipheral configuration.

The contour in the /}Lk plane.

The "twisted" multiperipheral configuration.
Poles in the 12,...,) charnel for the symmetric

combinations

O 8012, 4B, 32T eey 2,1, 5475 0 e s, N)

] (5(12,...,N)+f5(j,:—1,...,2,1,j+1,...,N).
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