
International Journal on Software Tools for Technology Transfer (2019) 21:567–605

https://doi.org/10.1007/s10009-019-00516-4

REGULAR PAPER

Symmetry reduction in CSPmodel checking

Thomas Gibson-Robinson
1
· Gavin Lowe

1

Published online: 1 April 2019

© The Author(s) 2019

Abstract

We present an extension of FDR, the model checker for the process algebra CSP, that exploits symmetry to reduce the size of

the state space searched. We define what it means for a process to be symmetric with respect to a group of permutations on

the transition labels. We factor the state space of the search by symmetry equivalence, mapping each state to a representative

of its equivalence class, thereby considering all symmetric states together. We prove a powerful syntactic result, identifying

conditions under which a process will be symmetric in a particular type. We show how to implement such a search using the

powerful technique of supercombinators used in the implementation of FDR: we identify conditions on a supercombinator

for it to be symmetric and explain how to apply a permutation to a state. Finally, we present a novel efficient technique for

calculating representatives of equivalence classes, which normally finds unique representatives; our experiments suggest that

this technique typically works faster than other techniques and in particular scales better.

Keywords Model checking · Symmetry reduction · CSP · FDR · Supercombinators · Representatives

1 Introduction

FDR [14] is a powerful model checker for the process

algebra CSP [35]. FDR takes a list of CSP processes, writ-

ten in machine-readable CSP (henceforth CSPM); it can

check whether one process refines another according to

the CSP denotational models (e.g. the traces, failures and

failures–divergences models), or it can check other prop-

erties, including deadlock freedom, livelock freedom and

determinism. FDR has been widely used both within industry

and in academia for verifying systems [13,24,33]. It is also

used as a verification back end for several other tools includ-

ing: Casper [27] which verifies security protocols; SVA [36]

which can verify simple shared-variable programs; and sev-

eral industrial tools (e.g. ModelWorks and ASD). The last

few years have seen significant advances in FDR, leading to

FDR3 [14] and FDR4, exploiting multi-core algorithms and

using more efficient internal representations of processes,

and also supporting large compute clusters; these advances

B Thomas Gibson-Robinson

thomas.gibson-robinson@cs.ox.ac.uk

Gavin Lowe

gavin.lowe@cs.ox.ac.uk

1 Department of Computer Science, University of Oxford,

Oxford, UK

have made a step change in the class of systems that can be

analysed.

Many systems that one might want to model check con-

tain symmetries. In this paper, we present an extension of

FDR4 that exploits these symmetries: this gives considerable

speed-ups in model checking (see Table 1); more importantly,

we can now check much larger systems, including systems

that, without symmetry reduction, would have well over 1026

states and so would be too large to check (on the same archi-

tecture) by a factor of more than 1016. Symmetry reduction

has been applied previously in other model checkers: we give

a review in Sect. 1.3.

Our main interest in symmetry reduction arises from our

analysis of concurrent datatypes, particularly those based on

linked lists [28]. Here, each node in the linked list is modelled

by a CSP process, say of the form Node(me, datum, next),

where me is the node’s identity, datum is some piece of

data, and next is the identity of the next node in the list or

a special value Null. Threads that operate on these nodes

are also modelled as CSP processes. One can then analyse

a system with some number n of nodes and some number

t of threads. Clearly, a list of a particular length l can be

formed in n!/(n−l)! different ways by using different nodes,

but all such states that correspond to the same sequence of

datum values are symmetric. Further, different states can

be symmetric in the type of the datums: for example, a list

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00516-4&domain=pdf

568 T. Gibson-Robinson, G. Lowe

holding the sequence 〈A, B, A〉 is symmetric to one holding

〈B, C, B〉, say. Finally, the system is symmetric in the type

of the thread identities.

Our approach is also applicable to network communica-

tion protocols in a dynamic network, where links may be

broken or re-made, or where hosts may choose to use a par-

ticular sub-network for communication. Here the system is

symmetric in the identities of hosts: different states of the

network may be symmetric under permutations of these iden-

tities.

In general, our technique applies to systems that are fully

symmetric in a particular type; however, we sketch (in Sect. 8)

an example based on a ring of processes to show that, nev-

ertheless, it can be applied to systems with a restricted form

of symmetry.

We describe relevant background and formalise our notion

of symmetry in Sect. 2: we define what it means for a labelled

transition system (LTS) to be symmetric with respect to a

group G of permutations on the labels of transitions and for

a pair of states to be related under a permutation π ∈ G

(π -bisimilar).

By verifying the behaviour of the system from one state,

we can deduce its correctness in all symmetric states. In

Sect. 3 we present the idea behind the symmetry reduc-

tion. We map each state to a representative member of its

(G-bisimilarity) equivalence class. FDR performs model

checking by searching in the product automaton formed

from the LTSs for the specification and implementation pro-

cesses. We show how to perform a symmetry reduction on

this product automaton and how to exploit this in a model

checking algorithm. Our approach assumes only that the ini-

tial states of the specification and implementation processes

are symmetric with respect to some group G of permutations

(Definition 11); this contrasts with several other approaches

which assume that every state of the specification is G-

symmetric.

In Sect. 4 we consider how to identify syntactically that

a system is symmetric in particular types T1, . . . , TN . We

make certain assumptions about the CSP script principally

that the script uses no constants of the relevant types. We

show that the set of values associated with each channel or

datatype constructor is invariant under permutations on each

of T1, . . . , TN . Further, we show that—for any CSPM expres-

sion e, any environment ρ giving values to free variables, and

any permutation π—evaluating e in ρ and then applying π

gives the same result as first applying π to the values in ρ and

then evaluating e: we denote this π(evalρ e) = eval(π ◦ρ) e.

In particular, this means that in the initial environment ρ1,

π(evalρ1 e) = evalρ1 e (since π ◦ ρ1 = ρ1), and hence

that the semantics of each process is symmetric under π .

CSPM includes, as a sub-language, a lazy functional lan-

guage, roughly equivalent to Haskell without type classes,

but with the addition of sets, mappings and associative con-

catenation (“dot”). This sub-language is very convenient for

modelling complex data, but considerably complicates rea-

soning about the full language.

Internally, FDR represents an LTS by a supercombi-

nator, consisting of LTSs for component processes, with

rules describing how component transitions are combined.

Supercombinators are a powerful and efficient technique for

modelling LTSs. They are generally applicable for mod-

elling systems built from a number of components. In Sect. 5

we describe supercombinators and identify conditions on a

supercombinator under which the corresponding LTS is sym-

metric.

In Sect. 6 we build on the syntactic result of Sect. 4. We

show how to identify symmetries within a supercombinator.

We then show how to apply a particular permutation to a state

of the supercombinator.

In Sect. 7 we describe a way to calculate representative

members of equivalence classes. This is believed to be a dif-

ficult problem, in general [6]. Our technique does not always

give unique representatives (although nearly always does),

but allows representatives to be calculated efficiently. Our

approach works well in practice.

In Sect. 8 we report the results of experiments using our

extension. The experiments show that the symmetry reduc-

tion provides considerable speed-ups in model checking;

further, it allows us to analyse much larger systems than

would otherwise have been possible. We also compare exper-

imentally our technique for finding representative members

of equivalence classes with two existing techniques; our

results suggest that our approach is typically faster and in

particular scales better.

We conclude in Sect. 9.

In the interests of exposition, we slightly simplify some

aspects in the body of the paper and concentrate on the main

ideas. In particular, in the body we restrict to the traces model

of CSP; the stable failures and failures–divergences models

(which require a different automaton for the specification) are

dealt with in “Appendix B”; these require a generalisation of

LTSs, which we present in “Appendix A”. Further, in the body

we give a simplified version of supercombinators; full super-

combinators are described in “Appendix C”, and symmetry

techniques over them are described in “Appendix D”. In the

interest of space, we omit some straightforward proofs; these

can be found in [15].

Our main contributions, then, are:

– The identification of general syntactic conditions under

which a system will be symmetric, based on a powerful

language supporting complex datatypes;

– A general technique for finding representative members

of equivalence classes for systems built from compo-

nents, which seems to perform better than previous

techniques;

123

Symmetry reduction in CSP model checking 569

– The adaptation of symmetry reduction to model checking

based upon the powerful technique of supercombinators,

in a way that makes fewer assumptions about the speci-

fication than some previous approaches; and

– The implementation of these techniques in an easy-to-use

way, within an industrial-strength model checker, giving

informative counterexamples when refinements do not

hold.

1.1 A brief overview of CSP

In this section we give a brief overview of the fragment of

CSPM that we will use in this paper. (Our technique applies to

the whole of CSPM , but we omit here operators that we will

not use in the paper.) For more details on CSP, see [35,39].

CSP is a process algebra for describing programs or

processes that interact with their environment by communi-

cation. A CSP script contains definitions of datatypes, values,

functions, channels and processes and also contains asser-

tions to be checked by FDR; we explain these in more detail

below. Figure 1 contains a full script; we explain this in detail

in the next section, but use it to illustrate particular points

here. (Scripts are written in ASCII; the script in Fig. 1 has

been pretty printed.)

User-defined types may be introduced using the keyword

datatype. For example, line 2 of the script introduces a type

NodeIDType that contains seven atomic values. Such types

may contain nonatomic values. For example, the declaration

datatypeMaybeInt = Just . Int | Nothing

creates a type that contains all values of the form Just.x where

x is an Int, and the distinguished valueNothing; note how val-

ues are constructed using the dot operator “.”. Such datatype

declarations may be recursive. For example, the declaration

datatype IntList = Empty | Cons . Int . IntList

defines a type that is isomorphic to finite lists containing Ints.

CSPM contains, as a sub-language, a strongly typed func-

tional language, similar to Haskell but without type classes,

and with the addition of sets and mappings. Thus, a script

may contain definitions of values and of functions. Line 3 of

the script defines a value NodeId which is a set containing

six values. (diff is the set difference function.) The following

function returns the length of an element of the above IntList

type.

length(Empty) = 0

length(Cons . x . xs) = 1 + length(xs)

Built-in functions of the functional sub-language are

described in [39].

Processes communicate via atomic events. Events often

involve passing values over channels; for example, the event

c.3 represents the value 3 being passed on channel c. Chan-

nels may be declared using the keyword channel. For

example, line 11 contains a declaration of a channel freeNode

whose events are of the form freeNode.t .n for each t ∈
ThreadID and n ∈ NodeID (so 18 events in total). Each

channel has a fixed type, but channels can be declared to

pass arbitrary values (excluding processes).

The simplest process is ST O P , which represents a

deadlocked process that cannot communicate with its envi-

ronment. The process a → P offers its environment the

event a; if the event is performed, the process then acts like P .

The process c?x → P is initially willing to input an arbi-

trary value v on channel c, i.e. it is willing to perform any

event of the form c.v; it binds the variable x to the value v

received and then acts like P (which may use x). For exam-

ple, line 26 defines a simple process Lock that repeatedly will

perform any event of the form lock.t for t ∈ ThreadID and

then performs the corresponding unlock.t event. The process

c!v → P outputs value v on channel c. Inputs and outputs

may be mixed within the same communication, for exam-

ple, the construct getDatum?t!me!datum (line 16) indicates

that the process is willing to perform any event of the form

getDatum.t .me.datum for t ∈ ThreadID, but using the cur-

rent values ofme anddatum (from the process’s parameters).

The process P ✷ Q can act like either P or Q, the

choice being made by the environment: the environment is

offered the choice between the initial events of P and Q.

For example, the Top process (line 22 of Fig. 1) is willing

to communicate on either the getTop or setTop chan-

nel. By contrast, P ⊓ Q may act like either P or Q,

with the choice being made internally (i.e. nondetermin-

istically), not under the control of the environment. The

process ifb then P else Q represents a conditional. b&P

is a guarded process that makes P available only if b is true;

it is equivalent to ifb then P else ST O P .

The process SK I P terminates immediately, represented

by the special event
√

. P ; Q represents the sequential com-

position of P and Q: P is run, but when it terminates, Q is

run.

The process P [|A|] Q runs P and Q in parallel, synchro-

nising on events from A. The process P ||| Q interleaves

P and Q, i.e. runs them in parallel with no synchronisation.

The process P \ A acts like P , except the events from A are

hidden, i.e. turned into internal τ events.

Each of the binary operators has a corresponding indexed

operator. For example,⊓ x : X •P(x) (sometimes written as

⊓x :X P(x)) is an indexed nondeterministic choice, with the

choice being made over the processes P(x) for x in X , and

‖ t : T • [A(t)]P(t) (sometimes written as ‖t :T [A(t)]P(t))

is a parallel composition of the processes P(t) for t ∈ T ,

where each P(t) is given alphabet A(t), and processes syn-

chronise on events in the intersection of their alphabets.

CSP can be given an operational semantics in terms of

labelled transition systems. From this, a denotational seman-

tics can be defined. (Alternatively, the denotational semantics

123

570 T. Gibson-Robinson, G. Lowe

can be defined directly over the syntax, compositionally

[35].) We describe these formally in Sect. 2 and Appendix A.

The simplest denotational model is the traces model. A

trace of a process is a sequence of (visible) events that a

process can perform. We say that P is refined by Q in the

traces model, written P ⊑T Q, if every trace of Q is also

a trace of P . FDR can test such refinements automatically,

for finite-state processes. Typically, P is a specification pro-

cess, describing what traces are acceptable; this test checks

whether Q has only such acceptable traces. Refinement asser-

tions are written in CSPM scripts using the assert keyword

(e.g. line 49).

FDR supports various compression functions that can be

applied to processes. Most of these transform the labelled

transition system in a way that preserves the denotational

semantics, but normally gives a transition system with fewer

states, so as to make model checking faster. (Some compres-

sion functions do not preserve the denotational semantics and

are designed for special-purpose checks.)

1.2 A running example

We introduce here a running example, which we use to illus-

trate some of our techniques. (Our main interest is in more

sophisticated concurrent datatypes than this that aim to be

lock-free and linearisable [17]; however, we choose a simpler

example here.) The example is of a concurrent lock-based

stack that uses a linked list of nodes. The CSP model is pre-

sented in Fig. 1. This particular model includes six nodes,

four possible data values that can be stored, and three threads

(lines 2–5), but these parameters can easily be changed.

Each node is represented by a process that is ini-

tially free (FreeNode(me)), but may be initialised by a

thread to hold a datum and a reference to another node

(Node(me, datum, next)); subsequently, the datum or next

reference may be read, or the node freed.

A variable holding the top of the stack is also represented

by a process (Top(top)), where the top may be read or set.

Likewise, the lock is represented by a process (Lock) which

may be alternately locked and unlocked.

Finally, each thread is represented by a process

(Thread(me)). A thread may perform a push by obtaining the

lock, reading the top, initialising a node appropriately to ref-

erence the previous top, setting the top to reference the new

node, signalling completion and releasing the lock. It may

perform a pop by obtaining the lock and reading the top; if

the top is Null, then it signals that the pop failed because the

stack is empty, and releases the lock; otherwise, it obtains the

node referenced by the top node, updates the top to reference

it, reads the datum from the previous top, signals completion,

frees the node and releases the lock.

The processes are combined in parallel (lines 41–45), with

all events hidden except those signalling completion of oper-

ations (process System). Figure 2 gives an illustration of a

state of the system.

The specification is that of a stack. This is captured by

the process Spec(s) (lines 47–48); the sequence s represents

the contents of the stack. In the state illustrated in Fig. 2,

we would expect the specification process to be in state

Spec(<C,B>).1 If the stack is nonempty, the top element

can be popped, and otherwise a pop may fail; if the stack

is not full, an element can be pushed on. The refinement

check (line 49) tests whether the system refines the specifi-

cation, i.e. whether every trace of the system is allowed by

the specification, meaning that each sequence of push and

pop operations on the system satisfies the normal properties

of a stack.

FDR can verify the refinement check. However, it is slow,

taking about thirty minutes on a 16-core machine and explor-

ing 7.8 billion states and 21.4 billion transitions. However,

there is a lot of symmetry in the system: it is symmetric in the

types Data of data and ThreadID of thread identities and the

subtype NodeID of real node identities. (Note that it is not

symmetric in the typeNodeIDType, which includesNodeID,

because Null is treated as a distinguished value.) In Fig. 2,

applying any permutation to each of these types gives a state

that is equivalent, in a sense that we will make formal later.

Applying the symmetry reduction technique of this paper

to this system, for these three types, reduces the number of

states to 99 thousand and reduces the checking time to less

than a second.

Note, in particular, that while the initial state of the spec-

ification is symmetric, it can evolve into a state where it is

holding data, where it is not symmetric with respect to the

type Data. This is in contrast to several other approaches to

symmetry reduction which require every state of the specifi-

cation to be symmetric.

1.3 Related work

There have been several previous works applying symmetry

reduction to model checking. Excellent surveys appear in

[31,41].

Clarke et al. [6,7] consider symmetry in the context of

symbolic temporal logic model checking. They consider

symmetries that permute components within system states;

however, the permutations do not affect the values in shared

variables, and so they do not capture all symmetries present

when one process can hold the identity of another, as in our

motivating example. They use the representative technique:

1 Sequences are written in angle brackets in CSPM : < > represents the

empty sequence; <d>̂ s represents a sequence whose first element

is d and the remainder of which is s. The functions head and tail give the

first element of a sequence and all except the first element of a sequence;

length returns the length of a sequence. The function card returns the

cardinality of a set.

123

Symmetry reduction in CSP model checking 571

Fig. 1 The running example

they adapt the transition relation so as to produce represen-

tative members of each equivalence class of states, thereby

factoring the transition system with respect to equivalence.

They then show that, subject to certain restrictions, the spec-

ification φ (in CTL∗) is satisfied in the reduced transition

system iff it is satisfied in the original system. More pre-

cisely, they require that equivalent states have the same set

of propositional labels from φ: this means that the specifi-

cation cannot talk directly about symmetric values, which

makes it more restrictive than our approach. They show that

finding unique representatives, in general, is at least as hard

as the graph isomorphism problem, which is widely accepted

123

572 T. Gibson-Robinson, G. Lowe

Fig. 2 An illustration of a state of the system. Thread T1 is pushing node N2 onto the stack and is about to set the top variable to point to N2 (in

the syntactic state setTop.me!n→ . . .). Each box in the figure represents a process. Each edge illustrates where a variable of one process holds the

identity of another

as being difficult (although not known to be NP-complete).

They therefore adapt their technique to use representatives

that might not be unique. Their approach requires the user to

define how to choose representatives.

Emerson and Sistla [11] also consider symmetry in the

context of temporal logic model checking. Their focus is

on systems containing many identical or isomorphic compo-

nents. They show how symmetry of the model can be deduced

from symmetry of the system’s structure. As with [7], they

factor the transition system with respect to equivalence and

prove that the specification (in CTL∗ or Mu-Calculus) is sat-

isfied in the reduced transition system iff it is satisfied in the

original system. They allow the group actions to also operate

on the labels of the state; however, they require that the group

actions preserve certain significant sub-formulas of the spec-

ification, which makes their approach more restrictive than

ours. In [12], the same authors extend their approach, so as to

model check against a specification written in propositional

linear temporal logic, relaxing the above condition, using an

approach similar to ours.

Sistla et al. [38] describe a model checker, SMC, that

builds on the ideas of [12]. In addition to factoring the tran-

sition system with respect to symmetric equivalence, they

employ a second reduction strategy known as state symme-

try: if there are several symmetric transitions from a particular

state (so the successor states are symmetric), then only one

such transition is expanded. (We leave the investigation of

this reduction strategy within FDR as future work: it seems

somewhat harder in our setting, because multiple processes

synchronise on each transition.) They store previously seen

states in a hash table using a hash function that respects sym-

metries. (So symmetric states are placed in the same bucket.)

When a new state s is encountered, for every state s′ that

hashes to the same value, the algorithm tries to test whether s

and s′ are indeed symmetric (using an approximating algo-

rithm that sometimes fails to identify symmetries).

Ip and Dill [19] investigate symmetry using the Murφ

model checker. They introduce the notion of a scalarset:

effectively a type where all elements are treated equivalently:

this is analogous to our symmetric types. They show that any

Murφ program using such scalarsets is symmetric in each

scalarset. They then factor the transition system with respect

to the symmetry relation, as with the previous papers. They

restrict to certain simple correctness properties: error free-

dom and deadlock freedom.

Bošnački et al. [3] describe an extension to the Spin model

checker to support symmetry, building on the techniques of

[19]. They present several strategies for defining representa-

tive functions; we compare these with our own approach in

Sects. 7 and 8.

The work closest to ours is that by Moffat et al. [32], who

investigate the use of symmetry in CSP model checking.

They introduce the notion of permutation bisimulations—

informally, renaming transitions of an LTS according to

some permutation on the events—which we adapt. They

then factor the LTS according to the induced equivalence.

They present structured machines—a restricted form of

supercombinators—to represent CSP systems and present

some algebraic rules that can be used to deduce symmetries

between components. They then present a model checking

algorithm based on these ideas, restricting the specification

process to one such that every state is symmetric (in contrast

to our approach). Our advances over this work are: a much

more general technique for identifying symmetry; a more

general form of representing processes (i.e. supercombina-

tors), which scales far better; fewer restrictions on the type

of specification process that can be used; an efficient, general

representative choosing algorithm; and the incorporation of

these techniques within an industrial-strength model checker.

Jensen [21] applies symmetry reduction to the state space

of coloured Petri nets; correctness conditions are rather lim-

ited, in particular considering only properties that are fully

symmetric. Chiola et al. [5] perform a similar reduction,

but also factor the firings of the net according to symmetry.

Schmidt [37] also studies symmetry reduction in the con-

text of Petri nets. Junttila [22] studies the complexity of this

problem.

Leuschel et al. [25] give an extension for ProB, a model

checker for B, that uses symmetry reduction. This uses a

different technique called permutation flooding where every

symmetric permutation of a state is added to the set of visited

states.

123

Symmetry reduction in CSP model checking 573

TopSPIN [9,10] is an extension to SPIN that enables sym-

metry reduction on a wider variety of scripts than other

approaches. Specifically, it allows processes to hold refer-

ences to other processes (like we allow in this paper, but

unlike [6], as discussed above). The authors show how to

extend any algorithm used to find representatives when no

process holds such references to an algorithm for when pro-

cesses do hold references. The result is an exact algorithm

that always finds a unique representative, but may take expo-

nential time to do so.

2 Background

In this section we describe relevant background material con-

cerning model checking. We describe how FDR represents

CSP processes in terms of labelled transition systems (LTSs)

and present some operations over those LTSs. We give here

a slightly simplified description, in the interests of exposi-

tion. In particular, in the body of the paper we restrict to the

traces model, which will mean that we can represent pro-

cesses by labelled transition systems (Definition 1). In the

appendices, we will generalise, so as to be able to consider

the other semantic models; this will require a generalisation

of labelled transition systems.

We also briefly review permutations and permutation

groups and then formalise the notion of symmetry over LTSs.

2.1 Labelled transition systems

We assume a set of events Σ with τ,
√

/∈ Σ . Let Σ
√
= Σ ∪

{√} and Στ
√
= Σ ∪ {√, τ }. Let Σ

√∗
denote all sequences

of events from Σ
√

such that
√

occurs only as the last event

(if at all); we call such a sequence a trace.

Definition 1 A labelled transition system (LTS) is a tuple

L = (S,Δ, ini t) where:

– S is a set of states;

– Δ ⊆ S ×Στ
√
× S is a transition relation;

– ini t ∈ S is the initial state.

In the remainder of this paper we restrict to connected

LTSs, i.e. where every state is reachable from the initial state

by zero or more transitions.

If (s, a, s′) ∈ Δ, we write s
a−→ s′ (we decorate the arrow

with “L” if this is not implicit from the context); this indicates

that the process from state s can perform the event a and

move into state s′. We write s
a−→ iff ∃ s′ · s

a−→ s′. For

tr = a1 . . . an ∈ (Στ
√

)∗, we write s
tr�−→ s′ iff there exists

s0, . . . , sn such that s = s0
a1−→ s1 · · · sn−1

an−→ sn = s′. We

write s
τ∗�−→ s′ iff s can perform zero or more τ -events to

become s′. We sometimes write s ∈ L to mean s ∈ S.

We can then define the traces of a state s of an LTS:2

traces(s) = {tr \ τ | s
tr�−→}.

If L is an LTS, we will write traces(L) for the traces of the

initial state of L .

Let S and I be LTSs, representing a specification and

implementation, respectively. We define refinement between S

and I in the traces model of CSP as follows.

S ⊑T I i f f traces(S) ⊇ traces(I).

FDR translates CSP processes into LTSs and then tests for

the above refinement.

When FDR performs a refinement check of the form

Spec ⊑ I mpl, it starts by normalising the specification Spec

[35, Section 16.1]. We remind the reader of the definition of

bisimilarity.

Definition 2 (Bisimilarity) Let L1 = (S1,Δ1, ini t1), and

L2 = (S2,Δ2, ini t2) be LTSs. We say that ∼ ⊆ S1 × S2 is

a bisimulation between L1 and L2 iff whenever (s1, s2) ∈ ∼
and a ∈ Στ

√
:

– If s1
a−→ s′1 then ∃ s′2 ∈ S2 · s2

a−→ s′2 ∧ s′1 ∼ s′2;

– If s2
a−→ s′2 then ∃ s′1 ∈ S1 · s1

a−→ s′1 ∧ s′1 ∼ s′2.

We say that s1, s2 ∈ S are bisimilar iff there exists a bisim-

ulation relation ∼ such that s1 ∼ s2.

In many cases (e.g. the Spec process from Fig. 1), nor-

malisation leaves the specification unchanged. However,

normalisation has an effect, in particular, when the specifi-

cation contains nondeterminism: the critical property of the

normalised process (Lemma 4) is that it reaches a unique

state after each trace.

Definition 3 Given an LTS L = (S,Δ, ini t), its prenormal

form is an LTS3 N = (P S − {{}},ΔN , ini tN) defined as

follows. Each state is a nonempty element of P S. The initial

state is {s | ini t
τ∗�−→L s}, i.e. all states reachable (in L)

from ini t by zero or more τ -transitions. For each state ŝ ∈
P S−{{}}, and for each non-τ event a that can be performed

by a member of ŝ, we include in ΔN an a-transition from ŝ to

{s′ | ∃ s ∈ ŝ · s aτ∗�−−→L s′}, i.e. all states reached (in L) from s

by an a-transition followed by zero or more τ -transitions.

The normal form for L , denoted norm(L), is calculated

by taking the prenormal form for L , restricting to reachable

states and then factoring by strong bisimulation (i.e. com-

pressing the LTS, combining bisimilar states). We say that

an LTS is normalised if it is the normal form of some LTS.

2 tr \ τ represents tr with all τ events removed.

3 We write “P” for the powerset-type constructor.

123

574 T. Gibson-Robinson, G. Lowe

Fig. 3 The LTS for the process a → ST O P ⊓ b → ST O P (left) and

its normal form (right)

Figure 3 gives an example.

Note that the normal form for a process has no τ transi-

tions, no pair of transitions from the same state with the same

label and no strongly bisimilar states. The following lemma

shows that in a normalised LTS, the state reached after a

particular trace is unique.

Lemma 4 If LTS P = (S,Δ, ini t) is normalised, and

ini t
tr�−→ p and ini t

tr�−→ p′ then p = p′.

Lemma 5 Let N = norm(P). Then the traces of P and N

are equal.

In order to check whether P ⊑T Q, FDR explores the

product automaton of P and Q.

Definition 6 Let P = (SP ,ΔP , ini tP) be a normalised LTS,

and Q = (SQ,ΔQ, ini tQ) be an LTS. The product automa-

ton of P and Q is a tuple (S,Δ, ini t) such that

– S = SP × SQ ;

– ((p, q), a, (p′, q ′)) ∈ Δ iff q
a−→Q q ′, and if a �= τ then

p
a−→ p′ else p = p′;

– ini t = (ini tP , ini tQ).

Note that P contains no τ transitions, hence the asymmetry

in the definition.

Example 7 Let channels l, m and r pass data from type T =
{A, B}, and consider the processes

L = l?x → L ′(x) L ′(x) = m!x → L

R = m?x → R′(x) R′(x) = r !x → R

Q = (L[|{|m|}|]R) \ {|m|}.

This represents two one-place buffers chained together. Its

specification is a two-place buffer:

P = l?x → P ′(x)

P ′(x) = l?y → P ′′(x, y) ✷ r !x → P

P ′′(x, y) = r !x → P ′(y).

The LTSs for Q, P (which is already normalised) and the

product automaton are shown in Fig. 4.

The following lemma relates sequences of transitions of

the product automaton to sequences of transitions of the com-

ponents.

Lemma 8 Suppose M is the product automaton of P and Q.

Then

(ini tP , ini tQ)
tr�−→M (p1, q1) iff

ini tP
tr\τ�−−→P p1 ∧ ini tQ

tr�−→Q q1.

Further, p1 is unique (for a given choice of tr).

2.2 Permutations

Let X be a set. A permutation on X is a bijection π : X → X .

We denote the inverse of a permutation π by π−1. We write

π ; π ′ for the forward composition of π and π ′, and π ◦ π ′

for the backwards composition:

(π ; π ′)(x) = (π ′ ◦ π)(x) = π ′(π(x)).

We let idX denote the identity permutation on X ; we write

this simply as id when the underlying set is clear from the

context.

The set of all permutations of a set X forms a group under

backwards composition, which we denote Sym(X). In the

Introduction, we mentioned permutations of the (sub-)types

NodeID, Data and ThreadID from Fig. 1. If G is a group,

then G ′ ≤ G denotes that G ′ is a subgroup of G.

Our main focus is on event permutations. However, we do

not want to change the semantic events,
√

and τ . Thus, we let

EvSym ≤ Sym(Στ
√

) denote the largest symmetry subgroup

such that for all permutations π ∈ EvSym, π(τ) = τ and

π(
√

) = √
. π is an event permutation iff π ∈ EvSym.

We will often consider systems that are symmetric in

one or more disjoint datatypes, say T1, . . . , Tn ; the system

in the running example is symmetric in NodeID, Data and

ThreadID. In this case, let πi ∈ Sym(Ti), for i = 1, . . . , n;

then consider π =
⋃n

i=1 πi . We say that π is type-preserving,

since it maps elements of each Ti onto Ti . Note that π ∈
Sym(

⋃n
i=1 Ti); further, the group of all such type-preserving

permutations is isomorphic to the direct product of Sym(t1),

…, Sym(tn).

Given a type-preserving permutation π on atomic values,

π can be lifted to events in Στ
√

by point-wise application;

for example, π(get Datum.t .n.d) = get Datum.π(t).π(n).

π(d).

2.3 Symmetric LTSs

We now define what it means for an LTS to be symmetric.

For this Sects. 3 and 5, we consider symmetries from an arbi-

trary event permutation group G ≤ EvSym. In later sections,

123

Symmetry reduction in CSP model checking 575

Fig. 4 The LTSs for the

processes from Example 7 and

their product automaton. We

write, for example, L ‖ R as

shorthand for

(L[|{|m|}|]R) \ {|m|}

we specialise the group to be formed from permutations on

datatypes.

The following definition is adapted from [32].

Definition 9 (Permutation bisimilarity) Let L1 = (S1,Δ1,

ini t1), and L2 = (S2,Δ2, ini t2) be LTSs, and let π ∈ G

be an event permutation. We say that ∼ ⊆ S1 × S2 is a π -

bisimulation between L1 and L2 iff whenever (s1, s2) ∈ ∼
and a ∈ Στ

√
:

– If s1
a−→ s′1 then ∃ s′2 ∈ S2 · s2

π(a)−−→ s′2 ∧ s′1 ∼ s′2;

– If s2
a−→ s′2 then ∃ s′1 ∈ S1 · s1

π−1(a)−−−−→ s′1 ∧ s′1 ∼ s′2.

We say that s1, s2 ∈ S are π -bisimilar, denoted s1 ∼π s2

iff there exists a π -bisimulation relation∼ such that s1 ∼ s2.

We say that L1 and L2 are π -bisimilar, denoted L1 ∼π L2,

iff ini t1 ∼π ini t2.

Note that the caseπ = id corresponds to strong bisimulation.

For example, in Fig. 4, the states P ′(A) and P ′(B) (second

column of the second LTS) are π -bisimilar, where π(A) = B

and π(B) = A. Further, the initial state of each LTS is π -

bisimilar to itself, for every π ∈ Sym({A, B}).
The following lemma follows immediately from the above

definition.

Lemma 10 Let π and π ′ be event permutations.

1. If s1 ∼π s2 then s2 ∼π−1 s1;

2. If s1 ∼π s2 and s2 ∼π ′ s3 then s1 ∼π ;π ′ s3.

The techniques we present in the following sections will

require the specification and implementation LTSs to be sym-

metric in the following sense.

Definition 11 Let L be an LTS and π ∈ EvSym be an event

permutation. We say that L is π -symmetric iff L ∼π L . Let

G ≤ EvSym. We say that L is G-symmetric iff for all π ∈ G,

L is π -symmetric.

For example, each LTS in Fig. 4 is Sym({A, B})-symmetric.

Note that every LTS is {id}-symmetric.

Lemma 12 If L is π -symmetric then for every state s of L,

there exists a state s′ in L such that s ∼π s′.

3 Refinement checking on symmetric LTSs

In this section we present—at a fairly high level of

abstraction—our refinement checking algorithms for the

traces model. In Sect. 3.1 we consider relevant properties of

the specification, in particular that normalising a symmetric

specification LTS preserves symmetry. As noted in introduc-

tion, our basic approach is to map each state encountered in

123

576 T. Gibson-Robinson, G. Lowe

the search to a representative member of its G-equivalence

class; we define such representatives in Sect. 3.2. In Sect. 3.3

we present the reduced product automaton, which is explored

by the model checking algorithm, created by replacing each

state by its representative; we then present relevant results

about the reduced automaton. In Sect. 3.4, we translate the

refinement relationship into a property of the product automa-

ton and so present the model checking algorithm itself.

Fix an event permutation group G ≤ EvSym.

3.1 Symmetric normalised specifications

Recall that FDR normalises the specification before explor-

ing the product automaton. We prove that symmetry is

preserved by normalisation.

Lemma 13 If P = (SP ,ΔP , ini tP) is a G-symmetric LTS,

then norm(P) is a G-symmetric normalised LTS.

Proof (sketch). Let N = (SN ,ΔN , ini tN) be the prenormal

form for P . Let π ∈ G, and suppose ∼ is a π -bisimulation

over SP . Define a corresponding relation ≈ over SN as fol-

lows:

N1 ≈N2 ⇔ (∀ s1 ∈ N1 · ∃ s2 ∈ N2 · s1 ∼ s2)

∧ (∀ s2 ∈ N2 · ∃ s1 ∈ N1 · s1 ∼ s2).

It is then straightforward to show that ≈ is a π -bisimulation

[15]. Hence N is G-symmetric.

Clearly neither factoring by strong bisimulation nor

removing unreachable states breaks G-symmetry. Hence

norm(P) is G-symmetric. ⊓⊔

We will need to apply permutations to states of the speci-

fication. The following lemma justifies the soundness of this.

Lemma 14 Let P be a G-symmetric normalised LTS. Then,

for each s ∈ P and π ∈ G, there exists a unique s′ ∈ P such

that s ∼π s′.

Proof The existence of s′ follows directly from Lemma 12. In

order to show s′ is unique, suppose s ∼π s′′. Then s′ ∼π−1;π

s′′, i.e. s′ ∼id s′′, that is, s and s′′ are strongly bisimilar, so

s′ = s′′ by definition of normalisation. ⊓⊔

Definition 15 Let P be a G-symmetric normalised LTS, and

let s ∈ P and π ∈ G. Then, we write π(s) for the unique s′,
implied by the above lemma, such that s ∼π s′.

3.2 Representative members

The following definition formalises the notion of a represen-

tative member of an equivalence class.

Definition 16 Let L = (S,Δ, ini t) be a G-symmetric LTS.

Write s1 ∼G s2 iff there exists π ∈ G such that s1 ∼π s2.

Note that ∼G is an equivalence relation.

We say that rep : S → S is a G-representative function

for L if s ∼G rep(s) for every s ∈ S. We define rep(S) =
{rep(s) | s ∈ S}, the set of representative states; we abuse

notation and write rep(L) for the same set.

We say that rep gives unique representatives if ∀ s, s′ ∈
S · s ∼G s′ ⇒ rep(s) = rep(s′), i.e. rep selects a unique

representative of each equivalence class.

For the rest of this section, we assume the existence of a

G-representative function rep for Q.

Ideally, we would like our representative functions to

produce unique representatives, because this will give the

greatest reduction in the state space. However, finding

unique representatives is hard, in general [6]. Therefore, our

approach will not assume this. Section 7 considers how to

define a suitable efficient representative function that pro-

duces unique representatives in most cases.

3.3 The reduced product automata

We now show how to factor the product automaton using a

G-representative function. Our subsequent model checking

algorithm will search in this reduced product automaton.

Throughout this section, let P = (SP ,ΔP , ini tP) be a

normalised G-symmetric LTS, Q = (SQ,ΔQ, ini tQ) be a

G-symmetric LTS, and rep be a G-representative function

on Q.

Definition 17 We lift rep to pairs of states from SP × SQ by

defining

rep(p, q) = (π(p), rep(q))

where π is such that q ∼π rep(q).

That is: we map q to its representative rep(q), and we map p

according to a corresponding permutation π . (There may be

several such π , in which case we choose an arbitrary one.)

Below we use names like (p̂, q̂) for such representative pairs

of states.

The rep-reduced product automaton of P and Q is a prod-

uct automaton (SP × rep(Q),Δ, ini t), such that

– (p̂, q̂)
a−→ rep(p′, q ′) in Δ if q̂ ∈ rep(Q), and (p̂, q̂)

a−→
(p′, q ′) in the standard product automaton of P and Q

(i.e. q̂
a−→Q q ′, and if a �= τ then p̂

a−→P p′ else p̂ = p′).
– ini t = rep(ini tP , ini tQ).

Example 18 Recall the processes from Example 7. The prod-

uct automaton there has five equivalence classes for states.

Figure 5 gives the reduced product automaton, based on a

function rep that gives unique representatives.

123

Symmetry reduction in CSP model checking 577

Fig. 5 Reduced product

automaton for the processes

from Example 7

Throughout the rest of this section, let S be the standard

product automaton of P and Q, and R the reduced product

automaton of P and Q.

The following lemma, illustrated below, shows how steps

of the standard product automaton are matched by steps of

the reduced product automaton, and vice versa.

(p1, q1) (p2, q2)
a

S

(π(p1), q̂1) (π ′(p2), q̂2)
π(a)

R

π π ′

(p̂1, q̂1) (p̂2, q̂2)
a

R

(p1, q1) (p2, q2)
π−1(a)

S

π π ′

Lemma 19 1. If (p1, q1)
a−→S (p2, q2) and q1 ∼π q̂1 with

q̂1 ∈ rep(Q), then

∃ q̂2 ∈ rep(Q), π ′ ∈ G·

(π(p1), q̂1)
π(a)−−→R (π ′(p2), q̂2) ∧ q2 ∼π ′ q̂2.

2. If (p̂1, q̂1)
a−→R (p̂2, q̂2), q1 ∼π q̂1 and p̂1 = π(p1),

then

∃ p2, q2, π
′ · (p1, q1)

π−1(a)−−−−→S (p2, q2)

∧ q2 ∼π ′ q̂2 ∧ p̂2 = π ′(p2).

Proof 1. Since (p1, q1)
a−→S (p2, q2) we have that q1

a−→Q

q2. Then since q1 ∼π q̂1, there exists q ′ ∈ SQ such that

q̂1
π(a)−−→Q q ′ ∧ q2 ∼π q ′. Let q̂2 = rep(q ′) and π ′′ be

such that q ′ ∼π ′′ q̂2. Then, q2 ∼π ′ q̂2 where π ′ = π ;π ′′.
If a �= τ , then p1

a−→P p2 by the definition of S.

Hence, π(p1)
π(a)−−→P π(p2). So by the definition of R,

(π(p1), q̂1)
π(a)−−→R (π ′′(π(p2)), q̂2). But π ′′(π(p2)) =

π ′(p2), as required.

The case a = τ is similar, except p1 = p2 and π(p1) =
π(p2).

2. From the definition of R, there exists q ′2 such that q̂1
a−→Q

q ′2 and q̂2 = rep(q ′2). Then by the definition of ∼π ,

there exists q2 such that q1
π−1(a)−−−−→Q q2 and q2 ∼π q ′2.

Let π ′′ be such that q ′2 ∼π ′′ q̂2. Then q2 ∼π ′ q̂2 where

π ′ = π ; π ′′.
If a �= τ , then by the definition of R, there exists p′2
such that p̂1

a−→P p′2 and p̂2 = π ′′(p′2). Then, since

p̂1 = π(p1), there exists p2 such that p1
π−1(a)−−−−→P p2

and p′2 = π(p2). Hence p̂2 = π ′(p2). Then from the

definition of S, (p1, q1)
π−1(a)−−−−→S (p2, q2).

The case a = τ is similar, except p̂1 = p′2 and p1 = p2.

⊓⊔

The following lemma shows that for every trace of the

standard product automaton, there is a corresponding trace

of the reduced product automaton, and vice versa.

Lemma 20 Let tr be a trace in Στ
√∗

.

1. Suppose in the standard product automaton:

(p, q)
tr�−→S (p′, q ′) ∧ q ∼π q̂ ∈ rep(Q).

Then in the reduced product automaton:

∃ q̂ ′ ∈ rep(Q), π ′ ∈ G, tr ′ ∈ Στ
√∗·

(π(p), q̂)
tr ′�−→R (π ′(p′), q̂ ′) ∧ q ′ ∼π ′ q̂ ′.

2. Suppose in the reduced product automaton:

(p̂, q̂)
tr�−→R (p̂′, q̂ ′) ∧ q ∼π q̂ ∧ p̂ = π(p).

Then in the standard product automaton:

∃ p′ ∈ SP , q ′ ∈ SQ, π ′ ∈ G, tr ′ ∈ Στ
√∗·

(p, q)
tr ′�−→S (p′, q ′) ∧ q ′ ∼π ′ q̂ ′ ∧ p̂′ = π ′(p′).

Proof Both parts follow by a straightforward induction, mak-

ing use of Lemma 19. More precisely, we can show the

following.

1. If the standard product automaton has transitions as fol-

lows:

(p0, q0)
a0−→S (p1, q1)

a1−→S . . .
an−1−−→S (pn, qn)

∧ q0 ∼π0 q̂0 ∈ rep(Q).

Then the reduced product automaton has transitions as

follows:

(π0(p0), q̂0)
π0(a0)−−−→R (π1(p1), q̂1)

π1(a1)−−−→R . . .

πn−1(an−1)−−−−−−→R (πn(pn), q̂n) ∧
∀ i ∈ {0, . . . , n} · qi ∼πi

q̂i ,

for some q̂1, . . . , q̂n ∈ rep(Q), π1, . . . , πn ∈ G.

123

578 T. Gibson-Robinson, G. Lowe

2. If the reduced product automaton has transitions as fol-

lows:

(p̂0, q̂0)
a0−→R (p̂1, q̂1)

a1−→R . . .
an−1−−→R (p̂n, q̂n)

∧ q0 ∼π0 q̂0 ∧ p̂0 = π0(p0).

Then the standard product automaton has transitions as

follows:

(p0, q0)
π−1

0 (a0)−−−−→S (p1, q1)
π−1

1 (a1)−−−−→S . . .

π−1
n−1(an−1)−−−−−−→S (pn, qn) ∧
∀ i ∈ {0, . . . , n} · qi ∼πi

q̂i ∧ p̂i = πi (pi).

for some p1, . . . , pn ∈ SP , q1, . . . , qn ∈ SQ , π1, . . . , πn

∈ G. ⊓⊔

3.4 Refinement checking algorithm for the traces
model

We now present the model checking algorithm for the traces

model. Throughout this section, let P = (SP ,ΔP , ini tP) be

a normalised G-symmetric LTS, Q = (SQ,ΔQ, ini tQ) be a

G-symmetric LTS, rep be a G-representative function on Q,

S be the standard product automaton of P and Q, and R be

the reduced product automaton of P and Q.

The following proposition shows how trace refinements

are exhibited in the reduced product automaton.

Proposition 21 P ⊑T Q iff

∄tr ∈ Στ
√∗

, a ∈ Σ
√

, p̂ ∈ SP , q̂ ∈ SQ ·

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ q̂

a−→Q ∧ p̂ � a−→P .

Proof (⇒) We prove the contrapositive. Suppose

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ q̂

a−→Q ∧ p̂ � a−→P .

Then by Lemma 20, there exist a trace tr ′, states p and q,

and π ∈ G such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ∼π q̂ ∧ p̂ = π(p)

Also, since q̂
a−→Q and p̂ � a−→P , we have q

π−1(a)−−−−→Q ∧
p � π

−1(a)−−−−→P . Hence4 (tr ′ \ τ)⌢〈π−1(a)〉 ∈ traces(ini tQ),

but (by the uniqueness of the state p reached after tr ′,
Lemma 4) (tr ′ \ τ)⌢〈π−1(a)〉 /∈ traces(ini tP). Hence

P �⊑T Q.

4 We write sequence concatenation using “⌢”.

Fig. 6 Traces-refinement model checking algorithm on the reduced

product automaton

(⇐) We prove the contrapositive. Suppose P �⊑T Q. Then

there exist states p and q, tr ′ ∈ Στ
√∗

, b ∈ Σ
√

such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q

b−→Q ∧ p � b−→P .

Then by Lemma 20, there exist a trace tr ∈ Στ
√∗

, states p̂

and q̂ , and π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ p̂ = π(p) ∧ q ∼π q̂.

Further,

q̂
π(b)−−→Q ∧ p̂ � π(b)−−→P .

Taking a = π(b) we have the result. ⊓⊔

For example, in the reduced product automaton of Exam-

ple 18, the refinement holds, and each visible transition of

a state of Q is matched by a transition of the corresponding

state of P .

The above proposition justifies the model checking algo-

rithm in Fig. 6. The algorithm searches the reduced product

automaton for a state (p̂, q̂) such that q̂
a−→Q ∧ p̂ � a−→P .

We do not explicitly build the product automaton: instead we

explore it on the fly, based on the specification and imple-

mentation of LTSs. The algorithm maintains a set seen of

all states seen so far and a set pending of states that still

need to be expanded; FDR implements pending as a queue,

123

Symmetry reduction in CSP model checking 579

Fig. 7 An explanation of counterexample unwinding: the path in the reduced product automaton is in the top row, and the path found in the standard

product automaton is in the bottom row. Transitions are represented by solid arrows, and permutation bisimulations are represented by dashed

arrows

so as to perform a breadth-first search. Note that the algo-

rithm is identical to the standard algorithm [14,34], except

for the application of rep to obtain the representative mem-

ber. Hence, the highly optimised refinement algorithms of

[14] can be used.

3.5 Counterexample generation

When FDR detects that a refinement assertion does not

hold, it presents the user with an informative counterex-

ample that explains why it does not hold. For example, if

P ⊑T Q fails, then the counterexample is of the form

tr⌢〈a〉 where tr ∈ traces(P) ∩ traces(Q), but tr⌢〈a〉 ∈
traces(Q)\traces(P). FDR also allows the user to discover

the contribution that each component makes to the counterex-

ample.

Whenever FDR finds a new state, it records its predeces-

sor state in the exploration. This allows FDR to construct the

path followed through the reduced product automaton, i.e. a

sequence of states (p̂0, q̂0), (p̂1, q̂1), . . . (p̂n, q̂n). However,

it does not record the labels of the transitions, nor the per-

mutations used to produce representatives, in order to reduce

memory usage. In order to produce the counterexample, it

needs to find the corresponding path through the standard

product automaton, together with the labels of transitions.

The construction is illustrated in Fig. 7. Below we write

(p, q) ∼π (p′, q ′) for π(p) = p′ ∧ q ∼π q ′.
The path in the standard product construction starts at

the initial state (p0, q0) = (ini tP , ini tQ). FDR can calcu-

late the permutation π0 such that (p0, q0) ∼π0 (p̂0, q̂0) =
rep(p0, q0).

Suppose, inductively, we have a state (pi , qi) of the stan-

dard product automaton and a permutation πi such that

(pi , qi) ∼πi
(p̂i , q̂i). FDR needs to find b, (pi+1, qi+1) and

πi+1 such that (pi , qi)
b−→S (pi+1, qi+1) and (pi+1, qi+1)

∼πi+1
(p̂i+1, q̂i+1).

Consider the transition (p̂i , q̂i) −→R (p̂i+1, q̂i+1) in

the reduced product automaton. FDR searches over the

transitions of (p̂i , q̂i) in the standard product automa-

ton to find a transition (p̂i , q̂i)
ai−→S (p′i+1, q ′i+1) such

that rep(p′i+1, q ′i+1) = (p̂i+1, q̂i+1). Then (p̂i , q̂i)
ai−→R

(p̂i+1, q̂i+1) by construction of the reduced automaton. Also,

since (pi , qi) ∼πi
(p̂i , q̂i), we have (pi , qi)

π−1
i (ai)−−−−→S

(pi+1, qi+1) for some (pi+1, qi+1) such that (pi+1, qi+1) ∼πi

(p′i+1, q ′i+1). Let π ′i be such that (p′i+1, q ′i+1) ∼π ′i
(p̂i+1, q̂i+1). (The permutation π ′i is the one used by the

representative function rep, so is easily found.) Then letting

πi+1 = πi ; π ′i , we have (pi+1, qi+1) ∼πi+1
(p̂i+1, q̂i+1), as

required.

Continuing in this way, we can construct the path corre-

sponding to the counterexample through the standard product

automaton. This algorithm works efficiently in practice.

4 Symmetric datatypes

CSPM scripts are often defined using symbolic datatypes and

are symmetric in subtypes of one or more such datatypes. The

linked list-based example of the Introduction makes use of a

datatype definition of the form

datatype NodeIDType = Null | N0 | N1 | N2 | N3 | N4 | N5

The resulting system is symmetric in the subtype excluding

the special value Null.

We consider disjoint sets T1,…,TN , where each Ti is a

subset of a datatype T̂i and contains only atomic values. We

call the Ti distinguished subtypes and the T̂i distinguished

supertypes. In the running example, the system is symmetric

in the subtype NodeID of “real” node identities, but not in

the containing supertype NodeIDType, which includes the

special value Null. Likewise it is symmetric in the type Data

and the type ThreadID. Let T =
⋃N

i=1 Ti . For the rest of this

123

580 T. Gibson-Robinson, G. Lowe

section, let π ∈ Sym(T) be a type-preserving permutation

on T, i.e. for each i , π maps values of type Ti to Ti .

We assume a well-typed script. Below we will show that,

subject to certain assumptions—mainly that the CSP script

contains no constants from T—the value of every expression

is symmetric in those types.

We sketch the semantics of CSPM . As described in

Sect. 1.1, CSPM is a large language, with a powerful func-

tional sub-language. We omit the full details here and refer

the interested reader to [15]. We use an environment mapping

identifiers (variables) to values:5 Env = V ar→V alue. We

write ρ, ρ′, etc., for environments. The type Expr represents

expressions, including those that correspond to both pro-

cesses and nonprocess values. The semantics of expressions

is defined using a function eval : Env → Expr → V alue

such that evalρ e gives the value of expression e in environ-

ment ρ. In particular, when eval is applied to an expression

that represents a process, it will return the corresponding

LTS, augmented as follows. For later convenience, we label

each state with the corresponding syntactic expression—or

control state—and environment. We define a label to be a

pair (P, ρ) where P is a syntactic expression6 and ρ is an

environment.

Definition 22 An augmented LTS is an LTS where each state

is given a label, as above.

Thus evalρ P will give an LTS whose root node has label

(P, ρ); equivalently, a node with label (P, ρ) has semantics

equal to evalρ P . For brevity, we will sometimes identify a

state with its label.

Let π be a type-preserving permutation on T. We extend

π to other values in the obvious way; for example:

– For values x not depending on T we have π(x) = x .

– We lift π to dotted values, including events, by π(v1.

vn) = π(v1).π(vn).

– We lift π to tuples, sets, sequences, maps and values from

datatypes by point-wise application.

– We lift π to functions, considered as sets of maplets,

by π(f) = {π(x) �→ π(y) | x �→ y ∈ f }; equiva-

lently, in terms of a lambda abstraction, π(f) = λ z ·
π(f (π−1(z))).

– We lift π to labels by π(P, ρ) = (P, π ◦ ρ).

– We lift π to augmented LTSs by application of π to the

events of the transitions and to the labels of states.

Note that if L is an augmented LTS, then L ∼π π(L).

Note that this lifting of π forms a bijection on V alue.

5 We use “→” to denote a type constructor for partial functions.

6 In the implementation, each syntactic expression is represented by a

distinct integer.

The following definition captures our main assumption

about the CSP script.

Definition 23 A CSP script is constant-free for T if

1. The only constants from T that appear are within the

definition of the distinguished types constituting T itself.

2. The script makes no use of the built-in functions seq,

mapToList, mtransclose or show, or the compression

functions deter, chase or chase_nocache [39].

Clearly, processes that use constants from T might not be

symmetric: for example, c!A → ST O P , where A ∈ T, is

not symmetric in T.

The built-in functions listed in item 2 can be used to

introduce constants from T and so can break symmetry. For

example, seq(s) converts the set s into a sequence (in an

implementation-dependent way), so x = head(seq(T)) (where

T is a distinguished subtype) effectively sets x to be a constant

from T.

The compression functions in item 2 prune an LTS by

removing transitions according to certain rules (but in an

implementation-dependent way). Thus they can also break

symmetry. For example, each of them could convert the LTS

corresponding to ⊓x :T c!x → ST O P into the LTS corre-

sponding to c!A → ST O P , for an arbitrary A ∈ T .

The following is the main result of this section.

Proposition 24 Suppose a script is constant-free for T, and

let π be a type-preserving permutation on T.

1. The set of events is closed under π : π(Στ
√

) = Στ
√

.

And likewise the set of values in each datatype is closed

under π .

2. For every expression e in the script (which could cor-

respond to a process or a nonprocess value), and every

environment ρ,

π(evalρ e) = eval(π ◦ ρ)e.

Proof (sketch). The proof proceeds by a large structural

induction over the syntax of CSPM ; it includes subsidiary

results concerning other aspects of CSPM , namely pattern

matching, binding of variables, declarations and generators

and qualifiers of set or sequence comprehensions. The proof

is in [15]. ⊓⊔

Corollary 25 Suppose a script is constant-free for T, and let

π be a type-preserving permutation on T. Let ρ1 be the envi-

ronment formed from the top-level declarations in the script.

Then for every expression e in the script,

π(evalρ1 e) = evalρ1e.

123

Symmetry reduction in CSP model checking 581

Proof This follows immediately from Proposition 24, since

π ◦ ρ1 = ρ1. ⊓⊔

For example, this corollary shows that the LTSs represent-

ing the specification and implementation processes of each

refinement check are π -symmetric.

The above results show that structural symmetry induces

operational symmetry: when a system is constructed in a

way that treats a family of processes symmetrically—as is

required by the constant-free condition—then the induced

LTS is symmetric in the identities of those processes. Further,

when a system uses data with no distinguished values, then

the induced LTS is symmetric in the type of that data.

We have extended FDR4 based on the above proposition.

FDR can identify the largest subtype of a type for which

the script is constant-free. Alternatively it can check that the

script is indeed constant-free for a particular type, giving an

informative error if not.

Related work. Previous approaches to symmetry reduc-

tion have been based on a much smaller language, with less

support for complex datatypes, often performing symmetry

reduction only on atomic values held in shared variables.

Leuschel et al. [25] consider symmetry within the context of

B, which includes deferred sets (similar to our distinguished

types) together with tuples and sets; they prove a result sim-

ilar to ours, in particular that the values of all invariants

(predicates) are preserved by permutations of deferred types.

Ip and Dill [19] and Bošnački et al. [3] also provide support

for shared variables that store records and arrays; Ip and Dill

give restrictions that ensure that elements of their symmetric

types (called scalarsets) are treated symmetrically. Junttila

provides support for lists, records, sets, multisets, associative

arrays and union types. Each of these approaches is equiv-

alent to a sub-language of the functional sub-language of

CSPM .

Donaldson and Miller [10] consider a language that allows

processes to hold the identities of other processes, but not

more complex datatypes.

To our knowledge, no other approach to symmetry reduc-

tion supports such a powerful and convenient language,

supporting both a wide range of datatypes and the ability

for processes to hold values based on symmetric types.

5 Symmetry reduction on supercombinators

The algorithm in Sect. 3 was at a fairly high level of abstrac-

tion. We now consider how to implement it within the context

of FDR.

Internally, FDR uses a powerful and efficient implicit

representation of an LTS, called a supercombinator [14].

It consists of some component LTSs, along with rules

that describe how transitions of the components should be

combined to give transitions of the whole system: FDR auto-

matically determines which processes should be modelled

as component LTSs, and automatically builds corresponding

rules. This allows the process to be model checked on the fly,

without explicitly constructing the whole state space. Super-

combinators are generally applicable for modelling systems

built from a number of components.

In the running example, FDR would create an LTS for

each of the threads, each of the nodes, the lock and the top

variable. FDR would then automatically build rules for the

supercombinator that would combine the transitions of these

LTSs, corresponding to the way the processes are combined

using parallel composition and hiding. Strictly speaking, this

is just one possible choice, since FDR uses various heuris-

tics to optimise supercombinators, but it is the most natural

choice. Each rule combines transitions of a subset of the

components and determines the event the supercombinator

performs.

In this section, in the interest of exposition, we give a

slightly simplified version of supercombinators, which is

adequate to deal with the vast majority of examples, in partic-

ular systems built from a number of sequential components,

combined using a combination of parallel composition, hid-

ing and renaming. In appendix, we generalise and give the

full definition of supercombinators, which can represent arbi-

trary CSP combinations of processes.

Below, we formally define supercombinators and the

induced LTS. We then prove a result that identifies cir-

cumstances under which two supercombinators induce π -

bisimilar LTSs, where π is an event permutation.

Let− be a value, not in Στ
√

; we use it to denote a process

performing no event. Let Σ− = Στ
√
∪ {−}.

Definition 26 A simplified supercombinator is a pair (L,R)

where

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;

– R is a set of supercombinator rules (e, a) where

e ∈ (Σ−)n specifies the action each component must

perform, where − indicates that it performs none;

and a ∈ Στ
√

is the event the supercombinator performs.

Given a supercombinator, a corresponding LTS can be

constructed.

Definition 27 Let S = (〈L1, . . . , Ln〉,R) be a supercombi-

nator where L i = (Si ,Δi , ini ti). The LTS induced by S is

the LTS (S,Δ, ini t) such that:

– States are tuples consisting of the state of each compo-

nent: S ⊆ S1 × · · · × Sn .

123

582 T. Gibson-Robinson, G. Lowe

– The initial state is the tuple containing the initial states

of each of the components:

ini t = (ini t1, . . . , ini tn).

– The transitions correspond to the supercombinator rules

firing. Let

σ = (s1, . . . , sn), σ ′ = (s′1, . . . , s′n).

Then (σ, a, σ ′) ∈ Δ iff there exists ((b1, . . . , bn), a) ∈
R such that for each component i :

if bi �= − then si
bi−→i s′i ; and if bi = − then s′i = si ;

i.e. component i performs bi , or does nothing if bi = −.

It is straightforward to define supercombinators corre-

sponding to most CSP operators, including parallel composi-

tion, hiding and renaming, and to compose supercombinators

hierarchically so as to define a single supercombinator for a

system. The following example illustrates the ideas.

Example 28 Consider the system
(‖t :T [A(t)]P(t)

)
\ X . Let

T = {t1, . . . , tn} and let the LTS for P(ti) be L i , for each i .

Then a possible supercombinator for this system would be

(〈L1, . . . , Ln〉,
{(ea, if a ∈ X then τelse a) | a ∈

⋃n
j=1 A(j)} ∪

{(δ j , τ) | j ∈ {1, . . . , n}}),

where

ea(i) = if a ∈ A(ti)then aelse − ,

δ j (i) = if i = j then τelse − .

Each rule in the first set corresponds to a synchronisation

on event a between all processes P(ti) such that a ∈ A(ti);

that event a is then replaced by τ if a ∈ X . Each rule in the

second set corresponds to the system performing τ as a result

of P(t j) performing τ .

5.1 Symmetries between supercombinators

We now consider symmetries between supercombinators,

and how these correspond to symmetries between the corre-

sponding LTSs. We are mainly interested in showing that the

supercombinator corresponding to the implementation pro-

cess in a refinement check is symmetric, i.e. π -bisimilar to

itself for every event permutation π in some group G. How-

ever, we want to do this without creating that complete LTS:

instead we just perform checks on the components and rules.

The following definition captures the relevant properties.

For the remainder of this section, fix an event permutation

group G ≤ EvSym. Given a permutation π ∈ G, we extend

it to Σ− by defining π(−) = −.

Definition 29 Consider a supercombinator S = (L,R) with

L = 〈L1, . . . , Ln〉. Let π be an event permutation, and let

α be a bijection from {1, . . . , n} to itself; we call α a compo-

nent bijection. We say that S is π -mappable to itself using α

if:

– for every i , L i ∼π Lα(i);

– if (e, a) ∈ R then there is a rule (e′, π(a)) ∈ R such that

∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i));

– if (e′, a) ∈ R then there is a rule (e, π−1(a)) ∈ R such

that ∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)).

The first item shows how to map L i onto a π -bisimilar

LTS Lα(i). The latter two items say that R acts on each

LTS L i in the same way as it acts on Lα(i), but with the

latter’s events renamed under π .

We sometimes write α as απ , to emphasise the event permu-

tation π .

Example 30 Consider, again, the process

(‖t :T [A(t)]P(t)
)
\ X

and its supercombinator from Example 28. Suppose, also,

that the processes P(t) use data from some polymorphic

type V , and that the script is constant-free for the types T

and V .

Let π be an event permutation formed by lifting permuta-

tions on T and V . For each i ∈ {1, . . . , n}, define απ (i) = j

such that π(ti) = t j ; note that such a j exists, and that απ is

a bijection. Proposition 24 then tells us that

– the LTSs for P(ti) and P(π(ti)) are π -bisimilar: L i ∼π

Lα(i);

– π(A(ti)) = A(tα(i));

– π(X) = X .

The second and third items can be used to show that the rule

set satisfies the conditions of Definition 29. For example,

given the rule (ea, if a ∈ X then τelse a), we can consider

the rule (eπ(a), if π(a) ∈ X then τelse π(a)), and show that,

for each i

eπ(a)(α(i)) = (if π(a) ∈ A(tα(i))then π(a)else −)

= π(if a ∈ A(ti)then eelse −)

= π(ea(i)),

π(if a ∈ X then τelse a)

= (if π(a) ∈ X then τelse π(a)),

123

Symmetry reduction in CSP model checking 583

as required. Hence the supercombinator is π -mappable to

itself using α.

We now show that π -mappable supercombinators induce

π -bisimilar LTSs.

Lemma 31 Let π be an event permutation, and let S =
(〈L1, . . . , Ln〉,R) be π -mappable to itself using component

bijection α. Consider the relation ≈π defined over states of

the induced LTSs by

(s1, . . . , sn) ≈π (s′1, . . . , s′n) iff

∀ i ∈ {1, . . . , n} · si ∼π s′α(i).

Then≈π is a π -bisimulation. Further, the initial states of the

two LTSs are related by ≈π .

The proposition below follows easily from the above

lemma.

Proposition 32 Suppose S is a supercombinator that is π -

mappable to itself for every π ∈ G. Then the induced LTS is

G-symmetric.

We now show that the property of supercombinators being

mappable is compositional in the obvious way.

Lemma 33 Consider a supercombinator S = (L,R). Sup-

pose S is π -mappable to itself using απ and is π ′-mappable

to itself using απ ′ . Then S is (π ; π ′)-mappable to itself

using απ ; απ ′ .

Proof Suppose L = 〈L1, . . . , Ln〉. Consider L i , Lαπ (i) and

Lαπ ′ (απ (i)). Then L i ∼π Lαπ (i), and Lαπ (i) ∼π ′ Lαπ ′ (απ (i)).

Hence L i ∼π ;π ′ Lαπ ′ (απ (i)).

Now consider the rules. Suppose (e, a) ∈ R. Then there is

a rule (e′, π(a)) ∈ R such that e′(απ (i)) = π(e(i)) for each

i ∈ {1, . . . , n}. But then there is a rule (e′′, (π ; π ′)(a)) ∈ R

such that e′′(απ ′(i)) = π ′(e′(i)) for each i . Hence, for each i ,

e′′((απ ; απ ′)(i)) = e′′(απ ′(απ (i))) = π ′(e′(απ (i))) = (π ;

π ′)(e(i)). The reverse condition is very similar. ⊓⊔

6 Identifying symmetries and applying
permutations in supercombinators

In the last section we described sufficient conditions (π -

mappability) for the LTS induced by a supercombinator to be

π -symmetric. We now build on this for systems with symmet-

ric datatypes. Let T be a collection of datatypes. Throughout

this section we assume a constant-free script for T. Let π be

an event permutation formed from lifting a type-preserving

permutation on T to events; we write EvSym(T) for the set

of all such event permutations. Let Simpl be the supercom-

binator for the implementation. In Sect. 6.1, we explain how

we verify algorithmically that Simpl is π -mappable to itself,

for every π ∈ EvSym(T), and describe pre-calculations that

help in subsequent calculations of component bijections. We

explain how to actually apply an event permutation to a state

of a supercombinator in Sect. 6.2.

6.1 Checkingmappability

In this section we explain how we verify that the super-

combinator for the implementation process is π -mappable

to itself for every π ∈ EvSym(T); by Proposition 32,

this will mean that it is EvSym(T)-symmetric. Assuming a

constant-free script, FDR will nearly always produce such a

supercombinator. (Recall that Corollary 25 talks about the

LTS corresponding to the implementation process, rather

than the supercombinator that represents that LTS.) However,

it is not feasible to verify that FDR will always produce such a

supercombinator: FDR uses various heuristics to decide how

to construct supercombinators, which makes it too complex

to reason about directly. We are also aware of a corner-case

where this is not (currently) the case. We therefore verify

mappability for each supercombinator generated. If this turns

out not to be the case, our approach fails, and we give up (but

we have never known this to happen on a noncontrived exam-

ple).

We also describe some pre-calculations we make concern-

ing component bijections, for use when exploring the product

automaton. Note that we want to avoid pre-calculating and

storing all such component bijections, since there are simply

too many; instead, we calculate enough information for them

to be calculated efficiently subsequently.

We attempt to prove that Simpl is π -mappable to itself, for

every permutation π of the distinguished types. However, by

Lemma 33, it suffices to consider just permutations π from

a set of generators of the full symmetry group. So consider

a supercombinator S = (L,R), with L = 〈L1, . . . , Ln〉,
and consider the problem of showing that S is π -mappable

to itself. We split this into two parts, corresponding to the

components and the rules.

Recall that each state of each component LTS has a label

(P, ρ), where P is a control state (a syntactic expression)

and ρ is an environment. Suppose each component L i has

initial label (Pi , ρi), so L i = evalρi Pi . Let

P = {(P1, ρ1), . . . , (Pn, ρn)}.

Our goal is to build a bijection απ from {1, . . . , n} to itself

such that Pαπ (i) = Pi and ραπ (i) = π ◦ ρi for each i . We say

that P is π -mappable to itself if this holds. Proposition 24

will then tell us that Lαπ (i) = π(L i), so L i ∼π Lαπ (i), for

each i .

Note, however, that the labels in P might not be distinct:

we might be dealing with multisets rather than sets. In order

to deal with such cases, we add a fresh dummy variable inst to

123

584 T. Gibson-Robinson, G. Lowe

each environment. Suppose there are k copies of a particular

label (P, ρ) in P. We extend each of these environments

by mapping inst to distinct integers in the range {1, . . . , k},
thereby distinguishing these labels. It is clear that if P is

indeed π -mappable to itself then P will contain the same

number k of copies of (P, ρ) as of (P, π ◦ ρ); hence the

extensions of ρ and π ◦ρ will use the same values {1, . . . , k}
for inst. We will define απ to relate indices of environments

that have the same value for inst.

We calculate a mapping mP from labels in P to the corre-

sponding index:

mP = {(Pi , ρi) �→ i | i ∈ {1, . . . , n}}.

Note that mP is indeed a mapping, because of the use of the

inst variables. We then test whether P is indeed π -mappable

to itself: for each i ∈ {1, . . . , n}, we calculate (Pi , π ◦ρi) and

check that it is in the domain of mP; if so, we define απ (i) to

be the index it maps to, so Pαπ (i) = Pi and ραπ (i) = π ◦ ρi .

If this check fails, then the supercombinator produced by

FDR is not symmetric and our approach fails. If the check

succeeds for every i , Proposition 24 tells us that L i ∼π Lαπ (i)

for each i , as required.

Now consider the rules. We check that

– if (e, a) ∈ R then there is a rule (e′, π(a)) ∈ R such that

∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i));

– if (e′, a) ∈ R then there is a rule (e, π−1(a)) ∈ R such

that ∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)).

If this succeeds, then S is π -mappable to itself.

Recall that we apply the above procedure to show that

the supercombinator for the implementation, Simpl , is π j -

mappable to itself, for every π j in a set of generators of the

full symmetry group; we store each corresponding compo-

nent bijection. Suppose event permutation π can be written

in terms of generators as π = π1 ; . . . ; πn ; then for each j ,

S is π j -mappable to itself using some component bijec-

tion απ j
, so S is π -mappable to itself using component

bijection απ = απ1 ; . . . ; απn , by Lemma 33.

6.2 Applying permutations to states

Suppose S is π -mappable to itself. We now explain how to

apply permutation π to a state of S. The lemma below shows

how, given components L and L ′ such that L ′ = π(L), to

apply π to a state of L to obtain a state of L ′.

Lemma 34 Suppose L and L ′ are components with L ′ =
π(L). Then for each state s of L, there is a state s′ of L ′ such

that s ∼π s′. We write π(s) for this state s′.

Proof If s has label (Q, ρ), then taking s′ to be the state with

label (Q, π ◦ ρ) satisfies the conditions of the lemma. ⊓⊔

We can apply the above lemma as follows. Internally

to FDR, each component state is represented by an integer

index, with the label of each state stored separately. For each

component, we pre-calculate a mapping from labels to the

corresponding state index. To find the state s′ = π(s) from

Lemma 34, we obtain the label (Q, ρ) of s, calculate the

corresponding label (Q, π ◦ ρ) and find the index of the cor-

responding state using the above mapping.

The following proposition shows how, given a state σ of

a supercombinator and a permutation π , to calculate a state,

which we denote π(σ), such that σ ∼π π(σ).

Proposition 35 Let S be a supercombinator with components

〈L1, . . . , Ln〉, and let π be an event permutation. Suppose S

is π -mappable to itself using component bijection α. Con-

sider the state σ = (s1, . . . , sn). Define π(σ) to be the state

(s′1, . . . , s′n), where s′i = π(sα−1(i)), constructed as described

in Lemma 34. Then σ ∼π π(σ).

Proof By construction, si ∼π s′
α(i), for each i . Hence σ ∼π

π(σ) by Lemma 31. ⊓⊔

7 Calculating representatives

In this section, we describe an algorithm for calculating rep-

resentatives (cf. Definition 16). Recall that we do not require

unique representatives; however, we will aim for this to be

the case in most examples, so as to give a better reduction in

the state space.

Finding unique representatives is believed to be difficult

in general. Clarke et al. [6] show that it is at least as hard as

the graph isomorphism problem, which is widely accepted

as being difficult (although not widely believed to be NP-

complete).

Recall that a state of a supercombinator is a tuple

(s1, . . . , sn) where each si is a state of a component LTS.

However, we describe our algorithm in a slightly more gen-

eral setting, to justify its more general applicability. We

assume each state corresponds to a multiset {s1, . . . , sn} of

component states, and each component state contains a map-

ping from variables to values of distinguished types, together

with (without loss of generality) a control state; for example,

Promela fits into this setting. However, we use supercombi-

nator states for examples.

We choose an ordering 〈si1 , . . . , sin 〉 of the component

states, so that, as far as possible, two π -bisimilar states map

onto π -related orderings7; we describe the algorithm for

ordering the components in Sect. 7.1. From this, we will, in

Sect. 7.2, extract a particular ordering for each distinguished

type and hence a representative. Again, this will be done so

7 We use the word “ordering” rather than “permutation” here, to avoid

over-loading the latter word.

123

Symmetry reduction in CSP model checking 585

that, as far as possible, two π -bisimilar states map onto the

same representative state.

Some steps of the algorithms below are left under-

specified: the implementer may choose to implement them in

one of several ways; however, in most such cases we require

the step to be implemented in a symmetry-respecting way:

if the step corresponds to application of a function f , then

f (π(x)) = π(f (x)) for every element x of the domain of f ,

and each permutation π lifted appropriately. In each case

we suggest a particular symmetry-respecting implementa-

tion. However, there will be a couple of places where a

symmetry-respecting implementation is not possible, and the

algorithm will have to make an arbitrary decision (e.g. a ran-

dom choice).

In Sect. 7.3 we study circumstances under which our algo-

rithms do indeed give unique representatives, and show that

this is often the case. In Sect. 7.4 we briefly discuss how

our approach interacts with compression, and in Sect. 7.5 we

discuss some implementation considerations and some varia-

tions on our approach. In Sect. 7.6 we compare our approach

to others.

7.1 Component ordering algorithm

The component ordering algorithm takes a multiset S =
{s1, . . . , sn} of component states, for example the component

states of a supercombinator, and returns an ordering over S.

We will partition S by control states. We will likewise par-

tition the states by the values of variables that do not depend

on distinguished types.

For simplicity, we ignore, for the moment, nonsimple vari-

ables that hold tuples, sequences, sets, etc., that depend upon

some distinguished supertype; we sketch how to deal with

such variables below. Thus we consider just simple variables

whose type is precisely that of some distinguished super-

type; we call these distinguished variables. (Our impression

is that using just the simple variables is normally adequate.)

We assume some way of ordering the distinguished variables

of a component state. We write s(vi) for the value of the i th

distinguished variable in state s.

We build a multigraph model of each state: each node of

the graph is a component state; there is an edge labelled (i, k)

from s1 to s2 if s1(vi) = s2(vk), where i and k range over

indices of distinguished variables of s1 and s2 with the same

type. In the running example, consider just Node processes,

and order the variables in the order me, datum, next; then if

n1’s next field points to n2 (i.e. equals n2’s me field), there

would be a (3, 1) edge from n1 to n2; this corresponds to how

linked lists are typically depicted. Step 2 of the algorithm

below is an adaptation of the naive refinement algorithm of

[1, Section 6.4] to this multigraph model.

Fig. 8 Summary of the component ordering algorithm. The function

spli t splits each element of a sequence of multisets, partitioning it

according to an equivalence relation, and ordering the partition in a

symmetry-respecting way. The equivalence relation≈ tests whether two

states have the same control states and values of variables of nondis-

tinguished types. The equivalence relation ≡n holds of s1 and s2 if

n(s1) = n(s2)

Definition 36 The component ordering algorithm takes a

multiset of states S (e.g. the states of component LTSs of

a supercombinator) and returns an ordering of S.

The algorithm maintains a sequence of multisets of com-

ponent states S = 〈S1, . . . , Sm〉, such that S1, . . . , Sm

partition S; we call this an ordered partition. For each j ,

all states in S j will have the same control state and hence the

same number of variables of distinguished types. We refine

the ordered partition in steps, until we obtain a sequence of

singleton multisets. The algorithm is summarised in Fig. 8.

1. Start by partitioning states by their control states and

the values of variables of nondistinguished types. Order

these multisets in a symmetry-respecting way, e.g. lexi-

cographically on control states and the values of nondis-

tinguished variables, where a variable may take either a

value of a distinguished subtype or a different value from

the containing supertype, order the corresponding mul-

tisets in some symmetry-respecting way, e.g. those with

distinguished values first.

2. Given an ordered partition S = 〈S1, . . . , Sm〉, we split

each S j based on matches between distinguished vari-

ables of each state s and distinguished variables of states

in each element of the partition. Define ni, j,k(s) to be the

number of (i, k) edges from s to elements of S j :

ni, j,k(s) = #{s′ ∈ S j | s′(vk) = s(vi)},

where i ranges over indices of distinguished variables

of s, j ranges over {1, . . . , m}, and k ranges over indices

of distinguished variables of S j with the same type as vi .

Then let n(s) be the tuple formed from the ni, j,k(s) (in

lexicographic order of indices). If n(s1) = n(s2) then the

two states have the same relationship to states in other

partitions.

For each j , partition and order S j according to the states’

123

586 T. Gibson-Robinson, G. Lowe

n-values. This produces a refined ordered partition.

Repeat this step until no more progress is made.

3. If a multiset in the partition is not a singleton, then pick a

nonsingleton multiset S j , in some symmetry-respecting

way; for example, pick the first nonsingleton multiset.

Then split S j into two or more multisets, ordered in some

way; for example, pick an arbitrary element s ∈ S j , and

split S j into 〈{s}, S j \ {s}〉. Then return to step 2.

Otherwise all multisets are singletons, so return the cor-

responding sequence of states.

Example 37 We apply the above algorithm to the node

processes of the running example, using the suggested

approaches.

We introduce suggestive notation: we write N (m, d, n)

for the state (node, {me �→ m,datum �→ d,next �→ n}),
where node is the control state corresponding to the right-

hand side of the definition of Node; we write F N (m) for a

FreeNode process, similarly.

Consider the multiset of processes

{N (N0, B,N4), N (N1, B,N0), F N (N2),

N (N3, B,N1), N (N4, B,Null), F N (N5)}.

This represents a linked list of four nodes (N3, N1, N0, N4), all

containing B, together with two free nodes (N2, N5).

Step 1 then partitions the processes as follows, assuming

the control state for F N is less than that for N :

〈{F N (N2), F N (N5)},
{N (N0, B,N4), N (N1, B,N0), N (N3, B,N1)},
{N (N4, B,Null)}〉.

For step 2, the n-value for N (N0, B,N4) is 〈0, 1, 1, 0 ; 3, 1 ;

0, 0, 1, 1〉 (semicolons used to improve readability). The first

four entries correspond to the value N0, counting the num-

ber of matches against variables in the first multiset, the me

and next variables in the second multiset and the me vari-

ables in the third multiset, respectively; the next two entries

correspond to the value B; the last four entries correspond

to N4. The n-values for N (N1, B,N0) and N (N3, B,N1) are

〈0, 1, 1, 0 ; 3, 1 ; 0, 1, 1, 0〉 and 〈0, 1, 0, 0 ; 3, 1 ; 0, 1, 1, 0〉,
respectively. However, the n-values for the two F N processes

are each 〈1, 0, 0, 0〉. Partitioning according to these n-values

gives the following ordered partition:

〈{F N (N2), F N (N5)}, {N (N3, B,N1)}, {N (N0, B,N4)},
{N (N1, B,N0)}, {N (N4, B,Null)}〉.

Repeating step 2 makes no further progress. (Note that

if we had started with a longer linked list, we would have

needed more iterations of step 2: step 1 splits off the final

node; the first iteration of step 2 splits off the first and penul-

timate nodes; the second iteration splits off the second and

antepenultimate nodes; and so on.)

Finally, step 3 splits the nonsingleton multiset arbitrarily,

say producing

〈{F N (N2)}, {F N (N5)}, {N (N3, B,N1)}, {N (N0, B,N4)},
{N (N1, B,N0)}, {N (N4, B,Null)}〉.

All multisets are now singleton, so the process is complete.

Note that if we had started with any other system repre-

senting a linked list of four nodes, all containing the same

value, we would have ended up with an equivalent ordering,

starting with the free nodes, ordered arbitrarily, followed by

the first, third, second and fourth nodes of the list, in that

order.

Recall that we assumed that all variables hold simple val-

ues of distinguished types. We sketch how the technique

could be extended to more complex types. A tuple of n values

could be considered instead as n distinct variables. For a vari-

able holding a sequence, the length l could be considered as

part of the control state, and then the elements could be con-

sidered as l distinct variables. It is less straightforward to fully

deal with variables that hold sets, but it is possible to adapt

the definition of n-values, for example by testing whether the

value of one variable is an element of another (set-valued)

variable. We have not implemented these techniques, but

instead simply ignore variables holding complex values (in

the representative choosing algorithm: the algorithms of ear-

lier sections do fully support them): our experience is that our

implementation is adequate, and we have not come across an

example where using complex variables would help.

7.2 Permutation generation

We now describe how to go from an ordering on component

states to an ordering of each distinguished type.

Definition 38 Let T be a distinguished subtype. The type

ordering algorithm for T takes an ordering of component

states and returns an ordering of T , as follows: it lists the

values of type T in the order they appear in the ordering

of component states, removes duplicates, and (if necessary)

appends remaining values of T in an arbitrary order.

Example 39 Recall that in Example 37 we obtained the order-

ing of states

〈F N (N2), F N (N5), N (N3, B,N1), N (N0, B,N4),

N (N1, B,N0), N (N4, B,Null)〉.

Applying the type ordering algorithm can give

〈N2,N5,N3,N1,N0,N4〉 and 〈B,A,C,D〉,

123

Symmetry reduction in CSP model checking 587

Fig. 9 The permutation and representative generating algorithms

where in the latter case the ordering of all except B is arbi-

trary. (This particular example contains a large amount of

arbitrariness because the initial state contains so few values

from Data.)

The following algorithms produce a corresponding per-

mutation π on the distinguished subtypes and hence a

representative.

Definition 40 The permutation generating algorithm pro-

ceeds as follows, given an ordering s of the component

states. For each distinguished subtype T = {A1, . . . , AN },
run the type ordering algorithm for T to obtain an ordering

〈Ai1 , . . . , AiN
〉 of T ; then define the permutation function

πT = {Ai1 �→ A1, . . . , AiN
�→ AN }. Let π be the union of

the individual πT .

The representative generating algorithm, given a set S of

component states, runs the component ordering algorithm

on S to obtain a component ordering s, then runs the permu-

tation generating algorithm on s to obtain a permutation π

and then returns π(S). (In the case of S being the states of a

supercombinator, π(S) is calculated as in Proposition 35.)

Figure 9 summarises these algorithms.

Example 41 Based on the orderings from Example 39, we

obtain the permutation functions

πNodeI D = {N2 �→ N0,N5 �→ N1,N3 �→ N2,

N0 �→ N3,N1 �→ N4,N4 �→ N5},
πData = {B �→ A,A �→ B,C �→ C,D �→ D}.

Let π = πNodeI D ∪ πData . Applying π to the original vec-

tor of processes from Example 37, as in Proposition 35, we

obtain the vector of processes

〈F N (N0), F N (N1), N (N2,A,N4), N (N3,A,N5),

N (N4,A,N3), N (N5,A,Null)〉.

In the generation of π , we made two arbitrary decisions.

First, in step 3 of Example 37, we chose an arbitrary order for

the two F Ns. Second, in Example 39, we chose an arbitrary

order for all elements of Data except B. However, note that

if we had made these decisions in any other way, we would

have obtained the same final vector of processes, essentially

because the initial vector is symmetric in {N2,N5} and in

{A,C,D}.
Note, further, that if we had started with any vector of

processes that was symmetric to the chosen initial vector—

that is, representing a linked list of four nodes, all containing

the same datum—then we would have ended up with the

same final vector of processes. That is, the above vector is a

unique representative for its equivalence class.

The following lemma relates permutations obtained from

related vectors of processes.

Lemma 42 If the permutation generating algorithm applied

to s gives π1, then the permutation generation algorithm

applied to π(s) gives a function that agrees with π1 ◦π−1 on

all distinguished values that appear in π(s).

Proof Suppose the T -ordering algorithm applied to s pro-

duces 〈Ai1 , . . . , AiN
〉, where Ai1 , . . . , Aik

appear in s, and the

other values are ordered arbitrarily. Then π(Ai1), . . . , π(Aik
)

appear in the corresponding order in π(s), so the T -ordering

algorithm applied to π(s) produces 〈π(Ai1), . . . , π(Aik
)〉

followed by an arbitrary ordering of π(Aik+1
), . . . , π(AiN

).

Then the permutation generating algorithm applied to s

gives

π1 = {Ai1 �→ A1, . . . , AiN
�→ AN }.

And the permutation generating algorithm applied to π(s)

gives a function that includes {π}(Ai1) �→ A1, . . . , π(Aik
)

�→ Ak , and maps π(Aik+1
), . . . , π(AiN

) to an arbitrary per-

mutation of Ak+1, . . . , AN . But the above partial function

equals

{π(Ai1) �→ π1(Ai1), . . . , π(Aik
) �→ π1(Aik

)},

which agrees with π1 ◦ π−1 on the distinguished values

π(Ai1), . . . , π(Aik
) that appear in π(s). ⊓⊔

7.3 Uniqueness of representations

We now consider circumstances under which the above algo-

rithms, with the suggested implementations, give unique

representatives. The following example shows that this is

not always the case.

Example 43 Consider the set of processes

{ N (N0,A,N1), N (N1,A,N2),

N (N2, B,N3), N (N3, B,N0) }.

123

588 T. Gibson-Robinson, G. Lowe

For simplicity, suppose NodeID = {N0,N1,N2,N3} and

Data = {A, B}. The above vector represents a circular linked

list; such a state could not arise in our running example, but

could in different linked list algorithms.

Applying steps 1 and 2 of the component ordering algo-

rithm fails to split the processes. It is straightforward to check

that, depending upon whether step 3 chooses to split off a

node with the same or a different datum from the following

node, the algorithm could produce either of the following

vectors of processes:

〈N (N0,A,N3), N (N1, B,N2), N (N2, B,N0), N (N3,A,N1)〉,
〈N (N0,A,N3), N (N1, B,N2), N (N2,A,N0), N (N3, B,N1)〉.

Similarly, any other cycle of four nodes holding two dif-

ferent values arranged in adjacent pairs will produce one of

these two final vectors. However, the choice of how to split

at step 3 might be made differently on different such cycles.

Thus our approach might not give unique representatives in

this case. However, it does give a good reduction, from 24

cases to 2. Note, also, that the approach does give unique

representatives for rings that contain different numbers of As

and Bs, or where the data are in an alternating sequence such

at 〈A, B,A, B〉 round the ring.

Note that the above example is somewhat unrealistic. In a

more realistic setting, there would be an external pointer into

the ring (comparable to Top in the running example), which

would be enough to break the symmetry, and so avoid having

to make arbitrary decisions.

The permutation generating algorithm is potentially non-

deterministic, because of the arbitrary choices in step 3 of the

component ordering algorithm and in the type ordering algo-

rithm. The latter nondeterminism is clearly irrelevant, since it

only affects the result of the final permutation on values that

do not appear, and so does not affect the final state obtained.

(Note that, while we would expect any implementation to be

deterministic, we are interested here in nondeterminism of

the specification.) In fact, the nondeterminism may lead to a

representative not being its own representative.

We show that in the case that the arbitrary choices in the

component ordering algorithm do not cause nondeterminism

of the outcome—i.e. for each input state, the final state is

independent of how those choices are made—the algorithm

produces unique representatives.

Lemma 44 Suppose that the representative generating algo-

rithm when run on input states S always produces final

states S′. Then if the algorithm is run on input state π(S), it

again always produces final state S′.

Proof Consider first the component ordering algorithm. It

is easy to see that this algorithm treats π(S) and S equiv-

alently. More precisely, if the algorithm is run in parallel

on these two states, for each intermediate ordered partition

〈π(S1), . . . , π(Sm)〉 obtained from π(S), it is also possible

for 〈S1, . . . , Sm〉 to be obtained from S. Hence if the com-

ponent ordering algorithm applied to π(S) can produce the

ordering π(s), then when applied to S it can produce s.

Now suppose the permutation generating function applied

to s produces π1. Then by Lemma 42, the permutation gen-

erating function applied to π(s) gives a function that agrees

with π1 ◦π−1 on all distinguished values that appear in π(S).

Applying these permutations to the initial states, we obtain

π1(S) in each case. By assumption, this value must equal S′,
as required. ⊓⊔

Corollary 45 Suppose the representative generating algo-

rithm is deterministic on all inputs. Then it returns unique

representatives.

We now investigate conditions under which the represen-

tative generating algorithm is deterministic. Our discussion

from this point on is more specific to our supercombinator

setting than the prior parts of this section, because we need to

talk about mappings between components of the supercom-

binator. However, we believe that our results will carry over

to other settings. We need a couple of additional definitions

and technical lemmas.

Recall that in Sect. 6 we defined, for each π ∈ EvSym(T),

a mapping απ between the components of the supercom-

binator. We define a nonempty set of components to be a

symmetric set if it is closed under all such απ and minimal;

i.e. each component maps, under someαπ , to each other in the

same symmetric set. In the running example, there would be

four symmetric sets corresponding to the Node processes,

the Thread processes, Top and Lock. We assume, without

loss of generality, that processes in different symmetric sets

have different control states, so the first step of the compo-

nent ordering algorithm has the effect of partitioning based

on symmetric sets.

Certain variables act as identities for processes. For exam-

ple, the me variables act as identity variables for the node

processes. These variables take the same value throughout

the process’s execution. We will show (Proposition 50) that

if the supercombinator uses unique identities (Definition 46),

and at step 3 of the component ordering algorithm, we split

only sets that are fully symmetric (Definition 49), then we

obtain unique representatives.

Definition 46 We say that a supercombinator has unique

identities if, for each nonsingleton symmetric set, all pro-

cesses have an identity variable, and no two processes in the

same symmetric set have the same value for that identity

variable.

Our running example satisfies this condition: the two

nonsingleton symmetric sets correspond to the Node and

123

Symmetry reduction in CSP model checking 589

Thread processes; these have identities of types NodeID and

ThreadID, with distinct identities for different processes.

Lemma 47 Suppose a supercombinator has unique identi-

ties. Consider a state (s1, . . . , sn) of the supercombinator,

and suppose si and s j are in the same symmetric set, and

s j = π(si). Then j = απ (i).

Proof If the symmetric set is a singleton, the result is trivial.

Otherwise, let idi and id j be the values of the identity variable

in si and s j , respectively, so id j = π(idi). Then the identities

in the initial states of these components are the same and so

are similarly related. Note that component απ (i) has identity

π(idi), by definition of απ . No other component has that

identity, by assumption. Hence j = απ (i). ⊓⊔

Lemma 48 Suppose a supercombinator has unique identi-

ties. Consider states σ = (s1, . . . , sn), and σ ′ = (s′1, . . . ,
s′n,), and suppose that for each symmetric set {i1, . . . , ik}
we have {π(si1), . . . , π(sik

)} = {s′i1
, . . . , s′ik

} (i.e. the sym-

metric set maps onto itself under π). Then σ ′ = π(σ).

Proof Suppose π(sii) = s′i j
with ii and i j in the same sym-

metric set. Then by Lemma 47, i j = απ (ii). So s′
απ (i) =

π(si), for each i . The result then follows from Proposition 35.

⊓⊔

The following definition and proposition identify a con-

dition under which splitting a set at step 3 of the component

ordering algorithm does not introduce nondeterminism.

Definition 49 Given an ordered partition 〈S1, . . . , Sm〉, we

say that the component S j is fully symmetric if for all s, s′ ∈
S j , there exists a permutation π1 such that π1(s) = s′, and

π1(Si) = Si for each i .

In Example 37, the set {F N (N2), F N (N5)} split by

step 3 is fully symmetric. However, in Example 43, the

set {N (N0,A,N1), N (N1,A,N2), N (N2, B,N3), N (N3, B,N0)}
split by step 3 is not symmetric: for example, if π1 is such that

π1(N (N0,A,N1)) = N (N1,A,N2), then π1(N (N3, B,N0)) is

of the form N (n, B,N1), for some n, which is not a member

of the set.

Proposition 50 Suppose that a supercombinator has unique

identities. Suppose further that whenever we apply step 3 of

the component ordering algorithm to split a set S j , that set

is fully symmetric. Then if we apply the above representative

generating algorithm to a set S of states of the supercom-

binator, the result is independent of the precise value split

off by step 3; i.e. the algorithm is deterministic. Hence the

algorithm returns unique representatives.

Proof Consider the effect of running the component order-

ing algorithm, starting from S = {s1, . . . , sn}. Consider two

ordered partitions 〈S1, . . . , Sm〉 and 〈S′1, . . . , S′m〉 that could

be reached after the same number of steps, maybe corre-

sponding to splitting off different elements at step 3. (It is

clear that these partitions have the same number of elements.)

We show by induction that there is some permutation π such

that S′i = π(Si) for each i . It is clear that this is established by

step 1 of the algorithm (with π the identity permutation) and

maintained by each iteration of step 2 (since the n-values will

agree). Consider instances of step 3, splitting off s from S j

and π(s′) from π(S j) where s′ ∈ S j ; these produce

〈S1, . . . , S j−1, {s}, S j − {s}, S j+1, . . . , Sm〉

and

〈π(S1), . . . , π(S j−1), {π(s′)}, π(S j)− {π(s′)},
π(S j+1), . . . , π(Sm)〉.

Let π1 be as in Definition 49, so π1(s) = s′ and π1(Si) = Si

for each i . Let π ′ = π ◦π1. It is then straightforward to check

that the resulting ordered partitions are related by π ′.
Hence any two final sequences of states produced by the

component ordering algorithm will be of the form

s = 〈s′1, . . . , s′n〉 and π(s) = 〈π(s′1), . . . , π(s′n)〉

for some permutation π . But each pair of corresponding

states s′i and π(s′i) is from the same symmetric set (since

step 1 of the component ordering algorithm partitions by

symmetric sets). Thus, for each symmetric set {i1, . . . , ik},
we have {π(si1), . . . , π(sik

)} = {si1 , . . . , sik
}. Hence, by

Lemma 48 (with σ ′ = σ), π(σ) = σ .

Now, if the permutation generating function applied to

the component ordering s gives π1, then the permutation

generating function applied to π(s) gives π1 ◦ π−1, by

Lemma 42. Hence applying the two resulting permutations

to the initial states S we obtain π1(S) and (π1 ◦ π−1)(S) =
(π1 ◦ π−1)(π(S)) = π1(S), i.e. the same value in each case,

as required.

Hence the algorithm produces unique representatives, by

Corollary 45. ⊓⊔

We show that the above proposition can be applied in fairly

common circumstances.

Corollary 51 Consider a system representing a reference-

linked data structure, using Node processes parametrised as

in the running example (and no other processes), i.e. every

node is of the form Node(me, datum, next) or FreeNode(me)

where me is an identity variable. Suppose further than in

every state, the nodes are arranged in a single linked list,

possibly with some free nodes: in other words, each node

has at most one predecessor, so the next references form a

single list, rather than a tree or forest. Then the algorithm

produces unique representatives.

123

590 T. Gibson-Robinson, G. Lowe

Proof As in Example 37, each iteration of step 2 of the com-

ponent ordering algorithm strips off two more nodes from

the list. This continues until the only nonsingleton set (if

any) contains the free nodes. The system is then fully sym-

metric. (Since the identities of the free nodes appear nowhere

else, and the free nodes contain no data, in fact, the result still

holds if the free nodes hold a single piece of data.) The result

then follows from Proposition 50. ⊓⊔

The premise of Corollary 51—that there are no processes

other than the node processes—is unrealistic. However, in

most circumstances the result is still applicable. Suppose,

in addition, we have some processes that represent threads

operating on the linked list. For simplicity, suppose that step 3

of the component ordering algorithm is used to split sets of

nodes before it is used to split sets of thread processes. In

most cases, each thread process will have a reference to at

least one node, which will then allow such sets to be split by

an application of step 2. A common exception will be when

several threads are in their initial state, but in this case the

set of such threads will be fully symmetric, and so Proposi-

tion 50 can be applied to deduce that unique representatives

are obtained. A somewhat contrived example where unique

representatives are not obtained is with the set of processes

{T hread ′(T1,A,A), T hread ′(T2,A, B),

T hread ′(T3, B,A), T hread ′(T4, B, B)},

for some state T hread ′, and where A and B are data values

that are not stored in any node: in this case, different repre-

sentatives are obtained depending on whether step 3 splits

off a process holding two copies of the same data value or

two distinct values.

The following example justifies the requirement that the

nodes form a single list.

Example 52 Consider a reference-linked collection of seven

nodes, arranged as on the left, below.

B

A

B

A

B

A

C

C

B

A

B

C

A

Steps 1 and 2 of the component ordering algorithm will

split the nodes into three sets, corresponding to the three

columns in the picture. If the set corresponding to the first col-

umn is split, then different representatives will be obtained,

depending on whether the node split off has the same datum

as its successor, or not.

Now consider the arrangement of six nodes on the right.

This similarly does not give unique representatives.

The final lemma applies in most realistic examples and

includes examples using trees.

Lemma 53 Consider a system representing a reference-

linked data structure, where we now allow a node to have

several references (held in distinct variables). Suppose that

in addition there are some other distinguished (nonindexed)

processes that may hold a reference to a node (like the Top

process in the running example). Suppose that every nonfree

node can be reached from one of these distinguished vari-

ables by following references. Then the algorithm produces

unique representatives.

Proof Consider running the component ordering algorithm.

The nodes referenced by the distinguished variables will be

stripped off by the first iteration of step 2 (and placed into

singleton sets). The remaining nonfree nodes can inductively

be stripped off by subsequent iterations, since all are reach-

able. The free nodes can be dealt with as in Corollary 51.

⊓⊔

7.4 On compression

As mentioned earlier, FDR uses various compressions. For

example, it will automatically compress each leaf LTS, fac-

toring it by strong bisimulation. Compression and symmetry

reduction work well together: their combination produces

smaller state spaces than either technique on its own. How-

ever, they do not combine perfectly, as we now explain.

Suppose an uncompressed LTS L contains two strongly

bisimilar states s1 = (Q1, ρ1) and s2 = (Q2, ρ2). Then

FDR will pick one of them, say s1, as the representative of its

bisimilarity equivalence class, to include in the compressed

LTS. Now consider the uncompressed LTS L ′ = π(L).

This has strongly bisimilar states s′1 = (Q1, π ◦ ρ1) and

s′2 = (Q2, π ◦ ρ2). If FDR picks s′1 as the representative

of its bisimilarity equivalence class, the compression and

symmetry reduction combine well: given two π -bisimilar

states σ and σ ′ that contain s1 and s′1, respectively, the above

results show that in many settings, the same representative is

chosen. However, suppose, instead, FDR picks s′2 as the rep-

resentative of its bisimilarity equivalence class. Now, when

we calculate the representative of the state σ ′′ that contains s′2
instead of s′1, we might well obtain a different representative:

the algorithm may be working with a completely different

control state and variable binding.

The effect of this is that slightly more states are explored

than if the compression and symmetry combined perfectly;

however, the effect is rather small, normally less than 1%.

Further, the number of states can vary slightly from one run

to another: FDR may choose different representatives for a

particular bisimilarity equivalence class on different runs.

123

Symmetry reduction in CSP model checking 591

7.5 Implementation considerations and alternatives

Calculating the n-values is a potentially expensive part of

the implementation. We outline our approach. We start by

calculating, for each value v of a distinguished type, the set

B(v) = {(s, i) | s ∈ S, i is an index of a variable of s

with s(vi) = v}.

We call B(v) a bucket. All the buckets can be efficiently

calculated by calculating a vector of (s, i, s(vi)) tuples and

then sorting and partitioning by the third component. This can

be done in time O(N log N) where N is the total number of

variables in the states.

Then to calculate the n-values, we iterate over each bucket

B(v), and for each (s, i), (s′, k) ∈ B(v), increment ni, j,k(s),

where j is the index in the partition of s′. This takes time

O(
∑

v(#B(v))2). In practice, the buckets tend to be fairly

small.

We intend to investigate alternatives to our definition of

the n-values, which might not give such a large reduction in

the state space, but that can be calculated more quickly, and

hence give an overall reduction in checking time. Consider

n′i, j,k(s) = if ∃ s′ ∈ S j · s′(vk) = s(vi)then 1else 0.

For each s and s′, the vector of values of s′(vk) = s(vi) (as

i and k vary) can be pre-calculated and stored as a bit map.

Calculating n′(s) can then be performed as a sequence of

bit-wise operations. In the typical case that each bit map fits

into a single word (i.e. the number of pairs of variables of the

same type is at most 32) this can be done in O(n) operations.

Now consider

n′′j (s) = #{s′ ∈ S j | ∃ i, k · s′(vk) = s(vi)}.

For each s and s′, the value of ∃ i, k · s′(vk) = s(vi) can

be pre-calculated and stored. The value of n′′(s) can then

be calculated in O(n) operations. Curiously, for a linked list

with no external references, the algorithm will not necessarily

give unique representatives, since it will fail to distinguish a

linked list from its reversal; however, a more realistic example

would have an external reference to the first node, breaking

this symmetry.

7.6 Comparisons

In [3], Bošnački et al. define several strategies for producing

representative functions. We discuss the two main ones here.

Each strategy assumes that, for each symmetric type T , there

is a family of symmetric components that are indexed by T ;

thus, for our running example, they could be used with the

types NodeID and ThreadID, using the families of Node and

Thread components, respectively, but they could not be used

with the type Data.

– The sorted strategy sorts the family of component states

by their nondistinguished parts (i.e. effectively step 1 of

Definition 36); this then generates a permutation on the

type, which is applied to all the components to gener-

ate the representative. If two components have the same

nondistinguished parts, they will be ordered arbitrarily in

the initial sorting; this gives nonunique representatives.

This can work poorly in our setting, because we often

have components with the same nondistinguished parts.

– The segmented strategy considers all permutations of

the distinguished variables that would sort the component

states by nondistinguished parts; it then picks the one that

produces the lexicographically smallest state. Thus, this

gives unique representatives. This works poorly in our

setting, particularly with large values of the distinguished

types, because there are too many such permutations to

consider.

We perform an experimental comparison between these algo-

rithms and our own in the next section.

Sistla et al. [38] employ an algorithm rather similar to ours,

although their aim is to test whether two given states s and s′

are symmetric rather than to find a representative. They use

the naive refinement algorithm of [1] (cf. the first two steps

of Definition 36) on each of s and s′ until a fixed point is

reached. They then try to generate a permutation π to match

the states, pairing components in corresponding multisets;

for nonsingleton multisets produced by the first phase, the

relevant parts of the permutation are generated randomly.

They then test whether π does indeed relate the two states.

This may falsely report that two states are not symmetric.

In particular, this can happen in cases where our approach

finds unique representatives. For example, suppose s and s′

each correspond to two linked lists, each of length two. The

first phase will, for each state, partition the nodes into those

that are the first and second nodes of their lists. Then the

second phase will report the states to be symmetric only if

the randomly generated permutation happens to pair off the

correct states. By contrast, step 3 of our component ordering

algorithm will split one of the multisets in an implementation-

dependent way, but subsequently step 2 will split the other

multiset in a compatible way.

Junttila [23] describes three algorithms for testing whether

two states are symmetric. One algorithm converts the prob-

lem into that of testing whether two graphs are isomorphic;

this is believed to be a difficult problem, and so the running

times of the algorithm are quite high. The second algorithm

considers an ordered partition of each type (compared with

our ordered partition of component states). The ordered par-

tition is refined according to various invariants: refinements

123

592 T. Gibson-Robinson, G. Lowe

that respect symmetries of the system. Various invariants

are presented; we believe that steps 1 and 2 of our compo-

nent ordering algorithm could also be presented as invariants.

However, when no further invariant can be applied, all per-

mutations that respect the partition are considered; thus, there

is no counterpart of step 3 of our algorithm, which is crucial

to our obtaining unique representatives in many cases. For

example, in our linked list example, if there are k free nodes,

the algorithm of [23] would consider k! permutations. The

third algorithm does have a counterpart of our step 3, but con-

siders all ways of splitting a single element from a particular

set. In some cases, this reduces the number of permutations

that subsequently have to be considered, but not in the above

case of k free nodes.

Other approaches, e.g. [10,25], also consider all permu-

tations (either explicitly or implicitly), so as to find unique

representatives, at the cost of an exponential blow-up.

Iosif [18] considers symmetry reduction in the context

of heap-based programs, within the dSPIN checker. This

approach finds unique representatives under the assumption

that every location is reachable by following references from

state variables, a result comparable to our Lemma 53.

Leuschel and Massart [26] consider symmetry reduction

in the context of B models. They compute symmetry markers

for states, with the property that symmetric states receive the

same marker, but not necessarily the other way round; they

then treat states with the same marker as being symmetric.

Thus their approach provides a falsification algorithm, rather

than a verification algorithm. Their approach has some sim-

ilarities with ours in that it captures information about how

values are related to one another in a state.

Babai and Kučera [2] show that just three steps of the

naive refinement algorithm applied to a random graph with

n nodes fail to produce a canonical form with probability

(o(1))n . This result is not directly applicable to our setting,

since we do not deal with random graphs; however, it does

suggest that the approach works well.

8 Experiments

We have implemented the techniques described earlier within

FDR4. Refinement assertions can be annotated to require

symmetry reduction. For each datatype, FDR identifies the

largest subtype for which the script is constant-free, and per-

forms symmetry reduction over the union of these subtypes.

Alternatively, the user may explicitly give the subtypes over

which symmetry reduction should be performed; in this case,

FDR checks that the script is indeed constant-free for these

subtypes. (If an assertion is not tagged in this way, the nor-

mal algorithm is run, so the symmetry reduction gives no

overhead in this case.)

Table 1 gives results of experiments run to assess the

benefits of symmetry reduction.8 The experiments were per-

formed on a 32-core server (two 2.1GHz Intel(R) Xeon(R)

E5-2683 CPUs with hyperthreading enabled, with 256GB of

RAM). The example are as follows.

– ListStack represents the linked list-based implementa-

tion of a stack using locking, from the Introduction. The

parameters represent the number of nodes in the linked

list, the number of threads and the number of data values.

– TreeBroadcast is a model of a network routing algorithm.

A collection of nodes, with one distinguished sender,

grows a spanning tree of the network and then uses it

to broadcast messages. The parameters are the number

of nodes excluding the sender and the number of data

values.

– DiningPhilosophers is a variant of the dining philoso-

phers problem which uses a “butler” process, who does

not allow all the philosophers to sit down simultaneously,

so as to avoid deadlock. The parameter is the number n of

philosophers. Each philosopher and fork have an identity

(of the same type). In the first n steps, the philosophers

nondeterministically choose their position at the table.

The effect of symmetry reduction is to identify states that

are equivalent up to rotations: thus the approach identifies

the rotational symmetry of the system.

– LockFreeQueue is the model from [28] of the lock-free

queue from [30]. The parameters are as for ListStack.

– CoarseGrainedListSet is the model of a linked list-based

implementation of a set from [4]; the implementation,

based on [16, Section 9.4], orders nodes by a hash of

their datums and uses coarse-grained synchronisation.

The parameters are the numbers of nodes and threads.

(This system is not symmetric in the type of data, because

of the use of the hash function; however, we use the same

number of data values as nodes in each case.)

– FineGrainedListSet is the model of a fine-grained linked

list-based implementation of a set from [4]; the imple-

mentation, based on [16, Section 9.5], associates a lock

with each node. The parameters are as for

CoarseGrainedListSet.

– ArrayQueue is the model of an array-based queue from

[20], based on [8]. The parameters are the numbers of

threads, data values, sequence numbers on “head” and

“tail” references into the array and sequence numbers on

data in the array.

8 The interaction with compression (Sect. 7.4) means that the state count

can vary slightly from run to run. However, the variation is normally

small, at most 1%. We report typical figures.

123

Symmetry reduction in CSP model checking 593

Table 1 Experimental results,

without and with symmetry

reduction, giving the number of

states explored and time taken

(excluding compilation time)

Example Parameters Without sym. red. With sym. red.

States Time (s) States Time (s)

ListStack (6, 4, 3) 5952M 528 108.9K 0.41

(7, 4, 2) 3812M 366 37.57K 0.29

(8, 4, 2) o/m – 75.33K 0.41

(8, 4, 4) – – 3971K 8.6

(12, 4, 2) – – 1208K 6.2

(19, 4, 2) – – 154.6M 1130

TreeBroadcast (5, 2) 303.0M 33 4362K 3.2

(6, 2) o/m – 3547M 3710

DiningPhilosophers 12 544.6M 108 45.38M 227

14 o/m – 1149M 8170

LockFreeQueue (4, 3, 3) 5465M 2060 6654K 24

(5, 2, 3) 677.6M 205 614.7K 1.3

(5, 3, 3) o/m – 139.1M 692

(6, 2, 2) 1679M 575 644.9K 1.6

(6, 3, 2) – – 173.7M 823

(7, 2, 2) – – 3310K 10

(11, 2, 2) – – 1412M 8540

CoarseGrainedListSet (4, 3) 70.33M 9.8 771.8K 1.3

(5, 3) 1666M 243 4140K 7.9

(6, 3) – – 19.15M 31

(7, 3) – – 107.5M 183

FineGrainedListSet (3, 3) 45.48M 6.9 1406K 1.9

(4, 3) 2274M 352 18.12M 30

(5, 3) – – 173.4M 303

(6, 3) – – 1296M 2530

ArrayQueue (2, 2, 4, 2) 8675K 0.94 82.68K 0.42

(3, 2, 6, 3) o/m – 102.3M 202

Peterson 6 122.2M 16 251.4K 0.74

7 13,580M 3240 4343K 13

Database 16 229.6M 229 106 2.4

“o/m” indicates that the check ran out of memory; “–” indicates a test not run, since we expected it to run out

of memory

– Peterson is Peterson’s mutual exclusion algorithm [29].

The parameter is the number of processes seeking entry

to the critical section.9

– Database is an example of database managers from [40].

The parameter is the number of database managers.

In the latter four cases, the refinement checks tested

whether the datatypes were linearisable [17]: whether the

operations seem to take place one at a time, each between

the time at which it is called and when it returns.

Some models needed to be adapted slightly to make them

symmetric. For example, LockFreeQueue used a particular

9 Following [3], we model the global predicate that guards entry to the

critical section as an atomic check.

node as an initial dummy header node and a particular data

value for it. In order to avoid using constants (to satisfy

Definition 23) we adapted the script to model a construc-

tor process (analogous to the constructor of an object) that

initialises the dummy header node, picking the node and its

initial data value nondeterministically. (Figures in Table 1

without symmetry reduction are for the initial script, which

was optimised for that case.) Similarly, as discussed above, in

the dining philosophers example, the model started by con-

structing the ring of philosophers and forks. We believe that

similar techniques can be used in other settings where the

initial state is not fully symmetric.

Speed-ups are considerable, often two or three orders of

magnitude. More importantly, we can now check much larger

systems than previously. For the LinkedList example without

123

594 T. Gibson-Robinson, G. Lowe

Table 2 Experimental results,

comparing with the sorted and

segmented strategies

Example Parameters Our technique Sorted Segmented

States Time (s) States Time (s) States Time (s)

ListStack (6, 4, 3) 650.9K 1.4 1146K 0.47 650.1K 299

(7, 4, 2) 75.12K 0.40 100.6K 0.18 75.11K 205

(8, 4, 2) 150.6K 0.58 201.7K 0.26 150.6K 3310

(8, 4, 4) 94.39M 169 206.0M 50 t/o –

(10, 4, 2) 1507M 1760 3295M 985 t/o –

(12, 4, 2) o/m – o/m – t/o –

TreeBroadcast (5, 2) 4508K 3.0 5063K 2.5 4503K 2.9

(6, 2) 3595M 3580 4023M 3230 3619M 3560

LockFreeQueue (4, 3, 3) 39.25M 114 134.3M 223 39.15K 1030

(5, 2, 3) 3643K 7.1 10.63M 7.5 2890K 117

(5, 3, 3) 829.5M 3820 2921M 7530 t/o –

(6, 2, 2) 1290K 2.8 6488K 5.1 1238K 240

(6, 3, 2) 347.2M 1600 2453M 6130 t/o –

(7, 2, 2) 6619K 17 42.07M 32 4943K 7700

(11, 2, 2) 2824M 16,500 o/m – t/o –

CoarseGrainedListSet (4, 3) 771.8K 1.3 771.8K 0.85 771.8K 5.5

(5, 3) 4139K 7.9 4139K 5.0 4139K 37

(6, 3) 19.15M 31 19.15M 19 19.15M 334

(7, 3) 107.5M 183 107.5M 113 107.5M 3750

FineGrainedListSet (3, 3) 1406K 1.9 1440K 1.0 1428K 46

(4, 3) 18.12M 30 7951K 19 7863K 2720

(5, 3) 173.4M 303 304.2M 700 t/o –

(6, 3) 1296M 2530 o/m – – –

ArrayQueue (2, 2, 4, 2) 4349K 2.5 4389K 1.2 4343K 1.9

(3, 2, 6, 3) o/m – o/m – o/m –

Conventions are as for Table 1; “t/o” indicates a timeout after 10 h (36,000 s)

symmetry reduction, it is easy to see that the number of states

with parameters (n, t, 2) grows at least proportional to n! ×
2n ; hence, the case for (19,4,2) would have at least 3.8×1026

states (extrapolating from the (7,4,2) case), which would be

too large to check by a factor of more than 1016.

In the dining philosophers example, the reduction in state

space is almost exactly equal to the number n of philoso-

phers. Performing symmetry reduction means that FDR takes

longer per state, so in fact the check with n = 12 takes

longer with symmetry reduction than without it. However, the

symmetry reduction does make it possible to analyse larger

systems.

The use of symmetry reduction makes very little differ-

ence to memory consumption in FDR. Most importantly the

number of bytes used to store each state during the main

model checking phase is identical. There is a small over-

head of storing datatypes concerning symmetry reduction for

the components of the supercombinator, but this is normally

negligible. Of course, the reduction in the number of states

explored can give a huge reduction in memory consumption.

By contrast, more memory is used during the compilation

phase (which creates the supercombinator, normalises the

specification, and does other precomputations) with symme-

try reduction than without: FDR has to record for each state

the values of all variables, which can increase memory con-

sumption on this phase by up to a factor of 5. However, the

memory usage on this phase is still normally much less than

on the main checking phase.

8.1 Comparison with the sorted and segmented
techniques

Table 2 gives results of an experimental comparison between

our technique for finding representatives (Sect. 7), and the

sorted and segmented techniques from [3] (Sect. 7.6), which

we have also implemented within FDR.

Recall that the sorted and segmented techniques can per-

form symmetry reduction only for types that index a family

of processes. They cannot, therefore, be used to perform sym-

metry reduction over the type of data values. In order to allow

for comparison, we have therefore not performed reduction

over this type (contrast with Table 1).

123

Symmetry reduction in CSP model checking 595

These experiments suggest that the segmented approach

is considerably slower than our own approach, often by two

orders of magnitude: recall that this approach considers all

permutations of the datatype: the cost of doing so is just

too great. It is noticeable that the state counts are often very

similar to our own. The segmented approach finds unique rep-

resentatives,10 so this suggests that we normally find unique

representatives.

We would expect that other approaches that find unique

representatives by considering all permutations, e.g. [10,25],

would behave similarly to the segmented approach.

The sorted approach works better than the segmented

approach. On small examples, it tends to explore more states

than our approach, but take less time: it is a simpler algorithm

than ours, so takes less time on each state. However, with

larger examples—where speed-ups are more important—our

approach tends to be faster: our approach seems to scale bet-

ter, giving proportionately larger reductions in states in these

cases. Further, our technique completes on several examples

where the segmented approach runs out of memory. Finally,

on examples that make significant use of a symmetric type

of data (ListStack, LockFreeQueue and ArrayQueue), our

approach where we perform reduction on that type (Table 1)

is faster that the segmented case, except on some very small

examples.

9 Conclusions

In this paper we have presented an extension to FDR4 that

exploits symmetry in the system. The basic idea is to factor

the transition system with respect to permutation bisimilar-

ity, picking a representative member of each equivalence

class. We have presented refinement checking algorithms

based on this technique and shown how to extract infor-

mative counterexamples when the refinement does not hold.

Whereas several previous approaches to symmetry reduction

have assumed that every state of the specification automaton

(or every sub-formula of the specification formula) is sym-

metric, we need make no such assumption.

We have shown how to apply this within the powerful

and general supercombinator framework used by FDR: we

have shown how to verify that a supercombinator induces a

symmetric LTS, and how to apply a permutation to a state

of that LTS; the same techniques could be applied in other

process algebraic settings.

We have presented a general syntactic result showing that

a process is symmetric with respect to a datatype, subject to

fairly general assumptions, principally that the script contains

10 The interaction with compressions (Sect. 7.4) means that this is not

quite true: indeed sometimes the state count for this approach is actually

slightly higher than for our own approach.

no constants of that type. CSPM is a large language, which

makes it convenient for modelling purposes, but considerably

complicates reasoning about the language.

We have presented a novel technique for calculating rep-

resentatives of equivalence classes, and given evidence that it

often finds unique representatives. The technique should be

applicable in other similar system models, where each sys-

tem state comprises component states with variables holding

values of the symmetric types.

Finally we have carried out experiments that demonstrate

the efficacy of our approach. In particular, the results show

that our technique for finding representatives works better

in practice than previous techniques, particularly for larger

examples; further, our technique allows for symmetry reduc-

tion over a type that does not index a family of processes,

such as the type of data.

It would be possible to further improve the performance of

the symmetry implementation in FDR by making the CSPM

evaluator aware of the symmetries. For example, suppose

P(x) denotes a symmetric process over the type T : the cur-

rent FDR evaluator will evaluate P(x) for each member x

of T , even though it would be sufficient to evaluate P(x) for a

single x . Extending the evaluator to exploit such symmetries

is left as future research.

We believe that our implementation of symmetry reduc-

tion can be used to analyse a wide range of systems.

Whenever a system is structurally symmetric, the corre-

sponding LTS is also symmetric. Thus it can be applied to a

wide class of concurrent algorithms and distributed systems.

Further, when a system uses data with no distinguished val-

ues, then the induced LTS is symmetric in the type of that

data.

Acknowledgements We would like to thank Bill Roscoe and the

anonymous referees for useful comments. Research into FDR3 and

FDR4 has been partially sponsored by DARPA under Agreement

Number FA8750-12-2-0247 and EPSRC under Agreement Number

EP/N022777.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix A: Generalised labelled transition
systems

In the body of the paper, we used labelled transition systems

(LTSs). These are sufficient for model checking in the traces

model.

Recall that when model checking we normalise the tran-

sition system for the specification, so each resulting state

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

596 T. Gibson-Robinson, G. Lowe

may correspond to a set of states of the original LTS. How-

ever, when using the stable failures or failures–divergences

models, in order for the semantics to be preserved, the states

of the normalised LTS need to be labelled with additional

information.

Likewise, FDR can perform various compressions upon

LTSs. These compressions often remove τ -transitions and

merge states. Each state that is formed by applying a com-

pression might again correspond to a set of states of the

original LTS and so again needs to be labelled with addi-

tional information.

Below, we present generalised labelled transition systems

(GLTSs), which contain this additional information. In “Sym-

metric GLTSs” appendix section, we adapt the definition of

permutation bisimilarity to GLTSs. Then in “Appendix B”

we describe how to adapt model checking to use GLTSs and,

in particular, describe how to adapt the algorithm from Fig. 6

to the stable failures and failures–divergences models.

We say that a state is stable if no internal τ transition is

possible. We say that a state stably accepts some set E of

events if the state is stable, and all the events of E can be

accepted (and no more).

Definition 54 A generalised labelled transition system (GLTS)

is a tuple L = (S,Δ, ini t,minaccs,div), where (S,Δ, ini t)

is an LTS, and

– minaccs : S→P(P Σ
√

) gives the minimal acceptances

of a state: those sets E that can be stably accepted, and

such that no proper subset of E can be stably accepted.

– div : S→ Bool indicates whether the process can imme-

diately diverge from this state, i.e. perform an infinite

number of internal (hidden) events without any interven-

ing visible events.

Note that minaccs returns a set of acceptances, one for each

constituent state. For example, if we normalise the process

a → ST O P ⊓ b → ST O P as in Fig. 3, the initial state

would have minimal acceptances {{a}, {b}}. In practice, when

working in the traces model we can omit theminaccs and div

components from a GLTS, and when working in the stable

failures model we can omit the div component.

Most of the results in these appendices will deal with

GLTSs; the following lemma will allow these results to be

applied also to LTSs.

Lemma 55 An LTS (S,Δ, ini t) can be interpreted as a GLTS

(S,Δ, ini t,minaccs,div) where

– minaccs(s) = {} if s
τ−→; and otherwise minaccs(s) =

{{a | s
a−→ }}.

– div(s) holds iff there is an infinite path of τ -transitions

starting at s.

Let s be a state of a GLTS. We say that X is stably refused

in s, denoted s ref X , if s has some minimal acceptance that

includes no event of X ; i.e. no event from X is available, in

some stable state:

s ref X ⇔ ∃ A ∈ minaccs(s) · A ∩ X = {}.

A stable failure of a process P is a pair (tr , X), which repre-

sents that P can perform the trace tr and then stably refuse X .

We can then define the traces, stable failures, divergences and

full failures of a state s of a GLTS.

traces(s) = {tr \ τ | s
tr�−→},

f ailures(s) = {(tr \ τ, X) | s
tr�−→ s′ ∧ s′ ref X},

divs(s) = {(tr \ τ)⌢tr ′ |
s

tr�−→ s′ ∧ div(s′) ∧ tr ′ ∈ Σ
√∗},

f ailures⊥(s) = f ailures(s) ∪
{(tr⌢tr ′, X) | tr ∈ divs(s)

∧ tr ′ ∈ Σ
√∗ ∧ X ⊆ P Σ

√
}.

If L is a GLTS, we will write traces(L) for the traces of the

initial state of L , and similarly for failures and divergences.

Let S and I be GLTSs, representing a specification

and implementation, respectively. We define refinement

between S and I in the three main models of CSP as fol-

lows.

S ⊑T I i f f traces(S) ⊇ traces(I),

S ⊑F I i f f traces(S) ⊇ traces(I)

∧ f ailures(S) ⊇ f ailures(I),

S ⊑F D I i f f f ailures⊥(S) ⊇ f ailures⊥(I)

∧ divs(S) ⊇ divs(I).

FDR translates CSP processes into GLTSs and then tests for

the above refinements.

A.1 Symmetric GLTSs

We adapt the definition of permutation bisimilarity (Defini-

tion 9) to GLTSs, to take account of minimal acceptances

and divergences.

Definition 56 (Permutation bisimilarity) Let

L1 = (S1,Δ1, ini t1,minaccs1,div1),

L2 = (S2,Δ2, ini t2,minaccs2,div2)

be GLTSs, and let π ∈ G be an event permutation. We say

that∼ ⊆ S1 × S2 is a π -bisimulation between L1 and L2 iff

whenever (s1, s2) ∈ ∼ and a ∈ Στ
√

:

123

Symmetry reduction in CSP model checking 597

– If s1
a−→ s′1 then ∃ s′2 ∈ S2 · s2

π(a)−−→ s′2 ∧ s′1 ∼ s′2;

– If s2
a−→ s′2 then ∃ s′1 ∈ S1 · s1

π−1(a)−−−−→ s′1 ∧ s′1 ∼ s′2;

–

minaccs2(s2)

= {{π(a) | a ∈ A} | A ∈ minaccs1(s1)};

– div1(s1) ⇔ div2(s2).

We say that s1, s2 ∈ S are π -bisimilar, denoted s1 ∼π s2

iff there exists a π -bisimulation relation∼ such that s1 ∼ s2.

We say that L1 and L2 are π -bisimilar, denoted L1 ∼π L2,

iff ini t1 ∼π ini t2.

The remainder of the definitions and lemmas of Sect. 2.3

carries across to GLTSs. In addition, the following lemma is

easily proved from the definition.

Lemma 57 Suppose s ∼π s′. Then

s ref X ⇔ s′ ref π(X).

Appendix B: Refinement checking algorithms
using GLTSs

In this section, we explain how to adapt the model checking

algorithm for the traces model (Sect. 3.4) to GLTSs. We then

present model checking algorithms for the stable failures and

failures–divergences models.

We adapt the definitions of normalisation and the product

automaton from Sect. 2.1 to GLTSs.

Definition 58 Given a GLTS L = (S,Δ, ini t,minaccs,div),

its prenormal form is a GLTS N = (P S − {{}},ΔN , ini tN ,

minaccsN ,divN)defined as follows. Each state is a nonempty

element of P S. The initial state and the transition relation are

defined as in Definition 3. For each state ŝ ∈ P S − {{}}:

– minaccsN (ŝ) = mins(
⋃
{minaccs(s) | s ∈ ŝ}), where

mins returns the ⊆-minimal elements of its argument.

– divN (ŝ) ⇔ ∃ s ∈ ŝ · div(s).

The normal form for L , denoted norm(L), is calculated

by taking the prenormal form for L , restricting to reachable

states, and then factoring by strong bisimulation, taking into

account the divergences and minimal acceptances informa-

tion. Given an LTS L , the normal form for L is calculated

by first considering L as a GLTS, as in Lemma 55, and then

applying the above construction.

Definition 59 Let P = (SP ,ΔP , ini tP ,minaccsP ,divP)

be a normalised GLTS, and Q = (SQ,ΔQ, ini tQ,

minaccsQ,divQ) be a GLTS. The product automaton of

P and Q is a tuple (S,Δ, ini t,minaccsP ,divP ,minaccsQ,

divQ) where S, Δ and ini t are as in Definition 6.

The lemmas from Sect. 2.3 concerning normalisation and

the product automaton carry across to GLTSs in the obvious

way. Likewise, the definitions and lemmas from Sect. 3 are

adapted to GLTSs in the expected way. In particular, below

we will make use of the adapted version of Lemma 20. The

traces model checking algorithm from Fig. 6 can then be used

directly, but taking GLTSs rather than LTSs.

For the remainder of this section, let P = (SP ,ΔP , ini tP ,

minaccsP ,divP) be a normalised G-symmetric GLTS, Q =
(SQ,ΔQ, ini tQ,minaccsQ,divQ) be a G-symmetric GLTS,

rep be a G-representative function on Q, S be the standard

product automaton of P and Q, and R the reduced product

automaton of P and Q.

We now consider refinement in the stable failures model.

The following proposition shows how stable failures refine-

ments are exhibited in the reduced product automaton.

Proposition 60 P ⊑F Q iff

∄tr ∈ Στ
√∗

, p̂ ∈ SP , q̂ ∈ SQ ·

rep(ini tP , ini tq)
tr�−→R (p̂, q̂) ∧

(
(∃ a ∈ Σ

√
· q̂

a−→Q ∧ p̂ � a−→P) ∨
(∃ X ∈ P Σ

√
· q̂ ref Q X ∧ ¬ p̂ ref P X)

)
.

Proof (⇒) We prove the contrapositive. Suppose

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂).

If q̂
a−→Q ∧ p̂ � a−→P , then the proof is as for Proposition 21.

So suppose

q̂ ref Q X ∧ ¬ p̂ ref P X .

Then by Lemma 20 (adapted to GLTSs), there exist a trace tr ′,
states p and q, and π ∈ G such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ∼π q̂ ∧ p̂ = π(p).

Now q̂ ref Q X , so q ref Qπ−1(X) by Lemma 57. And simi-

larly ¬ p̂ ref P X so ¬p ref Pπ−1(X). Hence

(tr ′ \ τ, π−1(X)) ∈ f ailures(ini tQ) \ f ailures(ini tP),

(by the uniqueness of the state of P reached after tr ′). Hence

P �⊑F Q.

(⇐) We prove the contrapositive. Suppose P �⊑F Q. If

this corresponds to there being a trace of ini tQ that is not

123

598 T. Gibson-Robinson, G. Lowe

a trace of ini tP , then the proof is as in Proposition 21. So

suppose

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ref QY ∧ ¬p ref P Y .

Then by Lemma 20, there exist a trace tr , states p̂ and q̂ , and

π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then q̂ ref Qπ(Y) ∧ ¬ p̂ ref Pπ(Y) by Lemma 57. Let-

ting X = π(Y) we have the result. ⊓⊔

It is straightforward to adapt the model checking algo-

rithm from Fig. 6, and the counterexample reconstruction

algorithm from Fig. 7, to the stable failures model. The

only change necessary to the model checking algorithm is

to replace the condition leading to a nonrefinement by

(∃ a ∈ Σ
√
· q̂

a−→Q ∧ p̂ � a−→P) ∨
(∃ X ∈ P Σ

√
· q̂ ref Q X ∧ ¬ p̂ ref P X).

Note that the latter disjunct is equivalent to

∃ A ∈ minaccsQ(q̂) · ∀ A′ ∈ minaccsP (p̂) · A′ �⊆ A.

We now consider refinement in the failures–divergences

model.

Proposition 61 P ⊑F D Q iff

∄tr ∈ Στ
√∗

, p̂ ∈ SP , q̂ ∈ SQ ·

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ ¬divP p̂ ∧

(
(∃ X ∈ P Σ

√
· q̂ ref Q X ∧ ¬ p̂ ref P X) ∨ divQ q̂

)
.

Proof (⇒) We prove the contrapositive. Let tr be the shortest

trace that makes the right-hand side false. So

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ ¬divP p̂.

So necessarily ini tP does not diverge after tr or any prefix

of it; and necessarily ini tQ does not diverge on any proper

prefix of tr , by the presumed minimality of tr .

– If ∃ X ∈ P Σ
√
· q̂ ref Q X ∧ ¬ p̂ ref P X , the proof is as

for Proposition 60.

– If divQ q̂ , then by Lemma 20, there exist a trace tr ′,
states p and q, and π ∈ G such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then divQq ∧ ¬divP p. Hence

tr ′ \ τ ∈ divs(ini tQ) \ divs(ini tP),

(by the uniqueness of the state of P reached after tr ′).
Hence P �⊑F D Q.

(⇐) We again prove the contrapositive. Suppose P �⊑F D

Q.

– Suppose divs(ini tQ) �⊆ divs(ini tP). Then there exists

a trace tr ′ ∈ Στ
√∗

and states p and q such that

(ini tP , ini tQ)
tr ′�−→S (p, q) ∧ divQq ∧ ¬divP p.

By Lemma 20, there exist a trace tr , states p̂ and q̂ , and

π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then divQ q̂ ∧ ¬divP p̂, as required.

– Suppose divs(ini tQ) ⊆ divs(ini tP) but

f ailures⊥(ini tQ) �⊆ f ailures⊥(ini tP).

Then there exist tr ′ ∈ Στ
√∗

, refusal Y ∈ P Σ
√

, and

states p and q such that

(ini tP , ini tstQ)
tr ′�−→S (p, q) ∧

q ref Y ∧ ¬divP p ∧ ¬p ref Y .

Then by Lemma 20, there exist a trace tr , states p̂ and q̂ ,

and π ∈ G such that

rep(ini tP , ini tQ)
tr�−→R (p̂, q̂) ∧ q ∼π q̂ ∧ p̂ = π(p).

But then q̂ ref π(Y) ∧ ¬divP p̂ ∧ ¬ p̂ ref π(Y). Letting

X = π(Y), we have the result.

⊓⊔

It is again straightforward to adapt the model checking and

counterexample reconstruction algorithms to the failures–

divergences model. The condition leading to a nonrefinement

is changed to

¬divP p̂ ∧
((∃ X ∈ P Σ

√
· q̂ ref Q X ∧ ¬ p̂ ref P X) ∨ divQ q̂).

123

Symmetry reduction in CSP model checking 599

Appendix C: Symmetry reduction on gener-
alised supercombinators

In the body of the paper, we gave a slightly simplified pre-

sentation of supercombinators, in the interests of explaining

the main ideas without getting bogged down in the details.

In this appendix and the next, we extend the results to more

general supercombinators.

The simplified supercombinators had a single format,

which is appropriate when the construction of the system

is static, i.e. the same processes are running (“on”) in each

state. However, consider a process such as

(P ||| Q) ⊓ (R \ X).

Suppose this is implemented using a supercombinator with

three components, corresponding to P , Q and R. This natu-

rally has three formats:

– In the initial format, no component is on; the system has

two τ -transitions, resolving the nondeterministic choice,

and leading to the two subsequent formats.

– If the nondeterministic choice is resolved to the left, the

system subsequently behaves like P ||| Q: the compo-

nents for P and Q are on, but the component for R is

off.

– If the nondeterministic choice is resolved to the right, the

system subsequently behaves like R \ X : the component

for R is on, but the components for P and Q are off.

Different supercombinator rules apply in the different for-

mats. Hence there is no way to model this system using a

simplified supercombinator with P , Q and R as its compo-

nents: the only option would be to compile the whole system

into a single component, which would be very expensive.

In addition, there are circumstances under which it is nec-

essary to reset a process to its initial state, in order to model

recursion. And we allow a component to be a GLTS, rather

than necessarily an LTS, in order to deal with compression

functions. We explain each of these points below.

Definition 62 A generalised supercombinator is a 5-tuple

(L, F,R, on, f0) where

– L = 〈L1, . . . , Ln〉 is a sequence of component GLTSs.

– F is a finite set of formats.

– on : F → P{1, . . . , n} indicates, for each format, which

of the component GLTSs are on.

– R is a function from formats to sets of supercombinator

rules. For each f ∈ F , R(f) is a finite set of supercom-

binator rules (e, a, r , f ′) where

– e ∈ (Σ−)n specifies the action each on component

must perform, where − indicates that it performs

none; if e(i) �= − then i ∈ on(f).

– a ∈ Σ is the event the supercombinator performs.

– r ⊆ {1, . . . , n} are the indices of the components

from L that are reset.

– f ′ ∈ F is the subsequent format.

– f0 ∈ F is the initial format.

In these appendices, we often say “supercombinator” to

mean a generalised supercombinator.

In FDR, a component GLTS can be implemented in one

of three ways:

– As a low-level LTS, explicitly listing the transitions for

each state, and interpreted as a GLTS, as in Lemma 55.

This is the default, and will be the case when no com-

pression operators are involved.

– As a low-level GLTS, explicitly listing the transitions,

minimal acceptances and divergence information for

each state. This results from application of certain com-

pression functions. FDR automatically compresses leaf

components, merging states that are strongly bisimilar:

this is known as leaf compression. Alternatively, this

GLTS might have been obtained by compressing another

supercombinator: in this case, each state of the low-level

GLTS will correspond to a state of the nested supercom-

binator.

– As a lazy enumerated GLTS, calculating transitions as

needed. This results from compression functions such

as lazyenumerate, chase and prioritise. The lazy enu-

merated GLTS might be formed by wrapping a nested

supercombinator; in this case, each state of the GLTS

will again correspond to a state of the nested supercom-

binator.

Given a supercombinator, a corresponding GLTS can be

constructed.

Definition 63 Let S = (〈L1, . . . , Ln〉, F,R, on, f0) be a

supercombinator where L i = (Si ,Δi , ini ti ,minaccsi ,divi).

The GLTS induced by S is the GLTS (S,Δ, ini t,minaccs,

div) such that:

– States are tuples consisting of the state of each compo-

nent, plus the identifier of the format: S ⊆ S1 × · · · ×
Sn × F .

– The initial state is the tuple containing the initial states

of each of the components, along with the initial format:

ini t = (ini t1, . . . , ini tn, f0).

– The transitions correspond to the supercombinator rules

firing. Letσ = (s1, . . . , sn, f), andσ ′ = (s′1, . . . , s′n, f ′).
Then (σ, a, σ ′) ∈ Δ iff there exists ((b1, . . . , bn), a, r ,

123

600 T. Gibson-Robinson, G. Lowe

f ′) ∈ R(f) such that for each component i , there exists

a state s′′i such that

1. If bi �= − then si
bi−→i s′′i ; and if bi = − then s′′i =

si ; i.e. component i performs bi , or does nothing if

bi = −;

2. If i /∈ r then s′i = s′′i ; and if i ∈ r then s′i = ini ti ;

i.e. the components in r are reset to their initial states.

– For each state σ = (s1, . . . , sn, f) with on(f) =
{i1, . . . , ik}:

minaccs(σ)

= mins{ join f (X i1 , . . . , X ik
) |

X i ∈ minaccsi (si) for i = i1, . . . , ik},

where

join f (X i1 , . . . , X ik
)

= {a | ∃((e1, . . . , en), a, r , f ′) ∈ R(f) ·
∀ i ∈ {i1, . . . , ik} · ei �= ⇒ ei ∈ X i },

and mins returns the ⊆-minimal elements of its argu-

ment.

– For each state σ , div(σ) is true iff either:

– from σ , S can perform a finite sequence of τ -

transitions to some state σ ′ = (s1, . . . , sn, f) such

that some on component can diverge, i.e. ∃ i ∈
on(f) · divi (si); or

– from σ , S can perform an infinite sequence of τ -

transitions.

The generalisation of supercombinators makes it possi-

ble to define a supercombinator corresponding to each CSP

operator and recursion. The following examples illustrate the

ideas of multiple formats and resetting.

Example 64 Let T = {t1, . . . , tn}, and consider

⊓t∈T
(P(t) \ X(t)).

The natural supercombinator would be (〈L1, . . . , Ln〉, { f0,

. . . , fn},R, on, f0), where

– L i is the LTS for P(ti).

– f0 is the initial format, and for i > 0, fi is the format

corresponding to the nondeterministic choice choosing ti ,

so on(f0) = {} and on(fi) = {i} for i > 0.

– The rules R are as follows. We write “−n” for the tuple

(−, . . . ,−) of size n, and “ea
i ” for the tuple with a in

position i and − elsewhere; then we have

R(f0) = {(−n, τ, {}, fi) | i ∈ {1, . . . , n}},

R(fi) = {(ea
i , if a ∈ X(ti)then τelse a, {}, fi) |
a ∈ Στ

√
}, i = 1, . . . , n.

The rule R(f0) captures that the system can perform a τ

(with no component changing state) and evolve into the

state captured by format fi . The rule R(fi) captures that

if the i th component can perform a transition labelled

with a, then the system can perform a transition labelled

with either τ or a (depending on whether a ∈ X(ti)), and

remain in the same format. In each case, no component

is reset.

Example 65 Let P be a process that can perform
√

, indicat-

ing termination (and maybe other events), and let Q = P ; Q.

Then the natural supercombinator for Q would have a sin-

gle component LTS L1, corresponding to P , and a single

format f0 such that on(f0) = {1}, and

R(f0) = {((a), a, {}, f0) | a ∈ Στ } ∪ {((√), τ, {1}, f0)}.

The last rule captures that if L1 performs
√

, the
√

is made

internal (i.e. τ), and L1 is reset to its initial state.

The following example illustrates the way supercombina-

tors can be nested.

Example 66 Let T = {t1, . . . , tn}, and consider the process

P = |||t :T compress(Q(t)),

where Q(t) = |||t ′:T R(t, t ′),

where compress is some compression function. FDR will

normally implement each compress(Q(t)) as a component

of the top-level supercombinator for P . Each such component

is produced by compressing the GLTS of the supercom-

binator corresponding to Q(t) (and storing the transitions

explicitly), so each state of that component contains a state

for each sub-component R(t, t ′). Thus each state of the super-

combinator for P is of the form

((s1,1, s1,2, . . . , s1,n, f1), (s2,1, s2,2, . . . , s2,n, f2), . . . ,

(sn,1, . . . , sn,n, fn), f)

where each si, j is a state of R(ti , t j).

C.1 Symmetries between generalised
supercombinators

We now consider symmetries between supercombinators,

and how these correspond to symmetries between the cor-

responding GLTSs. We are mainly interested in showing that

the supercombinator corresponding to the implementation

process in a refinement check is symmetric, i.e. π -bisimilar

123

Symmetry reduction in CSP model checking 601

to itself for every event permutation π in some group G.

However, when several components of a supercombinator are

implemented as nested supercombinators, we will sometimes

want to show that one nested supercombinator is π -bisimilar

to another, so we consider this generalisation.

We start by relating the component GLTSs of two super-

combinators.

Definition 67 Consider two collections of GLTSs, L =
〈L1, . . . , Ln〉 and L≃ = 〈L ′1, . . . , L ′n〉. Let π be an event

permutation, and let α be a bijection from {1, . . . , n} to itself.

We say that L is π -mappable to L
′ using component bijec-

tion α if for every i , L i ∼π L ′
α(i).

We now consider how to relate the rules of two super-

combinators. This is made harder by the presence of multiple

formats. The following definition captures when two formats

(maybe in different supercombinators) act in a similar way,

but on different component GLTSs, and with events renamed

under π . We will use this to identify when the supercombi-

nators induce π -bisimilar GLTSs (Proposition 72).

Definition 68 Let π be an event permutation. Let

S = (〈L1, . . . , Ln〉, F,R, on, f0) and S
′ = (〈L ′1,

. . . , L ′n〉, F ′,R′, on′, f ′0) be supercombinators whose com-

ponent GLTSs are π -mappable with component bijection α.

Then a relation ∼F over F × F ′ is a format π -bisimulation

using α if whenever f ∼F f ′:

– If (e, a, r , f1) ∈ R(f) then there is a rule (e′, π(a), α(r),

f ′1) ∈ R
′(f ′) such that

∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)) and f1 ∼F f ′1.

– If (e′, a, r , f ′1) ∈ R
′(f ′) then there is a rule (e, π−1(a),

α−1(r), f1) ∈ R(f) such that

∀ i ∈ {1, . . . , n} · e′(α(i)) = π(e(i)) and f1 ∼F f ′1.

– α(on(f)) = on′(f ′).

This says that f acts on each GLTS L i in the same way as f ′

acts on L ′
α(i), but with the latter’s events renamed under π .

Definition 69 Consider two supercombinators S = (L, F,

R, on, f0) and S
′ = (L′, F ′,R′, on′, f ′0). Then S is π -

mappable to S
′ using component bijection α if

1. L and L
′ are π -mappable using α; and

2. There is a format π -bisimulation∼F
π over F×F ′ using α

such that f0 ∼F
π f ′0.

Example 70 Let T = {t1, . . . , tn}, and consider

⊓t∈T
(P(t) \ X(t)).

Assume that the script is constant-free for T . The natu-

ral supercombinator S for this system was described in

Example 64. Let π be a permutation on T . Let component

bijection α be such that α(i) = j when π(ti) = t j . We show

that S is π -mappable to itself using α.

By Proposition 24, P(tα(i)) = π(P(ti)), so the GLTSs are

π -mappable to themselves under α. By the same proposition,

π(X(ti)) = X(π(ti)). Define

∼F
π = {(f0, f0)} ∪ {(fi , fα(i)) | i ∈ {1, . . . , n}}.

We show that ∼F
π is a format π -bisimulation. The rele-

vant conditions on the rules are clearly satisfied by the

pair (f0, f0). For i > 0, note that

(ea
i , b, {}, fi) ∈ R(fi)

⇔ (e
π(a)
α(i) , π(b), {}, fα(i)) ∈ R(α(fi)),

for each a, b, since

– If a ∈ X(ti) then π(a) ∈ π(X(ti)) = X(π(ti)) =
X(tα(i)), and the two rules have b = π(b) = τ ;

– If a /∈ X(ti), then similarly π(a) /∈ X(tα(i)), and the two

rules have b = a, and π(b) = π(a), respectively.

Further, these rules correspond, as required by Definition 68;

in particular e
π(a)
α(i) (α(j)) = π(ea

i (j)) (since both sides

equal π(a) if i = j ; and both equal − otherwise). Finally,

α(on(fi)) = {α(i)} = on(fα(i)). Clearly f0 ∼F
π f0. Hence

S is π -mappable to itself, for each π ∈ EvSym(T).

We now show that π -mappable supercombinators induce

π -bisimilar GLTSs.

Lemma 71 Let π be an event permutation, and let

S = (〈L1, . . . , Ln〉, F,R, on, f0)

S≃ = (〈L ′1, . . . , L ′n〉, F ′,R′, on′, f ′0)

be π -mappable supercombinators with component bijec-

tion α and format π -bisimulation∼F
π . Consider the relation

≈π defined over states of the induced GLTSs by

(s1, . . . , sn, f) ≈π (s′1, . . . , s′n, f ′) iff

(∀ i ∈ {1, . . . , n} · si ∼π s′α(i)) ∧ f ∼F
π f ′.

Then≈π is a π -bisimulation. Further, the initial states of the

two GLTSs are related by ≈π .

The proposition below follows easily from the above

lemma.

Proposition 72 1. Suppose supercombinator S is π -

mappable to supercombinator S
′. Then the induced

GLTSs are π -bisimilar.

123

602 T. Gibson-Robinson, G. Lowe

2. Suppose S is a supercombinator that is π -mappable to

itself for every π ∈ G. Then the induced GLTS is G-

symmetric.

Recall that a supercombinator might contain compo-

nents that are implemented using nested supercombinators.

Together, these supercombinators form a tree (but only to a

finite depth). When a component is not implemented as a

nested supercombinator, we call it a leaf.

In order to statically prove that two supercombinators,

possibly with nested supercombinators, induce π -bisimilar

GLTSs, we require a stronger condition, that descends

through nested supercombinators, showing corresponding

components are suitably related.

Definition 73 Consider two supercombinators

S = (〈L1, . . . , Ln〉, F,R, on, f0),

S
′ = (〈L ′1, . . . , L ′n〉, F ′,R′, on′, f ′0).

Let π be an event permutation, and let α be a bijection on

{1, . . . , n}. Then S is recursively π -mappable to S
′ using

component bijection α if

1. For every i ∈ {1, . . . , n}, either

(a) L i and L ′
α(i) are leaf GLTSs, and L i ∼π L ′

α(i); or

(b) L i and L ′
α(i) are nested supercombinators, and L i is

recursively π -mappable to L ′
α(i) using some compo-

nent bijection αi .

2. There is a format π -bisimulation∼F
π over F×F ′ using α

such that f0 ∼F
π f ′0.

In “Appendix D” we will explain how to statically identify

that two supercombinators are recursively π -mappable. The

proposition below then shows that these supercombinators

are π -bisimilar.

Proposition 74 1. Suppose supercombinator S is recur-

sively π -mappable to supercombinator S
′. Then the

induced GLTSs are π -bisimilar.

2. Suppose S is a supercombinator that is recursively π -

mappable to itself for every π ∈ G. Then the induced

GLTS is G-symmetric.

Proof The proof of part 1 is by induction on the depth of the

tree of nested supercombinators. Given S and S
′, the induc-

tive hypothesis says that any corresponding components that

are implemented as nested supercombinators have induced

GLTSs that are π -bisimilar. Hence S and S
′ are π -mappable,

and so, by Proposition 72, the induced GLTSs areπ -bisimilar.

Part 2 then follows immediately. ⊓⊔

Example 75 Let T = {t1, . . . , tn}. Consider, again, the pro-

cess from Example 66:

P = |||t :T compress(Q(t)),

where Q(t) = |||t ′:T R(t, t ′).

Suppose the script is constant-free for T , and let π ∈
EvSym(T). Let S be P’s supercombinator, and let Si be

the component of S corresponding to compress(Q(ti));

recall that this is a nested supercombinator. Let the com-

ponents of Si be 〈L i,1, . . . , L i,n〉. (Note that we make no

assumption about the order of these components.) Let α be

such that tα(i) = π(ti), for each i . Let αi be such that if

L i, j corresponds to R(ti , t ′) then Lα(i),αi (j) corresponds to

R(π(ti), π(t ′)), for each j . Then, by Proposition 24, L i, j ∼π

Lα(i),αi (j). It is then easy to show that Si is recursively π -

mappable to Sα(i) using αi . (The natural supercombinator for

each has a single format, and the rules satisfy the conditions

for a format bisimulation.) Likewise, it is then easy to show

that S is recursively π -mappable to itself using α.

We now show that the property of supercombinators being

recursively mappable is compositional in the obvious way.

We start by showing how format bisimulations compose.

Below we sometimes decorate the component bijections α

with the corresponding event permutation and/or their source

and target supercombinators.

Lemma 76 Consider three supercombinators

S = (L, F,R, on, f0),

S
′ = (L′, F ′,R′, on′, f ′0),

S
′′ = (L′′, F ′′,R′′, on′′, f ′′0).

Suppose ∼F
π is a format π -bisimulation between S and

S
′ using component bijection αS,S′

π , and ∼F
π ′ is a format

π ′-bisimulation between S
′ and S

′′ using component bijec-

tion α
S′,S′′

π ′ . Then∼F
π ; ∼F

π ′ is a format (π ; π ′)-bisimulation

between S and S
′′ using component bijection αS,S′

π ; α
S′,S′′

π ′ .

Proof Suppose f (∼F
π ; ∼F

π ′) f ′′. Then there is a format f ′

such that f ∼F
π f ′ and f ′ ∼F

π ′ f ′′. We check the conditions

for being a format (π ; π ′)-bisimulation.

Suppose (e, a, r , f1) ∈ R(f). Then, since f ∼F
π f ′,

there is a rule (e′, π(a), απ (r), f ′1) ∈ R
′(f ′) such that

e′(απ (i)) = π(e(i)) for each i ∈ {1, . . . , n}, and f1 ∼F
π f ′1.

But then, since f ′ ∼F
π ′ f ′′, there is a rule (e′′, (π ;

π ′)(a), (απ ; απ ′)(r), f ′′1) ∈ R
′′(f ′′) such that e′′(απ ′(i)) =

π ′(e′(i)) for each i , and f ′1 ∼F
π ′ f ′′1 . Hence, for each i ,

e′′((απ ; απ ′)(i)) = e′′(απ ′(απ (i))) = π ′(e′(απ (i))) =
(π ; π ′)(e(i)). And f1 (∼F

π ; ∼F
π ′) f ′′1 , as required.

The reverse condition is very similar.

123

Symmetry reduction in CSP model checking 603

Finally, απ (on(f)) = on′(f ′) and απ ′(on′(f ′)) =
on′′(f ′′), so (απ ; απ ′)(on(f)) = on′′(f ′′). ⊓⊔

Lemma 77 Consider three supercombinators

S = (L, F,R, on, f0),

S
′ = (L′, F ′,R′, on′, f ′0),

S
′′ = (L′′, F ′′,R′′, on′′, f ′′0).

Suppose S is recursively π -mappable to S
′ using component

bijection αS,S′
π , and S

′ is recursively π ′-mappable to S
′′ using

component bijection α
S′,S′′

π ′ . Then S is recursively (π ; π ′)-

mappable to S
′′ using component bijection αS,S′

π ; α
S′,S′′

π ′ .

Proof The proof is by induction on the depth of supercom-

binator nesting. We prove the result, following the structure

of Definition 73.

1. Suppose L = 〈L1, . . . , Ln〉, L
′ = 〈L ′1, . . . , L ′n〉 and

L
′′ = 〈L ′′1, . . . , L ′′n〉. Consider L i , L ′

απ (i) and L ′′
απ ′ (απ (i)).

There are two possibilities:

(a) All three are leaf GLTSs, L i ∼π L ′
απ (i), and

L ′
απ (i) ∼π ′ L ′′

απ ′ (απ (i)); hence L i ∼π ;π ′ L ′′
απ ′ (απ (i)).

(b) All three are nested supercombinators, L i is recur-

sively π -mappable to L ′
απ (i), and L ′

απ (i) is recursively

π ′-mappable to L ′′
απ ′ (απ (i)). Then by the inductive

hypothesis, L i is recursively (π ; π ′)-mappable to

L ′′
απ ′ (απ (i)).

2. By assumption, there is a format π -bisimulation ∼F
π

between S and S
′ using απ such that f0 ∼F

π f ′0; and

there is a format π ′-bisimulation ∼F
π ′ between S

′ and

S
′′ using απ ′ such that f ′0 ∼F

π ′ f ′′0 . By Lemma 76,

∼F
π ; ∼F

π ′ is a format (π ; π ′)-bisimulation between S

and S
′′ using απ ; απ ′ . And f0 (∼F

π ; ∼F
π ′) f ′′0 . ⊓⊔

Appendix D: Identifying symmetries and
applying permutations in generalised super-
combinators

In this appendix, we extend the results and techniques of

Sect. 6 to generalised supercombinators. Let T be a collection

of datatypes. In “Checking recursive mappability” appendix

section, we explain how we check that the supercombinator

Simpl for the implementation is recursively π -mappable to

itself for every π ∈ EvSym(T). We explain how to apply

such an event permutation to a state of the supercombinator

in “Applying permutations to states” appendix section.

D.1 Checking recursive mappability

We now explain how to check that Simpl is recursively

π -mappable to itself, for every permutation π of the distin-

guished types. Some parts are as in Sect. 6.1 so we just give

an outline. By Lemma 77, it suffices to consider just permu-

tations π from a set of generators of the full symmetry group.

Note, though, that if Simpl contains nested supercombinators,

we might need to show that one component supercombina-

tor S is recursively π -mappable to another S
′, so we consider

this more general problem.

So consider two supercombinators

S = (L, F,R, on, f0), with L = 〈L1, . . . , Ln〉,
S
′ = (L′, F ′,R′, on′, f ′0), with L

′ = 〈L ′1, . . . , L ′n〉,

and consider the problem of showing that S is recursively

π -mappable to S
′.

We construct the component bijection απ as in Sect. 6.1.

Then, following Definition 73, we check that either (a) L i

and L ′
απ (i) are both leaf GLTSs, or (b) both are nested super-

combinators; in the latter case, we then check (recursively)

that L i is recursively π -mappable to L ′
απ (i).

We now consider format π -bisimulations. We can calcu-

late the maximal format π -bisimulation between S and S
′

using a straightforward adaptation of the algorithm for cal-

culating a strong bisimulation. Given a relation∼F ⊆ F×F ′

over formats, define F(∼F) to contain all pairs (f , f ′) sat-

isfying the defining conditions for a format π -bisimulation,

i.e.

– if (e, a, r , f1) ∈ R(f) then there is a rule (e′, π(a), α(r),

f ′1) ∈ R
′(f ′) such that ∀ i ∈ {1, . . . , n} · e′(α(i)) =

π(e(i)) and f1 ∼F f ′1;

– if (e′, a, r , f ′1) ∈ R
′(f ′) then there is a rule (e, π−1(a),

α−1(r), f1) ∈ R(f) such that ∀ i ∈ {1, . . . , n} ·
e′(α(i)) = π(e(i)) and f1 ∼F f ′1;

– α(on(f)) = on′(f ′).

Then we calculate the greatest fixed point of F: let ∼F
π,0 =

F × F ′ be the universal relation over formats; calculate

F(∼F
π,0),F

2(∼F
π,0), . . ., until a fixed point∼F

π is reached. We

then check that the initial formats are related, i.e. f0 ∼F
π f ′0.

If this succeeds, then S and S
′ are recursively π -mappable.

(We store the format bisimulation found, for later use.)

Recall, that we apply the above procedure to show that

the supercombinator for the implementation, Simpl , is recur-

sively π -mappable to itself, for every π in a set of generators

of the full symmetry group. By Lemma 77, this tells us that

Simpl is recursively π -mappable to itself for every event per-

mutation π . This means that for each event permutation π

there is a bijection απ on the components of Simpl giving

corresponding components. Inductively, for every event per-

123

604 T. Gibson-Robinson, G. Lowe

mutation π , and for every nested supercombinator S (nested

at an arbitrary depth), there is a nested supercombinator S
′

such that S is recursively π -mappable to S
′. If π can be

written in terms of generators as π = π1 ; . . . ; πn then

there are supercombinators S0 = S,S1, . . . ,Sn = S
′ such

that for each i , Si−1 is recursively πi -mappable to Si using

some component bijection α
Si−1,Si
πi

and format bisimulation

∼F,Si−1,Si
π . Then, by Lemma 76, the component bijection and

format bisimulation between the components of S and S
′ are

αS,S′
π = αS0,S1

π1
; . . . ; α

Sn−1,Sn
πn ,

∼F,S,S′
π =∼F,S0,S1

π1
; . . . ; ∼F,Sn−1,Sn

πn .

D.2 Applying permutations to states

Suppose S is recursively π -mappable to S
′. We explain how

to apply permutation π to a state of S to produce a state

of S
′. The lemma below shows how, given leaf components

L and L ′ such that L ′ = π(L), to apply π to a state of L to

obtain a state of L ′.

Lemma 78 Suppose L and L ′ are leaf components with L ′ =
π(L). Then for each state s of L, there is a state s′ of L ′ such

that s ∼π s′. We write π(s) for this state s′.

Proof If L and L ′ are uncompressed leaf components, then,

as for Lemma 34, if s has label (Q, ρ), then we take s′ to be

the state with label (Q, π ◦ ρ). If L and L ′ are compressed

leaf components, then the state s′′ with label (Q, π ◦ρ) might

not exist in L ′, because the compression has merged it with

another state s′. However, s′ will be strongly bisimilar to s′′,
and so satisfy the conditions of the lemma. ⊓⊔

The following proposition shows how, given a state σ of

a supercombinator and a permutation π , to calculate a state,

which we denote π(σ), such that σ ∼π π(σ).

Proposition 79 Let S and S
′ be supercombinators with

components 〈L1, . . . , Ln〉 and 〈L ′1, . . . , L ′n〉, and let π

be an event permutation. Suppose S is recursively π -

mappable to S
′ using component bijection α and format

π -bisimulation ∼F
π . Consider the state

σ = (s1, . . . , sn, f).

Define π(σ) to be the state (s′1, . . . , s′n, f ′), where

– if L ′i is a leaf component, then s′i = π(sα−1(i)), con-

structed as described in Lemma 78;

– if L ′i is a nested supercombinator, then s′i = π(sα−1(i)),

defined recursively;

– f ∼F
π f ′.

Then σ ∼π π(σ).

Proof The proof is by induction on the depth of the tree of

nested supercombinators. If L ′i is a leaf GLTS, then so is

Lα−1(i), and Lα−1(i) ∼π L ′i , by the definition of recursive π -

mappable; then the existence of s′i follows from Lemma 78

and sα−1(i) ∼π s′i . If L ′i is a nested supercombinator, then so

is Lα−1(i), and Lα−1(i) is recursively π -mappable to L ′i ; then

by the inductive hypothesis, L ′i has a state s′i = π(sα−1(i))

such that sα−1(i) ∼π s′i . In each case, s j ∼π s′
α(j), for each j .

Hence σ ∼π π(σ) by Lemma 71. ⊓⊔

References

1. Babai, L.: Automorphism groups, isomorphism, reconstruction.

In: Graham, R.L., Grötschel, M., Lováz, L. (eds.) Handbook of

Combinatorics, chapter 27, vol. II, pp. 1447–1540. North Holland,

Amsterdam (1995)

2. Babai, L., Kučera, L.: Canonical labelling of graphs in linear

average time. In: Proceedings of the 20th IEEE Symposium on

Foundations of Computer Science, pp. 39–46 (1979)

3. Bošnački, D., Dams, D., Holenderski, L.: Symmetric Spin. Int. J.

Softw. Tools Technol. Transf. 4, 92–106 (2002)

4. Chen, K.: Analysing concurrent datatypes in CSP. Master’s thesis,

University of Oxford (2015)

5. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A sym-

bolic reachability graph for coloured petri nets. Theor. Comput.

Sci. 176, 39–65 (1997)

6. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reduc-

tions in model checking. In: Proceedings of the 10th International

Conference on Computer-Aided Verification (CAV ’98), pp 147–

158 (1998)

7. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry

in temporal logic model checking. Form. Methods Syst. Design 9,

77–104 (1996)

8. Colvin, R., Groves, L.: Formal verification of an array-based

nonblocking queue. In: Proceedings of 10th IEEE International

Conference on Engineering of Complex Computer Systems, pp.

507–516 (2005)

9. Donaldson, A.F., Miller, A.: A computational group theoretic sym-

metry reduction package for the spin model checker. In: 11th

International Conference on Algebraic Methodology and Software

Technology, AMAST 2006, Kuressaare, Estonia, July 5–8, 2006,

Proceedings, pp. 374–380 (2006)

10. Donaldson, A.F., Miller, A.: Extending symmetry reduction tech-

niques to a realistic model of computation. Electronic Notes Theor.

Comput. Sci. 185, 63–76 (2007) Proceedings of the 6th Interna-

tional Workshop on Automated Verification of Critical Systems

(AVoCS 2006)

11. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In:

Proceedings of 5th International Conference on Computer Aided

Verification (1993)

12. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form.

Methods Syst. Design 9, 105–131 (1996)

13. Fischer, C., Wehrheim, H.: Model-checking CSP-OZ specifica-

tions with FDR. In: Proceedings of Integrated Formal Methods

(IFM’99), pp. 315–334 (1999)

14. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.:

FDR3: a parallel refinement checker for CSP. Int. J. Softw. Tools

Technol. Transf. 18, 149–167 (2015)

15. Gibson-Robinson, T., Lowe, G.: Symmetry reduction in CSP model

checking. Technical report, University of Oxford, Oxford (2015).

http://www.cs.ox.ac.uk/people/gavin.lowe/SymmetryReduction/

123

http://www.cs.ox.ac.uk/people/gavin.lowe/SymmetryReduction/

Symmetry reduction in CSP model checking 605

16. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming,

revised 1st edn. Morgan Kaufmann, Burlington (2012)

17. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition

for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3),

463–492 (1990)

18. Iosif, R.: Exploiting heap symmetries in explicit-state model

checking of software. In: 16th IEEE International Conference on

Automated Software Engineering (ASE 2001), 26–29 November

2001, Coronado Island, San Diego, CA, pp 254–261 (2001)

19. Ip, C.N., Dill, D.L.: Better verification through symmetry. Form.

Methods Syst. Design 9, 41–75 (1996)

20. Janssen, R.: Verification of Concurrent Datatypes Using CSP. Mas-

ter’s thesis, University of Oxford (2015)

21. Jensen, K.: Condensed state spaces for symmetrical coloured petri

nets. Form. Methods Syst. Design 9, 7–40 (1996)

22. Junttila, T.A.: Computational complexity of the place/transition-net

symmetry reduction method. J. Univ. Comput. Sci. 7(4), 307–326

(2001)

23. Junttila, T.A.: New orbit algorithms for data symmetries. In: Pro-

ceedings of the Fourth International Conference on Application of

Concurrency to System Design (ACSD’04) (2004)

24. Lawrence, J.: Practical applications of CSP and FDR to software

design. In: Communicating Sequential Processes: The First 25

Years, volume 3525 of Lecture Notes in Computer Science, pp.

151–174. Springer, New York (2005)

25. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry

reduction for B by permutation flooding. In: Proceedings of 7th

International Conference of B Users, pp. 79–93 (2006)

26. Leuschel, M., Massart, T.: Efficient approximate verification of

B and Z models via symmetry markers. Ann. Math. Artif. Intell.

59(1), 81–106 (2010)

27. Lowe, G.: Casper: a compiler for the analysis of security protocols.

J. Comput. Secur. 6(1–2), 53–84 (1998)

28. Lowe, G.: Analysing lock-free linearizable datatypes using CSP. In:

Concurrency, Security and Puzzles: Essays Dedicated to Andrew

William Roscoe on the Occasion of His 60th Birthday, vol-

ume 10160 of Lecture Notes in Computer Science, pp. 162–184.

Springer, New York (2017)

29. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, Burlington

(1996)

30. Michael, M., Scott, M.: Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms. In: Proceedings of the

Fifteenth Annual ACM Symposium on Principles of Distributed

Computing, pp. 267–275 (1996)

31. Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic

model checking. ACM Comput. Surv. 38(3) (2006). https://doi.org/

10.1145/1132960.1132962

32. Moffat, N., Goldsmith, M., Roscoe, B.: A representative function

approach to symmetry exploitation for CSP refinement checking.

In: International Conference on Formal Engineering Methods. Lec-

ture Notes in Computer Science, vol. 5256 (2008)

33. Mota, A., Sampaio, A.: Model-checking CSP-Z: strategy, tool sup-

port and industrial application. Sci. Comput. Program. 40(1), 59–96

(2001)

34. Roscoe, A.W.: Model checking CSP. In: A Classical Mind: Essays

in Honour of CAR Hoare. Prentice Hall, Hemel Hempstead (1994)

35. Roscoe, A.W.: Understanding Concurrent Systems. Springer, New

York (2010)

36. Roscoe, A.W., Hopkins, D.: SVA: A tool for analysing shared-

variable programs. In: Proceedings of Automatic Verification of

Critical Systems (AVoCS), pp. 177–183 (2007)

37. Schmidt, K.: Integrating low level symmetries into reachability

analysis. In: Tools and Algorithms for the Construction and Analy-

sis of Systems (TACAS 2000). Lecture Notes in Computer Science,

vol. 1785, pp. 315–330 (2000)

38. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: a symmetry-based

model checker for verification of safety and liveness properties.

ACM Trans. Softw. Eng. Methodol. 9(2), 133–166 (2000)

39. University of Oxford. FDR Documentation. http://www.cs.ox.ac.

uk/projects/fdr/manual/index.html (2015). Accessed 19 Feb 2019

40. Valmari, A.: Stuborn sets for reduced state space generation. In:

Advances in Petri Nets 1990. Lecture Notes in Computer Science,

vol. 483, pp. 491–515. Springer, New York (1991)

41. Wahl, T., Donaldson, A.F.: Replication and abstraction: symmetry

in automated formal verification. Symmetry 2(2), 799–847 (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/1132960.1132962
https://doi.org/10.1145/1132960.1132962
http://www.cs.ox.ac.uk/projects/fdr/manual/index.html
http://www.cs.ox.ac.uk/projects/fdr/manual/index.html

	Symmetry reduction in CSP model checking
	Abstract
	1 Introduction
	1.1 A brief overview of CSP
	1.2 A running example
	1.3 Related work

	2 Background
	2.1 Labelled transition systems
	2.2 Permutations
	2.3 Symmetric LTSs

	3 Refinement checking on symmetric LTSs
	3.1 Symmetric normalised specifications
	3.2 Representative members
	3.3 The reduced product automata
	3.4 Refinement checking algorithm for the traces model
	3.5 Counterexample generation

	4 Symmetric datatypes
	5 Symmetry reduction on supercombinators
	5.1 Symmetries between supercombinators

	6 Identifying symmetries and applying permutations in supercombinators
	6.1 Checking mappability
	6.2 Applying permutations to states

	7 Calculating representatives
	7.1 Component ordering algorithm
	7.2 Permutation generation
	7.3 Uniqueness of representations
	7.4 On compression
	7.5 Implementation considerations and alternatives
	7.6 Comparisons

	8 Experiments
	8.1 Comparison with the sorted and segmented techniques

	9 Conclusions
	Acknowledgements
	Appendix A: Generalised labelled transition systems
	Appendix A: Generalised labelled transition systems
	A.1 Symmetric GLTSs

	Appendix B: Refinement checking algorithms using GLTSs
	Appendix C: Symmetry reduction on generalised supercombinators
	Appendix C: Symmetry reduction on generalised supercombinators
	C.1 Symmetries between generalised supercombinators

	C.1 Symmetries between generalised supercombinators
	Appendix D: Identifying symmetries and applying permutations in generalised supercombinators
	Appendix D: Identifying symmetries and applying permutations in generalised supercombinators
	D.1 Checking recursive mappability
	D.1 Checking recursive mappability
	D.2 Applying permutations to states

	References

