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Symmetry-protected transport in
a pseudospin-polarized waveguide
Wen-Jie Chen1, Zhao-Qing Zhang1, Jian-Wen Dong2 & C.T. Chan1

If a system possesses a spin or pseudospin, which is locked to the linear momentum,

spin-polarized states can exhibit backscattering-immune transport if the scatterer does not

flip the spin. Good examples of such systems include electronic and photonic topological

insulators. For electromagnetic waves, such pseudospin states can be achieved in

metamaterials with very special artificial symmetries; however, these bulk photonic

topological insulators are usually difficult to fabricate. Here we propose a paradigm in which

the pseudospin is enforced simply by imposing special boundary conditions inside a channel.

The symmetry-protected pseudospin states are guided in air and no bulk material is required.

We also show that the special boundary conditions can be implemented simply using an array

of metallic conductors, resulting in spin-filtered waveguide with a simple structure and a

broad working bandwidth. We generate several conceptual designs, and symmetry-protected

pseudospin transport in the microwave regime is experimentally indicated.
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O
ne-way transport of light has been actively pursued to
suppress backscattering in optical devices. Most of the
previously reported one-way waveguides were based

on magneto-optic effects1–3. Disorder does not introduce
backscattering in these nonreciprocal systems as backward
propagating modes are absent because of the breaking of time-
reversal symmetry. Nonreciprocities of electromagnetic (EM)
waves on the basis of other mechanisms, including optical
nonlinearity4–6 and indirect interband photonic transitions7–9,
were also investigated, although they do not support scattering-
free transport. One-way edge states of magnetic photonic
crystals10–13, which are analogous to the quantum Hall
effect14,15, have been predicted and observed. Robust
transport can also be realized without breaking time-reversal
symmetry16–22 in the form of ‘photonic topological
insulators’23–28. Spin-filtered edge states at the boundary of
such systems are protected by the nontrivial topology of bulk
states. They are robust against backscattering, provided that
scatterers preserve the pseudospin. All of these strategies require a
special bulk material to guide light in a special way. The natural
question is whether ‘pseudospin’ transport is possible with light
guided in air. In addition, spin-dependent coupling has been used
to realize an all-optical photonic switch29 and directional
spontaneous emission30 in the optical regime recently.

In this paper, we propose a spin-filtered waveguide without
using any bulk material. Wave propagation in the waveguide is
robust against deformations that do not induce spin flip. The
waveguide possesses a simple structure and a broad working
bandwidth.

Results
Concept of pseudospin-filtered waveguide. Consider a time-
reversal invariant system whose relative permittivity and per-
meability satisfy a mirror reflection symmetry of eðrÞ ¼ rm Rsrð Þ.
Here Rs is a mirror operator and r is a global constant in the
whole space. For the sake of simplicity, we assume that the mirror
plane is the xy plane (for the conciseness of the equations) and
r¼ 1 (as we will discuss wave guided in air below), that is,
e(z)¼ m(� z). The Maxwell equations then reduce to two
decoupled equations:

JxðzÞ � Mxð� zÞ
JyðzÞ � Myð� zÞ
JzðzÞ � Mzð� zÞ
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where

W� ðzÞ ¼ ExðzÞ � Hxð� zÞ EyðzÞ � Hyð� zÞ
�

EzðzÞ � Hzð� zÞÞT :
ð2Þ

Variables x and y are omitted for conciseness. J and M denote
electric and magnetic currents. For simplicity, E(M), H (J) and o

are normalized by 1=
ffiffiffiffi

e0
p

, 1=
ffiffiffiffiffi

m0
p

and 1=
ffiffiffiffiffiffiffiffiffi

e0m0
p

, respectively, so
that electric and magnetic fields (currents) have the same
dimension. Wþ and W� are referred to as pseudo spin-up and
spin-down states, as they are linked by time-reversal symmetry
and decoupled from each other. By the definition of spin-up
(spin-down) state in equation (2), the Ez field component at point
(x, y, z) and the Hz field component at point (x, y, � z) are in
phase (out of phase), while the Ex,y field component and the Hx,y

field component are out of phase (in phase) so that the electric
field and magnetic field distributions of the spin-down (spin-up)

state form a mirror (antimirror) reflection about the xy plane,
that is, H¼szE (H¼ � szE). Equation (1) describes the relations
between source and field. The spin-up and spin-down states can
be excited separately, depending on whether the electric current
and the magnetic current are in phase or out of phase. Note that
e(z)¼rm(� z), which ensures the decoupling of the pseudospin-
up and spin-down subsystems, is a necessary albeit insufficient
condition for spin-filtered transport. This is because the
pseudospin is not necessarily locked to the momentum. For
example, air satisfies the e(z)¼m(� z) symmetry but it obviously
is not a spin-filtered channel. Figure 1a plots the eigenmodes of
an EM wave propagating along the x direction in air. There are
four linearly polarized plane waves with two spin-up and two
spin-down modes according to the definition of pseudospin in
equation (2). Because the spin-up and spin-down waves can
propagate in both the (þ x) and (� x) directions, air does not
have the spin-filtered feature.

To realize spin-filtered transport, we must design a channel
that supports only the spin-up forward mode and the spin-down
backward mode. This can be achieved by applying boundary
conditions. Consider a square waveguide filled with air, as shown
in Fig. 1b. The four walls are alternatively made up of perfect
electric conductors (PECs) and perfect magnetic conductors
(PMCs). The boundary condition only allows the spin-up forward
and spin-down backward modes to exist, and hence the
pseudospin is locked to the wave vector and the square waveguide
becomes a spin-filtered channel. The PEC–PMC boundary
conditions have been used in waveguides31,32 where the
transport property relies on the electrically small e-near-zero
materials that fill the waveguide. Figure 1c depicts the dispersion
relation of our square waveguide. The side length of the square
cross-section is a=2

ffiffiffi

2
p

. Below the cutoff frequency
ffiffiffi

2
p

ðc=aÞ
� �

of
the high-order modes, there are two singly degenerate transverse
electromagnetic (TEM) modes (spin-up forward and spin-down
backward modes), whose longitudinal field components are zero
(Ex¼Hx¼ 0). The insets of Fig. 1c illustrate their eigenfield. In
addition, the high-order mode is a non-TEM mode (Exa0,
Hxa0) and is a doubly degenerate (spin-up and spin-down) band
due to the mirror symmetry about the yz plane. The PECs
(e¼ �N, m¼ 1) and PMCs (e¼ 1, m¼ �N) of the square
waveguide satisfy the e(z)¼m(� z) symmetry because they form
a mirror pair about the xy plane. Once the spin-up forward mode
is excited, the EM wave cannot be reflected in the absence of the
backward spin-up mode, as long as the e(z)¼ m(� z) symmetry is
preserved (for the symmetry-broken case, see Supplementary
Note 1). To demonstrate its robust transport property, we use
COMSOL to simulate a deformed waveguide in Fig. 1d, where the
PEC–PMC boundaries are shown in grey/yellow. A plane wave
travels into the waveguide and excites the spin-up TEM mode
propagating along the þ x direction. Note that a spinful source
(in-phase/out-out-phase electric and magnetic currents) is not
required to excite the waveguide mode. As the spin-up forward
mode is the only propagating mode allowed in the forward
direction, it can be excited as long as the exciting field has a
non-zero projection on the spin-up mode. Wave propagation in
this waveguide is protected by the e(z)¼m(� z) symmetry. The
waveguide is first bent in the þ y direction through an S-shaped
bend and then squeezed into a narrow square waveguide with a
side length of a=10

ffiffiffi

2
p

. After two 90� bends, it finally connects to
a star-shaped waveguide. None of these deformations break the
e(z)¼m(� z) symmetry; therefore, the spin-up and spin-down
states are still decoupled. In addition, no backscattering occurs in
this waveguide, as can be seen from the Ez field pattern in Fig. 1e.

It is important to note that the spin-filtered feature of our
PEC–PMC waveguide does not depend on the shape of the PEC
or PMC. In fact, it is determined by the number of PEC–PMC
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pairs in the boundaries and the e(z)¼m(� z) symmetry. An
arbitrarily shaped waveguide bounded by two PECs and two
PMCs with its geometry satisfying e(z)¼m(� z) symmetry is
spin-filtered. Figure 2a depicts the general configuration of a
waveguide consisting of two PECs and two PMCs. It can be
proved that this waveguide having an arbitrary cross-section is
spin-filtered (see Supplementary Note 2). It can further be
shown (see Supplementary Note 2) that a waveguide satisfying
e(z)¼ m(� z) symmetry and bounded by N pairs of PECs and
PMCs will have (N� 1) TEM modes for each propagation
direction. The spin-filter feature is guaranteed for the case
of N¼ 2.

Spin-filtered edge mode in simple structures. Once we know
how to achieve the spin-filter feature, we can use simple struc-
tures to manipulate EM wave in a scattering-free manner.
Figure 3a shows the cross-section of another waveguide consist-
ing of four parallel plates. The e(z)¼m(� z) symmetry is pre-
served since the two PECs and the two PMCs form a pair of
mirror images. The four parallel plates extend semi-infinitely in
the y direction; therefore, the PECs (PMCs) in the upper half and

the PMCs (PECs) in the lower half will meet at y-±N. This
waveguide thus supports two counterpropagating TEM modes
whose pseudospins are locked to the wavevectors. Figure 3c plots
its dispersion relation. The blue and red lines indicate the spin-up
forward and spin-down backward TEM modes. Both TEM modes
have a linear dispersion o¼ 2pf¼ c|kx|, where c is the speed of
light. Figure 3e,f shows the eigen electric and magnetic fields of
the forward spin-up mode. The electric and magnetic fields form
an antimirror reflection, which is consistent with the definition of
spin-up in equation (2). The fields are localized near the edge
between the PECs and the PMCs. This field localization
behaviour can be understood in the following way. The structure
in Fig. 3a can be seen as a boundary between two parallel plate
waveguides. The left waveguide has a PEC plate on top and a
PMC plate at the bottom, while the right waveguide has a PMC
plate on top and a PEC plate at the bottom. Both waveguides have
a thickness of a/2 and a cutoff frequency of 0.5 (c/a). Below the
cutoff frequency, no propagating EM mode exists for a single
parallel plate waveguide. However, when the two parallel plate
waveguides are interfaced with each other, the structure must
support two TEM modes. Hence, the eigenfields of TEM modes
must be edge modes localized near the boundary since the EM
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Figure 1 | Concept of pseudospin-filtered waveguide. (a) Four eigenmodes propagating along the x direction in air. Air does not have the spin-filtered

feature because it supports spin-up (spin-down) modes in both forward and backward directions. One can achieve a spin-filtered waveguide by applying

boundary conditions. (b) Cross-sectional view of a square waveguide with PEC and PMC boundaries. The side length of the square cross-section is a=2
ffiffiffi

2
p

.

(c) Waveguide dispersion. Only two TEM modes are allowed below the cutoff frequency of a spin-degenerate high-order waveguide mode
ffiffiffi

2
p

ðc=aÞ
� �

. c is

the speed of light. The forward mode propagating along the þ x direction is pseudospin-up polarized as its eigenfield (right inset) satisfies the relations of

Ex,y(z)¼ �Hx,y(� z) and Ez(z)¼Hz(� z). The backward mode is pseudospin-down polarized (see the eigenfield in left inset). The square waveguide is

hence a spin-filtered channel. Its transport is robust against backscattering, unless the scatterer or deformation flips the pseudospin. (d) Geometry of a

deformed waveguide. EM wave with 45�-tilted polarization enters the bottom of the deformed waveguide, which consists of a square waveguide

successively connected to an S-shaped bend, another square waveguide with very small (1/25) cross-section and a star-shaped waveguide. As the

e(x, y, z)¼m(x, y, � z) symmetry is preserved despite these deformations, the spin-up mode and the spin-down mode are decoupled, and no backscattering

can occur. (e) Ez field pattern in the deformed waveguide normalized by the incident field amplitude.
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wave cannot propagate into sub-cutoff parallel plate waveguide
on either side. One can mold the flow of EM wave in a two-
dimensional plane in a scattering-free manner using this edge
mode. The oblique view of a zigzag edge is shown in Fig. 3b,
where the top and bottom plates are spaced further apart to reveal
the geometry of the bottom plate. Figure 3d shows the Ez field
pattern in the central plane. EM wave with a frequency of 0.3
(c/a) is incident from the left and guided along the edge (black
line). In addition, no reflection occurs even when the EM wave
propagates through two sharp corners. In addition, the PEC and
PMC plates in Fig. 3a need not extend semi-infinitely in the y
direction since the EM wave decays evanescently away from
the edge.

The aforementioned spin-polarized waveguide or edge wave-
guide built from PECs and PMCs can, in principle, have a broad
working bandwidth ranging from quasistatic wave up to the
cutoff frequency. However, PMCs are typically realized with
artificial subwavelength resonant structures33, which have a
restricted bandwidth (see Supplementary Note 3). Instead of
PMCs, we propose an implementation using the periodic PEC
structure shown in Fig. 3g. Here we mimic an effective PMC
boundary by introducing additional translation and mirror
symmetries (see below). The yellow dashed lines indicate the
whereabouts of the PMC plates in Fig. 3a. The yellow dashed lines
on z¼ � 3a/4 and z¼ a/4 also mark the periodic boundaries if
we take the domain zA[� 3a/4, a/4] as a unit cell. The system is
mirror-symmetric about the planes of z¼±(2N� 1)a/4
(N¼ 1,2,3...) as it is periodic in the z direction. The eigenmodes
can hence be classified as even or odd relative to the mirror
reflections. For the even mode, its electric field is even under
mirror reflection about z¼±a/4. At the same time, the electric
field at the yellow dashed line of z¼ � a/4 satisfies the
continuous boundary condition. Hence, the electric field
component perpendicular to the surface must be zero, as if an
effective PMC boundary is placed at the yellow dashed line.
Likewise, the continuous boundary condition (yellow dashed line)
at z¼ a/4 also serves as effective PMC for the even mode. It is
straightforward that the eigenfield of the periodic PEC structure
(Fig. 3g) in the domain of zA[� a/4, a/4] should be identical to
the one of PEC–PMC structure (Fig. 3a). By performing a mirror
reflection about z¼ � a/4 on the eigenfields in zA[� a/4, a/4],
the fields in zA[� 3a/4,� a/4] are obtained. Therefore, the
eigenmodes of Fig. 3a and the even modes of Fig. 3g have one-to-
one correspondence. In other words, suppose the field solution of
Fig. 3a consists of Ex(x, y, z), Ey(x, y, z), Ez(x, y, z), Hx(x, y, z),
Hy(x, y, z) and Hz(x, y, z), which are non-zero in the domain
zA[� a/4, a/4], then the periodic system in Fig. 3g must have a
corresponding solution, as illustrated in Fig. 3g. In addition, the
pseudospin-filtered edge mode localized near the edge should also
exist in the periodic PEC structure.

On the other hand, the electric field for the odd mode should
be odd under reflection about z¼ � a/4 and should be
continuous at the yellow dashed line on z¼ � a/4. Thus, the
electric field there is required to be perpendicular to the surface,
as if an effective PEC boundary is there. Therefore, solving the
odd modes in Fig. 3g is equivalent to solving the eigenmodes of a
parallel plate waveguide where both the upper plate and the lower
plate are PEC. The odd mode should be Ez-polarized plane wave
modes propagating in the xy plane, which are not localized near
the edge. These extra odd modes are decoupled from and
orthogonal to the even edge modes because of their different
symmetries. The odd modes should not affect the transport of the
edge mode.

To demonstrate the field solution correspondence, we calculate
the dispersion of periodic PEC edge waveguide in Fig. 3g. Results
are shown in Fig. 4. Compared with the dispersion of the

PEC–PMC edge waveguide (Fig. 3c), some additional bands of
odd bulk modes emerge (green dashed lines in Fig. 4a), apart
from the pseudospin-up/spin-down edge modes. Figure 4b plots
the eigen electric field of the forward edge mode at kx¼ 0.5(p/a).
The eigenfields in the region of zA[� a/4, a/4] is exactly the same
as that in the PEC–PMC waveguide (Fig. 3e), while the fields in
the domain zA[� 3a/4,� a/4] is its mirror image. This confirms
our field solution correspondence. Figure 4c plots the electric
field of the lowest additional band at kx¼ 0.5(p/a). This is an
Ez-polarized plane wave bulk mode, which is odd under
reflection. Note that periodic boundary condition is applied in
the z direction (that is, kz¼ 0) in the simulation. There should be
other extra modes with kza0; however, they are decoupled from
the kz¼ 0 edge mode we concerned with as long as the
translational symmetry along the z direction is preserved so that
kz is preserved.

Although the above discussion is about the eigen mode of a
straight edge, the solution correspondence can be easily extended
to the zigzag edge. The robust transport in Fig. 3d can be realized
in a periodic PEC structure without using PMCs (Fig. 3h), and
the edge mode would then have a truly broad working bandwidth.
The translational symmetry along the z direction and the mirror
symmetry ensure the correspondence of the field solution
between the PEC–PMC structure and the periodic PEC config-
uration. We note that the e(z)¼ m(� z) symmetry in the original
PEC–PMC structure ensures the decoupling between pseudospin-
up and spin-down modes. Therefore, the robust transport of the
edge mode in periodic PEC structure is protected by the
translational symmetry, mirror symmetry and the hidden
e(z)¼m(� z) symmetry between PEC and effective PMC. Since
these symmetries are preserved in the zigzag deformation of
Fig. 3h, no reflection occurs at the two corners (see the result in
Supplementary Fig. 8). We also note that the system in Fig. 3h
employs PEC slabs with infinite periods. In actual implementa-
tion, a finite number of periods should be enough to realize
spin-polarized robust transport (see Supplementary Note 5),
although a small fraction of EM waves will leak from the topmost
and bottommost periods. The small leakage, however, can be
eliminated in a fan-shaped waveguide as shown below.
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Figure 2 | Number of TEM modes in the waveguide with PEC and PMC

boundaries. Schematic of a waveguide having an arbitrary cross-section

and satisfying the e(z)¼ m(� z) symmetry (a) with two PECs and two

PMCs. When TEM modes are considered, Maxwell equations reduce to a

Poisson’s equation r2
j¼0 with four boundary conditions. The two PMCs

require the vertical component of electric field to be zero (E>¼0), while

the two PECs require the whole boundary has an equal potential j1 or j2.

By applying the uniqueness theorem, one finds that this configuration has

one spin-filtered TEM mode in each propagating direction. (b) A waveguide

with three PECs and three PMCs. This configuration has two TEM modes in

each direction. Spin-filtered feature is not guaranteed in this case.
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The robustness of our spin-polarized waveguide against
symmetry-preserving deformation could lead to devices such as
broadband field concentrators. EM field concentrators can be
realized via tapered plasmonic waveguides34,35 or transformation
optics36–38. Our spin-polarized waveguide provides an alternative
way to focus an EM field for a broad range of frequencies and
with a more compact structure. As an example, we consider the
configuration shown schematically in Fig. 5a. It is similar to that
in Fig. 3a; however, the top and bottom plates meet at an angle of
15� instead of being parallel. The edge between the PECs and the
PMCs is 2a away from the apex. As the structure has
e(z)¼ m(� z) symmetry and there are two PEC plates and two
PMC plates, it is a spin-filtered channel. In Fig. 5b, we show the
oblique view of a field concentrator that carries a defect region
(5a in length) in the middle, where the edge is shifted closer to the

apex (1a away from the apex). The EM wave guided along
the edge will travel around the defect region without being
reflected. The Ey field pattern shown in Fig. 5c (simulated by
COMSOL) confirms the robust transport phenomenon, when an
Ey-polarized beam with a frequency of 0.22 (c/a) is incident from
the left. Figure 5d plots the electric field amplitude |Ey| at the two
dashed lines marked in Fig. 5c. The electric field in the shifted
region is enhanced by two times as that in the other region. This
phenomenon can be understood in the following way. The defect
region itself is another spin-filtered channel having two TEM
modes. Its eigenfield pattern can be obtained by simply scaling
down the eigenfield of the unshifted edge by two times. Thus, the
eigenfield of the shifted edge should have a smaller beamwidth
than the unshifted edge. In addition, there is no reflection at the
boundary between the two different edges. To conserve the
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waveguides, each of which consists of a PEC plate and a PMC plate. (b) Oblique view of a zigzag edge where Ey-polarized EM wave is incident from the

left. (c) Dispersion of the straight edge shown in a. The grey area represents the projected bulk modes in a single PEC–PMC parallel plate waveguide.

Below its cutoff frequency of 0.5 (c/a), there exists only one spin-up forward edge mode (blue line) and one spin-down backward edge mode (red line).

(d) Ez field pattern of the zigzag edge shown in b normalized by the incident field amplitude. The EM wave travels around two 135� corners without being

reflected as the edge is spin-filtered. (e,f) Eigen electric field (magenta arrows) and magnetic field (green arrows) of the spin-up forward edge mode.

To circumvent the complexity of using a PMC, we propose the periodic PEC configuration shown in g. The yellow dashed lines on z¼ � 3a/4 and z¼ a/4

represent periodic boundaries. The periodic system in g has a field solution that corresponds to the solution of the system in a. Suppose the field solution of

a consists of Ex(x, y, z), Ey(x, y, z), Ez(x, y, z), Hx(x, y, z), Hy(x, y, z) and Hz(x, y, z), which are non-zero in the domain zA[� a/4, a/4]. The corresponding field

solution of the periodic system is as illustrated in g. The spin-polarized robust transport in d can thus be realized for a broad range of frequencies by the

periodic PEC plates shown in h.
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Figure 5 | Field concentrator with broad bandwidth. (a) Cross-sectional view of an edge (black dashed line) between two fan-shaped plate waveguides.

The distance between the apex and the edge is 2a. (b) Oblique view of a zigzag edge whose middle part is shifted closer (1a) to the apex. (c) Ey field pattern

of the zigzag edge shown in b normalized by the incident field amplitude. When the EM wave is launched from the left, it travels through the shifted part

without backscattering, which is verified by comparing the field amplitudes on the left- and right-hand sides. (d) Electric field amplitudes at the orange and

green dashed lines in c, showing that the field amplitudes in the middle shifted edge region are doubled, as required by energy flux conservation. The edge

between two fan-shaped plate waveguides can also be realized in the structure shown in e, which is periodic in the Azimuthal direction. (f) Oblique view of

a field concentrator built from PEC slabs.
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energy flow, the field amplitude in the defect region should be
twice that of the unshifted edge. Similarly, one can increase the
field concentration by decreasing the distance between the shifted
edge and the apex. Figure 5e (cross-sectional view) and Fig. 5f
(oblique view) show the realization of a broad bandwidth field
concentrator using a PEC structure that is periodic in the
Azimuthal direction. Its correspondence to the system in Fig. 5a
can be proved in a similar way to the parallel plate waveguide (see
Supplementary Note 4). The advantage of this fan-shaped
waveguide is that the leakage of EM waves can be avoided since
the edge (black dashed line in Fig. 5e) forms a closed loop.
It should be emphasized that the edge transport in this periodic
PEC fan-shaped waveguide is protected by C12v symmetry and
the hidden e(z)¼ m(� z) symmetry between PEC and effective
PMC (see Supplementary Note 4).

Experimental indication of a pseudospin-polarized waveguide.
Figure 6 illustrates an experiment of our spin-polarized wave-
guide and field concentrator. In our microwave experiment, a
periodic fan-shaped PEC waveguide was used to mimic the ideal
PEC–PMC structure in Fig. 5a. Two samples were fabricated,
where one had a straight edge and the other had a zigzag edge as
in Fig. 5f. Both samples were built using 24 aluminium plates that
were supported by two sheets of plexiglass. The length a¼ 2 cm
(see Fig. 5a) in our experiment. The experimental set-up and a
photo of a sample are illustrated in Fig. 6a. The EM wave from a
radially polarized horn impinged on the left of the sample (see
Methods). The Ey field inside the sample was measured with a
monopole antenna along the y direction. By stepping the antenna
in increments of 4mm� 4mm in the xy plane, the field ampli-
tude and phase were recorded. Figure 6b shows the measured
transmittance of the sample with a straight edge (black line) or a
zigzag edge (red line). The two spectra are essentially identical,
implying that the defect region did not introduce back reflection
and indicating pseudospin-polarized transport at frequencies
ranging from 2.2 to 5.5GHz. This also validates our approach of
mimicking the PMC boundary for a broad-frequency range with
a periodic structure. We note that the transmittances from 3.8 to

4.3 GHz were lower than other frequencies because of the lower
emission power of the horn in this range. The blue dashed line in
Fig. 6b plots the output spectra of the radial horn, which was
measured without the sample. Figure 6c–f/g–j shows and com-
pares the measured Ey field inside the sample with straight/zigzag
edges at 2.3, 3.0, 4.0 and 5.3GHz. The measured field patterns at
each frequency are normalized by the maximal amplitude in the
zigzag edge. The EM waves were always guided along the straight
or zigzag edges (marked by black dashed lines). From Fig. 6g–j,
the field amplitudes on the left and right of the zigzag edges are
almost the same, indicating robust transport. We also found that
the fields in the defect region were enhanced, compared with the
fields in the unshifted region or in the straight edge, indicating the
field concentrating effect. The field amplitudes in the middle
shifted edge region are doubled, as required by energy flux
conservation.

Discussion
In summary, we have proposed a simple route to realize a
pseudospin-polarized waveguide without using bulk materials.
Numerical simulations and experimental results show its robust
transport property and broad working bandwidth. On the basis of
our spin-polarized waveguide, a broadband field concentrator
was designed and realized experimentally. The realization of
pseudospin transport simply by imposing boundary conditions
has the obvious advantages of using less bulk material and being
less lossy as the wave is guided in air. The idea may also be
extended to the high-frequency regime, although the metallic loss
limits the propagation distance (see Supplementary Note 6).

Methods
Experimental set-up. To excite the fully symmetric edge mode, we employ a
radially polarized source whose electric field vector lies in the radial direction.
Supplementary Fig. 14 gives the cross-sectional view of the radial horn. It consists
of a circular PEC waveguide and a PEC rod lying at the centre of circle. Its
fundamental mode is radially polarized and its electric field vectors point from the
centred PEC rod to the outer circular waveguide. A monopole antenna was inserted
into the waveguide to excite the fundamental mode. The tapered section on the
right spans the radial beamwidth to accomodate the radius of the edge mode of the
sample.
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