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1 Introduction and conclusions

The general classification of Symmetry Protected Topological phases of matter is an im-

portant problem in theoretical physics and mathematics [2, 4–7, 9, 11, 12, 16–19, 21–

23, 28, 29, 32–34, 37, 38]. The typical approach to the problem in the condensed matter

physics literature is constructive: produce explicit lattice Hamiltonians or lattice statis-

tical mechanics models for the phases; identify observables which can demonstrate that

the candidate phases are distinct from each other. This concrete approach has produced

results of notable mathematical sophistication, with beautiful and robust structures which

emerge unexpectedly from intricate calculations in ad hoc constructions.

In a beautiful talk [23], Kitaev proposed an homotopy-theoretic classification of SPT

phases, based on the notion of abstract spectra of invertible physical systems. An interest-

ing aspect of the proposal is that the classification problem for SPT phases can be split

into an “easy” part and a “hard” part. The “hard” part is to understand in sufficient

detail invertible physical systems which have no internal symmetries which act on bosonic

observables. The “easy” part is to add symmetry to the problem.

In the context of topological field theory, homotopy-theoretic ideas also lead to the clas-

sification of invertible phases in terms of cobordism spectra [11, 19, 28], which can be under-

stood in terms of “topological effective actions” or directly in terms of the axioms of topolog-

ical field theory [1, 30]. The comparison between the two approaches raises a lot of difficult

and interesting questions associated to the relation between gapped phases of matter, local

quantum field theories, and abstract topological field theory. These cobordism proposals

are not constructive: it is not known how to convert the homotopy theory definition of

invertible TFT into a construction of phases of matter. Indeed, even if we consider a high

energy physics version of the problem and focus on phases of gapped local quantum field

theories, we would be still be unable to convert the homotopy theory definition into a defi-

nition of local QFT effective actions. More pessimistically, some invertible homotopy TFTs

may simply not be realizable as local lattice systems or even as local quantum field theories.

In this paper we will not make the assumption that gapped phases of matter can

be fully captured by the language of topological field theory, although we do confirm in

section 5 that certain classifications of gapped phases and of topological field theories agree

a posteriori. Instead, we will extend Kitaev’s proposal [20, 23], borrowing some ideas from

TFT and high energy physics in order to provide a more concrete description of the spectra

of invertible phases of matter. Our formulation of Kitaev’s proposal is the following:1

• SPT phases in d + 1 spacetime dimensions are classified by a reduced generalized

cohomology group H̃
d+1

(BGb; GP×≤d+1), there Gb is the bosonic symmetry of the

theory, i.e. the quotient of the on-site internal symmetry group by fermion parity

operation.

• The target GP×≤d+1 of the generalized cohomology theory H•(−; GP×≤d+1) is essen-

tially the same as the space of invertible phases of matter in spacetime-dimension

1See [38] for an earlier discussion of Kitaev’s proposal and its consequences.
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d + 1 or lower.2 More precisely, these spaces combine into a spectrum GP× of

invertible phases of matter in arbitrary dimensions, and H̃
d+1

(BGb; GP×≤d+1) =

H̃
d+1

(BGb; GP×) for degree reasons.

Our strategy is to fully implement the idea that SPT phases can be constructed by

“decorating” by invertible phases the domain walls for the Gb internal symmetry [8] and

their junctions of various codimension. That perspective allows us to “retract” the space of

invertible physical systems to a simpler model which only keeps track of phases of invert-

ible defects of various dimensionality. From this perspective, the generalized cohomology

theory above packages in a convenient fashion all the information needed to make sure

the “decoration” of domain walls is self-consistent. In particular, we get a concrete sim-

plicial description of the cohomology theory which is instrumental in making contact with

previous constructions in the literature.

A side effect of our calculations is that they demystify the surprise appearance of stable

homotopy operations in the construction of fermionic SPT phases. In a seminal paper [17],

Gu and Wen gave a detailed construction of a class of fermionic SPT phases with unitary

symmetry group. We will show in section 5.3 that the Gu-Wen classification has a neat

interpretation as Hd+1(BGb; GP×≤1): it only takes into account the existence of non-trivial

fermionic invertible phases in 0 + 1 dimensions. The final result of intricate computations

in dimension up to (3 + 1)d was a supercohomology theory, with a differential involving

an exotic operation called the “Steenrod square”. We will see that the Steenrod square

emerges naturally in any dimension as the only “stable cohomology operation” which could

appear in the generalized cohomology theory.

Subsequent constructions in [3, 27, 35, 36] take into account the existence of the Ma-

jorana chain in 1 + 1 dimensions. The computation of the final cohomology theory is very

intricate and dimension-specific and involves both the Steenrod square and an extra new

operation. We identify it with Hd+1(BGb; GP×≤2) in any dimension.

In general, our analysis also allows one to compare classifications of SPT phases, invert-

ible local QFTs and invertible homotopy TFTs by comparing the corresponding invertible

systems and invertible defects. Our discussion includes a variety of situations, including

anti-unitary symmetries, symmetry groups which mix with fermion number symmetry,

higher form symmetries, etc., simply by allowing Gb to “act” non-trivially on the spectrum

GP× [23] or by replacing the classifying space BGb with other spaces [26]. Part of our

analysis applies to the more general problem of endowing some topological phase P with

the structure of a symmetry enriched phase for a symmetry Gb. The space of physical sys-

tem belonging to the phase P can be modelled up to homotopy as some topological space,

which we can denote as P, built from invertible defects in P . Then the Gb symmetry

enrichments of P are classified by (homotopy classes of) maps from BGb to P. When P is

a trivial or invertible phase, then the calculation reduces to the calculation of a generalized

cohomology theory.

2The “×” symbol denotes invertibility.
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Figure 1. A system (red) defines an invertible phase of matter if we can find another system (blue)

such that the combination of the two system is in a trivial phase.

1.1 Outline of the paper

In section 2 we review the definitions of invertible phases of matter, topological defects and

invertible topological defects. In section 3 we review spectra and define the spectrum of

invertible phases. In section 4 we derive the classification of SPT phases as cohomology

valued in the spectrum of invertible phases. Sections 5 and 6 are devoted to examples

and to the computation of GP×≤n for low n. Section 7 discusses the use of SPT phases as

anomaly theories.

2 Generalities

2.1 Stacking and invertibility

Recall some basic definitions:

• Two gapped systems are in the same phase if they can be continuously deformed into

each other.

• A gapped system is considered to be in a trivial phase if it can be continuously

deformed to a trivial gapped system, such as a system whose Hamiltonian is a sum

of terms involving a single site of the lattice, with a single ground state and a large

gap for each site.

• Any two gapped systems can be stacked, simply by taking the Hilbert space to be

the tensor product of the Hilbert spaces of the two systems and the Hamiltonian

to be the sum of the Hamiltonians. The stacking operation is a commutative and

associative operations on gapped systems and thus on phases of matter.

• A gapped system A is invertible if we can find another gapped system A−1 such that

stacking A and A−1 results in a trivial phase. See figure 1. Invertible phases of

matter form an Abelian group under the stacking operation.

Note that the precise definition of “continuous deformation” of a gapped system is

somewhat subtle. A typical interpretation is a combination of two types of operations:

• Deformations along which the gap remains bounded from below and no first-order

phase transitions occur

• The operation of stacking with a trivial system.

– 3 –
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The definition of “phase” and the topological considerations we use here and later on

in the paper require a basic “axiom”: the existence of a well-defined “space” of gapped

systems, which can be given a topology as we just described. It is useful to point out that

alternative quantum-information theoretic definitions of the space of gapped systems are

also available, based on the properties of their vacuum wavefunctions [23]. It is not known

if different definitions are fully equivalent, but the general conceptual framework we use

should remain valid.

Notice the crucial terminology distinction between “system” and “phase”. A phase is

an equivalence class of systems and a system is a concrete physical realization of a phase.

It is important to notice that the notion of “phase” is extracting only the roughest

topological information about the space of gapped systems: it focusses on the set of con-

nected components of that space. As we proceed in our discussion, we will often encounter

situations where other topological aspects of the space of gapped systems have a measur-

able effect. This is the underlying motivation for the homotopy-theoretic approach we will

employ in the rest of the note.

Notice that we have not defined the notion of “gapped system”. It would be very

interesting to find a concise way to formalize the properties of gapped systems which we use

in the rest of our discussion, so that they could be formalized into some set of mathematical

axioms. The most crucial property we expect from gapped system is some sort of “locality”

in space and time. Concretely, this means that any gapped system which is sufficiently

close to being periodic in space and time-independent at the microscopic scale will look

like a homogeneous system at macroscopic scales. Furthermore, gapped modifications of

the system which have finite extent in some directions will appear as localized “defects”

of various co-dimension at macroscopic scales. Moreover, we expect to be always allowed

to independently introduce local modifications of the system at locations separated by

macroscopic scales. Finally, we expect to be allowed “mesoscopic” constructions, where we

take some gapped system with some microscopic correlation length ` and produce a new

system by adding some structure at a new mesoscopic scale much larger than ` but much

smaller than the macroscopic scale at which we imagine studying the system.

2.2 SREs, invertible phases of matter, and invertible TFTs

We should discuss a minor matter of terminology. Our operative definition of SPT phase

is a gapped phase of matter which becomes trivial if we ignore the symmetry. The phrase

“SRE” is used differently by different authors: [19] uses “SRE” to mean invertible phase,3

whereas for [16] “SRE” specifically means the trivial phase. To avoid confusion, we will

avoid the term “SRE” in favour of “invertible phase.” Furthermore, we will consider both

situations where ignoring the symmetry makes the phase completely trivial and situations

where ignoring the symmetry may still leave an invertible phase.

We will try to avoid conflating gapped phases of matter and topological field theories.

Even for invertible phases and invertible TFTs, it is not obvious to us that every TFT

3Kitaev’s definition of “SRE” as meaning “exactly one ground state” is essentially equivalent to invert-

ibility, by the main theorem of [31].
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should admit a realization as a condensed matter system. This is especially true if we

restrict ourselves to consider systems/theories which can be described by the (continuum

limit of) a translation invariant “lattice model,” i.e.:

• A quantum mechanical system defined on a d-dimensional lattice with an Hamiltonian

consisting of a sum of local terms, i.e. operators acting on the degrees of freedom on

a collection of lattice sites of bounded spatial extent or

• A statistical mechanics system defined on a (d+1)-dimensional lattice with statistical

weights which are the product of local terms, i.e. functions of the degrees of freedom

on a collection of lattice sites of bounded spatial extent.

Conversely, it is not completely obvious that an invertible phase of matter should

define an invertible TFT: a lattice model is defined naturally on a local patch of flat, non-

relativistic, non-rotationally symmetric space-time and some extra structure is needed in

order to place it on a general Euclidean space-time manifold. If we require the space-time

manifold to be framed this extra structure is mostly automatic, but typical physically-

meaningful topological field theories are isotropic, and the extra structure needed to place

the theory on an oriented (say) manifold can be quite involved.

2.3 Defects

In the following we will often employ the notion of local defect, defined as a modification of

the system which is localized in the neighbourhood of some locus of non-zero codimension in

space-time. A simple example of a defect may be a modification of the lattice Hamiltonian

which affects all links which cross some given domain wall in the system. We will restrict

ourselves to gapped defects which are locally translation invariant in the directions parallel

to the defect.

Gapped defects of a system can be organized into equivalence classes, analogous to

the phases of bulk systems: two defects in a given system are equivalent if they can be

continuously deformed into each other without closing the gap. We will often be a bit sloppy

and say “defect” when really mean “equivalence class of defects” or “phase of defects.” We

will make the distinction sharp whenever it matters.

We will be particularly interested in defects which are (framed) topological, in the

sense that the physics below the gap is unaffected by mild topological manipulations of the

defect locus, such as translations in a direction perpendicular to the defect or rotations by

some small angle.

These topological requirements can be reasonably expected to be true for generic

gapped defects, but are essentially automatic for gapped defects in an invertible theory. In-

deed, by stacking the whole system with the inverse of the original bulk theory we can map

a defect of the invertible theory into a defect in the trivial theory and vice-versa. Further-

more, defects in a trivial theory are essentially the same as stand-alone lower-dimensional

systems and are obviously (framed) topological. See figure 2.

This one-to-one map between defects in an invertible theory and lower-dimensional

physical systems will be important to us. The reader should keep in mind that any concrete

definition of this map will involve choices of how to deform systems into each other and

that these choices will matter.

– 5 –
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Figure 2. Top: a collection of defects of various codimension in an invertible system can be mapped

to a lower dimensional stand-alone system by stacking with an inverse system and deforming the

bulk to a trivial system. Bottom: lower dimensional systems can be stacked on top of a system

to create simple defects. The two operations are essentially inverse of each other, up to important

ambiguities in the choice of how to deform the bulk to a trivial system.

Figure 3. Composition of defects.

It is also useful to consider defects-of-defects, such as lower-dimensional junctions be-

tween defects. An important consequence of topological invariance of defects under small

rotations is that it allows us to think about junction between multiple defects and compo-

sitions of junctions, and junctions between junctions, etcetera.

2.4 Invertible defects

An important consequence of topological invariance under translations is that we can mean-

ingfully “compose” defects by bringing them together. See figure 3. Composition of de-

fects is analogous to stacking of phases, except that it may in general be non-commutative.

Things are much simpler for defects in invertible phases, as composition can be mapped to

the stacking of the corresponding lower-dimensional phases.

– 6 –
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Figure 4. A continuous interpolation between two systems can be identified with an invertible

interface at a sufficiently large scale.

The notion of composition of defects leads to the notion of invertible defect: a defect

is invertible if we can find an inverse defect, such that the composition of the two (in either

order) can be continuously deformed to the trivial defect, i.e. to the system without a defect.

A particularly important class of defects are codimension 1 interfaces between different

systems. The existence of an invertible interface between two systems implies a very strong

relation between the two systems. Indeed, as explained also by [23], we claim that it is

equivalent to the two systems being in the same phase!4

• Consider two systems A and B in the same phase. They must be connected by a

continuous deformation. Pick a direction x in space. Consider a hybrid system which

is identical to A for x� 0 and identical to B for x� 0, but transitions very slowly

(i.e. over mesoscopic scales much larger than the correlation length of the system but

much shorter than the scale at which we study the system) through the family as

x moves from negative to positive. At sufficiently large scale, this setup defines a

gapped interface between A and B. The inverse interface is defined just in the same

manner, following the family in the opposite direction. See figure 4.

• Consider two systems A and B related by an invertible interface F . Pick a direction

x in space. Consider a hybrid system consisting of a mesoscopic lattice of alternating

slabs of A and B joined by F and F−1 interfaces. This hybrid system can be continu-

ously deformed into A by composing each F interface with the inverse interface to its

left. It can also be continuously deformed into B by composing each F interface with

the inverse interface to its right. This provides a family of continuous deformations

relating A and B. See figure 5.

In particular, invertible interfaces allow us a glimpse into the non-trivial topology of

the space of gapped systems: the set of equivalence classed of invertible interfaces between

two systems gives us a handle on the space of inequivalent deformation paths relating the

two systems.

Similar considerations apply to invertible junctions between interfaces, etcetera: phases

of invertible defects of various dimensions in a given phase of matter encode the topology

(or better, homotopy) of the corresponding space of gapped systems.

If we restrict ourselves to invertible systems, we have an interesting iterative structure:

4In TFT, the existence of an invertible interface between two systems is often taken to be the definition

of equivalence between two theories.
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Figure 5. A mesoscopic lattice of invertible interfaces between two systems realizes a continuous

interpolation between them.

• Invertible interfaces between two d-dimensional invertible systems exist only if the

systems are in the same phase. Such interfaces can be put in correspondence with

(d−1)-dimensional invertible systems, by the “stacking with the inverse phase” trick.

• Invertible junctions between two invertible interfaces between two d-dimensional in-

vertible systems exist only if the interfaces are equivalent. They are in correspondence

with (d− 2)-dimensional invertible systems.

More generally, one can consider invertible junctions in which more than two in-

vertible interfaces come together. Such junctions exist only when the composition

of incoming interfaces is in the same phase as the composition of outgoing inter-

faces. Again, such junctions can be put in correspondence with (d − 2)-dimensional

invertible systems.

• Etcetera.

We will now discuss the topology of the space of invertible gapped systems and the

conjectural encoding in terms of invertible phases of systems and defects.

3 The spectrum of invertible phases

3.1 Definition of the spectrum

A spectrum5 T in algebraic topology consists of a sequence of topological spaces . . . , T−1,

T0, T1, T2, . . . together with the following data. First, each space Tn should be equipped

with a distinguished basepoint 0 ∈ Tn. Second, let ΩTn denote the space of loops in Tn
that start and end at 0; then we should equip the sequence T• with homotopy equivalences

Tn−1
∼→ ΩTn. In particular, the space Tn determines all Tm for m < n up to homotopy

equivalence, and the Tm for m > n witness Tn as an infinite loop space (the homotopy

version of “topological abelian group”). For any space X and any k ≥ 0, πkΩX = πk+1X.

This allows one to define both positive and negative homotopy groups of T by πkT := π0T−k.

A spectrum is connective if all of its negative homotopy groups vanish, in which case it

consists of the same data as the infinite loop space T0. The suspension ΣT of a spectrum

T is defined by (ΣT )n = Tn+1.

We now describe the spectrum GP× of invertible gapped phases of matter. Let GP×n
denote the space of n-spacetime-dimensional invertible gapped systems. As mentioned

5There are many models of spectra; the one we are describing is called “Ω-spectrum”.
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in the previous section, continuous deformations within GP×n may include stacking with

trivial systems or more generally operations which add and remove states at energies well

above the gap. The basepoint of the space GP×n is the trivial system.

As we discussed in the previous section, there is an obvious map ΩGP×n → GP×n−1.

First choose a direction x in space. Now, an element of ΩGP×n is a continuous family of

states of matter that begins and ends at the trivial state. Given such a family, consider a

system on which for x� 0 and x� 0 is in the trivial state, but which transitions through

the family as x moves from negative to positive over mesoscopic scales much larger than

the microscopic scale. At macroscopic length scales, this continuous transition can be

squeezed into an (n − 1)-spacetime-dimensional system. The map ΩGP×n → GP×n−1 is

pictured in figure 4, where we take both A and B to be the trivial system, but use a

nontrivial deformation.

We claim that this map ΩGP×n → GP×n−1 is a homotopy equivalence. It suffices

to give a claimed homotopy inverse GP×n−1 → ΩGP×n and show that both compositions

ΩGP×n → GP×n−1 → ΩGP×n and GP×n−1 → ΩGP×n → GP×n−1 are homotopic to the identity.

The map GP×n−1 → ΩGP×n is described in figure 5: given an invertible n−1 dimensional

phase F , treat it as an invertible defect in the trivial n-dimensional phase; interleave copies

of F and F−1, separated at a mesoscopic scale; observe that this F/F−1 system is connected

to the trivial system by a continuous deformation in two different ways, and hence gives a

loop in GP×n from the trivial system to itself.

Finally, one can give explicit null homotopies for the compositions ΩGP×n → GP×n−1 →
ΩGP×n and GP×n−1 → ΩGP×n → GP×n−1. We argue more generally that, given systems A

and B, the maps pictured in figures 4 and 5 are homotopy inverses. We can sketch the

basic arguments here:

• The composition {paths from A to B} → {invertible defects between A and B} →
{paths from A to B}, generalizing the composition ΩGP×n → GP×n−1 → ΩGP×n , turns

a path P into a new path constructed as follows. Choose a mesoscopic 1-dimensional

lattice in the x-direction. Start at the system A, and then adiabatically transition to

system B just in the neighborhoods of the mesoscopic lattice points. Now adiabatically

expand those B-regions until they fill the system is purely in the B state. This gives

the new path from A to B. It is canonically homotopic to the old path. See figure 6.

• The composition {invertible defects between A and B} → {paths from A to B} →
{invertible defects between A and B}, generalizing the composition GP×n−1 → ΩGP×n
→ GP×n−1, maps an invertible defect X between A and B to a locally periodic meso-

scopic sequence of interfaces X and X−1, beginning and ending with X, such that

the ratio between the X−X−1 and X−1−X distances evolve from very small to very

large from left to right; this mesoscopic sequence is then considered a single defect

at large scales. The homotopy transforming this new defect into the old one is given

by canceling interfaces X and X−1 where we keep the middle X interface fixed and

evolve the ratio to be very small uniformly to the left of it, very large uniformly to

the right of it. See figure 7.

– 9 –
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Figure 6. The new path produced by the composition {paths from A to B} → {invertible defects

between A and B} → {paths from A to B} from an old path from system A (red) to system B

(blue). The horizontal direction denotes the spatial direction x used to define the map {paths from

A to B} → {invertible defects between A and B}, and the vertical direction denotes the “internal

time” parameter along which the path from A to B transforms.

Figure 7. The output of the composition {invertible defects between A and B} → {paths from A

to B} → {invertible defects between A and B}.

Since ΩGP×n → GP×n−1 is a homotopy equivalence, we achieve a spectrum GP×. By

construction, its homotopy groups are π−kGP× = π0GP×k = set of k-dimensional phases of

matter, with the abelian group structure on π−kGP× given by stacking.

The equivalence ΩGP×n → GP×n−1 implies that, as an infinite loop space, GP×n has an-

other description. Namely, consider the higher category whose objects are n-dimensional

invertible phases of matter, 1-morphisms are phases of (n − 1)-dimensional invertible de-

fects, 2-morphisms are phases of defects between defects, etc., together with its symmetric

monoidal structure given by stacking and composition of defects. Since all objects and mor-

phisms are invertible, this defines a symmetric monoidal higher groupoid, or equivalently

a connective spectrum. Since this category is built out of gapped phases of dimensions

0, . . . , n, we will call it GP×≤n.

Actually, it is most convenient to index the corresponding spectrum so that the n-

morphisms in the category contribute to degree-0 homotopy: we will use the symbol GP×≤n
to denote the spectrum formed by taking the infinite loop space corresponding to the

category of (≤ n)-dimensional phases of matter and desuspending it. By construction,

πkGP×≤n = πkGP× = π0GP×k if k ≥ −n and πkGP×≤n = 0 if k < −n. The passage

GP×  GP×≤n is an example of taking a connective cover : if T is a spectrum, then its mth

connective cover is the unique spectrum T 〈m〉 equipped with a map T 〈m〉 → T such that

πkT 〈m〉 = πkT for k ≥ m and πkT 〈m〉 = 0 for k < m.

We would like to stress that the description of GP×≤n as a groupoid of phases of in-

vertible defects is eminently more manageable than an abstract description as a “space”

– 10 –
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of gapped systems. The space of gapped systems is enormous and potentially very intri-

cate. The collection of phases of invertible theories and invertible defects up to some fixed

dimension is a discrete and manageable object.

At any time, we can compile an approximation of GP×≤n out of known phases and

defects. As our knowledge of phases of matter improves, we can update our model for

GP×≤n accordingly.

3.2 Cohomology with coefficients in GP× and internal symmetries in lattice

models

The main purpose for spectra in algebraic topology is to provide the coefficients for gen-

eralized cohomology theories. If X is a topological space and T = {. . . , T0, T1, . . . } is a

spectrum, then the spaces [X,Tn] of continuous maps X → Tn form a new spectrum [X,T ],

and the cohomology of X with coefficients in T is by definition Hk(X;T ) = πk[X,T ] =

πk+n[X,Tn] for n � 0. Let us focus on the spectrum GP× of invertible phases of matter.

Suppose that we describe X by some cell complex. We claim that H•(X; GP×) describes

phases coupled to a background field valued in X. Indeed, for each point (0-cell) in X

we can ask: “how does our theory look like if the background field maps all space-time

to a neighbourhood of that point?” The answers will be some invertible theories, one for

each point. For each segment (1-cell) between two points in X we can ask: “how does our

theory look like if half of space-time is mapped to a neighbourhood of one point, the other

half to a neighbourhood of the other point, and the interface region to a neighbourhood of

the 1-cell?” The answers will be some invertible defects, one for each 1-cell. Etcetera.

Notice that this claim is constructive. On one hand, given an invertible gapped system

which can be coupled to maps from space-time into X, we can read off the data defining an

element of H•(X; GP×), simply by coupling the system to appropriate maps and reading off

the corresponding low energy phases. On the other hand, given an element in H•(X; GP×)

and a cell-complex definition of X, we can pick a representative element in [X,GP×n ] and

build a gapped system which reproduces it, with the usual trick of building a mesoscopic

lattice system. For example, in a statistical mechanics setup:

• On facets of maximal dimension D in the mesoscopic lattice, we put degrees of

freedom valued in 0-cells of X.

• On facets of dimension D − 1 in the mesoscopic lattice, we put degrees of freedom

valued in 1-cells of X.

• Etcetera: the degrees of freedom on the mesoscopic lattice are the data of a map

from the dual lattice to the cell complex for X.

• We couple the mesoscopic lattice to a microscopic Hamiltonian in such a way that

the microscopic theory in each D-dimensional facet is in the invertible phase deter-

mined by the map from X to GP×, with interfaces at each (D− 1)-dimensional facet

determined in a corresponding way, etc.
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By sufficiently relaxing our notion of target space X to include classifying spaces BG

for a group G, we can apply this discussion to SPT phases, which are systems with a G-

symmetry; we will classify SPT phases in terms of the cohomology of BG with coefficients

in GP× [23]. To an algebraic topologist this is a tautology: for any type of mathematical

object, an object of that type with G symmetry “is” a map from BG to the space of all

objects of that type. In the next section we connect this tautology (in the case of invertible

phases) with a much more explicit description of SPT phases in terms of a cochain model

of H•(−; GP×).

4 SPT phases and spectra

In this section we will discuss a very simple observation with deep consequences: the sym-

metries of a gapped system can be fully encoded in a certain collection of invertible defects.

4.1 Symmetries and defects

The standard notion of a “non-anomalous” internal symmetry of a lattice model is a sym-

metry which acts independently on the local degrees of freedom at each lattice site. Such a

symmetry can always be gauged, by adding group degrees of freedom on links of the lattice

and adjusting the Hamiltonian or statistical weights accordingly.6

Whenever we have such an internal symmetry G, the system comes equipped naturally

with a collection of invertible topological defect of various dimension, defined by turning

on a background flat gauge connection localized in the neighbourhood of the defect (see

figure 8):

• Defects u1(g) of codimension 1, labelled by a group element g ∈ G. They are defined

by turning on a background connection with g on all links which cross the defect.

• Junctions u2(g1, g2) of codimension 2 between defects u1(g1), u1(g2) and u1(g1g2).

They are defined by turning on a background connection with g1 on all links which

cross u1(g1), g2 on all links which cross u1(g2), g1g2 on all links which cross u1(g1g2).

• Junctions u3(g1, g2, g3) of codimension 3 between the codimension 2 junctions u2(· · · )
between defects u1(g1), u1(g2), u1(g1g2), u1(g3), u1(g2g3) and u1(g1g2g3).

• For general codimension n, junctions un(g1, g2, g3, · · · , gn) between codimension n−1

junctions between · · · .
6We include symmetries which act anti-unitarily on the Hilbert space, such as time-reversal symmetry.

A cautious reader may bristle at the idea of gauging an anti-unitary symmetry. How does one define a

connection for time-reversal symmetry? For a flat connection, this is actually possible. It is useful to think

about coupling a lattice system to a flat connection as a modification of the tensor product used to assemble

the full Hilbert space from the on-site Hilbert spaces: we keep the Hamiltonian unchanged but postulate

that operators act as

(O1 ⊗O2) ◦ (v1 ⊗g v2) = (O1v1) ⊗g (g−1O2gv2)

For anti-unitary symmetries, we can use a tensor product which is linear in one entry and anti-linear in the

second entry. Concretely, that means that in the presence of domain walls for anti-unitary symmetries we

will combine the Hilbert spaces for sites on the two sides of the walls by a “twisted tensor product” which

is anti-linear in the second entry.
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Figure 8. Left: a localized flat connection gives rise to invertible domain walls and junctions

labelled by group elements. Domain walls in the trivial phase are identified with systems u1(g) in

one dimension lower. Right: junctions between domain walls can be mapped to systems u2(g, h)

in two dimensions lower at the cost of a non-canonical choice of reference junction (empty node)

between the domain walls.

Figure 9. Associativity for domain wall junctions.

All these junctions have an important property, which follows from gauge invariance

of the underlying background connection: they are fully topological and any network of

such junctions can be freely re-arranged (see figure 9):

• Codimension 1 defects compose according to the group law: ug1 ◦ ug2 ≡ ug1g2 with

ue being the trivial defect. The local equivalence of the defects is implemented by

u2(g1, g2).

• Codimension 2 defects associate: u2(g1, g2) ◦u1(g1g2) u2(g1g2, g3) ≡ u2(g2, g3) ◦u1(g2g3)

u2(g1, g2g3). The local equivalence of the composite junctions is implemented by

u3(g1, g2, g3).

• Higher associativity relations hold for the composition of codimension n junctions

into junctions between defects u1(g1), · · · , u1(g1g2g3 · · · gn+1). The local equivalence

of the composite junctions is implemented by un+1(g1, g2, g3, · · · , gn+1).

In particular, all the defects, junctions, etc. are invertible.

Such a formidable collection of associating defects is precisely what one would use to

define abstractly a non-anomalous action of an internal symmetry G on a local quantum

field theory [14]. It can also be visualized as a map from the classifying space BG to the

space of continuous deformations of the gapped system.
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Conversely, suppose that we are given a system equipped with such a collection of

defects. Then we claim that the system can be given an equivalent local lattice realization

where the symmetry G acts independently on the local degrees of freedom at each lattice

site. We can build such a realization with the help of an auxiliary lattice sigma model with

target G. We will describe the construction for a statistical model; the construction for

the quantum lattice system is analogous. We place the G sigma model at the vertices of

some mesoscopic lattice and “fill in” the cell complex dual to the mesoscopic lattice, by

placing the original lattice model in the (d+ 1)-dimensional cells, the u1(g1g
−1
2 ) defects at

d-dimensional cells between lattice sites with labels g1 and g2, the u2(g1g
−1
2 , g2g

−1
3 ) defects

at (d− 1)-dimensional cells between lattice sites with labels g1, g2 and g3, etc.

We should also discuss the redundancies of this description. As we label domain walls,

junctions, etc. by an equivalence class/phase un(g1, · · · , gn), we make an implicit choice

of deformation path. The difference between two choices can be encoded into invertible

codimension n + 1 defects εn(g1, · · · , gn) on the un(g1, · · · , gn). If we change our choice,

we will have to re-label lower dimensional junctions. For example, the u2(g1, g2) interfaces

will be modified to ε1(g1) ◦ ε1(g2)u2(g1, g2) ◦ ε−1
1 (g1g2).

We have discussed previously a basic observation about invertible theories: their defects

are in one-to-one correspondence with lower dimensional theories, but the correspondence

involves non-canonical choices of deformation paths. These choices affect the properties of

junctions between these defects.

If a fully canonical correspondence did exist, we could just identify the un(· · · ) as

invertible phases of the appropriate dimension and impose associativity of these phases

under stacking. The classification of SPT phases would then be very simple. The group

(under the stacking operation) of invertible phases in spacetime dimension n is simply

π0GP×n = π−nGP×. The data uk(. . . ) defines a group cochain valued in π−n+kGP×,

and if the correspondence played well with topological manipulations, then associativ-

ity would require uk to be a cocycle — duk = 0 — and different uk would be equiva-

lent if they differed by a coboundary. In other words, if this (wrong) assumption held,

then the set of SPT phases with symmetry G would be simply the group cohomology∏∞
k=1 Hk(BG;π−n+kGP×).

In order to understand the correct classification of SPT phases, it is useful to build

the required structure a step at the time. First, we can look for a collection of (d− 1) + 1-

dimensional invertible phases u1(g), which stack correctly. That means u1(g1)× u1(g2) ≡
u1(g1g2), i.e.7

du1 = 0

For each (d − 1) + 1-dimensional invertible phase, choose a representative system. In

terms of the representing systems, we cannot expect u1(g1g2) to be equal to u1(g1)×u1(g2).

Rather, for each pair of (d − 1) + 1-dimensional invertible phases u, u′, we can choose

arbitrarily a “reference” junction between the representative of uu′ and the actual stacking

of u with u′. Then we can describe the junction u2(g1, g2) by giving instead the (d−2)+1-

dimensional invertible phases which should be stacked on top of our reference choice in

7We are ignoring an important subtlety here. See section 6.
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Figure 10. Failure of associativity for reference junctions.

order to define the group action. Now, we can test associativity of junctions. Associativity

for the (d − 2) + 1-dimensional invertible phases u2 will fail because associativity fails for

the reference junctions.

The failure is measured by the difference between two junctions between u1(g1), u1(g2),

u1(g3) and u1(g1g2g3) interfaces and can be described as some (d−2)+1 dimensional phase

fd−2,1(u1). See figure 10. The u2(g1, g2) phases must be chosen in such a way to cure the

lack of associativity of the reference phases. This means that the correct condition takes

the form

du2 = fd−2,1(u1)

for some function fd−2,1 of the cochain u1. The function fd−2,1 will be universal with

respect to the choice of group G, but will depend on the system of reference choices.

The same pattern persists for junctions of higher codimension. The constraints sat-

isfied by the uk junctions receive corrections which depend on the uj with j < k, of the

generic form

du1 = 0

du2 = fd−2,1(u1)

du3 = fd−3,1(u2) + fd−3,2(u1)

· · ·

for some functions fp,i.

The redundancies of the description are deformed in a similar way:

u2 → u2 + dε1

u3 → u3 + dε2 + fd−3,1(ε1)

u4 → u4 + dε3 + fd−4,1(ε2) + fd−4,2(ε1)

· · ·

The functions fp,i are potentially-complicated functions Ck(BG; GP×p+i)→Ck+i+1(BG;

GP×p ). Essentially by definition, this modified complex is the generalized cohomology

theory associated to GP×, whose differentials keep track of the non-trivial identifica-

tion between defects and theories in lower dimension, i.e. the homotopy equivalences

ΩGP×n → GP×n−1.
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4.2 Stable cohomology operations

By the main result of [24, 25], the existence of a description of H•(BG; GP×) in terms

of functions fp,i deforming the differential on
∏∞
k=1 Ck(BG;π−n+kGP×) is automatic: it

holds with GP× replaced by any spectrum whose homotopy groups vanish in degrees above

some cut-off. That work also sheds some light on the type of functions fp,i that can ap-

pear. They are in general nonlinear. They are natural transformations in the sense that

they do not depend on the choice of group G: if r : X → Y is any map of simpli-

cial sets, the compositions Ck(Y ; GP×p+i)
fp,i→ Ck+i+1(Y ; GP×p )

r→ Ck+i+1(X;π0GP×p ) and

Ck(Y ; GP×p+i)
r→ Ck(X;π0GP×p+i)

fp,i→ Ck+i+1(X;π0GP×p ) agree. It follows in particular

that if uk is a k-cochain, then fp,i(uk)(g1, . . . , gp+i+1) is some function just of the values of

u on products of the gi.

The whole differential has an “upper triangular” form

D


un
...

u2

u1

 =


d −f0,1 . . . −f0,n−1

. . .
...

d −fn−2,1

d



un
...

u2

u1


with the caveat that the functions fp,i are not linear. The requirement that D2 = 0 implies

a lot about the functions fp,i. In particular, it implies that for each p, fp,1 takes cocy-

cles to cocycles and takes coboundaries to coboundaries. It gives therefore a cohomology

operation [fp,1] : Hk(−; GP×p+1) → Hk+2(−; GP×p ). In fact, [24, 25] shows that on coho-

mology, each function [fp,1] is linear, although it is represented nonlinearly at the cochain

level. Furthermore, the functions [fp,1] : Hk(−; GP×p+1) → Hk+2(−; GP×p ) for different k

are closely related as follows: for any abelian groups A and B, any cohomology operation

HN (−;A) → HN+j(−;B) determines cohomology operations Hn(−;A) → Hn+j(−;B) for

n < N , and a stable operation is a collection of operations, one for each N → ∞, which

each determine all the previous ones. The degree of a stable cohomology operation is just

the degree by which it raises (it never lowers) cohomology classes; for example, [fp,1] is of

degree 2. Degree-i stable cohomology operations between abelian groups A and B are the

same as degree-i maps between the Eilenberg-MacLane spectra determined by A and B.8

The stable cohomology operations [fp,1] coming from the deformed differential on GP× are

called the k-invariants of the spectrum GP×.

The requirement D2 = 0 implies further relationships between the fp,i. For exam-

ple, it implies that, if uk ∈ Zk(G;π0GP×n−k) is an ordinary cocycle, then dfn−k−1,2(u) =

fn−k,1(fn−k−1,1(u)) is a coboundary. In particular, the functions fp,2 are typically not

themselves cohomology operations — they do not take cocycles to cocycles — but rather

they are trivializations of compositions of fp,1s. It follows that if the fp,1s are given, then

the data needed to define fp,2 is a torsor over the space of stable cohomology operations.

Similar results apply for fp,i with higher i. The functions fp,2 are called the j-invariants

of the spectrum GP×.

8The Eilenberg-MacLane spectrum for A, usually denoted HA, is the spectrum such that cohomology

with coefficients in that spectrum is ordinary cohomology with coefficients in A.
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4.3 SPT phases and reduced cohomology

In section 4.1 we used the definition of SPT phase as a phase which becomes trivial when the

symmetry is neglected. As a consequence we have associated them to reduced cohomology

classes, built from 1-cochains, 2-cochains, etc., without any 0-cochains. Given a spectrum

T , we write H•(−;T ) for the unreduced cohomology and H̃
•
(−;T ) for reduced cohomology.

It is easy to extend the definition to allow for a non-trivial invertible phase in the ab-

sence of symmetry, by including a 0-cochain u0. This would result in the unreduced coho-

mology valued in the same spectrum. If G does not act on the spectrum GP× itself (in par-

ticular, if G includes no antiunitary symmetries), then the 0-cochain u0 never participates

in the remainder of the complex: one can stack the G-symmetric phase defined by an unre-

duced cocycle (u0, u1, . . . , un) with the phase defined by u−1
0 ∈ C0(G;πnGP×) = π0GP×n

equipped with the trivial G-action; the result of this stacking is an SPT phase in the

reduced sense.

4.4 Phases versus choices of realization

The astute reader will have noticed that in the above discussion, we used the infinite

product
∏∞
k=1 Hk(BG;π−n+kGP×) when it seems we only used cochains of dimensions

1, . . . , n. The reason for this is a slight cheat in the exposition of section 4.1. The data

of a 0-spacetime-dimensional quantum system consists simply of its “partition function”

— a number — so that the group of invertible 0d quantum systems is C×. But, since C×

is connected, these systems are all in the same phase. Thus the space GP×0 of 0d gapped

phases is not the group C×, but rather the corresponding topological space, homotopy

equivalent to S1: π0GP×0 = 0 and π1GP×0 = Z. In particular, the exposition of section 4.1

assumed that the final “associativity” data for an n-dimensional SPT phase consisted of

some 0-dimensional defects associated to each n-tuple in G. But since π0GP×0 = 0, this is

no data at all. Rather, the final associativity data consists somewhat formally of some “−1-

dimensional defects” — classes in Z = π1GP× = “π0GP×−1” — associated to (n+ 1)-tuples

in G.

When G is a finite group9 and n > 0, there is no difference between Hn(BG;C×),

Hn(BG; U(1)), and Hn+1(BG;Z). Thus the classification of SPT phases protected by a

finite group is indifferent to the choice of whether to pretend that π0GP× = C× or U(1)

and π>0GP× = 0 or to use the correct spectrum, for which π0GP× = 0 and π1GP× = Z.

However, the difference between C×-as-a-set and C×-as-a-topological-space does play an

important role in understanding the “E8 phase”; cf. section 5.2.

4.5 Stacking of SPT phases

A marvellous property of generalized cohomology theories is that they are linear, even

though the extended differentials are polynomials at the level of cochains, and so do not

preserve the usual group operation on cochains — instead, one can always define a (non-

commutative, nonassociative) “sum” operation on cochains, which becomes commutative

and associative at the level of cohomology [24, 25].

9More general statements are available, for example when working with measurable cochains.
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Physically, the sum operation on cohomology realizes the stacking operation on SPT

phases. We can recover the explicit cochain-level operation by the same physical consider-

ations which we used to find the cohomology differential.

Concretely, the interfaces and defects which encode the product of two SPT phases

are obtained by stacking the interfaces and defects which encode the two SPT phases.

• At the top level, we simply stack the interfaces: if the parent SPT’s have interfaces

u1(g) and u′1(g), the new SPT will have interfaces

u1(g) + u′1(g).

• Next, we need to stack junctions. The crucial subtlety is that stacking two reference

junctions may not give a reference junction. Thus the new SPT will have junctions

u2(g1, g2) + u′2(g1, g2) + sd−2(u1, u
′
1),

where sd−2 corrects for the failure of reference junctions to stack to a reference

junction.

• Etcetera.

In this manner, we can compute all the maps which occur in stacking operations:

(u+ u′)n = un + u′n +
∑
k

sd−n(u∗, u
′
∗)

5 Examples

The previous section explained in principle how to analyze SPT phases in terms of coho-

mology valued in invertible phases. We now implement this procedure in various examples.

We will talk about both bosonic and fermionic phases of matter. To indicate the difference,

we will call the spectrum of bosonic invertible gapped phases bGP× and the spectrum of

fermionic invertible gapped phases fGP×.

5.1 Bosonic SPT phases and standard group cohomology

The standard construction of bosonic SPT phases by group cohomology can be immedi-

ately described in the language of topological defects. For simplicity, let G be a finite

group, so that we can avoid the subtlety from section 4.4. Then the SPT phase described

by [α] ∈ Hd+1(BG; U(1)) corresponds to a system of defects as in section 4.1 which are

completely trivial except at the lowest possible dimension: the point junctions of codimen-

sion d+ 1 carry the phase α(g1, · · · , gd+1), a representative of the group cohomology class

[α] ∈ Hn(BG; U(1)).

Notice that “point” here means a point in space and time. For example, for an SPT

phase in 1+1d, these would be point-like junctions between domain walls for group elements

g, h, gh. In order to “measure” α(g1, · · · , gd+1), one has execute the following operations:
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1. Draw the configuration of domain walls in space-time around a single junction point

and take a space slice before and after the point.

• In 1 + 1d the two configurations would consist of a chain decorated either with

a g1 and an g2 domain walls, well separated, or by a g1g2 domain wall.

• In 2 + 1d the two configurations would consist of the two different ways of

connecting a g1, a g2 and a g3 domain walls to a g1g2g3 domain wall, either by

fusing the first two walls into a g1g2 wall and then fusing it with the third wall,

or fusing the last two walls into a g2g3 wall and then fusing it with the first.

• Etcetera

2. Pick a specific identification between the ground-state of the theory decorated by

domain walls in space and the trivial wavefunction. The identification must be local:

the details of the identification near one domain wall cannot depend on the existence

of another domain wall far from it.

3. The phases in [α] are simply the composition of the maps from the trivial wavefunc-

tion to the ground-states of the two configurations of domain walls and the gauge

transformation relating the two configurations.10

Restoring from U(1) to Z, we find that the spectrum bGP× of bosonic invertible gapped

phases has π1bGP× = Z, π0bGP× = 0, and, since there are no nontrivial 0 + 1d bosonic

gapped phases, π−1bGP× = 0.

5.2 Bosonic SPT phases beyond group cohomology

The classification of bosonic SPT phases by the standard group cohomology will work only

up to the dimension where non-trivial invertible bosonic phases with no symmetry first ap-

pear. The nature of these phases depends rather strongly on the precise setup. Physically,

there could be differences between invertible phases of matter in the condensed matter sense

and invertible phases of gapped relativistic quantum field theories. Mathematically, defini-

tions based on traditional or extended TFTs, framed, unframed or partially framed TFTs

or cobordism groups will give different answers, which in turn can be different from the

classification of invertible phases of matter in the condensed matter sense or may coincide

with it for no obvious reason.

The first non-trivial bosonic invertible phase in the condensed matter sense appears

in 2 + 1d: it is Kitaev’s E8 phase. This phase is characterized by the emergence at the

boundary of edge modes of chiral central charge c = 8, in the form of an E8 WZW model

at level 1. It is generally expected that any n-th power of this phase should be non-trivial

and support edge modes of central charge 8n. For evidence that the E8 phase has infinite

order, see section 6.2.

10The basic reason the [α] can be non-trivial is that the gauge transformation relating the two configura-

tions of domain walls is less “local” than the identifications with the trivial phase: the gauge transformation

at a point depends on the whole configuration of domain walls.
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Thus the spectrum bGP× should have homotopy groups

π1bGP× = Z, π0bGP× = 0, π−1bGP× = 0, π−2bGP× = 0, π−3bGP× = Z, . . .

(As discussed in section 4.4, the C× or U(1) worth of 0d quantum systems becomes the

space bGP×0 = S1 with π0bGP×0 = 0 and π1bGP×0 = Z.) These homotopy groups match

the homotopy groups of the spectrum ΣIZMSO, the Anderson dual to oriented bordism.11

We believe that in fact bGP× = ΣIZMSO, or at the very least the spectrum bGP×≤3 of

bosonic phases of dimension at most 3 agrees with the (−3)-connective cover ΣIZMSO〈−3〉.
This belief can be checked by calculating k-invariants on both sides. Details will appear

elsewhere.

One may wonder if any other invertible phases may occur in dimension higher than

2 + 1d. In a TFT setup, one has 4d Crane-Yetter models built from Modular Tensor

Categories, but they are expected to be trivial as (Walker-Wang) condensed matter phases,

for the same reason that allows MTC’s to appear as categories of anyons in 2 + 1d lattice

systems. In fact, the partition function on a 4-manifold M for a Crane-Yetter model

described by a MTC with central charge c is exp(signature(M) 2πic/8), and it is reasonable

to believe that the full space of 4d invertible TFTs consists of this U(1) worth of partition

functions. Notice that for finite G, Hn(G;Z) = Hn−1(G; U(1)) when n > 1. Thus a

spectrum with U(1) worth of phases in dimension 3 + 1d would give the same classification

of SPT phases in sufficiently high dimension as a spectrum with a Z worth of phases in

dimension 2 + 1d; compare section 4.4. From this perspective, the 2 + 1d E8 phase is

nothing but the path that wraps one around the U(1) worth of 3 + 1d TFTs; compare the

paths used in section 3.1 to identify ΩGP×n with GP×n−1.

5.3 Restricted supercohomology

We turn now to fermionic phases of matter. There is quite a lot of debate about what the

spectrum of fermionic phases is: [28] conjectures that the spectrum of fermionic phases is

ΣIZMSpin,12 whereas in a field theory context [11] uses ΣIZS, where S denotes the sphere

spectrum.13

11The oriented bordism spectrum MSO, also called ΩSO, is the connective spectrum whose k-cells are

k-dimensional oriented cobordisms; in particular, πkMSO is the group of oriented k-manifolds up to cobor-

dism. Anderson duality is a type of duality for spectra related to Pontryagin duality for abelian groups.

Let us mention one property of it. Suppose that T is a spectrum whose homotopy groups πkT are finitely

generated as abelian groups. Then for each k, we can noncanonically split πkT ∼= (πkT )[free] ⊕ (πkT )[tor],

where (πkT )[free] ∼= Zr is a free abelian group and (πkT )[tor] is the torsion subgroup of πkT . The shifted

Anderson dual ΣIZT of T then has the following homotopy groups:

π−kΣIZT ∼= hom ((πk+1T )[free],Z)⊕ hom ((πkT )[tor],U(1)) ∼= (πk+1T )[free] ⊕ (πkT )[tor]. (noncanonical!)

The more canonical statement describes π−•ΣIZT in terms of Ext groups Ext•(π•T,Z).
12Parts of the paper [28] use just the torsion part of the homotopy groups of ΣIZMSpin; as observed

in [11, 28], the non-torsion part seems to describe phases of matter that do not correspond to truly-

topological field theories. Since in this paper we do not assume any a priori connection to topological field

theory, we will not see such a distinction, and we will see non-torsion groups of ΣIZMSpin in section 5.6.
13The paper [11] supersedes the earlier paper [13], which suggests more strongly that ΣIZS is the spectrum

of fermionic phases. The main result of [11] is that “reflection positive” invertible phases of TFTs are classi-

fied by a spectrum of shape ΣIZMH, where H is some to-be-determined “tangential structure,” for example

H = SO or H = Spin. In particular, [11] would support the prediction ΣIZMSpin if fermionic=Spin.
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However, the low-dimensional homotopy groups are undebatable. Letting fGP× denote

the spectrum of fermionic phases, we have

π1fGP× = Z, π0fGP× = 0, π−1fGP× = Z2, π−2fGP× = Z2.

The homotopy groups in degrees 1 and 0 are as in section 4.4. The nontrivial 0 + 1d phase

is the fermion, and the nontrivial 1 + 1d phase is the Majorana chain. These homotopy

groups are consistent with both proposals fGP× = ΣIZS and fGP× = ΣIZMSpin.

Let us consider first the connective cover fGP×〈−1〉 = fGP×≤1, whose only nontrivial

homotopy groups are π1 = Z and π−1 = Z2. A spectrum with only two nontrivial homotopy

groups is completely determined by (those homotopy groups and) the k-invariant. In this

case, there are exactly two possibilities: the trivial k-invariant, and a unique nontrivial one.

Let � : H•(−;Z2) → H•+1(−;Z) denote the Bockstein homomorphism for the extension

0 → Z ×2→ Z → Z2 → 0. (If G is a finite group, then H•+1(BG;Z) and H•(BG;R/Z) are

canonically identified, and this Bockstein homomorphism is simply the inclusion 1
2 : Z2 →

R/Z.) The unique nontrivial degree-3 stable cohomology operation from Z2 to Z is the

composition

H•(−;Z2)
Sq2

−→ H•+2(−;Z2)
�−→ H•+3(−;Z),

where Sq2 is the second Steenrod square.

In particular, to compute fGP×≤1, it suffices to show that it is not the trivial extension,

as then it must be the nontrivial extension with k-invariant � ◦Sq2. One may show this in

many ways. The simplest is to recognize that the generalized cohomology theory associated

to fGP×≤1 describes systems where 0-dimensional junctions of domain walls carry phases

and 1-dimensional junctions carry vector spaces of even or odd fermion number. These are

precisely the systems considered in the seminal paper [17].

Thus cohomology with coefficients in fGP×≤1 is nothing but the (restricted) superco-

homology of [17, 20]. The construction and classification of spectra in terms of stable

cohomology operations from section 4.2 explains the appearance of Sq2 in the formulas for

supercohomology. In summary, we can think of the spectrum fGP×≤1 as a “complex” with

two terms, Z and Z2, and differential

D =

(
d � Sq2

0 d

)
.

5.4 Extended supercohomology

We now consider the spectrum fGP×≤2 with homotopy groups Z, 0,Z2,Z2 in degrees 1, 0,

−1, and −2. We have computed already that the k-invariant connecting the Z2 worth of

0 + 1d phases with the Z in top degree is � ◦ Sq2. To compute the spectrum, we must

compute the k-invariant connecting the two Z2s and also the j-invariant trivializing the

composition of the two k-invariants. The k-invariant connecting the two Z2s is a degree-2

stable cohomology operation from Z2 to Z2, of which there is a unique nontrivial one: Sq2.

Let us temporarily assume that we have shown that the k-invariant connecting

π−2fGP× = Z2 and π−1fGP× = Z2 is nonzero, hence Sq2. We will argue that this is
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enough to fully determine the spectrum fGP×≤2. More specifically, we claim that up to non-

canonical equivalence, there is a unique spectrum whose only nonzero homotopy groups

are Z, 0,Z2,Z2 in degrees 1, 0, −1, and −2 and such that both k-invariants are nonzero.

Indeed, the remaining data of such a spectrum should be a trivialization of the com-

position of the two k-invariants. One can see that such a trivialization exists by using the

Adem relations Sq2 Sq2 ' Sq3 Sq1 and Sq3 ' Sq1 Sq2 and by noting that � Sq1 ' 0, and

so � Sq2 Sq2 is trivial in cohomology. There is still the choice of particular j-invariant: the

set of inequivalent choices is a torsor for the group of stable cohomology operations of the

correct degree — in our case, degree 2 + 3− 1 = 4 — from π−2fGP× = Z2 to π1fGP× = Z.

There is precisely one non-zero such operation, namely � Sq2 Sq1, and so there are precisely

two possible j-invariants, differing by that operation. With a choice of j-invariant made,

the spectrum fGP×≤2 is determined.

So our claim amounts to the claim that the two j-invariants lead to equivalent spectra,

which will in turn boil down to the fact that � Sq2 Sq1 factors through the k-invariant

� Sq2 connecting π−1fGP× = Z2 with π1fGP× = Z. Indeed, let j denote one of the two

j-invariants, determining the spectrum with differential∂ � Sq2 j

∂ Sq2

∂

 .

The other possible spectrum has differential like above but with j replaced by j+� Sq2 Sq1.

But: ∂ � Sq2 j +� Sq2 Sq1

∂ Sq2

∂

 =

id

id Sq1

id


∂ � Sq2 j

∂ Sq2

∂


id

id Sq1

id


−1

The matrix

(
id

id Sq1

id

)
thus describes a spectrum equivalence between the two possible

j-invariants.14

So to complete the calculation of fGP×≤2, it suffices to show that both k-invariants are

nonzero. There are many ways to do this. For example, one can observe that there is a

2 + 1d fermionic SPT phase protected by Z2 of order 8 under stacking [3, 15]. But direct

computation of H3(Z2;T ) for the different possible spectra T with the same homotopy

groups as fGP×≤2 shows that the only way to get an order-8 element is when both k-

invariants are nonzero.

Cohomology with coefficients in fGP×≤2 is precisely the extended supercohomology

of [27, 35].

14One can compare this to the case of breaking up Z8 as an extension Z2 · Z2 · Z2. The k-invariants

correspond to deciding that both Z2 ·Z2s should compile to Z4s, i.e. that there should be a “carry” so that

01+01 = 10 and not 00. This gives the following rules in the putative Z8: 100+100 = 000, 010+010 = 100,

and 001 + 001 = x10. The j-invariant corresponds to the choice of whether x = 0 or 1. The two choices give

isomorphic groups, where the isomorphism interchanges 001 and 011. The isomorphism above involving

Sq1 is analogous.
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5.5 Algebraic description of extended supercohomology

There is another way to compute the spectra fGP×≤1 and fGP×≤2: we can realize them al-

gebraically. The category of all 0 + 1d fermionic gapped phases of matter, not necessarily

invertible, is the category SVC of complex supervector spaces, and the spectrum fGP×≤1 of

invertible fermionic phases is simply (the spectrum built from) the category SV×C of super

lines. This is clear from the description: the nontrivial 0+1d invertible phase is the odd line

— the fermion. The statement that the k-invariant is � Sq2 and not zero is simply the state-

ment of the Koszul sign rule: the fermion braids with itself for a sign rather than trivially.

Similarly, fGP×≤2 is nothing but (the spectrum built from) the symmetric monoidal

bicategory SA×C of Morita-invertible complex superalgebras, super Morita equivalences, and

intertwiners. The nontrivial object in SA×C is, from this perspective, the Clifford algebra

Cliff(1). The claim about the k-invariant connecting the two Z2s, then, is simply the claim

that the self-braiding of the object Cliff(1) ∈ SAC is isomorphic to the parity-reversal of

the identity bimodule on Cliff(1) ⊗ Cliff(1), and not to the identity bimodule. We check

this explicitly.

Let the generators of A = Cliff(1) ⊗ Cliff(1) be x and y, subject to the relations

x2 = y2 = −1 and xy = −yx. The identity bimodule on A is A itself treated as a

bimodule. To distinguish, we will call the bimodule M , and its basis 1M , xM , yM , and

(xy)M . Of course, the basis vectors labeled 1 and (xy) are even, and those labeled x and

y are odd. It is acted on from both the left and the right by A with the obvious actions.

For example, x . xM = −1M , yM / xR = −(xy)M , etc.

The self-braiding of Cliff(1) is another bimodule between A and itself, which we will

call N . Its underlying supervector space is the same as that of M — we will indicate the

basis of N by 1N , xN , yN , and (xy)N . The right action of A on N is the same as that of

A on M . But the left action of A is “braided” in the sense that left actions of x and y are

reversed. For example, x . xN = −(xy)N , since y . xM = −(xy)M .

One may now check that the odd map 1M 7→ (xN + yN )/
√

2 is an odd unitary isomor-

phism between the bimodules M and N . Indeed, 1M and (xN + yN )/
√

2 are the unique-

up-to-phase elements v in their respective modules with the property that a . v = v / a

for all a ∈ A. This completes the proof that the k-invariant connecting π−2SA×C = Z2 and

π−1SA×C = Z2 is Sq2.

5.6 Beyond the Majorana layer

In dimension 2 + 1d, there is expected to be an invertible fermionic phase, a massive

Majorana fermion, whose edge mode is a chiral fermion, with central charge c = 1
2 . This

plays a role analogous to the E8 phase in section 5.2.

We thus expect

π1fGP× = Z, π0fGP× = 0, π−1fGP× = Z2, π−2fGP× = Z2, π−3fGP× = Z.

These groups are compatible with the prediction that fGP× = ΣIZMSpin but incompatible

with the prediction that fGP× = ΣIZS.
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We will not compute here the k- and j-invariants connecting the Z = π−3fGP× to

the remaining homotopy groups. We do observe that the k-invariant connecting that Z to

the Z2 = π−2fGP× must be nontrivial: if it were trivial, then all elements of the group

H4(ZT2 ; fGP×) classifying time-reversal fermionic 3 + 1d phases would have order ≤ 8, but

it is known that in fact there is a Z16 classification [10, 20].

5.7 A spectrum of SPT phases

It is worth pointing out that SPT phases for some symmetry Hb are themselves invertible

phases of matter. This follows immediately from the fact that generalized cohomology

groups are groups. Conversely, an invertible phase of matter with symmetry Hb is also an

Hb SPT phase.

The space of invertible systems with symmetry Hb defines a spectrum, which we can

denote as GP×(Hb). This is just the spectrum of maps from BHb to GP×.

If we take an SPT phase with symmetry Gb×Hb and couple it to a Gb flat connection,

we will be left with a collection of domain walls for Gb valued in GP×(Hb). This collection

has the same information as the usual collection of Gb ×Hb domain walls valued in GP×.

Indeed, almost by definition one has

H•(BGb ×BHb; GP×) = H•(BGb; GP×(Hb)).

Note, however, that by definition an SPT phase with symmetry Gb is not just a G-

symmetric invertible phase, encoded by a map BGb → GP×, but one that trivializes when

the Gb symmetry is forgotten; as in section 4.3, the set of SPT phases is the reduced

cohomology H̃
•
(BGb; GP×), and that in general

H̃
•
(BGb ×BHb; GP×) 6= H̃

•
(BGb; GP×(Hb)).

Indeed, with the definition of SPT phase in terms of trivial phases with Gb-symmetry, the

spaces of SPT phases of varying dimensions do not satisfy the relation between defects and

deformations from section 2.4 and so do not form an Ω-spectrum as in section 3.1.

6 Categorical actions and antiunitarity

Our analysis so far applies to situations where the domain walls for the symmetry group

elements in an SPT phase can be fully identified with lower dimensional phases. In partic-

ular, the domain wall network is recast as a network of lower-dimensional systems, within

which one does all subsequent calculations.

This assumption needs to be relaxed if we want to deal with situations such as sym-

metry groups which act in an anti-unitary (aka time-reversal) manner. It is possible to

define a domain wall for an anti-unitary symmetry, as described in footnote 6: the parts

of the system on the two sides of such a domain wall are assembled together by a twisted

tensor product.

In an SPT phase, such a domain wall may support a lower dimensional invertible phase,

but it will have an additional property: it transforms any lower-dimensional physical system
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carried across it. For example, a local operator of multiplication by a complex number

will get conjugated if transported across the wall. An invertible 2 + 1d E8 phase will be

conjugated to the opposite phase Ē8, etc.

In general, we should allow for a situation where the domain walls for the group

symmetry can be described as a lower dimensional phase stacked on top of a reference

domain wall which acts non-trivially on the space of physical systems we consider and, in

particular, on the space of invertible systems. This action will modify the associativity

relations produced by our analysis of SPT phases.

Mathematically, this action translates into a categorical action of the symmetry group

Gb onto the spectrum of invertible phases GP×. The categorical action collects all the

data of how the reference domain walls act on invertible phases, including all the lower-

dimensional domain walls and junctions associated to the intersection between invertible

phases and reference domain walls.

Such a categorical action allows one to define a twisted version of generalized cohomol-

ogy, which will control the classification of SPT phases.

Geometrically, the categorical action describes a fibration over BGb with fiber GP×.

The twisted generalized cohomology groups are the homotopy groups of the space (spec-

trum) of sections of such a fibration, rather than the space of maps from BGb to GP× [23].

Another situation where categorical group actions apply involves fermionic SPT phases

where the overall symmetry group Gf is not the direct product of Gb and fermion parity.

We can still label the invertible theories which arise at domain walls by Gb group elements,

but they fuse up to extra (−1)F fermion parity walls. The mismatch is controlled by the

Z2-valued Gb cocycle n2(g1, g2) defining the extension Gf .

The (−1)F walls are invisible to 0-dimensional bosonic local operators, but act non-

trivially on the higher-dimensional invertible phases. For example, the intersection of

(−1)F walls with the 1-dimensional lines which carry fermion number 1, i.e. the non-trivial

0 + 1d invertible fermionic phase, produces an extra factor of −1. Similar considerations

apply for the intersection of (−1)F walls with other invertible fermionic phases. This can

be translated into a categorical action relating different parts of fGP×.

The remainder of this section studies basic examples of anti-unitary SPT phases in

terms of twisted cohomology.

6.1 Time-reversal and ordinary group cohomology

If we focus on bosonic theories and ignore the existence of non-trivial invertible phases,

we can describe in our language the standard classification of SPT phases for anti-unitary

symmetries as twisted group cohomology. The categorical action of time-reversal symmetry

reduces to the action of complex conjugation on phases.

Passing from phases to integers in one degree lower, this is an action of G on Z itself.

The group of automorphisms of Z is isomorphic to Z2: the action of x ∈ Z2 is of course by

multiplication by (−1)x. Suppose that G is equipped with a homomorphism ε : G → Z2,

providing an action of G on Z by multiplication by (−1)ε(g). Concretely, g ∈ G acts

antiunitarily whenever ε(g) 6= 0.
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The effect of the categorical action is to replace the usual cohomology Hn+1(BG;Z)

by the twisted cohomology Hn+1(BG;Zε). Recall that the cochains for twisted cohomology

are the same as those for untwisted cohomology, but the twisted differential is

dε(α)(g0, . . . , gn) = (−1)ε(g0)α(g1, g2, . . . , gn)− α(g0g1, g2, . . . , gn) + α(g0, g1g2, . . . , gn)

− · · · ± α(g0, . . . , gn−2, gn−1gn)∓ α(g0, . . . , gn−2, gn−1),

differing from the untwisted differential only in the first term.

In particular, consider the case when G = Z2 and ε : G→ Z2 is the identity. Then the

twisted group cohomology is

Hn+1(Z2;Zε) =

{
Z2, n even (and positive),

0, n odd,

giving a proposed spectrum bGP×(ZT2 ) of “time-reversal protected phases” with homotopy

groups π0,−1,−2,... = Z2, 0,Z2, 0, . . . .

The Z2 = π0bGP×(ZT2 ) consists of the two possible signs of a real 0-dimensional parti-

tion function. An interesting case is in spacetime dimension 2. Then the Z2 =π−2bGP×(ZT2 )

worth of 1+1d time-reversal-protected invertible systems consists of the trivial system and

the Haldane chain.

Hn+1(BG;Zε) provides the complete classification of antiunitary SPT phases in space-

time dimensions n ≤ 2. But in high dimensions it is incomplete, since according to

section 5.2 the bosonic spectrum bGP× is not just the Eilenberg-MacLane spectrum of

ordinary cohomology. Said another way, the correct spectrum bGP×(ZT2 ) of bosonic time-

reversal-protected phases does have homotopy groups

π0bGP×(ZT2 ) = Z2, π−1bGP×(ZT2 ) = 0, π−2bGP×(ZT2 ) = Z2,

but after this the homotopy groups become more complicated.

Comparing with section 5.5, we can identify the bosonic spectrum bGP×(ZT2 )≤2 with

the spectrum of Morita-invertible real (bosonic) algebras: the Haldane chain corresponds to

the quaternion algebra H. As in section 4.4, when G is finite we may identify Hn+1(−;Zε)
with Hn(−; U(1)ε).

6.2 Time reversal and E8

Including the E8 phase as in section 5.2 leads to a classification of SPT phases in terms of

pairs of cochains of degrees differing by 4. The first non-trivial example arises in 3 + 1d,

for time-reversal symmetry. This happens because H1(Z2;Zε) = Z2: the domain walls

which implement time-reversal symmetry may support an E8 phase. Examples of proposed

classifications of 3 + 1d bosonic SPT phases suggest that the k-invariant should restrict

trivially here, so that the generalized cohomology theory collapses to H1(G;Zε)⊕H5(G;Zε).
Notice that this answer depends critically on powers of the E8 phase being non-trivial.

For example, the triple power E3
8 is undetectable by traditional TFT means as it has parti-

tion function 1 on all manifolds. Nevertheless, H1(Z2;Zε) is very different from H1(Z2;Zε3)!
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For unitary symmetries, the first non-trivial possibility of beyond-cohomology SPTs

involving the E8 phase occurs in 4 + 1d, as H2(G;Z) can be non-trivial. This would be a

situation where E8 phases appear at junctions of G-symmetry domain walls.

6.3 Restricted Gu-Wen phases with time reversal

We turn now to the question of antiunitary actions in the presence of fermions. We discuss

first the restricted supercohomology from section 5.3 corresponding to the spectrum fGP×≤1

with homotopy groups

π1fGP×≤1 = Z, π0fGP×≤1 = 0, π−1fGP×≤1 = Z2

and k-invariant � Sq2. As discussed in section 5.5, we may identify fGP×≤1 with the spec-

trum SV×C of invertible objects (and invertible morphisms) in the category of complex

supervector spaces.

In the presence of fermions, there are two inequivalent notions of “time reversal”: one

can declare that T 2 = 1 or that T 2 = (−1)F . These correspond to two different ways

of extending “complex conjugation” to the category SVC. These two actions restrict to

the two ways that Z2 can act on fGP×≤1 for which the induced action on π1fGP×≤1 = Z is

nontrivial. Recall from section 5.3 that fGP×≤1 looks approximately like Z ⊕ Z2 but with

differential
(

d � Sq2

0 d

)
. In terms of this description, the two Z2-actions on fGP×≤1 are(

− id 0

0 id

)
or

(
− id � Sq1

0 id

)
.

Suppose that G is a finite group acting on fGP×≤1 via ε : G → Z2. Let dε denote

the twisted differential for ordinary cohomology discussed in section 6.1. Regardless of the

twisting, a degree-n cochain for twisted fGP×≤1 cohomology consists of an (n+ 1)-cochain

α valued in Z and an (n − 1)-cochain β valued in Z2. The first action of Z2 on fGP×≤1

corresponds to the twisted differential

dε(α, β) =
(
dε(α) +� Sq2 β, dβ

)
.

The second one gives instead the twisted differential

d′ε(α, β) =
(
dε(α) +� Sq2 β +�(ε ∪ Sq1 β), dβ

)
.

Let us take G = Z2 and ε = id and compute the two possible spectra fGP×(ZT2 )≤1

of fermionic time-reversal-protected phases. The homotopy groups of fGP×(ZT2 )≤1 are

precisely the twisted cohomology groups for G = Z2 and differentials dε or d′ε. In both

cases we find π≥1fGP×(ZT2 ) = 0 and π0fGP×(ZT2 ) = Z2. But the two differentials give

different classifications of invertible 0 + 1d systems. For the differential called dε above,

without the Sq1, direct computation gives π−1fGP×(ZT2 ) = Z2, whereas for the differential

d′ε, we have π−1fGP×(ZT2 ) = 0.

These answers are appropriate. Without protecting by time reversal, the invertible

0 + 1d system corresponds to the odd complex line C0|1 ∈ SV×C . The two notions of time
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reversal correspond, respectively, to studying either real supervector spaces SVR — in

which case there is an invertible odd object, namely R0|1 — or “quaternionic” supervector

spaces “SVH,” which are supervector spaces in which the even part is real and the odd

part is quaternionic. Since the underlying complex vector space of every H-module is even-

dimensional, this latter category SVH does not have an invertible odd object: π−1SV×H is

the trivial group.

6.4 Extended supercohomology with time reversal

The two extensions of complex conjugation to SVC provide two actions of Z2 on fGP×≤2 =

SA×C . In fact, there are four actions of Z2 on SA×C that induce the nontrivial action on

π1 = Z, two of which extend to the bicategory SAC of all (not necessarily invertible)

superalgebras and two of which do not. The actions that do not extend to all of SAC don’t

seem to have a physical meaning: they are actions on the space GP×≤2 of invertible phases

1 + 1d phases that do not make sense on noninvertible defects.

The “dε” action from section 6.3, for which fGP×(ZT2 )≤1, gives an action on SAC for

which fGP×(ZT2 )≤2 = SA×R is the spectrum of Morita-invertible real superalgebras. The

homotopy groups of this spectrum are well-known: up to Morita equivalence, there are

eight real Clifford algebras, and so

π0fGP×(ZT2 )≤2 = Z2, π−1fGP×(ZT2 )≤2 = Z2, π−2fGP×(ZT2 )≤2 = Z8.

It is not hard to show that both k-invariants are nontrivial, and an argument as in

section 5.4 shows that the two choices of j-invariant determine the same spectrum.

Let us analyze the quaternionic (aka symplectic) case, which in section 6.3 provided

the twisted differential d′ε. For this action, the spectrum fGP×(ZT2 )≤2 can be modeled as

the spectrum of Morita-invertible algebras in the category SVH of quaternionic supervec-

tor spaces. SVH is a somewhat unfamiliar category, and its algebras have a somewhat

unfamiliar flavor. The irreducible odd object I ∈ SVH is quaternionic in the sense that its

endomorphism algebra is the quaternion algebra H, considered as a purely even algebra.

In particular, H, being an endomorphism algebra, is Morita-trivial in this category. The

nontrivial complex superalgebra CliffC(1) ∈ SA×C cannot be given a quaternionic structure.

But CliffC(2), which is trivial in SA×C , does admit a nontrivial quaternionic structure, and

so defines a nontrivial object in SA×H. The irreducible odd object I ∈ SVH complexifies15

to C0|2, and the nontrivial object in SA×H is “Cliff(I).” All together, we find:

π0fGP×(ZT2 )≤2 = Z2, π−1fGP×(ZT2 )≤2 = 0, π−2fGP×(ZT2 )≤2 = Z2.

Since there are only two nontrivial homotopy groups, the spectrum fGP×(ZT2 )≤2 will be

determined once we can compute the k-invariant, a degree-3 stable cohomology operation.

There are precisely four degree-3 stable cohomology operations from Z2 to Z2: 0, Sq1 Sq2,

Sq2 Sq1, and Sq1 Sq2 + Sq2 Sq1.

15The complexification of a real vector space V is V ⊗RC. The complexification of a quaternionic module

is the underlying complex vector space.

– 28 –



J
H
E
P
0
5
(
2
0
1
9
)
0
0
7

We first argue that the k-invariant is nontrivial. Consider the restricted 2 + 1d Gu-

Wen phase for G = Z2: it generates H3(Z2; fGP×≤2) = Z4, and so has order 4. It can be

realized as a monoidal Z2-action on the Morita-trivial multifusion category of bimodules

for the complex superalgebra A = C ⊕ C. This monoidal category can be understood as

the monoidal category Mat(2, SVC) of 2 × 2 matrices whose matrix entries are complex

supervector spaces. Denoting parity-reversal by Π, the Z2-action is given by the functor(
X Y
Z W

)
7→
(
W ΠZ
ΠY X

)
plus monoidality data that we leave to the reader.16 We claim that this

Gu-Wen phase can be given an auxiliary time-reversal structure with symplectic fermions.

In fact, this can be done in multiple ways. One option is to use the category of bimodules

for the quaternionic superalgebra R ⊕ Cliff(I); such bimodules can again be realized as

matrices
(
X Y
Z W

)
where now X and W are objects of SVH and Y and Z are Cliff(I)-modules.

(Although “parity reversal” does not make sense in SVH, it does make sense for Cliff(I)-

modules, so the same formula
(
X Y
Z W

)
7→
(
W ΠZ
ΠY X

)
still makes sense.) Another option is

to use C as a real algebra (hence as a quaternionic superalgebra), and to use a Z2-action

that mixes complex conjugation and parity-reversal. Either choice determines a class in

H3(Z2; fGP×(ZT2 )≤2) whose image in H3(Z2; fGP×) has order 4. Thus H3(Z2; fGP×(ZT2 )≤2)

has elements of order at least 4, which is possible only when the k-invariant is nontrivial.

More generally, consider the map fGP×(ZT2 )≤2 → fGP×≤2 that forgets the time-reversal

symmetry (aka the complexification map SA×H → SA×C ). On homotopy groups this is the

0 map: the nontrivial element Cliff(I) ∈ π−2fGP×(ZT2 )≤2 = Z2 maps to Cliff(2,C) ' C ∈
π−2fGP×≤2.

fGP×(ZT2 )≤2 Z2 Z2

fGP×≤2 Z Z2 Z2

0 0 0

But complexification determines some nontrivial degree-1 maps. Indeed, on π0 we have the

inclusion Z2 ↪→ C×, which turns into the integral Bockstein � : Z2 → Z. The existence of a

quaternionic structure on the Gu-Wen phase from the previous paragraph means that com-

plexification induces the nontrivial map Sq1 : π−2fGP×(ZT2 )≤2 = Z2 → π−1fGP×≤2 = Z2.

Letting k denote the not-yet-determined k-invariant for fGP×(ZT2 )≤2, we have a commuting

square:

fGP×(ZT2 )≤2 Z2 Z2

fGP×≤2 Z Z2 Z2

� Sq1

k

� Sq2

and so

�k = � Sq2 Sq1 .

16There are two consistent choices for this monoidality data, corresponding to the two order-4 elements

in H3(Z2; fGP×≤2) = Z4.
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But � Sq1 = 0, leaving us with two choices for the k-invariant for fGP×(ZT2 ): either

k = Sq2 Sq1 or k = Sq1 Sq2 + Sq2 Sq1.

Further computations will be needed to determine which of these two options is the

correct one to describe the spectrum fGP×(ZT2 ) for symplectic fermions. Indeed, further

computations are needed even to find the correct formula, akin to the matrices
(−1 0

1

)
and

(−1 � Sq1

1

)
and the differentials dε and d′ε from section 6.3, for the two physically

meaningful “time-reversal” actions of Z2 on fGP×≤2 = SA×C — analyses that do not include

noninvertible defects will not be able to rule out the nonphysical actions of Z2 on SA×C that

do not extend to all of SAC.

7 SPT phases as anomaly theories

SPT phases are often characterized by properties of their symmetry-preserving bound-

aries: the boundaries should support phases where the bulk symmetry is realized in ways

which are impossible for a stand-alone system. Conversely, one may wonder how to define

the notion of “system with anomalous symmetry” in such a way that the corresponding

“anomaly” can be cured by an SPT phase in one dimension higher and ask if such anomaly

fully captures the data of the corresponding bulk SPT phase.

If we follow the idea that a non-anomalous internal symmetry is encoded in a col-

lection of invertible gapped defects and junctions which satisfy appropriate associativity

conditions, then an anomalous symmetry should be associated to collections of defects and

junctions which fail to satisfy these associativity conditions.

There are many ways these conditions may fail. For example, suppose we are given

a phase equipped with a collection of invertible interfaces Ug, fusing according to a group

law Ug ◦ Ug′ ' Ugg′ . The next step in defining a non-anomalous symmetry would be to

identify a viable set of invertible junctions Ug,g′ between these domain walls.

The existence of such junctions is implicit in the statement Ug ◦ Ug′ ' Ugg′ . The

choice, though, is not unique. Different choices can be related by fusing the junctions with

some invertible codimension 2 defects λ2(g, g′) in the bulk theory. Once we make some

choice, we need to test associativity. Failure of associativity is also encoded in an invertible

codimension 2 defect α3(g, g′, g′′).

The candidate symmetry will be non-anomalous only if we can adjust the λ2(g, g′) in

such a way to cancel α3(g, g′, g′′). This is a cohomology problem of sorts, but takes place

in the world of invertible codimension 2 defects in the theory. This is not very good. Such

a severe anomaly cannot be compared between different theories, nor cancelled by stacking

the theory with some other theory in the same dimension or placing it at the boundary of

an SPT in higher dimension.

The situation is drastically ameliorated if the failure of associativity takes place in a

smaller class of codimension 2 defects (possibly after adjusting our choice of junctions):

those defined by stacking an invertible codimension 2 phase onto the system. Then

α3(g, g′, g′′) is clearly a closed chain valued in GP×d−1 and the anomaly is controlled by

a group cohomology class valued in invertible phases in codimension 2.
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Similar considerations apply to higher associativity relations. The higher failures of

associativity will be encoded in invertible defects of codimension 3, 4, etc. If these de-

fects are generic, the “anomaly” of the symmetry cannot be compared between different

theories nor cured by an higher-dimensional SPT phase. We are not interested in such

a situation. But if the failures of associativity can be expressed in terms of “exogenous”

defects, defined by staking the theory with a lower-dimensional invertible phase, then we

have a good anomaly. The 3-dimensional failures of associativity will clearly build up a

class in H3(BGb;π0GP×d−1). Along with higher-dimensional failures of associativity, the

full data of the anomaly becomes a class in Hd+2(BGb; GP×≤d−1), which can be identified

with an SPT phase in one dimension higher!

With some hindsight, we can relax our assumptions a bit in order to accomodate

the most general SPT phases we have discussed. The first step of the relaxation is to

accept that the symmetry interfaces may fuse up to stacking with invertible phases in one

dimension lower:

Ug ◦ Ug′ ' Ugg′ × α2(g, g′)

This gives anomalies valued in H2(BGb;π0GP×d ). Finally, we may allow the interfaces

themselves to be slightly ill-defined, in the sense that Ug is really an interface between

the theory and the theory stacked with some invertible phase α1(g). This gives anomalies

valued in H1(BGb;π0GP×d+1). All together these anomalies compile into an anomaly valued

in Hd+2(BGb; GP×≤d+1) = H̃
d+2

(BGb; GP×).

We have thus identified a natural setup to define symmetries with a “good” anomaly,

which can be compared between different theories and cured by a higher-dimensional SPT

phase. Conversely, we have identified how the data of an SPT phase is encoded in the

properties of a symmetry-preserving boundary system.
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