
Symmetry Reduced Model Checking for B

Edd Turner1, Michael Leuschel2, Corinna Spermann2, Michael Butler1

1 School of Electronics and Computer Science
University of Southampton

SO17 1BJ, UK
{ent03r,mjb}@ecs.soton.ac.uk

2 Institut für Informatik
Universität Düsseldorf Universitätsstr. 1

D-40225 Düsseldorf, Germany
{leuschel,spermann}@cs.uni-duesseldorf.de

Abstract

Symmetry reduction is a technique that can help alleviate
the problem of state space explosion in model checking. The
idea is to verify only a subset of states from each class (or-
bit) of symmetric states. This paper presents a framework
for symmetry reduced model checking of B machines, which
verifies a unique representative from each orbit. Symmetries
are induced by the deferred set; a key component of the B
language. This contrasts with strategies that require the in-
troduction of a special data type into a language, to indicate
symmetry. An extended version of the graph isomorphism
program, nauty, is used to detect symmetries, and the sym-
metry reduction package has been integrated into the PROB
model checker. Relevant algorithms are presented, and ex-
perimental results illustrate the effectiveness of the method,
where exponential speedups are sometimes possible.

1. Introduction

The B-Method [1] is a theory and methodology used for
the formal development of computer programs. It includes
a concise language based on set theory and predicate logic,
called B, and is used by industries in a range of critical do-
mains, notably in railway control (e.g., the control system
for the automatic, unmanned Paris Métro Line 14).

Proof activities in B are usually carried out using the in-
teractive theorem provers, Atelier-B [25] or the B-toolkit
[2]. Model checking is a useful, complementary ap-
proach that can perform these tasks automatically, if bounds
are placed on system types; as with the combined B-
animation/model checker, PROB [19].

A major challenge facing model checking is the prob-
lem of state space explosion. This is where a linear in-
crease in the size of a specification leads to an exponential
increase in the number of states, which the model checker

must explore. Thus, checking larger specifications becomes
intractable. Much research in model checking focuses on
methods to combat this problem, including partial order re-
duction [12], induction [6] and abstraction [5]. Symmetry
reduction is another approach, which exploits symmetries
inherent in the system [6] by constraining the search to rep-
resentatives of symmetric states; often resulting in signifi-
cant savings in memory and time. A successful technique
relies on a special data type, called a scalarset, being in-
troduced into the language of the model checker, to indi-
cate symmetric structures (e.g., the Murϕ Verifier [13] and
SymmSpin [3]). This requires the user to indicate symme-
tries of the model, and is therefore error prone, and compro-
mises the automation of model checking.

This paper presents an automatic method for exploiting
symmetries caused by a key component of the B language,
the deferred set. The work uses a very different technique to
an alternate strategy called permutation flooding, which we
present in [18]. In the next section, we introduce deferred
sets in B, and the notion of symmetry. Section 3 follows
with a detailed example that elaborates on the types of sym-
metries exploited. The integration of our symmetry reduc-
tion into the PROB model checker is given in Section 4. We
then describe a two-phase technique that identifies system
symmetries, using a graph isomorphism algorithm based on
nauty [21]. Finally, we illustrate the effectiveness of the
technique by applying it to several typical B models, and
we discuss its drawbacks and future improvements.

2. Symmetry and Deferred Sets in B

In B there are two ways to introduce sets into a B ma-
chine: either as a parameter of the machine, or via the SETS
clause. Sets introduced in the SETS clause are called given
sets. Given sets whose elements are explicitly enumerated
are called enumerated sets; the other types of sets are called
deferred sets. An example of both kinds of given sets is

given below:

SETS
ExitMsg = {success,fail}; // an enumerated set
Proc // a deferred set

Deferred sets consist of abstract elements. For instance,
Proc is a set of abstract processors. The only information
known about a given element of such a set is the identity of
this deferred set. It follows that the permutation of one ab-
stract element for another will have no effect on semantics;
no information is gained or lost. Extending this idea, one
finds a set containing n elements of Proc to be symmetric to
another set containing n elements of Proc. Indeed, the use
of abstract elements in a B specification gives rise to sym-
metries in data structures used within the system, which our
scheme can exploit. This is similar to the symmetries in-
duced by scalarsets [13, 3], which are sets of permutable
scalar values. In the next section, we describe a concrete
example to elaborate on the types of symmetries that our
method can exploit.

3. Motivation

Let us indicate the type of symmetry we want to exploit
by considering a simple B model of a phone book, see Fig. 1
below. The model (or machine) has three operations: add,
to add entries into the phone book; delete, to remove entries;
and lookup, to query a person’s phone number.

The machine has two deferred sets, Name and Code,
modelling sets of names and phone numbers respectively.
A single variable, db, which is a partial function, stores the
contents of the phone book; hence, a Name can have at most
one Code associated with it.

An exhaustive search of the state space of this machine
requires bounds to be placed on the types used [19]. If we
set the cardinality of the deferred sets to 2, the full state
space has 10 distinct states. Fig. 2 shows the state space,
where the label of each state is the current value of db (e.g.,
{(Name1,Code1)}). For clarity, the parameters of the add
operation are hidden, and the delete and lookup operations
are not depicted (this does not affect the set of reachable
states).

The use of deferred sets give rise to symmetries among
the states. Informally, we define two states as being sym-
metric if the machine invariant has the same truth value in
both states, and if there is a permutation between the two
states that permutes values of deferred sets. We also re-
quire this permutation to respect the typing e.g., a Name
can only be permuted with another Name. In Fig. 2,
the state db = {(Name1, Code1)} is symmetric to db =
{(Name1, Code2)} since both are functions and there is the

MACHINE phonebook
SETS Name; Code
VARIABLES db
INVARIANT db ∈ Name �→ Code
INITIALISATION db := ∅
OPERATIONS

add(n , c) =̂
PRE n ∈ Name ∧ c ∈ Code ∧ n /∈ dom(db) THEN
db := db ∪ {n �→ c} END;

delete(n , c) =̂
PRE n ∈ Name ∧ c ∈ Code ∧ n �→ c ∈ db THEN
db := db \ {n �→ c} END;

c← lookup(n) =̂
PRE n ∈ Name ∧ n ∈ dom(db) THEN
c := db(n) END

END

Figure 1. Phonebook Machine

{(Name1,Code1)}

{(Name1,Code1)
(Name2,Code1)}

{(Name2,Code1)} {(Name2,Code2)} {(Name1,Code2)}

{(Name1,Code1)
(Name2,Code2)}

{(Name1,Code2)
(Name2,Code1)}

{(Name1,Code2)
(Name2,Code2)}

add add addadd

add
add add add add add

add
add

initialise

Figure 2. State Space of Phonebook

permutation, {(Code1, Code2)} between them. Symmet-
ric states in Fig. 2 have been indicated by identical black
shapes in their top left hand corner. As can be seen, three
other states are symmetric to db = {(Name1, Code1)}.

Permutations that preserve the equivalence of two states
must take care with values that are constants or elements of
enumerated types (including Booleans and integers), since
these values can break the symmetries described above.
For example, an alternate phonebook machine might use
a constant ‘999’ ∈ Code to represent the phone number
of the emergency services. To ensure this number is re-
served, we strengthen the precondition of the add opera-
tion with n �= ‘999’. Supposing db = {(Name1, Code1)}
and db = {(Name1,‘999’)} are two reachable states for
this new machine, we must find that they are not symmet-
ric, despite the existence of a permutation on deferred sets
between them. To handle this particular case, values of
constants must not be permuted once model checking has
started. A thorough definition of these permutation func-
tions, and soundness results of the symmetries, can be found
in [18].

{(Name1,Code1)}

{(Name1,Code1)
(Name2,Code1)}

{(Name1,Code1)
(Name2,Code2)}

initialise

add(Name1,Code1) delete(Name1,Code1)

add(Name2,Code1) add(Name2,Code2)

delete(Name2,Code1) delete(Name2,Code2)

Figure 3. Reduced State Space of Phonebook

Our approach to symmetry reduction checks only one
(unique) representative per symmetry class, using an algo-
rithm for graph isomorphism that permits the permutations
described. For proof of soundness with respect to standard
model checking, see [18]. Fig. 3, illustrates the symmetry
reduced state space for the phonebook machine. The tech-
nique exploits symmetries caused by deferred sets, so it is
likely to significantly reduce the time to model check many
B specifications, since such sets are commonly used in B.
For instance, deferred sets often occur near the top of step-
wise refinement chains, in the abstract specifications. In the
next section, we present our approach for identifying sym-
metries.

4. Symmetry Detection

The task of identifying unique representatives from sets
of symmetric states is closely related to the well known
problem of solving graph isomorphism [16], which cur-
rently has no known polynomial algorithm. However, in
practice some extremely efficient algorithms exist for most
classes of graphs [15] that may contain several thousands
of vertices [11]. The most efficient general purpose graph
isomorphism program is nauty [22].

This section outlines our method for computing repre-
sentatives of states in B using an extension to the underlying
algorithm of nauty. The idea is to compute representatives
in two phases, starting by translating a state to a graph, and
then applying a graph isomorphism program to find its rep-
resentative.

4.1. Symmetry in Model Checking

Let us recall that given a specification of a system, model
checking involves the construction of a state transition sys-
tem (model), representing the behaviour of the system, so

that properties of it can be checked by exhaustive search.

Constructing models in PROB: A specification in B is de-
scribed by means of constants and variables, whose evalua-
tion determines a state, and a set of operations. To construct
the model of a B machine, M, we represent machine con-
stants and variables by a vector of variables V = v1, . . . , vn,
and we characterise B operations operating on variables V
with inputs x and outputs y by a predicate P(x, V, V ′, y).
Characterising B operations of the form X ← op(Y) as
predicates then gives rise to the model: a labelled transition
system on states, where states s and s′ are related by an ope-
ration op.a.b, denoted s→M

op.a.b s′, when P(a, s, s′, b) holds.
A special root state is also added, where root→M

initialise s de-
notes that state s satisfies the initialisation and properties
clause. For further details, see [20]. In PROB, such models
are automatically constructed and searched for states that
violate properties specified on V (invariant violations), or
are deadlocked.

We now formalise our modified model checking algo-
rithm, to show how symmetry detection via graph isomor-
phism is integrated into the checking; see Algorithm 1.
When a new state is encountered it is not explored further
if its canonical form has already been explored. On line 4,
error is a function which returns true if the argument is an
error state: usually, this means an invariant violation or a
deadlock1. Also note the use of random on line 11, and
α, which is a user defined value. Its effect varies whether
model checking progresses using a depth first or breadth
first search.

The variable Queue, stores the states with transitions yet
to be explored, and V isited records states already reached
by checking. SGraph stores the section of the model ex-
plored so far. The function G (line 9) converts a state of a B
machine into a labelled, directed graph, and is explained in
Section 4.2 below. The function canon computes a canon-
ical form for such a graph. We explain how the function
works in Section 4.4. Note that all elements of Queue and
V isited have associated hash values. It is therefore usually
efficient to decide whether sg �∈ V isited. We have imple-
mented this algorithm within PROB, and we provide empir-
ical results later in Section 5.

4.2. The Graph of a B State

Let us first consider an example of a graph that repre-
sents a state, which we will refer to later. Fig. 4 shows
the state graph of the state, db = {(Name1, Code1),
(Name2, Code2)} in Fig. 2.

In this graph, the value of the relation, db is represented
by edges that indicate specific ordered pairs, whose edge

1We do not deal with liveness properties in this algorithm. In B such
properties are encoded via refinement.

Algorithm 1 Symmetry Reduced Model Checking in PROB
Require: An abstract machine M

1: Queue := {root} ; V isited := {root}; SGraph := {};
2: while Queue �= ∅ do
3: state := pop(Queue);
4: if error(state) then
5: return counter-example trace in SGraph from

root to state
6: else
7: for all succ,Op such that state→M

Op succ do
8: SGraph := SGraph ∪ {state→Op succ}
9: sg := canon(G(succ))

10: if sg �∈ V isited then
11: if random(1) < α then
12: add succ to front of Queue
13: else
14: add succ to end of Queue
15: end if
16: V isited := V isited ∪ {sg}
17: end if
18: end for
19: end if
20: end while
21: return ok

Name1

Name2

Code1

Code2

root

db

db

Figure 4. A phonebook state as a graph

labels denote the variable they encode. A special ‘root’ ver-
tex is also present (different from the root in Algorithm 1),
which is explained later in this section.

Values in B are either elements of sets (including
Boolean values and integers), pairs of values, or sets of val-
ues. If we first ignore nested values in B, we can use three
simple rules to translate a value to its concrete graphical rep-
resentation. For an element of a set, v ∈ S, where v = s0,
we have the graph in Fig. 5. The graph of a set, v ∈ P(S),
where v = {s0, . . . , sn} is shown in Fig. 6. Finally, a re-
lation, v ∈ S ↔ T , where v = {(s0, t0), . . . , (sn, tm)} is
depicted in Fig. 7. Also, although our graph representation
does not distinguish v = {s0} from v = so, the B type
system does and we only work with well-typed machines
(typing is decidable in B).

We extend this idea for nested data structures, such as
sets of sets, through the introduction of a set of special,
symmetric vertices X, which contains an element x ∈ X

root
v

s0

Figure 5. Graph for an atom

s0
v

sn

..

v

root.

Figure 6. Graph for a set

s0 v
t0

root

sn
v tm

... ..

. ...

Figure 7. Graph for pairs

for each nested value, V . For nested sets, v = {V0, . . . , Vn},
we create n + 1 special vertices, and we translate the set
{x0, . . . , xn} to a graph, as in Fig. 6. Then, we recurse on
each nested value Vi, 0 ≤ i ≤ n and draw the corresponding
graph with xi as the new ‘root’.

Similarly, for nested relations, v = {(V0, V1), . . . ,
(Vn−1, Vn)}, we have n + 1 special vertices, and we trans-
late the relation {(x0, x1), . . . , (xn−1, xn)} to a graph, as in
Fig. 7. Then, we recurse on each nested value Vi, 0 ≤ i ≤ n
and draw the corresponding graph with xi as the new ‘root’.

By composing the individual graphs that represent each
value of a variable in a state, we obtain its state graph.
Let G denote the function translating a state to its state
graph. As an example, the graphical form of the state,
〈v1 = {({s0}, {s1})}, v2 = {{s2}}〉 is given in Fig. 8.
Note that the colours used should be ignored; they will be
explained in the next section.

x0 x1

root

s0 s1

v1 v1

v1

x2

s2

v2

v2

Figure 8. G(〈v1 = {({s0}, {s1})}, v2 = {{s2}}〉)

4.3. Relating Graph Isomorphism to
State Equivalence

A convenient technique for establishing whether two
graphs are isomorphic is to compute a canonical label for
both. Canonical labelling functions find a unique label for
some graph, which is the same for all symmetric graphs.

These algorithms rely on the permutation of graph ver-
tices. Let us denote all vertex permutations with the re-
lation γ. Now, consider a graph, G with vertices V =
{v1, v2, . . . , vn} and a sequence of vertices v1, v2, . . . , vn.
All n! possible vertex orderings are Γ = {o | o =
vγ
1 , vγ

2 , . . . , vγ
n }, each of which corresponds to an adjacency

matrix that encodes the graph; thus, Γ is an ordered set.
Typically, an implementation of the algorithm will compute
a subset of Γ and will choose the least element as the canon-
ical label.

The assignment of labels to vertices is one method to en-
code extra information in a graph. For example, the vertices
of two disjoint sets could be assigned one of two labels. By
convention, vertex labels are called colours, and a vertex la-
belled graph is called a coloured graph. Canonical labels
can be computed for coloured graphs by requiring vertex
permutations take place over vertices with the same colour.

Definition 4.1 Permutation function canon computes the
canonical label for a coloured graph by permuting vertices
with the same colour, such that for two graphs g1 and g2,
canon(g1) = canon(g2)⇔ g1 is isomorphic to g2.

We now describe how coloured graphs relate to state
graphs. First, recall that in Section 3 we gave an informal
definition of symmetries in B. We say that two states are
symmetric if the invariant has the same truth value in both,
and there exists a permutation between them over certain
elements of deferred sets. In previous work [18], we prove
this by defining a permutation function, f over symmetric
elements of deferred sets used in a machine.

Definition 4.2 Let DS be the set of disjoint sets in a machine
M. A permutation f over DS is a bijection from ∪S∈DSS to
∪S∈DSS such that ∀ S ∈ DS we have {f (s) | s ∈ S} = S. f is
a fixpoint for enumerated types, including Boolean values
and integers.

We can extend our definition of a state graph (Section 4.2)
by colouring vertices. We assign the same colour to any pair
of vertices iff f permutes their corresponding state values.
For example, the vertex colours used in Fig. 8 would reflect
that s0, s1 ∈ DS1 and s2 ∈ DS2, given that DS1, DS2 ⊆ DS.
Also, note the same colour is given to vertices x0, x1 and x2,
which belong to the set of special, symmetric vertices, X.

By lifting f to machine states we show in [18] that state
σ satisfies predicate P (including any invariants), iff f (σ)
satisfies P. The goal now is to show that two states are sym-
metric iff canon(G(σ)) = canon(G(f (σ))). This is accom-
plished since canon permutes only vertices with the same
colour (Definition 4.1).

State graphs cannot be applied immediately to nauty,
which works on undirected, unlabelled and coloured
graphs. In the next section we extend this to directed and
labelled graphs.

4.4. Computing Canonical Labels for
Unlabelled, Undirected Graphs

The canonicalisation function, canon, has been imple-
mented in SICStus Prolog, and integrated into PROB, us-
ing a technique called ‘partition refinement’, as used by the
efficient graph isomorphism programs of nauty and saucy
[8]. For a thorough introduction to partition refinement, see
[15, 21]. Our implementation modifies the partition refine-
ment step used by nauty. Before explaining our new algo-
rithms for computing canonical labels, we first introduce
some key concepts, and recall McKay’s algorithm for unla-
belled, undirected graphs [21].

A naı̈ve approach to computing canonical labels would
make n! analyses for a graph with n vertices (Section 4.3,
paragraph 1). Ideally, however, this should be as few as pos-
sible. A step towards this goal is to first sort the vertices by
degree (the number of adjacent vertices in the graph), and
consider only those orderings that preserve the degrees of
the vertices. Let us extend this idea with the notion of equi-
table partitions; a relatively simple but effective technique
that constrains further the number of orderings to consider.

Consider a simple graph G with the set of vertices V . An
ordered partition π of V is a sequence (V1, V2, · · · , Vn) of
disjoint non-empty subsets of V , called cells, whose union
is V. A partition is called discrete, if for, 1 ≤ i ≤ n, Vi

is trivial (i.e., a singleton set). Let v ∈ V and W ⊆ V ,
then the number of elements of W, which are adjacent to
v in G, is denoted as d(v, W). An ordered partition π is
equitable if, for all V1, V2 ∈ π and v1, v2 ∈ V1 we have
d(v1, V2) = d(v2, V2). Since discrete partitions contain
only trivial cells, we have the property that all discrete par-
titions are equitable; however, an equitable partition is not
necessarily discrete.

An equitable partition πβ is computed by a procedure
called refine, by analysing degrees of vertices in a graph,
given some initial ordered partition πα

2. The computation
ensures each cell in πβ is a subset of some cell in πα. πβ

is said to be finer than πα; denoted πβ ≤ πα. Algorithm 2
shows the use of refine for computing canonical labels.

The function compute label on line 4 is used to encode
a graph structure in a non-graphical form. Given a discrete
partition π, take its adjacency matrix for graph G and define
an integer n(G) by writing down the entries in the upper-
triangle, row by row3. Interpreting the result as an n2-
bit binary string, gives the return value of compute label.
Furthermore, given a set of discrete partitions, the lexico-
graphic order on the corresponding set of binary strings in-
duces the presence of a unique, least element, which we take

2In the context of partition refinement, refine bares no relation with
refinement in B.

3We only analyse the upper-triangle as undirected graphs have triangu-
lar matrices.

Algorithm 2 canon(π, G): Computing a canonical label
Require: Unlabelled, undirected graph, G, and ordered

partition π
1: πe = refine(π); {refine π to an equitable partition}
2: if πe is discrete then
3: {compare with smallest label so far}
4: v = compute label(G, πe);
5: if v ≤ best then
6: best = v; {update label}
7: end if
8: else
9: {πe is not discrete – attempt to make non-equitable}

10: C = first non-discrete cell in πe;
11: for all u ∈ C do
12: make a copy πu of πe in which C is split into u and

C − u
13: canon(πu);
14: end for
15: end if

as the canonical label.

The procedure refine (line 1) generates for an initial par-
tition πα, an equitable partition πβ , such that πβ ≤ πα.
Typically, πβ has significantly more cells than πα [15], and
consequently, πβ has significantly fewer discrete partitions
(vertex orderings) finer than πα. This premise forms the
basis of Algorithm 2. Starting with an initial partition, cre-
ate an equitable, finer partition. If this does not represent a
vertex ordering, attempt to make a non-equitable, but finer
partition (lines 10-12) and recurse. The overall procedure
constructs a search tree, whose leaves are discrete partitions
that must be considered when finding the canonical label.
The size of the tree is, however, constrained through the
use of refine, which progressively eliminates a large number
of vertex orderings. An in-depth description of this proce-
dure, together with algorithmic optimisations, can be found
in [21]; for a somewhat gentler introduction, see [23].

In more detail, refine compares each cell with every other
cell in πα. Comparing two cells V1, V2 ∈ πα means that for
every element v ∈ V1, we compute d(v, V2). Elements of V1

with the same number of edges to V2 form a new cell; thus,
V1 is split into several non-empty cells. These cells are or-
dered by increasing degree, such that cell Vi comes prior to
cell Vj if degi ≤ degj, where ∀ vi ∈ Vi ⇒ d(vi, V2) = degi,
and ∀ vj ∈ Vj ⇒ d(vj, V2) = degj. New partition πβ1 is
formed by replacing the cell V1 ∈ πα, with the newly cre-
ated cells. This process repeats with πβ1 until it remains
unchanged or is discrete; the resulting partition, πβ is equi-
table. For correctness proofs of this procedure, see [21].

New Extended Algorithm: In order to represent the values
of individual variables and constants, as well as to faithfully

represent more complicated B data structures as graphs, we
use directed, labelled, coloured (state) graphs. The move
to directed graphs is straightforward (mainly consists of
using full adjacency matrices in the compute label pro-
cedure rather than only triangular ones).Similarly, treating
coloured graphs is also not difficult; one simply defines an
order on the colours and uses an initial partition where the
vertices have already been partitioned according to the var-
ious colours (see also [21]). However, the move to graphs
with labelled edges is less obvious. Below we describe how
we have adapted McKay’s procedure to handle such graphs.
The main algorithm for computing the canonical label of a
graph with directed and labelled edges is the same except
for the compute label and refine sub-procedures.

It should be noted that our implementation of canon does
not use several intricate programming optimisations used in
nauty (e.g., two variables for all partition nests [21]). Our
implementation should be viewed as a proof of concept.

First we describe our change to the compute label sub-
procedure. For labelled edges, an ordering is placed on the
set of labels L (the variable names), so that labelled graphs
can be encoded as a single matrix, where each entry is a bi-
nary string of size | L |. For directed edges, we ensure com-
pute label takes the row-by-row binary string for the full
matrix. So for example, in Fig. 8, given a variable order-
ing v1, v2, the matrix entry at index [x0, x1] would be ‘1, 0’,
since between x0 and x1 there exists only the single edge
labelled v1.

Algorithm 3 below shows our new refine procedure.
Since we work on graphs with directed and labelled edges,
we must first adapt the function d(v, W) and the definition
of equitable.

Definition 4.3 Let G be a graph with directed, labelled
edges and set of vertices V , v ∈ V, W ⊆ V and L =
(l1, · · · , ll) the labels on the edges. Then din(v, W, lν) is
the number of elements in W, that have an edge with the
label lν ∈ L leading to v and dout(v, W, lν) is the number of
elements in W, that have an edge with the label lν coming
from v.

Definition 4.4 Let G be a graph with directed, labelled
edges and set of vertices V and L := (l1, · · · , ll) the labels
on the edges. An ordered partition π of V is called label
equitable if, for all V1, V2 ∈ π, v1, v2 ∈ V1 and label lν ∈ L
we have:

din(v1, V2, lν) = din(v2, V2, lν) and
dout(v1, V2, lν) = dout(v2, V2, lν).

Example 4.5 We shall now integrate the methods described
in Sections 4.2-4.4, to show how to compute the canonical
label of an example B state, whose state graph Gx is given
in Fig. 9.

Algorithm 3 refine(π, G): Extended partition refinement

Require: Directed, labelled graph G, π = (V1, · · · , Vn),
L = (l1, · · · , ll)

1: π̃ := π;
2: α = (V1, · · · , Vn);
3: while π̃ is not discrete and α �= ∅ do
4: Remove an element W from α;
5: for all ν ∈ 1 . . . l do
6: for all k ∈ 1 . . . n do
7: Compute ordered partition (X1, · · · , Xs) from

Vk, where ∀ i, j.1 ≤ i, j ≤ s ∧ x ∈ Xi ∧ y ∈
Xj ⇒ i < j⇔ din(x, W, lν) < din(y, W, lν)

8: if s > 1 then
9: update π̃ by replacing the cell Vk with the

cells X1, · · · , Xs;
10: α = concatenate(α, (X1, X2, · · · , Xs));
11: end if
12: end for
13: end for
14: Repeat lines 5 - 13, but use alternate condition

dout(x, W, lν) < dout(y, W, lν) on line 7.
15: end while
16: return Label equitable partition, π̃;

x0 x1

root

s0 s1

v1

s2

v2

v2v1

v2

v2

Order of colours

L = (v ,)1 v2

Figure 9. Example state graph

The example state makes use of two deferred sets, DS1

and DS2, and uses two variables, v1 ∈ P(P(D1)) and
v2 ∈ P(D1 ↔ D2). Let us assume s0, s1 ∈ DS1,
s2 ∈ DS2, and the variables values v1 = {{s0}} and
v2 = {{(s1, s2)}}. Note, Fig. 9 also depicts the special
vertices x0, x1 ∈ X for nested values, and the orders of vari-
ables and colours. Thus, we start with the initial partition
π = ({s0, s1}, {s2}, {x0, x1}, {root}), such that vertices in
the same cell have the same colour, and the cells are ordered
by their colours.

Initially, line 1 of Algorithm 2 requests the partition re-
finement of π. We then enter Algorithm 3 with π, and
α = ({s0, s1}, {s2}, {x0, x1}, {root}). In the first traver-
sal of the while loop, W = {s0, s1}. The algorithm con-
siders only edges with label v1 in the first cycle of the
outer for-loop. For the first cell of π, V1 = {s0, s1},
no edges labelled v1 originate from W and lead to an el-
ement of V1; so din((1), W, a) = din((3), W, a) = 0
and π remains unchanged. The second cell of π, V2 =

{s2}, is trivial and cannot be split further, so the algo-
rithm continues. For the third cell, V3 = {x0, x1}, we
have din((x0), W, v1) = 1 > 0 = din((x1), W, v1). So,
V3 is split into two cells, {x1}, {x0}; which must be or-
dered by their values for din. The algorithm updates π
and α, where π := ({s0, s1}, {s2}, {x1}, {x0}, {root}) and
α := ({s2}, {x1, x0}, {root}, {x1}, {x0}). Since the last cell
V4 = {root} is trivial, the algorithm progresses and begins
considering edges labelled, v2 (line 5, second iteration).

Splitting next occurs when dout is analysed (execution
of line 14), for W = {s2} and the edge label, v2. When,
V1 = {s0, s1}, we have, dout((s0), W, v2) = 0 < 1 =
dout((s1), W, v2) and so partition π is updated to π :=
({s0}, {s1}, {s2}, {x1}, {x0}, {root}), which is now dis-
crete. Further splitting is not possible, so Algorithm 3 ter-
minates with this discrete, label equitable partition4. With
execution returning to line 1 of Algorithm 2, πe is dis-
crete and the procedure terminates with the canonical label
compute label(Gx, πe). Fig. 10 shows the first two rows of
the adjacency matrix of G, which constitute the twelve most
significant bits of the canonical label.

00 00 00 00 00

00 00 00 00

s0 s1 s2
x0x1 root

s0

s1

.

.

.

.

.

.

.

.

.

.

.

.

01 01

10

Figure 10. Adjacency matrix corresponding
to the canonical label of Gx

5. Empirical Results

In Table 1 we present the results from applying symme-
try reduction in PROB to five typical B specifications. For
each specification, we vary the size of deferred sets (Card)
and record the time required for model checking to termi-
nate. The table also shows the number of states and tran-
sitions in the reachable state space, with and without (wo)
symmetry reduction. All experiments are performed on a
PC with a 2.8GHz Intel Pentium 4 processor, 1Gb of avail-
able main memory, running SICStus Prolog 3.12.0 (x86-
win32-nt-4) and PROB version 1.2.0. scheduler0 defines
a process scheduling specification, and is given in [20].
scheduler is a variation of scheduler0, taken from [17].
The deferred sets in both cases are the process identifiers.
Russian Postal Puzzle is a specification of a cryptographic
puzzle [10], where the deferred sets are sets of available

4Note that a label equitable partition may not be discrete; see Defini-
tion 4.4.

keys and locks. phonebook is a slightly more elaborate ver-
sion of the phonebook defined in Fig. 2, and has 3 variables.
phonebook err is the phonebook specification with an error
in the precondition of the delete operation, which leads to
an invariant violation.

Analysis of the results: Results obtained are encourag-
ing. As can be seen, symmetry reduction reduces verifica-
tion time up to some point, in each correct machine. Also,
there is a large reduction in the number of states and transi-
tions. The most prominent savings are for the phonebook
machine, where a linear increase in size of deferred sets
leads to a combinatorial saving in time; see the ‘Speedup’
column in Table 1. In the case where deferred sets have a
size of 6, reduced checking is 231 times faster than stan-
dard checking. The results for the phonebook err machine
highlights PROB’s effectiveness at finding counterexam-
ples, even without reduction strategies. In fact, symmetry
reduced checking requires more time to find the errors (even
though fewer states are encountered) due to the overhead of
computing representatives. However, the time required was
still small (< 2s).

Predicting the magnitude of a speedup for some machine
is non-trivial since it depends on the behaviour of the ma-
chine and the number of elements of deferred sets being
used. In all cases, the speedups eventually drop off. The
bottlenecks occur when the benefit of performing a con-
strained search outweighs the overhead of computing rep-
resentatives. Fig. 11 shows how the speedup varies with
the size of deferred set, for 3 machines. Data points cor-
respond to the cardinality of deferred set used i.e., the nth
point on a line shows the speedup when deferred sets con-
tain n element(s). The drop off points illustrated are affected
by programming inefficiencies. For instance, the Gauge
profiling module in SICStus Prolog shows that more than
70% of computation time is spent accessing Prolog terms
that model arrays; this figure would be significantly reduced
if C-language arrays were used, which have constant-time
access. Additionally, several major optimisations used in
nauty are not used by our algorithm. The result of any al-
gorithmic optimisation would be to increase the speedups
achieved (i.e., increase the gradient of lines in Fig. 11) and
delay the speedup drop off points.

6. Related Work

Symmetry reduction in model checking dates back to
[4, 3], and more recently [9]. A key difference with these
works is that ours does not consider temporal logic formu-
las, but B’s criteria of invariant violations, deadlocks and
refinement. Despite this, the fundamental problem of ef-
ficiently computing representatives, namely the orbit prob-
lem, is common to all approaches.

The line of research that has developed symmetry reduc-

10-1

100

101

102

103

100 101 102 103 104 105 106

S
pe

ed
up

 (
lo

g)

Reachable States (log)

scheduler0
Russian Post Puzzle

phonebook

Figure 11. Variation of speedups with cardi-
nality of deferred sets

tion techniques based on scalarsets [13] is the inspiration
for the present article. The SymmSpin package [3] uses
scalarsets to integrate symmetry reduction into the SPIN

model checker. These special types contain only symmetric
data values and are thus similar to deferred sets in B. How-
ever, the scalarsets approach is not automatic; it requires
the user to identify and assert the presence of symmetries.
Our approach is fully automatic since the deferred set is a
key component of the B language. Furthermore, our reduc-
tion strategy will always apply to a large proportion of B
machines since deferred sets are frequently used.

In Section 4.2, we show how to encode a B state as a
graph. Various other research also addresses this general
problem, such as [24], which describes an approach for
states of Java programs. For each Java object one encodes
its associated type (or program counter, if it is a thread),
and a finite set of values. The state graph, or shape graph,
is then a directed, labelled graph, which intuitively repre-
sents the state’s contents, and which also makes use of a
root node. This differs from B state graphs as shape graphs
are entirely deterministic, except for the use of special ε
transitions (i.e., indistinguishable labels that can indicate
nodes corresponding to active threads) – both features are
not present in B state graphs. In addition, B state graphs
encode non-comparable abstract elements of deferred sets,
for which there is no equivalent notion in Java. However,
it remains that both methods share the use of state/shape
graphs to achieve the goal of exploiting symmetries in their
respective systems.

An interesting orthogonal concept for symmetry reduc-
tions is to use symmetry breaking predicates [7], as used by
the Alloy Analyser [14], whose reductions are often several
orders of magnitude. Its premise prevents redundant sym-

Table 1. Experimental results for five typical B-specifications
Machine Card Time Speedup States Trans

wo (s) with wo with wo with
scheduler0 1 0.01 0.01 1.0 5 5 6 6
(from [20]) 2 0.05 0.05 1.0 16 10 37 23

3 0.26 0.15 1.7 55 17 190 59
4 1.24 0.52 2.4 190 26 865 121
5 7.78 2.20 3.5 649 37 3646 216
6 35.35 12.03 2.9 2188 50 14581 351

scheduler 1 0.01 0.01 1.0 4 4 5 5
(from [17]) 2 0.03 0.02 1.5 11 7 25 16

3 0.14 0.08 1.8 36 11 121 37
4 0.64 0.30 2.1 125 16 561 71
5 3.02 2.78 1.1 438 22 2418 121
6 22.93 27.03 0.8 1523 29 10489 190

Russian 1 0.05 0.08 0.6 15 15 24 24
Postal Puzzle 2 0.31 0.42 0.7 81 48 177 105

3 2.13 2.05 1.0 441 119 1277 331
4 17.34 9.80 1.8 2325 248 7869 838
5 158.61 48.83 3.2 11985 459 47795 1826
6 738.14 266.37 2.8 60981 780 279969 3571

phonebook 1 0.01 0.01 1.0 3 3 4 4
2 0.06 0.03 2.0 10 5 37 17
3 0.69 0.17 4.1 65 8 433 50
4 12.03 1.09 11.0 626 13 6001 125
5 280.38 7.51 37.3 7777 20 97201 269
6 13944.97 60.36 231.0 117650 31 1815157 541

phonebook err 4 0.01 0.90 <0.1 46 17 57 108
5 0.01 0.20 <0.1 76 10 88 88
6 0.01 1.92 <0.1 131 19 156 178

metries being computed through the addition of predicates
that constrain the search. Although originally aimed at SAT
based search methods, the key ideas appear applicable to a
constraint logic programming environment such as SICStus
Prolog, as used by PROB.

7. Conclusions and Future Work

In this paper, we have presented the first technique to
achieve classical symmetry reduction for model checkers of
B specifications. The algorithm computes representatives in
two phases. First we compute the state graph of state s, and
then we compute its canonical label, corresponding to the
unique representative of s. We have described the relation
of symmetries in B to canonical labelling algorithms, and
have presented a translation of B states to graphs. We have
also presented our extension to McKay’s algorithm to find
canonical labels. We have implemented the algorithm in-
side the PROB toolset and have evaluated the approach on a

series of examples. The empirical results were very encour-
aging, where exponential speedups are sometimes possible.
Furthermore, the techniques developed may be generalised
for application to model checkers of other formal languages.

In future work, we will increase the speedups our method
can achieve by optimising our implementation of the canon-
ical labelling algorithm, so that its performance is closer to
that of nauty. Immediate changes include translating Pro-
log procedures into C/Java, and using two variables per par-
tition nest [21], during search tree exploration, to signifi-
cantly improve performance by reducing memory usage and
computation time. Furthermore, we can optimise our im-
plementation of partition refinement to better suit the prop-
erties of state graphs, and break more symmetries in each
step (similar to how saucy [8] optimises nauty for CNF).
One example is to use the fact that edges never originate
from the set of vertices, X, introduced to represent nested
values. Future work also includes constructing symmetry
breaking predicates from the automorphisms found when
computing canonical labels, and using them to constrain the

search space before symmetric states are encountered.

References

[1] J. R. Abrial. The B Book: Assigning programs to meanings.
Cambridge University Press, New York, NY, USA, 1996.

[2] B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line man-
ual, 1999.

[3] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric
SPIN. STTT International Journal on Software Tools for
Technology Transfer, 4(1):92–106, 2002.

[4] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry
in temporal logic model checking. In C. Courcoubetis, edi-
tor, CAV, volume 697 of Lecture Notes in Computer Science,
pages 450–462, London, UK, 1993. Springer-Verlag.

[5] E. M. Clarke, O. Grumberg, and D. E. Long. Model check-
ing and abstraction. ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, 1994.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model checking.
The MIT Press, 1999.

[7] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy.
Symmetry-breaking predicates for search problems. In KR,
pages 148–159, 1996.

[8] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov.
Exploiting structure in symmetry detection for CNF. In
S. Malik, L. Fix, and A. B. Kahng, editors, DAC, pages 530–
534. ACM, 2004.

[9] A. F. Donaldson and A. Miller. Exact and approximate
strategies for symmetry reduction in model checking. In
J. Misra, T. Nipkow, and E. Sekerinski, editors, FM, volume
4085 of Lecture Notes in Computer Science, pages 541–556.
Springer, 2006.

[10] S. Flannery and D. Flannery. In Code: A Mathematical
Journey. Algonquin Books of Chapel Hill, Chapel Hill, NC,
USA, 2001.

[11] P. Foggia, C. Sansone, and M. Vento. A performance com-
parison of five algorithms for graph isomorphism. In 3rd
IAPR TC-15 Workshop on Graph-based Representations in
Pattern Recognition, 2001.

[12] G. J. Holzmann and D. Peled. An improvement in formal
verification. In D. Hogrefe and S. Leue, editors, FORTE,
volume 6 of IFIP Conference Proceedings, pages 197–211.
Chapman & Hall, 1994.

[13] C.-W. N. Ip and D. L. Dill. Better verification through sym-
metry. In D. Agnew, L. J. M. Claesen, and R. Camposano,
editors, CHDL, volume A-32 of IFIP Transactions, pages
97–111. North-Holland, 1993.

[14] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2006.

[15] W. Kocay. On Writing Isomorphism Programs, chapter
Chapter 6, pages 135–175. Computational and Constructive
Design Theory. Kluwer, 1996.

[16] D. L. Kreher. Combinatorial Algorithms: Generation, Enu-
meration and Search. Discrete Mathematics and its Appli-
cations. CRC Press, 1998.

[17] B. Legeard, F. Peureux, and M. Utting. Automated boundary
testing from Z and B. In L.-H. Eriksson and P. A. Lindsay,
editors, FME, volume 2391 of Lecture Notes in Computer
Science, pages 21–40. Springer, 2002.

[18] M. Leuschel, M. Butler, C. Spermann, and E. Turner. Sym-
metry reduction for B by permutation flooding. In J. Julliand
and O. Kouchnarenko, editors, B, volume 4355 of Lecture
Notes in Computer Science, pages 79–93. Springer-Verlag,
2007.

[19] M. Leuschel and M. J. Butler. ProB: A model checker for
B. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME,
volume 2805 of Lecture Notes in Computer Science, pages
855–874. Springer, 2003.

[20] M. Leuschel and M. J. Butler. Automatic refinement check-
ing for B. In K.-K. Lau and R. Banach, editors, ICFEM,
volume 3785 of Lecture Notes in Computer Science, pages
345–359. Springer, 2005.

[21] B. D. McKay. Practical graph isomorphism. In Numeri-
cal mathematics and computing, Proc. 10th Manitoba Conf.,
Congr. Numerantium 30, pages 45–87, 1981.

[22] B. D. McKay. NAUTY user’s guide (version 1.5), Technical
report TR-CS-90-02. Australian National University, Com-
puter Science Department, ANU, 1990.

[23] T. Miyazaki. The complexity of Mckay’s canonical label-
ing algorithm. In L. Finkelstein and W. M. Kantor, edi-
tors, Groups and Computation II, volume 28 of DIMACS
Series on Discrete Mathematics and Theoretical Computer
Science, pages 239–256. American Mathematical Society,
Providence, Rhode Island 02940, USA, 1997.

[24] Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-
reduction strategies for model checking dynamic software.
Electr. Notes Theor. Comput. Sci., 89(3), 2003.

[25] Steria, Aix-en-Provence, France. Atelier B, User and Refer-
ence Manuals, 1996.

