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Abstract. Symmetry reduction is an established method for limiting
the amount of states that have to be checked during exhaustive model
checking. The idea is to only verify a single representative of every class
of symmetric states. However, computing this representative can be non-
trivial, especially for a language such as B with its involved data struc-
tures and operations. In this paper, we propose an alternate approach,
called permutation flooding. It works by computing permutations of
newly encountered states, and adding them to the state space. This turns
out to be relatively unproblematic for B’s data structures and we have
implemented the algorithm inside the PROB model checker. Empirical re-
sults confirm that this approach is effective in practice; speedups exceed
an order of magnitude in some cases. The paper also contains correct-
ness results of permutation flooding, which should also be applicable for
classical symmetry reduction in B.

Keywords: B-Method, Tool Support, Model Checking, Symmetry Re-
duction.!

1 Introduction

The B-method [1] is a theory and methodology for formal development of com-
puter systems. It is used in industry in a range of critical domains. In addition to
the proof activities it is increasingly being realised that validation of the initial
specification is important, as otherwise a correct implementation of an incorrect
specification is being developed. This validation can come in the form of ani-
mation, e.g., to check that certain functionality is present in the specification.
Another useful tool is model checking, whereby the specification can be system-
atically checked for certain temporal properties. In previous work [14], we have
presented the PROB animator and model checker to support those activities.
Implemented in Prolog, the PROB tool supports automated consistency check-
ing and deadlock checking of B machines and has been recently extended for
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automated refinement checking [15], also allowing properties to be expressed in
CSP [4].

However, it is well known that model checking suffers from the exponential
state explosion problem; one way to combat this is via symmetry reduction [6].
Indeed, often a system to be checked has a large number of states with sym-
metric behaviour, meaning that there are groups of states where each member
of the group behaves like every other member of the group. In the case of B
machines this arises, e.g., when using deferred sets, where one set element can
be replaced by another without affecting the behaviour of the machine. The clas-
sical approach to symmetry reduction requires the determination of a so-called
representative for every symmetry group; the idea being that it is sufficient to
check just the representative. Computing such a representative, at least for a
formalism such as B with its sophisticated data structures and operations, is
a non-trivial task. In this paper we present an alternate way to add symmetry
reduction to B, which we have incorporated into PROB’s model checking algo-
rithm. Indeed, while it is not trivial to pick a (unique) representative for every
symmetry group, it is relatively straightforward in B to generate from a given
state a set of symmetric states, essentially by permuting the elements of deferred
sets. Our new algorithm uses that fact to achieve symmetry reduction; the ba-
sic idea being that when a new state is added to the state space all symmetric
states are also added. While this can result in a considerable number of symmet-
ric states being added, we show that—in the absence of counterexamples—all
of them would have been explored using the classical model checking algorithm
anyway. We have implemented this algorithm, and have evaluated it on a series
of examples. Our experiments show that big savings can be achieved (exceeding
an order of magnitude).

2 Motivation and Overview

Let us examine the following simple B machine, modelling a system where a user
can login and logout with session identifiers being attributed upon login.

MACHINE LoginVerySimple

SETS Session

VARIABLES active

INVARIANT active<:Session

INITIALISATION active := {}

OPERATIONS

res <-- Login = ANY s WHERE s:Session & s/: active THEN
res := s || active := active \/ {s} END;

Logout(s) = PRE s: active THEN active := active - {s} END

END

This machine contains the deferred set Session. For animation, the user has
to select some finite size for this set [14]. Figure 1 contains the full state space
generated by PROB for this machine, where the cardinality of Session was set



to 3 (and PROB has automatically generated three elements Sessionl, Session2
and Session3 of that set). One can see that the states 2,3,4 are symmetric, in
the sense that:

— the states can be transformed into each other by permuting the elements of
the set Session;

— if one of the states satisfies (respectively violates) the invariant, then any of
the other states must also satisfy (respectively violate) the invariant;

— if one of the states can perform a sequence of operations, then any other
state can perform a similar sequence of transitions; possibly substituting
operation arguments (in the same way that the state values were permuted).
E.g., state 2 can perform Logout(Sessionl), state 3 can be obtained from
state 2 by replacing Sessionl with Session2, and, indeed, state 3 can perform
Logout(Session2).

The same holds for the states 5,6 and 7.
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Fig. 1. Full state space; representatives are marked by double boxes

Classical Approach to Symmetry Reduction In classical symmetry reduction,
one would compute a representative for every set of symmetric states. A possible



choice for such representatives for the above example would be the states 1,2,5,8;
shown as boxes with double borders in Figure 1. When a model checker with
symmetry reduction encounters state 3, it would compute its representative (i.e.,
state 2) which is already in the state space. Thus state 3 would not need to be
checked. The same holds for state 4.

Deciding whether two states can be considered symmetric (also called the
“orbit problem”) is tightly linked to detecting graph isomorphisms (see, e.g.,
[6][Chapter 14.4.1]). Indeed, one can directly employ algorithms for detecting
graph isomorphisms, by converting the system states into graphs and then check-
ing whether these graphs are isomorphic. One efficient approach is by computing
the canonical form of the graphs (called certificates in [12]). Such an approach
also looks promising for B, but requires careful extension due to the data struc-
tures and operations of B.

New Approach The new algorithm we present in this paper works the other way
around to classical symmetry reduction: when a new state is added to the state
space, we at the same time (proactively so to speak) add all states which can be
obtained by permuting the deferred set values of the state. This is based on the
three insights below:

— Insight 1: Whereas it is difficult to find out if two states are symmetric and
compute a representative, it is actually quite straightforward to generate
symmetric permutation of a given state; at least in B. Indeed, symmetry in
B occurs usually due to the use of deferred sets; this was the case in the
example above. One thus simply has to permute the deferred set elements
that occur in the given state.

— Insight 2: In order to prevent symmetric states from being checked, we can
simply add the permutations to the state space and mark them as “already
processed.”

— Insight 3: The obvious drawback of generating all permutations is that there
can be many such permutations, “flooding” the state space. However, they
would all have been encountered during an exhaustive model check anyway!
Thus—at least when compared to classical model checking in the absence of
counterexamples—we have nothing to lose by using the new algorithm. We
gain that for the permuted states we do not have to compute the invariant,
nor compute the enabled operations and their effect. Furthermore we apply
the permutation generation only to one representative of each symmetry
group; all the other representatives will be detected by straightforward state
hashing and identity checking using normalisation [14].

An illustration of the approach on the above example can be found in Fig-
ure 2. When adding the state active = {Sessionl} the two symmetric states
active = {Session2} and active = {Session3} are also added to the state
space. Similarly, when adding active = {Sessionl, Session2} its two symmetric
states are also added. As can be seen, a reduction in the checking effort has been
achieved: only 4 of the 8 states have to be checked (i.e., the invariant evaluated
and the enabled operations computed).
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Fig. 2. Full state space after permutation flooding

3 The Algorithm

Informal Ezplanation Recall, that in B there are two ways to introduce sets into
a B machine: either as a parameter of the machine (by convention parameters
consisting only of upper case letters are sets; the other parameters are integers)
or via the SETS clause. Sets introduced in the SETS clause are called given
sets. Given sets which are explicitly enumerated in the SETS clause are called
enumerated sets, the other given sets are called deferred sets.

Informally, two states are symmetric when the invariant has the same truth
value in both states and when they can both execute the same sequences of
operations (possibly up to some renaming of data values). While in the general
case it is undecidable whether two states are symmetric or not, we can gener-
ate for a given state s a set of states which are guaranteed to be symmetric.
The simplest approach is to permute the deferred set elements within s. This
is what we have done in the example in the previous section. One may won-
der why we only permute the deferred set elements, and not the elements of
enumerated sets. Indeed, in the example above, if we replace Session by an
enumerated set Session = {Sessionl, Session2, Session3} then the state
space would remain unchanged (Figure 1 would remain exactly the same) as
would the symmetry groups. However, without further knowledge about the
machine, we have no guarantee that this would always be the case. Indeed, as



the elements Sessionl, Session2, Session3 can now be referenced by name, they
could be used in the invariant or in the precondition of a machine. For example,
Sessionl:active => not(Session2:active) could be used as a precondition
of an operation. This would break the symmetry, meaning that we would gener-
ate permutation states which are not symmetric to the original state. In other
words, by not checking the permutation states we may fail to detect an invari-
ant violation or deadlock. Similarly, if the above condition appears inside the
invariant, the state active = {Sessionl, Session3} would satisfy the invariant,
while the permutation active = {Sessionl, Session2} would not. Later, in Sec-
tion 6, we will explain how this restriction can be somewhat relaxed; but for the
time being we will only permute deferred set elements. Integers, booleans and
enumerated sets will not be permuted.

Formalisation The state space of a machine is defined as the cartesian product
of the types of each of the machine variables and constants. We represent the
machine constants and variables by a vector of variables v1,...,vn (denoted V).
The normal form for a B operation operating on the variables V' with inputs
x and outputs y is characterised by a predicate P(x,V,V’ y). Characterising a
B operation of the form X «— op(Y) as a predicate in this way gives rise to a
labelled transition relation on states: state s is related to state s’ by event op.a.b,

denoted by s —>%_a_b s', when P(a,s,s’,b) holds. Further details may be found

in [15]. We also add a special state root, where we define root —.. . s if

s satisfies the initialisation and the properties clause. We now describe how to
generate permutation states.

Definition 1. Let DS be a set of disjoint sets. A permutation f over DS is a
total bijection from UgepsS to UsepsS such that VS € DS we have {f(s) | s €
S} =S.

We can now define permutations for B machines, which permute deferred set
elements, respecting the typing (i.e., we only permute within each deferred set).

Definition 2. Let M be a B Machine with deferred sets DS1, ..., DSy and enu-
merated sets ES1,...,ES,,. A function f is called a permutation for M iff it
is a permutation over DSy,...,DSy. We extend f to B’s other basic datatypes,
requiring that f must not permute integer, boolean or enumerated values:

- fle)=2 if x:Z orx:BOOL orz:ES; (for some j)
Values in B are either elements of given sets (including boolean values and in-
tegers), pairs of values, or sets of values. We recursively lift such an f to pairs
and sets as follows:

- fle—y)=fz)— f(y)

- Sz, and) = {f(@1), .. f(2a)}

We also extend the domain of this function [ to state vectors by defining

- f(<’l)1,...,’l)k>) = <f(v1)a--.af(vk)>

Take for example a B machine with deferred sets D.S; = {s1,s2} and DSy =
{r1,72}. Then f = {s1 > $2,82 — 81,71 — 71,79 — ro} is a permutation over



{DS1,DSs2}. Applying f to states we have for example f({s1)) = (s2), f({(r1,5))

= (r1,5), f({{s1,52})) = ({s1,52}), f({{s2},51)) = ({s1},82), f({{s1},{1 —
sih, {{} {s2}}) = ({s2}, {1 — s2}, {{}, {s1}}). Observe that constants are part
of the state and are thus also permuted by f.?> We can now define when two
states are a permutation of each other:

Definition 3. Let s, s’ be two states of a B Machine with deferred sets DS1, ...,
DSy.. The state s is a permutation the state of s’ iff there exists a permutation
[ over {DS1,...,DS;} such that s’ = f(s).

In order to generate all permutation states of a given state s we thus sim-
ply need to enumerate all possible permutations over {DS1,...,DS;}. In our
implementation we have added one improvement: if the state s only contains
the deferred set values V' C U;—1. ;. DS; then we only need to generate “partial”
permutations (i.e., we do not have to map elements which do not occur in s).

We can now formalise our model checking algorithm. Below, error is a func-
tion which returns true if the argument is an error state: usually, this means an
invariant violation or a deadlock.

Algorithm 3.1[Consistency Checking with Permutation Flooding ]

Input: An abstract machine M
Queue = {root} ; Visited := {}; Graph := {}
while Queue is not empty do
state := pop(Queue); Visited := Visited U {state}
if error(state) then
return counter-example trace in Graph from root to state
else
for all succ,Op such that state —>(1\3/Ip succ do
Graph := Graph U {state —o, succ}
if succ ¢ Visited then
if random(1) < a then add succ to front of Queue
else add succ to end of Queue end if
Visited := Visited U {s|3f.f is a permutation function A s = f(succ)}
end if
end for
end if od
return ok

Note that all elements of Queue and Visited have associated hash values. It
is therefore usually quite efficient to decide whether succ ¢ Visited. We have im-
plemented this algorithm within PROB, and we provide empirical results later in
Section 5. In the following section we will justify the soundness of the approach.

2 If that is not desired then one could simply impose on the allowed permutations,
that for all deferred set elements ¢ occurring in the constants we have f(c) = c.



4 Soundness Results

The permutation flooding algorithm optimises the standard exhaustive checking
algorithm of PROB by assuming that if a state satisfies the invariant, then all
permutations of that state also satisfy the invariant. It also assumes that if a
state can reach another state violating the invariant (or exhibiting a deadlock),
then all permutations of that state can also reach a state violating the invariant
(or with a deadlock). This section outlines the correctness of these assumptions.
A key theorem in showing this is that given a state s and a permuted state f(s),
the truth value of predicate P in state s is equivalent to the truth value of P in
state f(s).

The values of free variables in B expressions and predicates are either ele-
ments of given sets (including Boolean values and integers), pairs of values, or
sets of values. We find it convenient to represent the state as a substitution of
the form [vl,...,on := cl,...,cn], where vl,... ,vn (denoted V') are the vari-
ables in any B expression/predicate and cl,...,cn (denoted C) are the values.
Such variables include state variables, machine constants, quantified variables
and local operations variables.

For expression E, we write E[V := C] to denote the value of E in state
[V := (C]. This value will be an element of some type constructed from the given
sets of a machine. Similarly for predicate P, we write P[V := C] to denote the
boolean truth value of P in state [V := C]. Most B set operators are defined
in terms of other more basic operators and/or set comprehension®. This means
we can focus on the core predicate and expression syntax as defined in [1]. This
core syntax is shown in figures 3 and 4%.

E ::=Var P:=PAP
|  Enum | -P
| (BB | BE-E
| EXE | Vz.(reS = P)
| P(E) | EcE
| {zlzeSAP}
| E(B)

Fig. 3. Core syntax for expressions Fig. 4. Core syntax for predicates

The goal is now to prove that the permutation function f used in permuta-
tion flooding will preserve the evaluation of any expression or predicate. This is
expressed by the following theorem.

3 For example, SCT & Vz.(z €S = z€1T)

4 To simplify the presentation we have ignored integer and boolean expressions. These
are never permuted by the algorithm. However an integer expression may contain a
subexpression of the form max(S) or card(S), where S is a set. The set S in maxz(S)
must be a set of integers and therefore will never be permuted. The set S in card(S)
can be any finite set and therefore may be permuted. Such permutation is sound
since the injectivity of f means that for any set S, card(S) = card(f(S5)).



Theorem 1. For any expression E, predicate P, state [V := C] and permuta-
tion function f:

BV :=C]) = E[V := f(C)]
PV :=C] & P[V := £(C)]

The theorem can be proved by structural induction over expression and pred-
icate terms. The induction is mutual since expressions may contain predicates
and vice versa. We don’t present the full proof here, but it is instructive to con-
sider two case of the structural induction. Firstly, consider the base case where
F is an enumerated value ev:

flev[V:=C])
= f(ev) ev has no free variables
= ev f(E’U)ZEU

= ev[V := f(C)] ev has no free variables
The case of an equality predicate makes use of the injectivity of f:
(B1= B2V := f(C)
< E1[V := f(C)] = E2[V := f(C)] substitution distributes
< f(EL1[V :=C]) = f(E2[V = () induction hypothesis
< FE1[V :=C] = E2[V :=C] f is injective
& (Bl = E2)[V = (]

Corollary 1. From Theorem 1 we can conclude that every state permutation f
for a B machine M satisfies
~-VseS:skETiff f(s)=1
1

- Vs1€5,Vs0€85: 51 —>(1)V11Aa.b sa & f(s1) _’%.f(a).f(b) f(s2).

In terms of the terminology of [6][Chapter 14], we have thus shown that our
permutations are automorphisms wrt B’s transition relation between states and
that the truth value of the invariant is preserved by our permutations. Note
that by induction, it follows from Corollory 1 that, if we can execute a trace
t from a state s; to another state so, then we can execute a corresponding
trace t' from f(s1) to f(s2). This ensures that we do not miss out deadlocks
or reachable classes of symmetric states by checking just a single representative
of a class. It also ensures that we do not miss out on traces (up to renaming);
which is important for B’s refinement notion and will enable us (in future) to use
permutation flooding for symmetry reduction during refinement checking [15].

Proof. (Sketch) for Corollory 1.

The first point about invariant preservation is obvious. It is also trivial to show
that enabling of op is preserved by f by applying Theorem 1 to the guard
and pre-condition of op. The fact that the parameters and return values of an
operation are linked can be easily proven by adding new variables to the machine
for the arguments and return values and applying Theorem 1 with P being the
characteristic predicate of the operation op.

From the above results we can also derive an efficiency result for permutation
flooding, namely that all permutation states of some reachable state are also



part of the reachable state space (this is nicely illustrated in Figures 1 and 2).
In practical terms, this means, in case we exhaustively explore the entire state
space, we have nothing to lose by applying permutation reduction.

5 Empirical Results

In a first phase we have performed classical consistency and deadlock checking
with and without permutation flooding, on a series of examples using PROB’s
model checker. The results can be found in Table 1. The column “Nodes” con-
tains the number of nodes for which the invariant was checked and the outgoing
transitions computed. The experiments were all run on a multiprocessor system
with 4 AMD Opteron 870 Dual Core 2 GHz processors, running SUSE Linux
10.1, SICStus Prolog 3.12.5 (x86_64-linux-glibc2.3) and PROB version 1.2.0.°
scheduler0.mch and schedulerl.ref are the machines presented in [15]. The sched-
uler machine is a variation of scheduler0.mch, and is taken from [13]. In all the
schedulers the deferred sets are the process identifiers. USB is a specification of
a USB protocol, developed by ClearSy. The deferred set are the data transfers.
RussianPostalPuzzle is a B model of a cryptographic puzzle (see, e.g., [10]). In
this case, the deferred set is the number of available keys and locks.

O Without *F With Permutation Flooding

logio (time in sec)
3.0
24
1.8
12
06
0
-06
12
-1.8
24
-30

| 2 3 4 5 6 7

Number of Processes

Fig. 5. Model Checking time and evaluated nodes and transitions for schedulerl.ref

Analysis of the results: The results are very encouraging. As can be seen,
the permutation flooding algorithm pays off, sometimes achieving an order of
magnitude reduction. However, we do not get a fundamental change of the run-
time complexity, as Fig. 5 clearly shows. Still, Table 1 shows that a considerable

5 Note that neither SICStus Prolog nor PROB take advantage of multiple processors.



Table 1. Model checking with and without (wo) permutation flooding

Machine Card| Time| Time|Speedup| Nodes Transitions
wo (s)| with wo with| wo  with

scheduler 1 0.01| 0.01 1.0 4 4 5 5
(from [13]) | 2 | 0.04] 0.03 16 11| 7 25 16
3 0.09] 0.04 2.1 36/ 11 121 38

4 0.43| 0.07 6.0 125 16 561 75

5 1.97 0.23 8.6 438 22| 2481 131
6 8.63| 1.22 7.1] 1523 29| 10489| 210

7 | 36.63] 9.87 3.7 5232| 37| 42617 316
Russian 1 0.05| 0.05 1.0 15| 15 24 24
PostalPuzzle| 2 0.32| 0.21 1.6 81| 48 177 105
3 1.32| 0.46 2.9 4411 119 1227 331

4 8.73] 1.90 4.6 2325| 248| T869| 838

5 | 54.06| 12.18 4.4 11985| 459| 47795| 1826

scheduler0 1 0.01] 0.01 1.0 5 5 6 6
(from [15]) 2 0.07| 0.05 1.5 16| 10 37 23
3 0.28| 0.07 4.1 55| 17 190 59

4 0.98| 0.20 5.0 190f 26 865| 121
5 4.52| 0.75 6.0 649 37| 3646| 216

6 | 20.35| 4.74 4.3| 2188 50| 14581 351
schedulerl 1 0.01| 0.01 1.0 5 5 6 6
(refines 2 0.05| 0.06 0.9 27| 14 62| 32
scheduler0) | 3 0.41] 0.11 3.8 145 29 447 94
4 2.96| 0.34 8.6 825 51| 2948 211
5 | 23.93] 1.70 14.1| 5201| 81| 19925| 405

6 [192.97| 13.37 14.4| 37009| 120({145926| 701
7 1941.46|167.95 5.61|297473| 169|506084| 1127
USB.mch 1 0.21] 0.26 0.8 23| 23 652| 652
2 7.70| 3.03 2.5 415| 214| 13120| 6736
3 |283.05| 47.92 5.9| 7663|1398(248540(45302

amount of nodes do not need to be evaluated for invariant violations or com-
puting the possible outgoing transitions. Hence, our method will pay off espe-
cially for machines with more complicated invariants or complicated operations.
In the machines above the invariants were actually very simple. For example,
schedulerl’s invariant only contains typing information. We have thus produced
an elaboration of scheduler 1 with a more complicated invariant. The results can
be found in Figure 2, and they confirm our expectation that for more compli-
cated machines the permutation flooding algorithm can be even more beneficial
(e.g., being 68.5 times faster than classical model checking for 5 processes). How-
ever, for simple machines such as the scheduler or scheduler(, the bottleneck is
the generation of the permutations. This explains why the relative performance
improvements drop off for these simple machines for higher cardinalities of the
deferred sets.



Table 2. Further Experiments

Machine Card| Time|Time|Speedup| Nodes [|Transitions

wo (s)| with wo with| wo with
scheduler1™| 2 0.23| 0.14 177 27 14 62| 32
(with more | 3 1.81| 0.37 4.9| 145| 29| 447 94
complicated| 4 32.48| 1.97 16.4| 825| 51| 2948 211
invariant) 5 |766.19(11.18 68.5(5201| 81]|19925| 405

6 Extending the Algorithm for Enumerated Sets

In this section we discuss how to extend our algorithm for enumerated given
sets. It is clear that if an enumerated set element is referenced in the invariant
or in the precondition or guard of an operation, that this can cause unsoundness
of permutation flooding. We have seen that in Section 3. But what if the set
element is only referenced in the body of an operation? Let us look at the
following example.

MACHINE SymCounterEx

SETS S={s1,s2,s3}

VARIABLES x

INVARIANT x:POW(S) & card(x)=1
INITIALISATION x : (x:POW(S) & card(x)=1)
OPERATIONS add = BEGIN x := x \/ {s1} END
END

Here we have three initial states: x = {s1}, z = {s2}, x = {s3}. They are all
symmetric wrt the INVARIANT as well as wrt all Preconditions and Guards of
all operations. Still, it is unsound to just examine one representative. Suppose
we check x = {s1}. This state does not violate the invariant and we detect that
executing add in the state loops back itself and we would incorrectly report that
the invariant is not violated by the machine, while it is when executing the add
operation from either = {s2} or x = {s3}.

It is instructive to examine exactly where the proof of Section 4 fails if we
permute enumerated sets. It is in Theorem 1, when we have an element of a
given set as the expression. In this case we no longer have f(ev) = ev. As a
result, we no longer have that evaluating the expression and then applying the
permutation gives the same result as applying the permutation first and then
evaluating the expression; breaking the symmetry results. However, if we do not
use an enumerated set element inside any expression, the proof still goes through.
This thus provides a way to extend our correctness results and methodology for
enumerated sets.

This idea has also been implemented inside PROB. The basic idea is that, for
every enumerated given set £S;, we compute the values Dgg, C ES; which are
not referenced syntactically inside the invariant, properties, initialisation or the
operations of a B machine. If card(Dgg,) > 1 then we will permute the values in



Dgs, in the same way as deferred set values were substituted for each other. We
thus extend Definition 2 by allowing f to be a permutation over {DS1, ..., DSy}
@] {DES, | 1< < m/\C(J,Td(DESi) > ].}

Let us examine this extended algorithm on the example above. Figure 6 shows
the correct state space computed by PROB, where s2 and s3 are considered
symmetric wrt each other but not wrt s1. As can be seen, the invariant violation
is detected. (It can also be seen that PROB inserts artificial permute operations.
This is to provide the user with a better feedback when using the animator.)

One may wonder how often in practice a given set would be defined and only
part of its elements referenced inside the machine. One typical example is when
the set is actually a deferred set, but was enumerated for animation purposes (to
give meaningful names to the set elements). This case is actually quite common.

AL

. initi‘alisefméchine({sé.})‘~~._

initialisefmacﬁine({sﬂ) : initialise;machine({ss))
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Fig. 6. Full state space after permutation flooding for SymCounterEx

7 Discussion, Related and Future Work

Future Work One interesting avenue for further research is to use the permuta-
tion flooding idea also for refinement checking. This could be achieved by suitably
taking the “permute” transitions inserted by PROB (see, e.g., Fig. 6) into ac-
count. Another idea is to use symmetry reduction when evaluating predicates
with existential or universal quantification, to cut down on the number of values
that need to be tested for the quantified variables. For example, to evaluate the
formula Vz.x C DS = P one would only have to evaluate P for one representa-
tive per symmetry group. Finally, PROB has recently been extended to be able
to treat set comprehensions and lambda abstractions symbolically. These are
converted into a closure and are only evaluated on demand. For this extension,
we would need to adapt the permutation so that it permutes the values stored
inside the closures.



Related Work The line of research developing symmetry reduction for temporal
logic model checking is the inspiration for the present article. Symmetry reduc-
tion in model checking dates back to [11] and [5], more recent works being [17,
18]. One difference with those works is that in our case we do not consider
temporal logic formulas, but B’s criteria of invariant violations, deadlocks and
refinement. Another important difference is the complexity of B’s data structures
and operators, making the orbit problem [6] particularly tricky. Still, it should
be possible to extend this line of research for B, by using algorithms from graph
theory [12] and systems such as NAUTY [16].

As our experiments have indicated, classical symmetry reduction by comput-
ing a normal form (i.e., a representative of the set of symmetric states) may in
principle be able to achieve even better results than our approach. The draw-
back of our method is that all permutations are added all of the time (for one
representative per class). Depending on the B machine being checked, this may
be unnecessary work as by pruning symmetric states initially, many of the later
symmetric states may not be reachable anymore. E.g., in Fig 1, this is not the
case, but one could imagine that by pruning 3 and 4, states 6 and 7 became
unreachable. A classical symmetry reduction algorithm would thus not have to
compute a normal form for 6 and 7, whereas we will still add the states 6 and
7 as permutations of 5 to the state space. Furthermore, when invariant viola-
tions are present, adding permutations could result in the model checker taking
longer to find the first counterexample. However, there will also be cases where
permutation flooding is better than a classical symmetry reduction algorithm,
namely when the data values inside the individual states get complicated, thus
making the computation of the normal form of the state graphs expensive. In
our case, the complexity of computing the permutations does not depend on
the complexity of the data values being used (they just need to be traversed
once); only on the number of deferred set elements occurring inside the state.
In summary, a main advantage of our approach lies in its simplicity, along with
the fact that it can naturally deal with complicated data structures (such as the
closures discussed above).

Another class of related work is the one using symmetry for efficient testing
of satisfiability of boolean formulas. These works (e.g., [7], [2, 3] or [8]) use sym-
metry breaking predicates, which are determined using algorithms from graph
theory and which ensure that a subset of the state space will be ignored. Other
related work in the formal methods area is the BZ testing tool (BZTT) [13].
This is a test-case generation tool, that also contains an animator. In contrast to
PRrROB, this animator keeps constraints about the variables of a machine, rather
than explicitly enumerating possible values. As a side benefit, this gives a simple
form of symmetry reduction for the deferred set elements (e.g., the states 2,3,4
in Fig. 1 could be represented by a single state of the form active = {s} with
the constraint s € Session), but in general not for enumerated sets. Also, the
symbolic approach seems difficult to scale up to more complicated B operators
(such as set comprehensions, lambda abstractions, existential quantifications,
etc., which are not supported by BZTT).



Conclusion In conclusion, we have presented a new way to achieve symme-
try reduction for model checking B specifications. The algorithm proceeds by
computing permutations of the states encountered during the model checking,
and adding those permutations to the state space, marking them as already
processed. We have presented a formalisation of this approach, along with cor-
rectness results. We have also compared our approach to classical symmetry
reduction, arguing that either approach has its advantages and drawbacks. We
have implemented the algorithm inside the PROB toolset and have evaluated the
approach on a series of examples. The empirical results were very encouraging,
the speedups exceeding an order of magnitude in some cases.
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