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In Liu et al. [Phys. Rev. B 84, 075135 (2011)] we studied eight gapped symmetric quantum phases in S = 1
spin chains/ladders which respect a discrete spin rotation D2 ⊂ SO(3) and time reversal T symmetries. In
this paper, using a generalized approach, we study all the 16 possible gapped symmetric quantum phases of
one-dimensional (1D) integer spin systems with D2 + T symmetry. Those phases are beyond Landau symmetry
breaking theory and cannot be characterized by local order parameters since they do not break any symmetry.
They correspond to 16 symmetry protected topological (SPT) orders. We show that all the 16 SPT orders can be
fully characterized by the physical properties of the symmetry protected degenerate boundary states at the ends
of a chain segment. So we can measure and distinguish all the 16 SPT orders experimentally. We also show that
all these SPT orders can be realized in S = 1 spin chain or spin ladder models. The gapped symmetric phases
protected by subgroups of D2 + T are also studied. Again, all these phases can be distinguished by physically
measuring their end “spins.”
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I. INTRODUCTION

In recent years, topological order1,2 and symmetry protected
topological order3,4 for gapped quantum ground states has
attracted much interest. Here “topological” means that this
new kind of orders is different from the symmetry breaking
orders.5–7 The new orders include fractional quantum Hall
states,8,9 1D Haldane phase,10 chiral spin liquids,11,12 Z2 spin
liquids,13–15 non-Abelian fractional quantum Hall states,16–19

quantum orders characterized by projective symmetry group
(PSG),3,20 topological insulators21–26, etc.

Recent studies indicate that the patterns of entanglements
provide a systematic and comprehensive point of view to
understand topological orders and SPT orders.27–30 The phases
with long-ranged entanglement have intrinsic topological or-
ders, while symmetric short-range entangled nontrivial phases
are said to have SPT orders. With a definition of phase and
phase transition via local unitary transformations, one can get a
complete classification for all 1D gapped quantum phases,31–33

and partial classifications for some gapped quantum phases in
higher dimensions.29,34–37

In contradiction to the suggestion from the symmetry
breaking theory, even when the ground states of two Hamilto-
nians have the same symmetry, sometimes they still cannot
be smoothly connected by deforming the Hamiltonian, as
long as the deformed Hamiltonians all respect the symmetry.
So those two states with the same symmetry can belong to
two different phases. Those kind of phases, if gapped, are
called SPT phases. The Haldane phase of spin-1 chain10

is the first example of SPT phase, which is known to
be protected by the D2 = {E,Rx = eiπSx , Ry = eiπSy , Rz =
eiπSz} symmetry.38 Interestingly, when additional time reversal
symmetry is present, more SPT phases emerges.33,39

Topological insulators21–26 is another example of SPT
phases which has attracted much interest in literature. Com-
pared to the topological insulators formed by free electrons,
most SPT phases (including the ones discussed in this
paper) are strongly correlated. A particular kind of strongly
correlated SPT phases protected by time reversal symmetry

is called the fractionalized topological insulators by some
people.40,41 An interesting and important question is how to
classify different 1D SPT phases even in presence of strong
correlations/interactions. For the Haldane phase in spin chains,
it was thought that the degenerate end states and nonlocal
string order can be used to describe the hidden topological
order. However, if we remove the spin rotation symmetry but
keep the parity symmetry, the Haldane phase is still different
from the ⊗i |z〉i (here |z〉 is the eigenstate of Sz with Sz|z〉 = 0)
trivial phase despite that the degenerate end states and nonlocal
string order are destroyed by the absence of spin rotation
symmetry.4,38,42

Recently, it was argued in Ref. 43 that the entanglement
spectrum degeneracy (ESD) can be considered as the criteria to
tell whether a phase is topologically ordered or not. However,
all 1D gapped states are short range entangled and have
no intrinsic topological orders from entanglement point of
view.31,44 On the other hand, many gapped 1D phases have
nontrivial ESD. So ESD cannot correspond to the intrinsic
topological orders. Then, one may try to use it to characterize
nontrivial SPT orders as suggested in Ref. 45. ESD does
describe some nontranslation invariant SPT phases protected
by on-site symmetry. In particular, it reveals an important
connection to the projective representation of the on-site
symmetry group.45 However, if there are more than one
nontrivial SPT phases, then it is possible that the ESD cannot
distinguish all these SPT phases any longer.39

It turns out that a clear picture and a systematic classifi-
cation of all 1D SPT phases can be obtained after realizing
the deep connection between local unitary transformation
and gapped (symmetry protected) topological phases.31–33 In
particular, for 1D systems, all gapped phase that do not break
the symmetry are classified by the 1D representations and
projective representations of the symmetry group G [by the
group cohomology classes H 1(G,UT (1)) and H 2(G,UT (1)),
see Appendix A].31–33

In our previous paper we have calculated the eight classes
of unitary projective representations of the point group D2h =
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D2 + T , based on which we predicted eight SPT phases in
integer spin models that respect the D2h symmetry. We realized
four interesting SPT phases in S = 1 spin chains, and showed
that these phases can be distinguished experimentally by their
different responses of the end states to magnetic field. In the
present paper we will show that the group D2 + T has totally
16 projective representations when the representation of T is
anti-unitary. We then study the properties of the corresponding
16 SPT phases, such as the dimension of their degenerate end
states and their response to perturbations. Interestingly, we find
that all these SPT phases can be distinguished by their different
responses of the end states to various physical perturbations.
We also show that all these SPT phases can be realized in
S = 1 spin chains or spin ladders.

This paper is organized as the following. In Sec. II we show
that there are 16 SPT phases that respect D2 + T symmetry,
and all these phases can be distinguished experimentally. The
realization of the 16 SPT phases in S = 1 spin chains and
spin ladders are given in Sec. III. In Sec. IV we discuss the
projective representations and SPT phases of two subgroups
of D2 + T . Section V is the conclusion and discussion.
Some details about the derivations, together with a brief
introduction to projective representations, group cohomology,
and classification theory of SPT phases are given in the
Appendices.

II. DISTINGUISHING 16 SPT PHASES
WITH D2 + T SYMMETRY

Our interest is focus on the the anti-unitary group D2 + T .
To begin with, we will give some information about its linear
representations. Since all the group elements are commuting,
all the linear representations are one dimensional. The number
of linear representations of depends on the representation
space. When acting on Hilbert space, the linear representations
are classified by H 1(D2 + T ,UT (1)) = (Z2)2, which contains
four elements. When acting on Hermitian operators, the
linear representations are classified by H 1(D2 + T ,(Z2)T ) =
(Z2)3, which contains eight elements. More details about
linear representations and the first group cohomology are
given in Appendix C. The eight linear representations (with
Hermitian operators as the representation “bases”) are shown
in Table IV. These eight representations collapse into four if
the representation space is a Hilbert space, because the bases
|1,x〉 and i|1,x〉 (similarly |1,y〉 and i|1,y〉, |1,z〉 and i|1,z〉,
|0,0〉 and i|0,0〉) are not independent. In later discussion we
will assume the linear representation space is an Hermitian
operator space if not mentioned otherwise.

The projective representations are classified by the group
cohomology H 2(D2 + T ,UT (1)). There are totally 16 different
classes of projective representations for D2 + T , as shown
in Table I. More discussions about group cohomology and
projective representation are given in Appendices A, B, D and
E. The 16 classes of projective representations correspond to
16 SPT phases. Our result agrees with the classification in
Ref. 33, and the correspondence is illustrated by the indices
ω(D2),β(T ),γ (D2).

In all these 16 SPT phases, the bulk is gapped and has no
linear response to perturbations. The only way to distinguish
these phases is from their different edge states, which are

described by projective representations. We stress that all
the physical properties of a SPT phase are determined by
the edge states and can be detected experimentally. The
basic idea of detecting these SPT phases is to add various
perturbations to break the D2 + T symmetry, and to see how
those perturbations split the degeneracy of the edge states.

Let us first consider the case that the effective end spin
of a SPT phase is twofold degenerate. We have three Pauli
matrices (σx,σy,σz) to lift the end spin degeneracy. When
acting on the ground state subspace, some of the perturbation
operators of the system have the same matrix elements as the
Pauli matrix σm (m = x,y,z). These perturbations can lift the
ground state degeneracy and will be called active operators of
that SPT phase. To judge whether a perturbation is an active
operator, one can study how it transforms under the symmetry
group D2 + T . If it varies in the same way as one of the three
Pauli matrices, then it is an active operator. In different SPT
phases, the end spins form different projective representations
of the D2 + T group, and consequently the three Pauli matrices
(σx,σy,σz) form different linear representations of D2 + T . As
a result, different SPT phases have different active operators.

Suppose O is a perturbation operator. Under the symmetry
transformation g, O varies as

u(g)†Ou(g) = ηg(O)O, (1)

where u(g) is the representation of symmetry transformation
g on the physical spin Hilbert space, and ηg(O) is a 1D linear
representation of the symmetry group D2 + T . On the other
hand, the three Pauli matrices (σx,σy,σz) also form linear
representations of D2 + T . In the end spin space, the Pauli
matrices σm (m = x,y,z) transform as

M(g)†σmM(g) = ηg(σm)σm, (2)

where M(g) is the projective representation of g (see Table I)
on the end spin Hilbert space. If the physical operator O and the
end spin operator σm belong to the same linear representation
of the symmetry group, namely, if ηg(O) = ηg(σm), then they
should have the same matrix elements (up to a constant factor)
in the end spin subspace. In Table I, the sequence of operators
(O1,O2,O3) are the active operators corresponding to the end
spin operators (σx,σy,σz), respectively.

Similarly, in the case that the end spin is four di-
mensional, there will be 15 4 × 4 matrices that (par-
tially) lift the degeneracy of the end states. These ma-
trices are direct products of Pauli matrices and unit
matrix, namely, (x ⊗ I,y ⊗ I,z ⊗ I,x ⊗ x,y ⊗ x,z ⊗ x,I ⊗
x,x ⊗ y,y ⊗ y,z ⊗ y,I ⊗ y,x ⊗ z,y ⊗ z,z ⊗ z,I ⊗ z). The cor-
responding active operators for each SPT phase are given in
Table I.

Since the active operators spilt the ground state degeneracy,
from linear response theory, they correspond to measurable
physical quantities. For example, if the spin operators Sx,Sy,Sz

are active operators, they couples to a magnetic field through
the interaction

H ′ =
∑

i

(gxμBBxSx,i + gyμBBySy,i + gzμBBzSz,i). (3)

The end spins may be polarized by the above perturbation. In
a real spin-chain materials, due to structural defects, there are
considerable number of end spins. They behave as impurity
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TABLE I. All the projective representations of group D2h = D2 + T . We only give the representation matrices for the three generators
Rz,Rx , and T . K stands for the antilinear operator. The 16 projective representations corresponds to 16 different SPT phase. This result agrees
with the classification of combined symmetry D2 + T given in Ref. 33. The indexes (ω,β,γ ) ≡ (ω(D2),β(T ),γ (D2)) show this correspondence.
Five of these SPT phases can be realized in S = 1 spin chain models and others can be realized in S = 1 spin ladders or large-spin spin chains.
The active operators are those physical perturbations which (partially) split the irreducible end states.

Rz Rx T ω,β,γ Dimension Active operatorsa Spin models (S = 1)

E0 1 1 K 1, 1,A 1 chain (trivial phase)
E′

0 I I σyK 1,−1,A 2 (Sxyz,Sxyz,Sxyz)b ladder
E1 I iσz σyK 1,−1,B1 2 (Sz,Sz,Sxyz) ladder
E′

1 I iσz σxK 1, 1,B1 2 (Sxy,Sxy,Sxyz) ladder
E3 σz I iσyK 1,−1,B3 2 (Sx,Sx,Sxyz) ladder
E′

3 σz I iσxK 1, 1,B3 2 (Syz,Syz,Sxyz) ladder
E5 iσz σx IK −1, 1,A 2 (Syz,Sy,Sxy) chain (Ty phase)
E′

5 I ⊗ iσz I ⊗ σx σy ⊗ IK −1,−1,A 4 (S3
xyz,S

3
x ,S

1
yz,S

3
xz,S

1
y ,S

3
z ,S

1
xy)c ladder

E7 σz iσz iσxK 1, 1,B2 2 (Sxz,Sxz,Sxyz) ladder
E′

7 σz iσz iσyK 1,−1,B2 2 (Sy,Sy,Sxyz) ladder
E9 iσz σx iσxK −1, 1,B3 2 (Syz,Sxz,Sz) chain (Tz phase)
E′

9 I ⊗ iσz I ⊗ σx σy ⊗ iσxK −1,−1,B3 4 (S3
xyz,S

3
x ,S

1
yz,S

3
y ,S

1
xz,S

3
xy,S

1
z )d ladder

E11 iσz iσx σzK −1, 1,B1 2 (Sx,Sxz,Sxy) chain (Tx phase)
E′

11 I ⊗ iσz I ⊗ iσx σy ⊗ σzK −1,−1,B1 4 (S3
xyz,S

3
yz,S

1
x ,S

3
y ,S

1
xz,S

3
z ,S

1
xy)e ladder

E13 iσz iσx iσyK −1,−1,B2 2 (Sx,Sy,Sz) chain (T0 phase)
E′

13 I ⊗ iσz I ⊗ iσx σy ⊗ iσyK −1, 1,B2 4 (S3
xyz,S

3
yz,S

1
x ,S

3
xz,S

1
y ,S

3
xy,S

1
z )f ladder

aIn the ground states of SPT phases corresponding to the two-dimensional projective representations, the active operators behave as (σx,σy,σz),
and for the four-dimensional projective representations, the active operators behave as (x ⊗ I,y ⊗ I,z ⊗ I,x ⊗ x,y ⊗ x,z ⊗ x,I ⊗ x,x ⊗ y,y ⊗
y,z ⊗ y,I ⊗ y,x ⊗ z,y ⊗ z,z ⊗ z,I ⊗ z).
bWe notate Smn = SmSn + SnSm, where m,n = x,y,z. For S = 1, Sxyz means a multispin operator, such as Sxy,iSz,i+1.
c(S3

xyz,S
3
x ,S

1
yz,S

3
xz,S

1
y ,S

3
z ,S

1
xy) = (Sxyz,Sxyz,Sxyz,Sx,Sx,Sx,Syz,Sxz,Sxz,Sxz,Sy,Sz,Sz,Sz,Sxy). Here S3

x , for example, means that Sx appears for
three times: S3

x → Sx,Sx,Sx . Also, these three Sx,Sx,Sx do not correspond to the same physical operator. They correspond to three different
operators that transform in the same way as the Sx operator. For instance, they may correspond to Sx at three different sites near the end spin.
d(S3

xyz,S
3
x ,S

1
yz,S

3
y ,S

1
xz,S

3
xy,S

1
z ) = (Sxyz,Sxyz,Sxyz,Sx,Sx,Sx,Syz,Sy,Sy,Sy,Sxz,Sxy,Sxy,Sxy,Sz).

e(S3
xyz,S

3
yz,S

1
x ,S

3
y ,S

1
xz,S

3
z ,S

1
xy) = (Sxyz,Sxyz,Sxyz,Syz,Syz,Syz,Sx,Sy,Sy,Sy,Sxz,Sz,Sz,Sz,Sxy).

f(S3
xyz,S

3
yz,S

1
x ,S

3
xz,S

1
y ,S

3
xy,S

1
z ) = (Sxyz,Sxyz,Sxyz,Syz,Syz,Syz,Sx,Sxz,Sxz,Sxz,Sy,Sxy,Sxy,Sxy,Sz).

spins (the gapped bulk can be seen as a paramagnetic material).
Thus, the polarizing of the end spins can be observed by
measuring the magnetic susceptibility,39 which obeys the Curie
law (m = x,y,z)

χm(T ) = Ng2
mμB

3kBT
,

where N is the number of end spins.
Notice that different projective representations have differ-

ent active operators. Thus we can distinguish all of the 16
SPT phases experimentally. For instance, the active operators
of the E1 and E′

1 phases are (Sz,Sz,Sxyz) and (Sxy,Sxy,Sxyz),
respectively. Here Smn = SmSn + SnSm is a spin quadrupole
operator, and Sxyz is a third order spin operator, such as
Sxy,iSzi+1 or Sx,iSy,i+1Sz,i+2. We will show that the two SPT
phases E1 and E′

1 can be distinguished by the perturbation (3).
In E1 phase, the active operators contain Sz, so it response to
Bz. In consequence, the g factors gz is finite, but gx,gy = 0
(because Sx,Sy are not active operators). However, in E′

1 phase,
none of Sx,Sy,Sz is active, so the end spins do not response
to magnetic field at all. As a consequence, all components of
the g factor approaches zero: gx,gy,gz = 0. This difference
distinguishes the two phases.

To completely separate all the 16 SPT phases, one
need to add perturbations by the spin-quadrupole operators

Sxy,Syz,Sxz and the third-order spin operators such as
Sxy,iSz,i+1. Actually, these perturbations may be realized
experimentally. For instance, the interaction between the
spin-quadrupole and a nonuniform magnetic field is reasonable
in principle:

H ′ = gxy

(
∂Bx

∂y
+ ∂By

∂x

)
Sxy + · · · .

One can measure the corresponding “quadrupole suscepti-
bility” corresponding to the above perturbation. Similar to
the spin susceptibility, different SPT phases have different
coupling constants for the quadrupole susceptibility. Conse-
quently, from the information of the spin dipole and quadrupole
susceptibilities (and other information corresponding to the
third-order spin operators), all the 16 SPT phases can be
distinguished.

III. REALIZATION OF SPT PHASES IN S = 1 SPIN
CHAINS AND LADDERS

In this section we will illustrate that all these 16 SPT phases
can be realized in S = 1 spin chains or ladders.
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A. Spin chains

1. SPT phases for nontrivial projective representations

In Ref. 39 we have studied four nontrivial SPT phases
T0,Tx,Ty,Tz in S = 1 spin chains. The ground states of these
phases are written as a matrix product state (MPS)

|φ〉 =
∑
{mi }

Tr
(
A

m1
1 A

m2
2 · · · AmN

N

)|m1m2 · · ·mN 〉,

where mi = x,y,z. More information about MPS is given in
Appendix B.

1. T0 phase. The end spins of this phase belong to the
projective representation E13, and a typical MPS in this
phase is

Ax = aσx, Ay = bσy, Az = cσz, (4)

where a,b,c are real numbers.48 Table I shows that the active
operators in this phase are Sx,Sy,Sz, so the end spins will
response to the magnetic field along all the three directions.

2. Tx phase. The end spins of this phase belong to the
projective representation E11, and a typical MPS in this phase
is

Ax = aσx, Ay = ibσy, Az = icσz, (5)

where a,b,c are real numbers. Table I shows that there is only
one active operator Sx in this phase, so the end spins will only
response to the magnetic field along x direction.

3. Ty phase. The end spins of this phase belong to the
projective representation E5, and a typical MPS in this phase
is

Ax = iaσx, Ay = bσy, Ax = icσz, (6)

where a,b,c are real numbers. Table I shows that there is only
one active operator Sy in this phase, so the end spins will only
response to the magnetic field along y direction.

4. Tz phase. The end spins of this phase belong to the
projective representation E9, and a typical MPS in this phase
is

Ax = iaσx, Ay = ibσy, Az = cσz, (7)

where a,b,c are real numbers. Table I shows that there is only
one active operator Sz in this phase, so the end spins will only
response to the magnetic field along z direction.

2. SPT phases for trivial projective representations

Corresponding to the trivial projective IRs, we can also
construct trivial phases. Here “trivial” means that the ground
state is in some sense like a direct product state. In these phases
the matrix Am also vary as Eqs. (B3) and (D1), except that Am

is a 1D matrix, and M(g) is a 1D representation of D2 + T .
Since all the 1D representation belongs to the same class, there
is only one trivial phase.

A simple example of the states in this phase is a direct
product state

|φ〉 = |m〉1|m〉2 · · · |m〉N.

This state can be realized by a strong (positive) on-site single-
ion anisotropy term (Sm)2, m = x,y,z. In this phase, there is
no edge state, and no linear response to all perturbations.

B. Spin ladders

In last section we have realized 5 of the 16 different SPT
phases (with only D2 + T symmetry) in S = 1 spin chains.
In this section we will show that all the other phases can be
realized in S = 1 ladders.

1. General discussion for spin ladders

For simplicity, we will consider the spin-ladder models
without interchain interaction.49 In that case, the ground state
of the spin ladder is a direct product of the ground states of
the independent chains. For example, for a two-leg ladder, the
physical Hilbert space at each site is a direct product spaceH =
H1 ⊗ H2 spanned by bases |m1n1〉 = |m1〉|n1〉, with m1,n1 =
x,y,z. If the ground state of the two chains are |φ1〉 and |φ2〉
respectively,

|φ1〉 =
∑
{m}

Tr(Am1 · · · AmN )|m1 · · ·mN 〉,
(8)

|φ2〉 =
∑
{n}

Tr(Bn1 · · · BnN )|n1 · · · nN 〉,

with ∑
m′

u(g)mm′Am′ = eiα1(g)M(g)†AmM(g),

(9)∑
n′

v(g)nn′Bn′ = eiα2(g)N (g)†BnN (g)

for an unitary operator ĝ and∑
m′

u(T )mm′(Am′
)∗ = M(T )†AmM(T ),

(10)∑
n′

v(T )nn′(Bn′
)∗ = N (T )†BnN (T )

for the time reversal operator T . Then the ground state of the
ladder is

|φ〉 = |φ1〉 ⊗ |φ2〉
=

∑
{m,n}

Tr(Am1 · · · AmN )Tr(Bn1 · · ·BnN )|m1n1 · · ·mNnN 〉

=
∑
{m,n}

Tr[(Am1 ⊗ Bn1 ) · · · (AmN ⊗ BnN )]

× |m1n1 · · ·mNnN 〉 (11)

which satisfies∑
m,n,m′,n′

[u(g) ⊗ v(g)]mn,m′n′(Am′ ⊗ Bn′
)

= eiα(g)(M ⊗ N )†(Am ⊗ Bn)(M ⊗ N ) (12)

for an unitary ĝ [here α(g) = α1(g) + α2(g)] and∑
m,n,m′,n′

[u(T ) ⊗ v(T )]mn,m′n′(Am′ ⊗ Bn′
)∗

= (M ⊗ N )†(Am ⊗ Bn)(M ⊗ N ) (13)

for the time reversal operator T . This shows that the ground
state of the ladder is also a MPS which is represented by
Am ⊗ Bn, and M ⊗ N is a projective representation of the
symmetry group G.
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TABLE II. Projective representations of group D̄2 = {E,RzT ,RxT ,Ry}. There are four classes of projective representations, meaning that
the second group cohomology contains four elements.

Class E Ry RzT RxT Dimension Effective/active operators Spin models (S = 1)

1 1 1 K K 1 chain (trivial phase)
I σy iσzK σxK 2 σx ∼ Sz,Syz; σy ∼ Sy ; σz ∼ Sx,Sxy chain

2 I I σyK σyK 2 σx,σy,σz ∼ Sxz ladder
I ⊗ I I ⊗ σy σy ⊗ iσzK σy ⊗ σxK 4 ladder

3 I iσz σyK σxK 2 σx,σy ∼ Sz,Syz; σz ∼ Sxz chain
I σy iσyK iIK 2 σx,σz ∼ Sz,Syz; σy ∼ Sxz chain

4 I iσz σxK σyK 2 σx,σy ∼ Sx,Sxy ; σz ∼ Sxz chain
I σy iIK iσyK 2 σx,σz ∼ Sx,Sxy ; σy ∼ Sxz chain

Specially, if Bn is 1D and N (g) = 1 (representing a trivial
phase), then we have

∑
m,n,m′,n′

[u(g) ⊗ v(g)]mn,m′n′(Am′ ⊗ Bn′
)

= eiα(g)M†(Am ⊗ Bn)M. (14)

In general the projective representation M(g) ⊗ N (g) is
reducible. This means that the end spin of the ladder is a direct
sum space of several irreducible projective representations
(IPRs). These IPRs are degenerate and belong to the same
class. However, this degeneracy is accidental, because only
irreducible representation protected by symmetry is robust.
Notice that we did not consider the interchain interaction in
the ladder. If certain interaction is considered, the degeneracy
between the same classes of IPRs can be lifted, and only one
IPR remains as the end spin in the ground state. This IPR (or
more precisely the class it belongs to) determines which phase
the spin ladder belongs to.

2. S = 1 spin ladders in different SPT phases

In Appendix E we show how to obtain all the other IPRs by
reducing the direct product representations of E13,E11,E5,E9.
We start with these four IPRs because the corresponding SPT
phases T0,Tx,Ty,Tz have been realized in spin chains. Actually,
the reduction procedure provides a method to construct spin
ladders from spin chains and to realize all the SPT phases.

By putting two different spin chains (belonging to the
T0,Tx,Ty,Tz phases) into a ladder, we obtain six new phases
corresponding to E1,E

′
1,E3,E

′
3,E7,E

′
7, respectively. If we put

one more spin chain into the ladder, then we obtain five more
new phases corresponding to E′

0,E
′
5,E

′
9,E

′
11,E

′
13, respectively.

Therefore, together with T0,Tx,Ty,Tz and the trivial phase in
spin chains, we have realized all the 16 SPT phases listed in
Table I. Furthermore, if we have translational symmetry, then
from Sec. III A1 and Eq. (14), we have totally 16 × 4 = 64
different SPT phases in spin ladders, in accordance with the
result of Ref. 31.

IV. SPT PHASES FOR SUBGROUPS OF D2 + T

From the projective representations of group D2 + T ,
we can easily obtain the projective representations of its
subgroups. According to Table I, the representation matrices
for the subgroups also form a projective representation, but

usually it is reducible. By reducing these matrices, we can
obtain all the IPRs of the subgroup.

A. D̄2 = {E,Rz T,Rx T,Ry}
This group is also a D2 group except that half of its elements

are anti-unitary. Notice that T itself is not a group element.
This group has four 1D linear representations. In Table V
in Appendix C we list the representation matrix elements,
representational bases of physical spin and spin operators (for
S = 1) according to each linear representation.

The projective representations of the subgroup D̄2 are
shown in Table II. By reducing the representation matrix
of D2 + T we obtained eight projective representations.
They are classified into four classes. This can be shown by
calculating the corresponding 2-cocycles of these projective
representations. Two projective representations belonging to
the same class means that the corresponding 2-cocycle differ
by a 2-coboundary (see Appendices A, B, and D).

As shown in Table II, the two-dimensional representation in
class-1 is trivial (or linear), it belongs to the same class as the
1D representation. This means that the edge states in this phase
is not protected by symmetry, the ground state degeneracy can
be smoothly lifted without phase transition. The class-3 and
class-4 nontrivial SPT phases can be realized in spin chains.
These two phases can be distinguished by magnetic fields. The
phase corresponding to the class-3 projective representation
only response to the magnetic field along z direction, and the
phase corresponding to class-4 projective representation only
respond to the magnetic field along x direction. The remaining
two nontrivial SPT phases of class 2 can be realized by spin
ladders.

B. Z2 + T = {E,Rz,T,Rz T }
This subgroup is also a direct product group. The linear

representations and projective representations are given in
Table VI (see Appendix C) and III, respectively. This group
is isomorphic to D̄2 = {E,RzT ,RxT ,Ry}, so its projective
representations and SPT phases are one to one corresponding
to those in Table II. However, the corresponding SPT phases in
Tables III and II are not the same, because they have different
response to external perturbations.

Notice that this simple symmetry is very realistic for mate-
rials. For example, the quasi-1D anti-ferromagnets CaRuO3

50

and NaIrO3
51 respect this Z2 + T symmetry due to spin-orbital
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TABLE III. Projective representations of group Z2 + T = {E,Rz,T ,RzT }.

Class E Rz T RzT Dimension Effective/active operators Spin models (S = 1)

1 1 1 K K 1 chain
I σy iσzK σxK 2 σx ∼ Sx,Sy ; σy ∼ Sxy ; σz ∼ Syz,Sxz chain

2 I I σyK σyK 2 σx,σy,σz ∼ Sz ladder
I ⊗ I I ⊗ σy σy ⊗ iσzK σy ⊗ σxK 4 ladder

3 I iσz σyK σxK 2 σx,σy ∼ Sx,Sy ; σz ∼ Sz chain
I σy iσyK iIK 2 σx,σz ∼ Sx,Sy ; σy ∼ Sz chain

4 I iσz σxK σyK 2 σx,σy ∼ Sxz,Syz; σz ∼ Sz chain
I σy iIK iσyK 2 σx,σz ∼ Sxz,Syz; σy ∼ Sz chain

coupling. Their ground state, if nonsymmetry breaking, should
belong to one of the four SPT phases listed in Table III.

V. CONCLUSION AND DISCUSSION

In summary, through the projective representations, we
studied all the 16 different SPT phases for integer spin
systems that respect only D2h = D2 + T on-site symmetry.
We provided a method to measure all the SPT orders. We
showed that in different SPT phase the end spins respond
to perturbations differently. The perturbations include spin
dipole (coupling to uniform magnetic fields) and quadrupole
operators (coupling to nonuniform magnetic fields). We
illustrated that the SPT orders in different SPT phases can
be observed by experimental measurements, such as the
temperature dependence of the magnetic susceptibility and
asymmetric g factors. We illustrated that all the 16 SPT phases
can be realized in S = 1 spin chains or ladders. Finally we
studied the SPT phases for two subgroups of D2 + T , one
of the subgroup is the symmetry group of some interesting
materials.50,51 Certainly our method of studying SPT orders
can be generalized to other symmetry groups.
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APPENDIX A: GROUP COHOMOLOGY

We consider a finite group G = {g1,g2, . . .} with its module
space UT (1). The group elements of G are operators on the
module space. A n-cochain ωn(g1,g2, . . . ,gn) is a function on
the group space which maps ⊗nG → U (1). The cochains can
be classified with the coboundary operator.

Suppose the cochain ωn(g1,g2, . . . ,gn) ∈ U (1), then the
coboundary operator is defined as

(dωn)(g1,g2, . . . ,gn+1) = g1 · ωn(g2,g3, . . . ,gn+1)

ω−1
n (g1g2,g3, . . . ,gn+1) ωn(g1,g2g3, . . . ,gn+1) · · ·

ω(−1)i
n (g1,g2, . . . ,gigi+1, . . . ,gn+1) · · ·

ω(−1)n
n (g1,g2, . . . ,gngn+1)ω(−1)n+1

n (g1,g2, . . . ,gn)

for n � 1, and

(dω0)(g1) = g1 · ω0

ω0
(A1)

for n = 0. Here g · ωn is a group action on the module space
U (1). If g is an unitary operator, it acts on U (1) trivially
g · ωn = ωn. If g is anti-unitary (such as the time reversal
operator T ), then the action is given as g · ωn = ω∗

n = ω−1
n . We

will use UT (1) to denote such a module space. We note that, if
G contain no time reversal transformation, then UT (1) = U (1).

A cochain ωn satisfying dωn = 1 is called a n-cocycle. If ωn

satisfies ωn = dωn−1, then it is called a n-coboundary. Since
d2ω = 1, a coboundary is always a cocycle. The following are
two examples of cocycle equations. 1-cocycle equation:

g1 · ω2(g2)ω(g1)

ω2(g1g2)
= 1. (A2)

2-cocyle equation:

g1 · ω2(g2,g3)ω2(g1,g2g3)

ω2(g1g2,g3)ω2(g1,g2)
= 1. (A3)

The group cohomology is defined as Hn(G,UT (1)) =
Zn/Bn. Here Zn is the set of n-cocycles and Bn is the set
of n-coboundarys. If two n-cocycles ωn and ω′

n differ by a n-
coboundary ω̃n, namely, ω′

n = ωnω̃
−1
n , then they are considered

to be equivalent. The set of equivalent n-cocycles is called
a equivalent class. Thus, the n-cocycles are classified with
different equivalent classes, these classes form the (Abelian)
cohomology group Hn(G,UT (1)) = Zn/Bn.

As an example, we see the cohomology of Z2 = {E,σ },
where E is the identity element and σ 2 = E. Since this group
Z2 is unitary, it acts on the module space trivially and UT (1) =
U (1): g · ωn = ωn. From (A2) the first cohomology is the 1D
representations

H 1(Z2,U (1)) = Z2.

The second cohomology classifies the projective representa-
tions (see Appendix B). It can be shown that all the solutions
of (A3) are 2-coboundaries ω2 = dω1. So all the 2-cocycles
belong to the same class, consequently,

H 2(Z2,U (1)) = 0.

Let us see another example, the time reversal group ZT
2 =

{E,T }. Notice that the time reversal operator T is anti-unitary,
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it acts on UT (1) nontrivially: T · ωn = ω−1
n . As a result, the

cohomology of ZT
2 is different from that of Z2:

H 1(ZT
2 ,UT (1)

) = 0,

H 2(ZT
2 ,UT (1)

) = Z2.

The group ZT
2 have two orthogonal 1D representations (see

Appendix C), but above result shows that these two 1D
representations belongs to the same class. Furthermore, the
nontrivial second group cohomology shows that ZT

2 has a
nontrivial projective representation, which is well known:
M(E) = I,M(T ) = iσyK .

APPENDIX B: BRIEF REVIEW OF THE CLASSIFICATION
OF 1D SPT ORDERS

A key trick to use local unitary transformation to
study/classify 1D gapped SPT phases is the matrix product
state (MPS) representation of the ground states. The simplest
example is the S = 1 AKLT wave function46 in the Haldane
phase which can be written as a 2 × 2 MPS. Later it was shown
that in 1D all gapped many-body spin wave functions (it was
generalized to fermion systems) can be well approximated
by a MPS as long as the dimension D of the matrix is large
enough47

|φ〉 =
∑
{mi }

Tr
(
A

m1
1 A

m2
2 · · · AmN

N

)|m1m2 · · ·mN 〉. (B1)

Here m is the index of the d-component physical spin and A
mi

i

is a D × D matrix. Provided that the system is translationally
invariant, then one set all the matrices Am as the same over all
sites.

In the MPS picture it is natural to understand that projective
representations can be used as a label of different SPT phase.
Suppose that a system has an on-site unitary symmetry group
G which keep the ground state |φ〉 invariant

ĝ|φ〉 = u(g) ⊗ u(g) ⊗ · · · ⊗ u(g)|φ〉 = (eiα(g))N |φ〉, (B2)

where ĝ ∈ G is a group element of G, u(g) is its d-
dimensional (maybe reducible) representation, and eiα(g) is
its 1D representation. We only consider the case that u(g) is a
linear presentation of G. The case that u(g) forms a projective
representation of G (such as half-integer spin chain) has been
studied in Refs. 31,33. Equations (B1) and (B2) require that
the matrix Am should vary in the following way31,45:

∑
m′

u(g)mm′Am′ = eiα(g)M(g)†AmM(g), (B3)

where M(g) is an invertible matrix and is essential for
the classification of different SPT phases. Notice that if
M(g) satisfies Eq. (B3), so does M(g)eiϕ(g). Since u(g1g2) =
u(g1)u(g2) and eiα(g1g2) = eiα(g1)eiα(g2), we obtain

M(g1g2) = M(g1)M(g2)eiθ(g1,g2). (B4)

The above equation shows that up to a phase
eiθ(g1,g2), M(g) satisfies the multiplication rule of the
group. Furthermore, M(g) satisfies the associativity

condition M(g1g2g3) = M(g1g2)M(g3)eiθ(g1g2,g3) =
M(g1)M(g2g3)eiθ(g1,g2g3), or equivalently

eiθ(g2,g3)eiθ(g1,g2g3) = eiθ(g1,g2)eiθ(g1g2,g3).

The above equation coincide with the cocycle equation (A3)
when G is unitary. The matrices M(g) that satisfies above
conditions are called projective representation of the symmetry
group G. Above we also shows the relation between projective
representations and 2-cocycle.

For a projective representation, the two-element function
eiθ(g1,g2) has redundant degrees of freedom. Suppose that
we introduce a phase transformation M(g1)′ = eiϕ(g1)M(g1),
M(g2)′ = eiϕ(g2)M(g2), and M(g1g2)′ = eiϕ(g1g2)M(g1g2),
then the function eiθ(g1,g2) becomes

eiθ(g1,g2)′ = eiϕ(g1g2)

eiϕ(g1)eiϕ(g2)
eiθ(g1,g2). (B5)

Notice that eiθ(g1,g2)′ and eiθ(g1,g2) differs by a 2-coboundary,
so they belong to the same class. Thus, the projective
representations are classified by the second group cohomology
H 2(G,UT (1)). If M(g) and M̃(g) belong to different (classes
of) projective representations, then they cannot be smoothly
transformed into each other, therefore the corresponding quan-
tum states Am and Ãm fall in different phases. In other words,
the projective representation ω2 ∈ H 2(G,UT (1)) provides a
label of a SPT phase. If the system is translationally invariant,
then eiα(g) ∈ H 1(G,UT (1)) is also a label of a SPT phase.
In this case, the complete label of a SPT phase is (ω1,α). If
translational symmetry is absent, we can regroup the matrix Am

such that eiα(g) = 1, then each SPT phase is uniquely labeled
by ω2.

APPENDIX C: LINEAR REPRESENTATIONS AND
ACTIVE OPERATORS

Generally, the 1D linear representations of a group G are
classified by its first group cohomology H 1(G). However,
there is a subtlety to choose the coefficient of H 1(G). We
will show that if the representation space is a Hilbert space,
the 1D representations are characterized by H 1(G,U (1)) [or
H 1(G,UT (1)) if G contains anti-unitary elements]; while if the
representation space is a Hermitian operator space, then the
1D representations are characterized by H 1(G,Z2) [notice that
H 1(G,(Z2)T ) = H 1(G,Z2), there is no difference whether G

contains anti-unitary elements or not].
Since the discusses for unitary group and anti-unitary group

are very similar, we will only consider a group G which
contains anti-unitary elements. First we consider the 1D linear
representations on a Hilbert space H. Suppose φ ∈ H is a
basis, and g ∈ G is an anti-unitary element, then

ĝ|φ〉 = ζ (g)K|φ〉, (C1)

where the number ζ (g) is the representation of g. Notice that
g is antilinear, which may change the phase of |φ〉. To see that
we suppose K|φ〉 = |φ〉 and introduce a phase transformation
for the basis |φ〉, namely, |φ′〉 = |φ〉eiθ . Now we choose |φ′〉
as the basis, then

ĝ|φ′〉 = ζ (g)ei2θK|φ′〉, (C2)
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TABLE IV. Linear representations of D2h = D2 + T .

E Rx Ry Rz T RxT RyT RzT Bases Operators

Ag 1 1 1 1 1 1 1 1 |0,0〉 S2
x ,S

2
y ,S

2
z

B1g 1 −1 −1 1 1 −1 −1 1 i|1,z〉 Sxy

B2g 1 −1 1 −1 1 −1 1 −1 i|1,y〉 Sxz

B3g 1 1 −1 −1 1 1 −1 −1 i|1,x〉 Syz

Au 1 1 1 1 −1 −1 −1 −1 i|0,0〉 (Sx,iSyz,i+1)
B1u 1 −1 −1 1 −1 1 1 −1 |1,z〉 Sz

B2u 1 −1 1 −1 −1 1 −1 1 |1,y〉 Sy

B3u 1 1 −1 −1 −1 −1 1 1 |1,x〉 Sx

so the representation ζ (g)′ = ζ (g)ei2θ changes accordingly.
This means that the 1D representation of the group G is U (1)
valued, and is characterized by the first cohomology group
H 1(G,U (1)). In the case of D2 + T we have

H 1(D2 + T ,UT (1)) = (Z2)2,

so D2 + T has four different 1D linear representations on
Hilbert space, which can be labeled as A,B1,B2,B3, respec-
tively.

Now we consider the 1D representations on a Hermitian
operator space. Suppose O1,O2, . . . ,ON are orthonormal
Hermitian operators satisfying Tr(OmOn) = δmn, an anti-
unitary element g ∈ G act on these operators as

ĝOm = KM(g)†OmM(g)K =
∑

n

η(g)mnOn. (C3)

Here M(g)K is either a linear or a projective repre-
sentation of g, while η(g) is always a linear represen-
tation. Since [KM(g)†OmM(g)K]† = KM(g)†OmM(g)K ,
we have [

∑
n η(g)mnOn]† = ∑

n η(g)∗mnOn = ∑
n η(g)mnOn,

which gives

η(g)∗ = η(g).

The same result can be obtained if G is unitary. So we conclude
that all the linear representations defined on Hermitian opera-
tor space are real. Now we focus on 1D linear representations.
Since g is either unitary or anti-unitary, we have |η(g)| = 1.
On the other hand, η(g) must be real, so η(g) = ±1. As a
result, all the 1D linear representations on Hermitian operator
space are Z2 valued, which are characterized by the first group
cohomology H 1(G,(Z2)T ). For the group D2 + T ,

H 1(D2 + T ,(Z2)T ) = (Z2)3,

so there are eight different 1D linear representation, corre-
sponding to eight classes of Hermitian operators as shown
in Table IV. Since all the linear representations of D2 + T

TABLE V. Linear representations of D̄2 = {E,RzT ,RxT ,Ry}.

E RzT RxT Ry Bases or operators

A 1 1 1 1 |0,0〉,|1,y〉 Sy ,S2
x ,S

2
y ,S

2
z

B1 1 1 −1 −1 |1,x〉,i|1,z〉 Sx ,Sxy

B2 1 −1 −1 1 i|0,0〉,i|1,y〉 Sxz

B3 1 −1 1 −1 |1,z〉,i|1,x〉 Sz,Syz

TABLE VI. Linear representations of Z2 + T = {E,Rz,T ,RzT }.

E Rz T RzT Bases or operators

Ag 1 1 1 1 |0,0〉,i|1,z〉 Sxy,S
2
x ,S

2
y ,S

2
z

Au 1 1 −1 −1 i|0,0〉,|1,z〉 Sz

Bg 1 −1 1 −1 i|1,x〉,i|1,y〉 Syz,Sxz

Bu 1 −1 −1 1 |1,x〉,|1,y〉 Sx,Sy

are 1D, these eight 1D representations are all of its linear
representations.

The above discussion is also valid for the subgroups of
D2 + T . In Tables V and VI we give the linear representations
of its two subgroups (the number of 1D linear representations
on Hilbert space is half of that on Hermitian operator space).

We have shown that for 1D linear representations defined
on Hermitian operator space, there is no difference whether a
group element is unitary or anti-unitary. This conclusion is also
valid for higher dimensional linear representations (however,
if the representation space is a Hilbert space, unitary or anti-
unitary group elements will be quite different). The linear
representations on Hermitian operator space are used to define
the active operators.

For a general group G, each of its nontrivial projective
representations correspond to a SPT phase. In a certain SPT
phase, the active operators are defined in the following way:
for a set of Hermitian operators {Oph

1 , . . . ,O
ph
n } acting on the

physical spin Hilbert space, if we can find a set of Hermitian
operators {O in

1 , . . . ,O in
n } acting on the end-spin Hilbert space

(or the projective representation space), such that {Oph} and
{O in} form the same n-dimensional real linear representation
of G, then the operators {Oph} are called active operators.
Different SPT phases have different set of active operators, so
we can use these active operators to distinguish different SPT
phases.

APPENDIX D: 16 PROJECTIVE REPRESENTATIONS
OF D2 + T GROUP

We have shown in Appendices A and B that the projective
representations are classified by the second group cohomology
H 2(G,UT (1)). However, usually it is not easy to calculate the
group cohomology. So we choose to calculate the projective
representations directly. In the following we give the method
through which we obtain all the 16 projective representations
of D2 + T in Table I.

The main trouble comes from the anti-unitarity of some
symmetry operators, such as the time reversal operator T .
Under anti-unitary operators (such as T ), the matrix Am varies
as

∑
m′

u(T )mm′(Am′
)∗ = M(T )†AmM(T ). (D1)

Notice that eiα(T ) is absent because we can always set it to
be 1 by choosing proper phase of Am. To see more difference
between the unitary operator and anti-unitary operators we
introduce an unitary transformation to the bases of the virtual
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TABLE VII. Unitary projective representations of D2h = D2 +
T , here we consider T as an unitary operator.

Rz Rx T

Ag 1 1 1
B1g 1 −1 1
B2g −1 −1 1
B3g −1 1 1
Au 1 1 −1
B1u 1 −1 −1
B2u −1 −1 −1
B3u −1 1 −1
E1 I iσz σy

E2 = E1 ⊗ B3g −I iσz σy

E3 σz I iσy

E4 = E3 ⊗ B1g σz −I iσy

E5 iσz σx I

E6 = E5 ⊗ Au iσz σx −I

E7 σz iσz iσx

E8 = E7 ⊗ B1g σz −iσz iσx

E9 iσz σx iσx

E10 = E9 ⊗ Au iσz σx −iσx

E11 iσz iσx σz

E12 = E11 ⊗ B3g iσz iσx −σz

E13 iσz iσx iσy

E14 = E13 ⊗ Au iσz iσx −iσy

spin such that Am becomes Ām = U †AmU . Then for an unitary
symmetry operation g, Eq. (B3) becomes∑

m′
u(g)mm′Ām′ = eiα(g)M̄(g)†ĀmM̄(g),

where M̄(g) = U †M(g)U . However, for the anti-unitary op-
erator T , Ām varies as∑

m′
u(T )mm′(Ām′

)∗ = M̃(T )†ĀmM̃(T ),

where M̃(T ) = U †M(T )U ∗ = U †[M(T )K]U . Therefore, we
can see that M(T )K as a whole is the anti-unitary projective
representation of T when acting on the virtual spin space.

The question is how to obtain the matrix M(T ). In Ref. 39
we first treated T as an unitary operator, and we got eight
classes of unitary projective representations for the group
D2h (see Table VII). By replacing M(T ) by M(T )K , we
obtained eight different classes of anti-unitary projective
representations. However, not all the projective representations
can be obtained this way. Notice that [M(T )K]2 = 1 and
[M(T )K]2 = −1 belong to two different projective represen-
tations, the anti-unitary projective representations are twice as
many as the unitary projective representations. Fortunately, all
the remaining (anti-unitary) projective representations can be
obtained from the known ones. Notice that the direct product
of any two projective representations is still a projective
representation of the group, which can be reduced to a
direct sum of several projective representations. There may
be new ones in the reduced representations that are different
from the eight known classes. Repeating this procedure
(until it closes), we finally obtain 16 different classes of
projective representations (see Appendix E). Notice that the

Clebsch-Gordan coefficients which reduce the product repre-
sentation should be real, otherwise it does not commute with
K and will not block diagonalize the product representation
matrix of T (and other anti-unitary symmetry operators).
Because of this restriction, we obtain four four-dimensional
irreducible projective representations (IPRs) which are absent
in the unitary projective representations.

E. REALIZATION OF SPT PHASES IN S = 1
SPIN LADDERS

From the knowledge of Sec. III A, together with Eqs. (12)
and (14), we can construct different SPT phases with spin
ladders. From the discussion in Sec. III B 1, the projective
representation M(g) ⊗ N (g) is usually reducible. It can be
reduced to several IPRs of the same class. This class of
projective representation determines which phase the ladder
belongs to. Thus, the decomposition of direct products of
different projective representations is important. Since the
SPT phases corresponding to E13,E11,E5,E9 (T0,Tx,Ty,Tz,
separately) have been already realized in spin chains, we will
first study the decompositions of the direct product of two of
them.

E5 ⊗ E9 = (σz,I,iσx) ⊕ (σz, − I,iσx) = E′
3 ⊕ E′

4;
E5 ⊗ E11 = (I,iσz,σx) ⊕ (−I,iσz,σx) = E′

1 ⊕ E′
2;

E5 ⊗ E13 = (σz,iσz,iσy) ⊕ (σz, − iσz,iσy) = E′
7 ⊕ E′

8;
E9 ⊗ E11 = (σz,iσz,iσx) ⊕ (σz, − iσz,iσx) = E7 ⊕ E8;
E9 ⊗ E13 = (I,iσz,σy) ⊕ (−I,iσz,σy) = E1 ⊕ E2;
E11 ⊗ E13 = (σz,I,iσy) ⊕ (σz, − I,iσy) = E3 ⊕ E4.
In above decomposition, all the CG coefficients are real.

The three matrices in each bracket are the representation
matrices for the three generators Rz,Rx,T , separately. We
omitted the anti-unitary operator K for the representation
matrix of T . Furthermore, E1 and E2 (E3 and E4, so on and so
forth) belong to the same class of projective representation, and
differs only by a phase transformation. So with spin ladders,
we realize six SPT phases corresponding to the projective
representations E1,E

′
1,E3,E

′
3,E7,E

′
7.

Using these projective representations
E1,E

′
1,E3,E

′
3,E7,E

′
7, together with E13,E11,E5,E9, we

can repeat above procedure and obtain more projective
representations and their corresponding SPT phases. The
result is shown below:

E1 ⊗ E3 = (σz, − iσz,iσx) ⊕ (σz,iσz, − iσx) = E7 ⊕ E8;
E1 ⊗ E5 = (−I ⊗ iσz,I ⊗ iσx, − σy ⊗ σz) = E′

11;
E1 ⊗ E7 = (σz, − I,iσy) ⊕ (−σz,I,iσy) = E3 ⊕ E4;
E1 ⊗ E9 = (−iσz, − iσx, − iσy) ⊕ (−iσz,iσx, − iσy) =

E13 ⊕ E14;
E1 ⊗ E11 = (−I ⊗ iσz, − I ⊗ σx,σy ⊗ I ) = E′

5;
E1 ⊗ E13 = (−iσz,I, − iσx) ⊕ (−iσz, − I, − iσx) =

E9 ⊕ E10;
E′

1 ⊗ E3 = (−σz, − iσz, − iσy) ⊕ (−σz,iσz,iσy) =
E′

7 ⊕ E′
8;

E′
1 ⊗ E5 = (−iσz,iσx, − σz) ⊕ (−iσz,iσx,σz) =

E11 ⊕ E12;
E′

1 ⊗ E7 = (−σz,I,iσx) ⊕ (−σz, − I, − iσx) = E′
3 ⊕ E′

4;
E′

1 ⊗ E9 = (−I ⊗ iσz,I ⊗ iσx, − iσy ⊗ σy) = E′
13;

E′
1 ⊗ E11 = (−iσz, − σx,I ) ⊕ (−iσz, − σx, − I ) =

E5 ⊕ E6;
E′

1 ⊗ E13 = (−I ⊗ iσz, − I ⊗ σx, − iσy ⊗ σx) = E′
9;
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E3 ⊗ E5 = (−I ⊗ iσz,I ⊗ σx,iσy ⊗ σx) = E′
9;

E3 ⊗ E7 = (−I,iσx,σy) ⊕ (I,iσx,σy) = E1 ⊕ E2;
E3 ⊗ E9 = (−I ⊗ iσz,I ⊗ σx, − σy ⊗ I ) = E′

5;
E3 ⊗ E11 = (−iσz,iσx,iσy) ⊕ (−iσz,iσx, − iσy) =

E13 ⊕ E14;
E3 ⊗ E13 = (−iσz,iσx, − σz) ⊕ (−iσz, − iσx,σz) =

E11 ⊕ E12;
E′

3 ⊗ E5 = (−iσz,σx, − iσx) ⊕ (−iσz, − σx, − iσx) =
E9 ⊕ E10;

E′
3 ⊗ E7 = (−I,iσx, − σz) ⊕ (I,iσx, − σz) = E′

1 ⊕ E′
2;

E′
3 ⊗ E9 = (−iσz,σx, − I ) ⊕ (−iσz, − σx,I ) = E5 ⊕ E6;

E′
3 ⊗ E11 = (−I ⊗ iσz,I ⊗ iσx,iσy ⊗ σy) = E′

13;
E′

3 ⊗ E13 = (−I ⊗ iσz,I ⊗ iσx,σy ⊗ σz) = E′
11;

E7 ⊗ E5 = (−I ⊗ iσz,I ⊗ iσx, − σy ⊗ σy) = E′
13;

E7 ⊗ E9 = (−iσz,iσx,σz) ⊕ (iσz, − iσx,σz) =
E11 ⊕ E12;

E7 ⊗ E11 = (−iσz,σx, − iσx) ⊕ (iσz,σx,iσx) =
E9 ⊕ E10;

E7 ⊗ E13 = (−I ⊗ iσz, − I ⊗ σx, − σy ⊗ I ) = E′
5;

E′
7 ⊗ E5 = (−iσz,iσx,iσy) ⊕ (−iσz,iσx, − iσy) =

E13 ⊕ E14;
E′

7 ⊗ E9 = (−I ⊗ σz,I ⊗ iσx,σy ⊗ σz) = E′
11;

E′
7 ⊗ E11 = (−I ⊗ iσz, − I ⊗ σx, − iσy ⊗ σx) = E′

9;
E′

7 ⊗ E13 = (−iσz,σx, − I ) ⊕ (−iσz,σx,I ) = E5 ⊕ E6;
E1 ⊗ E′

1 = (I,I,σy) ⊕ (I, − I, − σy) = E′
0 ⊕ E′

0;
E3 ⊗ E′

3 = (−I,I, − σy) ⊕ (I,I,σy) = E′
0 ⊕ E′

0;
E7 ⊗ E′

7 = (I, − I,σy) ⊕ (−I,I,σy) = E′
0 ⊕ E′

0.
Above we get four SPT phases corresponding to

E′
5,E

′
9,E

′
11,E

′
13, all of them have four-dimensional end spins.

We also get a SPT phase corresponding to E′
0, which has

two-dimensional end spins.
Notice that the number of classes of unitary projective

representations of D2h is eight, but considering that T is
anti-unitary such that T 2 can be either 1 or −1, we obtain
16 classes of projective representations for D2 + T .
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