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Abstract

We give a non-commutative Positivstellensatz for CPn: The (commutative) ∗-algebra of poly-
nomials on the real algebraic set CPn with the pointwise product can be realized by phase space
reduction as the U(1)-invariant polynomials on C1+n, restricted to the real (2n + 1)-sphere in-
side C1+n, and Schmüdgen’s Positivstellensatz gives an algebraic description of the real-valued
U(1)-invariant polynomials on C1+n that are strictly pointwise positive on the sphere. In analogy
to this commutative case, we consider a non-commutative ∗-algebra of polynomials on C1+n, the
Weyl algebra, and give an algebraic description of the real-valued U(1)-invariant polynomials that
are positive in certain ∗-representations on Hilbert spaces of holomorphic sections of line bundles
over CPn. It is especially noteworthy that the non-commutative result applies not only to strictly
positive, but to all positive (semidefinite) elements. As an application, all ∗-representations of the
quantization of the polynomial ∗-algebra on CPn, obtained e.g. through phase space reduction or
Berezin–Toeplitz quantization, are determined.
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1 Introduction

The symplectic manifolds CPn ∼= Zµ/U(1) with their usual Fubini–Study form (up to µ-dependent

rescalation) arise naturally by Marsden–Weinstein reduction [10] from C

1+n with its standard sym-

plectic structure: One takes a µ-levelset Zµ := {w ∈ C1+n | J (w) = µ }, µ ∈ ]0,∞[, of the polynomial

“momentum map” J := z0z0 + · · · + znzn, and divides out the U(1)-action by multiplication, which

is the one generated by J with respect to the standard symplectic structure of C1+n.

Dual to this geometric approach, the algebra of polynomial functions on CPn (seen as a real

algebraic set) can be obtained as the quotient of the U(1)-invariant polynomials on C1+n modulo

the ideal generated by J − µ1. This point of view has the advantage that it allows a generalization

to non-commutative deformations of the pointwise product. In the commutative case, Schmüdgen’s

Positivstellensatz [15] applies to the compact real algebraic set CPn and states that every polynomial

on CPn that is pointwise strictly positive can be expressed as a sum of squares of polynomials on

CP

n. A slight reformulation of this result might fit somewhat better to the setting of phase space

reduction:

Theorem (Commutative strict Positivstellensatz for CPn) Let f be a U(1)-invariant,

real-valued polynomial function on C1+n and µ ∈ ]0,∞[. If f(w) > 0 holds for all w ∈ Zµ, then

f can be expressed as a sum of (Hermitian) squares of U(1)-invariant polynomials on C1+n plus an

element from the ideal generated by J − µ1.

Results of this type are well-known in commutative real algebraic geometry in many different settings.

Most famously, Artin’s solution of Hilbert’s 17th problem and the Positivstellensatz of Krivine and

Stengle give an algebraic characterization of pointwise positive polynomials. Similar theorems for non-

commutative cases are less well-understood, but have been developed in a variety of different contexts:

[6, 7, 24] discuss non-commutative polynomials, [5, 8, 9, 11] matrices over polynomials, and [16,17, 19]

non-commutative complex ∗-algebras. See also [18] for an overview and some more references.

The main result of the present article is a generalization of the commutative Positivstellensatz

above to the deformation of CPn that is given by its Wick star product: Instead of the polynomial
∗-algebra on C1+n with the pointwise product, consider the ∗-algebra of polynomials on C1+n with

the Wick star product ⋆~, which is isomorphic to the Weyl algebra of canonical commutation relations.

By restricting to U(1)-invariant polynomials and dividing out the ideal generated by J − µ1 (with

respect to ⋆~), one obtains the polynomial functions on CPn with the standard Wick star product

of CPn as in [1, 2]. This works especially for almost all ~ ∈ ]0,∞[. The natural order on these
∗-algebras associated to C1+n and CPn is the operator order obtained by representing their elements

as operators on the Fock space or on the µ-eigenspace of J therein, respectively. A Positivstellensatz

for the former was given in [16]. In the following, a similar result for the latter will be proven:

Theorem (Non-commutative non-strict Positivstellensatz for CPn) Let f be a U(1)-in-

variant, real-valued polynomial function on C1+n and µ ∈ [0,∞[. If 〈ψ |π~(f)(ψ) 〉 ≥ 0 holds for

all µ-eigenvectors ψ of π~(J ), where π~ denotes the representation on the Fock space, then f can be

expressed as a sum of Hermitian squares (with respect to ⋆~) of U(1)-invariant polynomials on C1+n

plus an element from the ideal generated by J − µ1 (with respect to ⋆~).
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It is especially noteworthy that this non-commutative result appears to be stronger than expected

from the analogous commutative one, because it yields a representation as sums of Hermitian squares

not only for strictly positive elements, but for all positive ones.

Note that π~(J ) has a discrete set of eigenvalues {~k | k ∈ N0 }, ~ ∈ ]0,∞[. For all µ ∈ [0,∞[ \

{~k | k ∈ N0 }, the above non-strict Positivstellensatz is equivalent to giving a representation of −λ1

for one arbitrary λ ∈ ]0,∞[ as a sum of Hermitian squares plus an element from the ideal generated

by J − µ1. In this case, a hypothetical strict Positivstellensatz, giving an algebraic certificate of

positivity for −λ1 + ǫ1 for all ǫ ∈ ]0,∞[, would trivially also give rise to a non-strict one. For

µ ∈ {~k | k ∈ N0 }, however, the appearance of a simple non-strict Positivstellensatz might be more

surprising.

This article is organized as follows: After recapitulating the necessary preliminaries on ordered
∗-algebras and quadratic modules in Section 2, Section 3 is devoted to the application of the general

reduction procedure for “representable Poisson ∗-algebras” from [14] to the case of (non-commutative)
∗-algebras equipped with a Poisson bracket coming from the commutator and equipped with an order

obtained from a ∗-representation on a pre-Hilbert space. A special case of this is the reduction of

the Wick star product from C

1+n to CPn that is covered in Section 4. The proof of the main

Theorem 4.7 is given in Section 5. Finally, in Section 6, this result is applied in order to determine

the ∗-representations of the Wick star product on CPn for both strictly positive and strictly negative

values of ~.

2 Preliminaries

The set of natural numbers is denoted by N := {1, 2, 3, . . . } and N0 := {0} ∪N. The fields of real

and complex numbers are R and C, respectively.

A ∗-algebra A is a unital associative algebra over C, equipped with an antilinear involution

· ∗ : A → A that fulfils (ab)∗ = b∗a∗ for all a, b ∈ A. The set AH := { a ∈ A | a = a∗ } of Hermitian

elements of A is a real linear subspace of A. The unit of A will be denoted by 1, and always fulfils

1

∗ = 1. A ∗-ideal of a ∗-algebra A is a linear subspace I of A which is stable under · ∗ and fulfils

ab ∈ I for all a ∈ A, b ∈ I (hence also ba = (a∗b∗)∗ ∈ I). A quadratic module of a ∗-algebra A is a

subset Q of AH that fulfils

q + r ∈ Q , a∗q a ∈ Q , and 1 ∈ Q (2.1)

for all q, r ∈ Q and all a ∈ A. See e.g. [20] for more details about ∗-algebras and their quadratic

modules. For a quadratic module Q of A one defines the support suppQ := Q ∩ (−Q), which is

a real linear subspace of AH stable under conjugations q 7→ a∗q a with arbitrary a ∈ A, and the

support ∗-ideal supp
C

Q := suppQ + i suppQ, which is a ∗-ideal of A. Especially if −1 ∈ Q, then

1 ∈ suppQ ⊆ supp
C

Q so that supp
C

Q = A and Q = suppQ = AH. Moreover, if Q and I are

a quadratic module and a ∗-ideal of A, respectively, then Q + IH is again a quadratic module of A,

where IH := I ∩ AH. On any ∗-algebra A, the smallest (with respect to inclusion) quadratic module

3



is

A++
H :=

{∑m

j=1
a∗jaj

∣
∣
∣ m ∈ N; a1, . . . , am ∈ A

}

, (2.2)

the quadratic module of algebraically positive Hermitian elements of A, or of sums of Hermitian

squares. If A is commutative, then sums of Hermitian squares are sums of squares because a∗a =

Re(a)2 + Im(a)2 for all a ∈ A.

An ordered ∗-algebra is a ∗-algebra equipped with a quadratic module A+
H with suppA+

H = {0}.

The elements of A+
H will then be referred to as the positive Hermitian elements of A, and one can

define a partial order ≤ on AH as a ≤ b if and only if b − a ∈ A+
H, where a, b ∈ AH. Ordered

∗-algebras can be seen as generalizations of C∗-algebras that may contain unbounded elements. For

example, the basic constructions of square roots, etc., and the continuous calculus on C∗-algebras can

be generalized to certain ordered ∗-algebras, see [21, 22]. When comparing different orderings on one
∗-algebra A, however, the notion of different quadratic modules on A is usually more convenient.

For example, any ∗-algebra A of complex-valued functions with the usual pointwise operations

and the pointwise order on the Hermitian elements (i.e. the real-valued functions in A) is an ordered
∗-algebra, whose quadratic module of positive Hermitian elements A+

H consists of the pointwise positive

real-valued functions in A. Similarly, for a pre-Hilbert space D with inner product 〈 · | · 〉 : D×D → C,

antilinear in the first and linear in the second argument, define L∗(D) as the ordered ∗-algebra of

adjointable endomorphisms of D with the operator order; in detail: A linear endomorphism a : D → D

is said to be adjointable if there exists a (necessarily unique and linear) adjoint a∗ : D → D such that

〈 a∗(φ) |ψ 〉 = 〈φ | a(ψ) 〉 holds for all φ,ψ ∈ D. The set of adjointable endomorphisms of D is a

unital subalgebra of all its linear endomorphisms and becomes a ∗-algebra when equipped with the
∗-involution given by the mapping to the adjoint. It becomes an ordered ∗-algebra by setting

L∗(D)+H :=
{
a ∈ L∗(D)H

∣
∣ 〈ψ | a(ψ) 〉 ≥ 0 for all ψ ∈ D

}
. (2.3)

This yields a method for constructing quadratic modules on any ∗-algebra A: Let π : A → L∗(D) be a
∗-representation on a pre-Hilbert space D, i.e. a linear and multiplicative map that maps the unit of A

to the unit of L∗(D) and fulfils π(a∗) = π(a)∗ for all a ∈ A, then the preimage Q := π−1
(
L∗(D)+H

)
∩AH

is a quadratic module of A and supp
C

Q = ker π. If π additionally is injective, then Q = π−1
(
L∗(D)+H

)

and supp
C

Q = {0}. The aim of this article is to give an algebraic description of some quadratic

modules that are induced by ∗-representations in this way.

3 Reduction of Ordered ∗-Algebras

In [14], a general reduction scheme was developed for arbitrary “representable Poisson ∗-algebras”,

which especially generalizes Marsden–Weinstein reduction of the ordered ∗-algebra of smooth functions

on a symplectic manifold by the action of a commutative Lie group. In the following, we are more

interested in the case of ∗-algebras represented on a pre-Hilbert space:

A state on an ordered ∗-algebra A is a linear functional ω : A → C that fulfils 〈ω , 1 〉 = 1,

〈ω , a 〉 ∈ R for all a ∈ AH, and 〈ω , a 〉 ∈ [0,∞[ for all a ∈ A+
H. We say that the order on A is

induced by its states if for all a ∈ AH \ A+
H there exists a state ω on A such that 〈ω , a 〉 < 0. Using
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GNS-representations one finds that this condition is equivalent to the existence of a pre-Hilbert space

D and an injective ∗-representation π of A such that A+
H = π−1

(
L∗(D)+H

)
.

An eigenstate on A of some element a ∈ A with eigenvalue λ ∈ C is a state ω on A that fulfils

one (hence all) of the following equivalent conditions, [14, Sec. 2.3]:

i.) 〈ω , (a− λ1)∗(a− λ1) 〉 = 0.

ii.) 〈ω , a∗b 〉 = λ〈ω , b 〉 for all b ∈ A.

iii.) 〈ω , ba 〉 = λ〈ω , b 〉 for all b ∈ A.

The set of all eigenstates on A of a with eigenvalue λ will be denoted by Sa,λ(A).

Now assume that A is an ordered ∗-algebra whose order is induced by its states and which is

equipped with the canonical Poisson bracket given by the rescaled commutator

{ a , b } :=
ab− ba

i~
(3.1)

for some ~ ∈ R \ {0}. In this case, i.e. if the Poisson bracket is of the form (3.1), there is no need to

explicitly discuss Poisson brackets any further. For the purpose of this article, it will also be sufficient

to only consider the case of a reduction with respect to a 1-dimensional Lie algebra u1
∼= R, so that

any (linear) “momentum map” J : u1 → AH is fully determined by one “momentum operator” J (1),

and any “momentum” µ ∈ u
∗
1 by µ(1). By abuse of notation, we will simply write J := J (1) ∈ AH

and µ := µ(1) ∈ R as in the examples discussed in [14, Sec. 5-6].

In this special case, the reduction scheme of [14, Sec. 3] reduces to the following: Let J ∈ AH and

µ ∈ R be given. Denote by

Au1 := { a ∈ A | aJ = J a } (3.2)

the space of “invariant” elements, which is a unital ∗-subalgebra of A, i.e. a subalgebra containing 1

and stable under · ∗, and which becomes an ordered ∗-algebra by defining its quadratic module of

positive Hermitian elements to be (Au1)+H := A+
H ∩ Au1 . Moreover, denote by

Rµ :=
{
a ∈ (Au1)H

∣
∣ 〈ω , a 〉 ≥ 0 for all ω ∈ SJ ,µ(A

u1)
}

(3.3)

and

Vµ :=
{
a ∈ Au1

∣
∣ 〈ω , a 〉 = 0 for all ω ∈ SJ ,µ(A

u1)
}
= supp

C

Rµ (3.4)

the quadratic module Rµ of the J -reduction of A at µ and the vanishing ideal Vµ of the eigenstates of

J with eigenvalue µ. Note that Rµ and Vµ are a quadratic module and a ∗-ideal, respectively, of Au1 ,

but not of A in general, and that (Au1)+H ⊆ Rµ and J − µ1 ∈ Vµ hold. In particular, 〈〈 J − µ 〉〉∗id,

the ∗-ideal of Au1 that is generated by J − µ1, is contained in Vµ.

The J -reduction of A at µ is then given by the tuple of an ordered ∗-algebra Aµ-red and a map

[ · ]µ : A
u1 → Aµ-red that can be constructed as follows:

• The ∗-algebra underlying Aµ-red is the quotient ∗-algebra Au1/Vµ.

• The map [ · ]µ is the canonical projection onto the quotient.

5



• The quadratic module of positive Hermitian elements of Aµ-red is (Aµ-red)
+
H := { [r]µ | r ∈ Rµ }.

This construction of Aµ-red and [ · ]µ : A
u1 → Aµ-red is an application of [14, Sec. 3.3]; for the sake of

the present article we can equally well view this as a definition. The order on Aµ-red is again induced

by its states, because every ω ∈ SJ ,µ(A
u1) descends to a state on Aµ-red and because the Hermitian

elements in the preimage of (Aµ-red)
+
H under [ · ]µ are Rµ.

Proposition 3.1 Let A be an ordered ∗-algebra, J ∈ AH, D a pre-Hilbert space and π : A → L∗(D)

an injective ∗-representation of the ∗-algebra underlying A such that A+
H = π−1

(
L∗(D)+H

)
. For any

µ ∈ R write

Eµ :=
{
ψ ∈ D

∣
∣ π(J )(ψ) = µψ

}
(3.5)

for the µ-eigenspace of π(J ), and E⊥
µ := {φ ∈ D | 〈ψ |φ 〉 = 0 for all ψ ∈ Eµ } for its orthogonal

complement in D. Let µ ∈ R be given and assume that D = Eµ ⊕ E⊥
µ as vector spaces and that there

exists ǫ ∈ ]0,∞[ such that
〈
φ
∣
∣ π

(
(J − µ1)2

)
(φ)

〉
≥ ǫ〈φ |φ 〉 holds for all φ ∈ E⊥

µ . Then

(Au1)+H +
(
〈〈 J − µ 〉〉∗id

)

H
= Rµ =

{
a ∈ (Au1)H

∣
∣ 〈ψ |π(a)(ψ) 〉 ≥ 0 for all ψ ∈ Eµ

}
, (3.6)

and the ∗-algebra underlying Aµ-red admits an injective ∗-representation πµ-red : Aµ-red → L∗(Eµ) such

that (Aµ-red)
+
H = π−1

µ-red

(
L∗(Eµ)

+
H

)
. This ∗-representation is given by πµ-red([a]µ)(ψ) := π(a)(ψ) ∈ Eµ

for all ψ ∈ Eµ and all a ∈ Au1 .

Proof: The inclusion (Au1)+H + (〈〈 J − µ 〉〉∗id)H ⊆ Rµ follows immediately from the properties of

eigenstates of J with eigenvalue µ and the fact that J is central in Au1 . For every ψ ∈ Eµ with

〈ψ |ψ 〉 = 1, the map χψ : A
u1 → C, a 7→ 〈χψ , a 〉 := 〈ψ |π(a)(ψ) 〉 is a state on Au1 and even is an

eigenstate of J with eigenvalue µ. So Rµ ⊆ { a ∈ (Au1)H | 〈ψ |π(a)(ψ) 〉 ≥ 0 for all ψ ∈ Eµ }.

In order to prove (3.6) it remains to show that the right-hand side is contained in the left-hand side

of this equation. Note that π(a)(Eµ) ⊆ Eµ for all a ∈ Au1 , because π(J )(π(a)(ψ)) = π(a)(π(J )(ψ)) =

µπ(a)(ψ) holds for all ψ ∈ Eµ, and also π(a)(E⊥
µ ) ⊆ E⊥

µ , because 〈ψ |π(a)(φ) 〉 = 〈π(a∗)(ψ) |φ 〉 = 0

holds for all ψ ∈ Eµ and φ ∈ E⊥
µ . Now assume that a ∈ (Au1)H fulfils 〈ψ |π(a)(ψ) 〉 ≥ 0 for all ψ ∈ Eµ.

Then â := a+ (2ǫ)−1(J − µ1)2(a− 1)2 is Hermitian and an element of Au1 because J a = aJ , and

even â ∈ (Au1)+H holds: Indeed, by assumption, any φ ∈ D can be decomposed as φ = φµ + φ⊥ with

φµ ∈ Eµ and φ⊥ ∈ E⊥
µ , and thus

〈φ |π(â)(φ) 〉 = 〈φµ |π(â)(φµ) 〉+ 〈φ⊥ |π(â)(φ⊥) 〉

= 〈φµ |π(a)(φµ) 〉
︸ ︷︷ ︸

≥0

+ 〈φ⊥ |π(a)(φ⊥) 〉+
1

2ǫ

〈
π(a− 1)(φ⊥)

∣
∣ π

(
(J − µ1)2(a− 1)

)
(φ⊥)

〉

︸ ︷︷ ︸

≥ǫ〈π(a−1)(φ⊥) | π(a−1)(φ⊥) 〉 by assumption

≥
〈
φ⊥

∣
∣ π

(
a+ (a− 1)2/2

)
(φ⊥)

〉

=
〈
φ⊥

∣
∣ π

(
(a2 + 1)/2

)
(φ⊥)

〉

≥ 0 ,

showing that â ∈ π−1
(
L∗(D)+H

)
= A+

H. It follows that â ∈ (Au1)+H, hence a ∈ (Au1)+H+(〈〈 J −µ 〉〉∗id)H.
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Since π(a)(Eµ) ⊆ Eµ for all a ∈ Au1 and since χψ is an eigenstate of J with eigenvalue µ for

all normalized ψ ∈ Eµ, it follows that πµ-red is a well-defined ∗-representation of Aµ-red, and that

(Aµ-red)
+
H ⊆ π−1

µ-red

(
L∗(Eµ)

+
H

)
. Using (3.6) one can check that πµ-red is injective. In order to show that

(Aµ-red)
+
H ⊇ π−1

µ-red

(
L∗(Eµ)

+
H

)
, let [a]µ ∈ π−1

µ-red

(
L∗(Eµ)

+
H

)
be given. Since πµ-red is injective, [a]µ is

necessarily Hermitian, and therefore has a representative a ∈ (Au1)H (which e.g. can be constructed

as the Hermitian part of any representative). From 〈ψ |π(a)(ψ) 〉 = 〈ψ |πµ-red([a]µ)(ψ) 〉 ≥ 0 for all

ψ ∈ Eµ it follows that a ∈ Rµ, so [a]µ ∈ (Aµ-red)
+
H. �

If Proposition 3.1 applies, then the general reduction scheme from [14] yields the naively expected

result for ordered ∗-algebras of operators. This is completely analogous to the reduction of Poisson

manifolds discussed in [14, Sec. 4], with evaluation functionals at points of the µ-levelset being replaced

by vector states of µ-eigenvectors.

However, the assumptions of Proposition 3.1 are not fulfilled in all “non-pathological” cases: An

instructive example with different behaviour is the reduction of the Weyl algebra with respect to

translation symmetry that has been examined in [14, Sec. 5]. There, the momentum operator has

continuous spectrum and no eigenvectors. In contrast to this, one finds for momentum operators with

discrete spectrum:

Proposition 3.2 Let A be an ordered ∗-algebra, J ∈ AH, D a pre-Hilbert space and π : A → L∗(D)

an injective ∗-representation of the ∗-algebra underlying A such that A+
H = π−1

(
L∗(D)+H

)
. Denote

again the µ-eigenspace of π(J ) by Eµ like in (3.5). Moreover, assume that the set {µ ∈ R | Eµ 6= {0} }

of eigenvalues of π(J ) is discrete and that D =
⊕

µ∈R Eµ as vector spaces. Then the assumptions of

the previous Proposition 3.1 are fulfilled for all µ ∈ R, i.e. the decomposition D = Eµ ⊕ E⊥
µ holds and

there exists ǫ ∈ ]0,∞[ such that
〈
φ
∣
∣ π

(
(J − µ1)2

)
(φ)

〉
≥ ǫ〈φ |φ 〉 for all φ ∈ E⊥

µ .

Proof: Let µ ∈ R be given. Then E⊥
µ =

⊕

µ′∈R\{µ} Eµ′ because eigenvectors of π(J ) to different

eigenvalues are orthogonal, and so D = Eµ ⊕ E⊥
µ . If E⊥

µ = {0}, then there is nothing else to show.

Otherwise, let

ǫ := min
{
(µ− µ′)2

∣
∣ µ′ ∈ R \ {µ} such that Eµ′ 6= {0}

}
∈ ]0,∞[ ,

then
〈
φ
∣
∣π

(
(J − µ1)2

)
(φ)

〉
≥ ǫ〈φ |φ 〉 for all φ ∈ Eµ′ with µ′ ∈ R \ {µ}, hence even for all φ ∈ E⊥

µ .�

Remark 3.3 These assumptions hold in at least one important class of examples: In [3], the “total

space quantization” of compact Kähler manifolds was discussed, essentially quantizing a ∗-algebra of

functions on a holomorphic line bundle over a compact Kähler manifold, which results in a construction

carrying the same information as the usual quantization of compact Kähler manifolds. The relation

between this “total space quantization” of compact Kähler manifolds and the usual one that quantizes

a ∗-algebra of functions on the Kähler manifold itself, is essentially given by the above reduction

scheme, with a representation space decomposing as a direct sum of eigenspaces to a discrete set of

eigenvalues. The quantization of CPn that will be discussed in the following is one typical example

thereof, its “total space quantization” is given by the Wick star product on C1+n.
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4 Reduction of the Wick Star Product on C1+n

Fix a number n ∈ N for the rest of this article. As an example of the reduction scheme for ordered
∗-algebras from the last section we consider the Wick star product, which describes the Weyl algebra

of canonical commutation relations:

Denote by z0, . . . , zn, z0, . . . , zn : C
1+n → C the standard complex coordinates on C1+n and their

complex conjugates, and write

zK := (z0)
K0 . . . (zn)

Kn and zK := (z0)
K0 . . . (zn)

Kn (4.1)

with multiindex K ∈ N1+n
0 for the holomorphic and antiholomorphic monomials, respectively. We will

use standard multiindex notation, especially |K| := K0 + · · · +Kn and K! := K0! . . . Kn!. Moreover,

for all k, ℓ ∈ N0, let Pk,ℓ(C1+n) be the C-linear span of the monomials zKzL with K,L ∈ N1+n
0

fulfilling |K| = k and |L| = ℓ, and let

P(C1+n) :=
⊕

k,ℓ∈N0

P
k,ℓ(C1+n) (4.2)

be their direct sum, i.e. the space of all C-valued (not necessarily holomorphic) polynomial functions

on C1+n. The Wick star product is, for any ~ ∈ R, the bilinear associative product ⋆~ on P(C1+n)

which is defined as

f ⋆~ g :=
∑

K∈N1+n
0

~
|K|

K!

∂|K|f

∂zK
∂|K|g

∂zK
=

∞∑

t=0

~
t

t!

n∑

i1,...,it=0

∂tf

∂zi1 . . . ∂zit

∂tg

∂zi1 . . . ∂zit
∈ P(C1+n) (4.3)

for all f, g ∈ P(C1+n), where

∂|K|

∂zK
:=

(
∂

∂z0

)K0

. . .

(
∂

∂zn

)Kn

and
∂|K|

∂zK
:=

(
∂

∂z0

)K0

. . .

(
∂

∂zn

)Kn

(4.4)

for all K ∈ N1+n
0 . One can check that the complex vector space P(C1+n), together with the Wick

star product and the ∗-involution of pointwise complex conjugation, becomes a ∗-algebra whose unit

is the constant 1-function. This ∗-algebra will be denoted by P~(C
1+n). Of course, if ~ = 0, then

⋆0 is just the pointwise product. Some elementary properties of the Wick star product are easy to

check:

Proposition 4.1 For all f ∈ Pk,ℓ(C1+n), g ∈ Pr,s(C1+n) and all ~ ∈ R, the product f ⋆~ g is of

the form

f ⋆~ g =

min{ℓ,r}
∑

t=0

ht (4.5)

with certain ht ∈ Pk+r−t,ℓ+s−t(C1+n), and especially h0 = fg. Consequently, the unital ∗-subalgebra

of P~(C
1+n) that is generated by the degree-1-monomials z0, . . . , zn, z0, . . . , zn is whole P~(C

1+n).
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Moreover, for all f, g ∈ P(C1+n),

lim
~→0

f ⋆~ g − g ⋆~ f

i~
=

1

i

n∑

j=0

(
∂f

∂zj

∂g

∂zj
−
∂f

∂zj

∂g

∂zj

)

= { f , g } , (4.6)

where { · , · } is the Poisson bracket associated to the standard Kähler structure of C1+n.

We will in the following be mainly interested in the case ~ > 0, the case ~ < 0 can be reduced to the

positive one, which will be discussed in Section 6.

For ~ ∈ ]0,∞[, a ∗-representation of the ∗-algebra P~(C
1+n) can be obtained by the GNS-

construction for the evaluation functional at 0. This results in a ∗-representation by polynomial

holomorphic differential operators on the pre-Hilbert space PO,~(C
1+n) of holomorphic polynomials

on C1+n,

PO,~(C
1+n) :=

⊕

k∈N0

P
k,0(C1+n) (4.7)

with inner product 〈 · | · 〉~ defined as

〈 f | g 〉~ :=
1

(~π)1+n

∫

C

1+n

fg exp(−J /~) d1+nz d1+nz (4.8)

with

J :=
n∑

j=0

zjzj ∈ P
1,1(C1+n) (4.9)

and where d1+nz d1+nz is the Lebesgue measure on C1+n. This inner product especially fulfils

〈 zK | zL 〉~ = δK,L~
|K|K! (4.10)

for all K,L ∈ N

1+n
0 , where δK,L := 1 if K = L and otherwise δK,L := 0. The pre-Hilbert space

PO,~(C
1+n) (or its completion) is usually referred to as the Fock space or Segal–Bargmann space. For

every ~ ∈ ]0,∞[, the map π~ := P~(C
1+n) → L∗

(
PO,~(C

1+n)
)
, f 7→ π~(f), defined by

π~(z
KzL) := zK~

|L| ∂
|L|

∂zL
(4.11)

for all K,L ∈ N1+n
0 , describes an injective ∗-representation of P~(C

1+n) by differential operators on

PO,~(C
1+n). Via this ∗-representation π~, the ∗-algebra P~(C

1+n) is isomorphic to the Weyl algebra

of canonical commutation relations in its representation on the Fock space. One can now pull back

the quadratic module L∗(PO,~(C
1+n))+H via π~ to P~(C

1+n), thus turning P~(C
1+n) into an ordered

∗-algebra:

Definition 4.2 For ~ ∈ ]0,∞[ define the quadratic module P~(C
1+n)+H := π−1

~

(
L∗(PO,~(C

1+n))+H
)
.

The group U(1+n) of unitary (1+n)× (1+n) -matrices acts on C1+n by multiplication from the left,

· ⊲ · : U(1+n)×C1+n → C

1+n, (u,w) 7→ u⊲w := uw. From this one obtains a right action on spaces

of (k, ℓ)-homogeneous polynomials, k, ℓ ∈ N0, namely · ⊳ · : Pk,ℓ(C1+n)×U(1 + n) → Pk,ℓ(C1+n),
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(f, u) 7→ f ⊳u with (f ⊳u)(w) := f(u⊲w) for all w ∈ C1+n, and consequently also actions on P~(C
1+n)

and PO,~(C
1+n). Note that especially zi ⊳ u =

∑n
j=0 ui,jzj holds for all i ∈ {0, . . . , n}. It follows

immediately from the second identity in (4.3) that ⋆~ is U(1 + n)-equivariant, i.e.

(f ⊳ u) ⋆~ (g ⊳ u) = (f ⋆~ g) ⊳ u (4.12)

for all f, g ∈ P~(C
1+n) and all u ∈ U(1 + n). Similarly, by U(1 + n)-invariance of (4.8), the group

U(1 + n) acts unitarly on PO,~(C
1+n), i.e.

〈 f ⊳ u | g ⊳ u 〉~ = 〈 f | g 〉~ (4.13)

for all f, g ∈ PO,~(C
1+n) and all u ∈ U(1 + n). Moreover,

π~(f ⊳ u)(g ⊳ u) = π~(f)(g) ⊳ u (4.14)

holds for all f ∈ P~(C
1+n), g ∈ PO,~(C

1+n), and all u ∈ U(1 + n), which can easily be checked

for generators z0, . . . , zn, z0, . . . , zn in place of f . It especially follows that the action of U(1 + n) on

P~(C
1+n) preserves the quadratic module P~(C

1+n)+H.

The action of the diagonal U(1)-subgroup of U(1 + n) is generated by the polynomial J from

(4.9), which means that

d

dt

∣
∣
∣
∣
0

(
f ⊳ eit11+n

)
= i degO−O f =

f ⋆~ J − J ⋆~ f

i~
(4.15)

with 11+n ∈ U(1 + n) the (1 + n)× (1 + n) -identity matrix, and where degO−O is the derivation on

P~(C
1+n) of holomorphic minus antiholomorphic degree, i.e. degO−O z

KzL = (|K|− |L|)zKzL for all

K,L ∈ N1+n
0 . The J -reduction of P~(C

1+n) at arbitrary µ ∈ R is easy to describe because Proposi-

tion 3.2 applies to P~(C
1+n) with ∗-representation π~ on the Fock space: The unital ∗-subalgebra of

invariant elements is

P~(C
1+n)u1 =

⊕

k∈N0

P
k,k(C1+n) (4.16)

and π~(J ) = ~deg with deg ∈ L∗(PO,~(C
1+n)) the degree derivation, deg zK = |K|zK for all

K ∈ N

1+n
0 . This especially means that π~(J ) has a discrete set of eigenvalues {~k | k ∈ N0 }

and that PO,~(C
1+n) decomposes into a direct sum of eigenspaces Pk,0(C1+n), k ∈ N0, of π~(J ).

Propositions 3.1 and 3.2 therefore show:

Corollary 4.3 For all ~ ∈ ]0,∞[ and all µ ∈ R, the quadratic module R~,µ of the J -reduction of

P~(C
1+n) at µ is

R~,µ =
(
P~(C

1+n)u1
)+

H
+
(
〈〈 J − µ 〉〉∗id

)

H
=

{

f ∈
(
P~(C

1+n)u1
)

H

∣
∣
∣
∣

〈 g |π~(f)(g) 〉~ ≥ 0

for all g ∈ Pk,0(C1+n)

}

,

(4.17)

and especially R~,µ 6=
(
P~(C

1+n)u1
)

H
if and only if µ ∈ {~k | k ∈ N0 }. Moreover, if µ = ~k with

k ∈ N0, then the codimension of supp
C

R~,~k in P~(C
1+n)u1 is finite, for every f ∈ P~(C

1+n)u1 there
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exists a unique g ∈ Pk,k(C1+n) such that f − g ∈ supp
C

R~,~k, and P~(C
1+n)~k-red is isomorphic

as an ordered ∗-algebra to L∗(Pk,0(C1+n)) via the reduced representation (π~)~k-red constructed in

Proposition 3.1. If µ ∈ R \ {~k | k ∈ N0 }, however, then P~(C
1+n)µ-red = {0}.

Proof: It is only left to show that for all k ∈ N0, the reduced representation (π~)~k-red from Propo-

sition 3.1 is surjective, and that every f ∈ P~(C
1+n)u1 coincides modulo supp

C

R~,~k with a unique

g ∈ Pk,k(C1+n). As P~(C
1+n)~k-red = P~(C

1+n)u1/ supp
C

R~,~k, both these statements follow from

the identity
〈
zK

∣
∣π~(z

LzM )(zN )
〉

~
= δK,LδM,N~

2k

for K,L,M,N ∈ N1+n
0 with |K| = |L| = |M | = |N | = k, and by counting dimensions. �

Note that the dimension of Pk,0(C1+n) is dn,k :=
(
n+k
k

)
so that P~(C

1+n)~k-red is isomorphic to the

matrix ∗-algebra Cdn,k×dn,k with the quadratic module of positive-semidefinite matrices.

Remark 4.4 The reduced algebra P~(C
1+n)~k-red is related to the geometry of CPn by noting that

the spaces Pk,0(C1+n), k ∈ N0, of k-homogeneous holomorphic polynomials on C1+n are isomorphic

to the spaces of all holomorphic sections of the k-th tensor power of the hyperplane bundle (the dual

of the tautological bundle) over CPn. This actually works in all examples of the type mentioned in

Remark 3.3, turning the reduction procedure into the inverse of the construction of the total space

quantization of [3].

Seeing Corollary 4.3 in the general context of [14] has the advantage that it makes the connection

to the commutative case more than a mere heuristic: For ~ = 0, consider the ordered ∗-algebra

P0(C
1+n) with the pointwise order, i.e. with the quadratic module P0(C

1+n)+H of pointwise positive

polynomials, and endowed with the Poisson bracket of (4.6). Then the reduction scheme of [14] yields

a completely analogous result, and one can even give a mostly algebraic description of the quadratic

module of the reduction:

Proposition 4.5 (See [14, Sec. 6].) For all µ ∈ ]0,∞[, the quadratic module R0,µ of the J -reduction

of P0(C
1+n) at µ is

R0,µ =
(
P0(C

1+n)u1
)+

H
+
(
〈〈 J −µ 〉〉∗id

)

H
=

{
f ∈

(
P(C1+n)u1

)

H

∣
∣ f(w) ≥ 0 for all w ∈ Zµ

}
(4.18)

with Zµ := {w ∈ C

1+n | J (w) = µ } the µ-levelset of J . Moreover, supp
C

R0,µ = 〈〈 J − µ 〉〉∗id

and P0(C
1+n)µ-red = P0(C

1+n)u1/〈〈 J − µ 〉〉∗id is isomorphic to the ordered ∗-algebra of polynomial

functions on CPn = Zµ/U(1) with the pointwise order. Finally, R0,µ can also be described in a

mostly algebraic way as

R0,µ =
{
f ∈ (P(C1+n)u1)H

∣
∣ f+ǫ1 ∈

(
P0(C

1+n)u1
)++

H
+
(
〈〈 J−µ 〉〉∗id

)

H
for all ǫ ∈ ]0,∞[

}
. (4.19)

Identity (4.19) is essentially Schmüdgen’s Positivstellensatz applied to the special case of the com-

pact real algebraic set CPn. Spelled out in detail, (4.19) says that every Hermitian element f of

P0(C
1+n)u1 that fulfils 〈ω , f 〉 > 0 for all µ-eigenstates ω of J , or equivalently, f(w) > 0 for all
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points w of the compact µ-levelset of J , can be expressed as

f =
ℓ∑

j=1

gjgj + (J − µ1)h (4.20)

with suitable ℓ ∈ N0, g1, . . . , gℓ ∈ P0(C
1+n)u1 and h ∈ (P0(C

1+n)u1)H. It is noteworthy that this

result is in some sense optimal: By [12, Proposition 6.1] there does not exist a denominator-free non-

strict Positivstellensatz for CPn if n ≥ 2, i.e. there is an element of R0,µ which cannot be expressed

as a sum of Hermitian squares plus an element of the ideal generated by J − µ (with respect to the

pointwise product). An explicit example is:

Proposition 4.6 For n ≥ 2 and µ ∈ ]0,∞[, the element

f := −
1

16

(
z20z

2
1 − z20z

2
1

)2(
|z0|

2|z1|
2 − 3|z1|

4
)
+ |z1|

12 ∈ R0,µ (4.21)

is not in
(
P0(C

1+n)u1
)++

H
+

(
〈〈 J − µ 〉〉∗id

)

H
.

Proof: Note that f is a homogenized version of the Motzkin polynomial. Indeed, f(x+iy, 1, . . . , 1) =

x2y2(x2 + y2 − 3) + 1 and if w1 6= 0, then f(w0, . . . , wn) = |w1|
12f(w0

w1
, 1, w2

w1
, . . . , wn

w1
). Since the

Motzkin polynomial is pointwise positive and not a sum of squares, this implies that f ∈ R0,µ but

f /∈
(
P0(C

1+n)u1
)++

H
.

Assume that f −
∑k

i=1 g
2
i ∈ 〈〈J − µ 〉〉∗id with gi =

∑

K,L∈N1+n
0

,|K|=|L| gi,K,Lz
KzL ∈ P(C1+n)u1 .

Let d ∈ N, d ≥ 3 be such that the total degree of each gi, 1 ≤ i ≤ k, is less than or equal to

2d. Write ĝi =
∑

K,L∈N1+n
0

,|K|=|L| gi,K,Lz
KzL(J /µ)d−|K| ∈ P(C1+n)d,d and note that ĝi − gi ∈

〈〈J − µ 〉〉∗id since (J /µ)ℓ − 1 = (J /µ − 1)
∑ℓ−1

j=0(J /µ)
j ∈ 〈〈J − µ 〉〉∗id holds for all ℓ ∈ N0. Then

(J /µ)2d−6f −
∑k

i=1 ĝ
2
i ∈ 〈〈J − µ 〉〉∗id. But (J /µ)2d−6f −

∑k
i=1 ĝ

2
i is homogeneous, and the only

homogeneous element of 〈〈 J − µ 〉〉∗id is 0, so (J /µ)2d−6f and also J 2d−6f must be sums of squares.

Setting z2 = 1 and z3 = · · · = zn = 0, we obtain that (1 + |z0|
2 + |z1|

2)2d−6f must also be a sum of

squares, and so must be the lowest order f , contradicting the first paragraph. �

Note that the situation is different if n = 1, in which case it follows easily from [13, Corollary 3.12]

that every element of R0,µ can be written as a sum of Hermitian squares plus an element of the ideal

generated by J − µ.

One missing piece in the analogy between the cases ~ = 0 and ~ > 0 is to give an algebraic

description of the quadratic module R~,µ. In contrast to Proposition 4.6 we will even show:

Theorem 4.7 For all µ ∈ [0,∞[ and all ~ ∈ ]0,∞[, the identity

R~,µ =
(
P~(C

1+n)u1
)++

H
+

(
〈〈 J − µ 〉〉∗id

)

H
(4.22)

holds.

This means that every Hermitian element f of P~(C
1+n)u1 that fulfils 〈ω , f 〉 ≥ 0 for all µ-eigenstates
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ω of J , or equivalently, 〈ψ |π~(f)(ψ) 〉~ ≥ 0 for all µ-eigenvectors ψ of π~(J ), can be expressed as

f =
ℓ∑

j=1

gj ⋆~ gj + (J − µ1) ⋆~ h (4.23)

with suitable ℓ ∈ N0, g1, . . . , gℓ ∈ P~(C
1+n)u1 and h ∈ (P~(C

1+n)u1)H. In contrast to the “strict”

Positivstellensatz (4.19) that one obtains for ~ = 0, the non-commutative Positivstellensatz of Theo-

rem 4.7 is even a “non-strict” one, i.e. a Nichtnegativstellensatz. Theorem 4.7 thus is stronger than

the description of R~,µ that one could obtain by applying the techniques of [17] for su1+n.

While the inclusion “⊇” in (4.22) clearly is fulfilled, see e.g. Corollary 4.3, the converse inclusion

“⊆” will be proven in the next Section 5. Before doing so, it might be worthwhile pointing out that

Theorem 4.7 is not just a trivial consequence of the simple fact that the reduced algebra P~(C
1+n)µ-red

is a finite dimensional C∗-algebra in which all positive Hermitian elements have a square root. This

observation only yields:

Proposition 4.8 For all ~ ∈ ]0,∞[ and all µ ∈ [0,∞[, the identity

R~,µ =
(
P~(C

1+n)u1
)++

H
+ suppR~,µ (4.24)

holds.

Proof: Recall that [ · ]µ : P~(C
1+n)u1 → P~(C

1+n)µ-red = P~(C
1+n)u1/ supp

C

R~,µ is the canonical

projection onto the quotient. Given f ∈ R~,µ, then [f ]µ is a positive Hermitian element of the

finite dimensional C∗-algebra P~(C
1+n)µ-red, and therefore there exists [g]µ ∈ P~(C

1+n)µ-red with

representative g ∈ P~(C
1+n)u1 such that [f ]µ = [g∗ ⋆~ g]µ. As a consequence, f = g∗ ⋆~ g + h with

h := f − g∗ ⋆~ g ∈ suppR~,µ. �

Note that supp
C

R~,µ 6= 〈〈 J − µ 〉〉∗id for ~ 6= 0, see also the discussion in Section 6. The relation

between the ∗-ideals supp
C

R~,µ and 〈〈 J − µ 〉〉∗id can be made more explicit. This requires the

following Lemma and the definition of the falling factorial

(x)↓,k :=

k−1∏

j=0

(x− j) (4.25)

for x ∈ R and k ∈ N0.

Lemma 4.9 We have J kg − ~
k(µ

~
− ℓ)↓,kg ∈ 〈〈J − µ 〉〉∗id for all ~ ∈ ]0,∞[, µ ∈ R, k, ℓ ∈ N0 and

g ∈ P
ℓ,ℓ
~
(C1+n). Note that here, like always, juxtaposition and exponentiation · k as in J kg refer to

pointwise multiplication, but 〈〈 J − µ 〉〉∗id denotes the generated ∗-ideal with respect to the product ⋆~.

Proof: This can be easily proven by induction over k, using that

(J − µ) ⋆~ (J
k−1g) = J kg + ~(k − 1 + ℓ)J k−1g − µJ k−1g = J kg − ~

(µ

~
− ℓ− (k − 1)

)

J k−1g . �
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Proposition 4.10 For all ~ ∈ ]0,∞[ and all k ∈ N0, the ∗-ideal supp
C

R~,~k of P~(C
1+n)u1 is

generated by the union {J − ~k} ∪ Pk+1,k+1(C1+n).

Proof: From Equation (4.17) in Corollary 4.3 it follows immediately that ±(J − ~k1) ∈ R~,~k, and

also that ±f ∈ R~,~k for every f ∈ Pk+1,k+1(C1+n) because π~(f)(g) = 0 for all g ∈ Pk,0(C1+n).

Conversely, let f =
∑∞

ℓ=0 fℓ ∈ supp
C

R~,~k with homogeneous components fℓ ∈ Pℓ,ℓ(C1+n) be

given. We show that
∑∞

ℓ=k+1 fℓ is in the ∗-ideal generated by Pk+1,k+1(C1+n) and that
∑k

ℓ=0 fℓ lies

in the ∗-ideal generated by 〈〈 J − ~k 〉〉∗id:

For L,L′ ∈ N1+n
0 with ℓ := |L| = |L′| > k there are M,M ′, N,N ′ ∈ N1+n

0 with |M | = |M ′| = k+1

such that L = M + N and L′ = M ′ + N ′. Using Proposition 4.1 one easily checks that this way,

zLzL
′

−zMzM
′

⋆~ z
NzN

′

∈
⊕ℓ−1

r=ℓ−min{k+1,ℓ−(k+1)} Pr,r(C1+n). Note that ℓ−min{k+1, ℓ−(k+1)} ≥

k + 1. Starting with the highest non-vanishing component one can thus show that
∑∞

ℓ=k+1 fℓ is an

element of the ∗-ideal of P~(C
1+n)u1 that is generated by Pk+1,k+1(C1+n). Now define

g :=
k∑

ℓ=0

(
~
k−ℓ(k − ℓ)!

)−1
J k−ℓfℓ ∈ P

k,k(C1+n) ,

then h := g −
∑k

ℓ=0 fℓ ∈ 〈〈J − ~k 〉〉∗id by Lemma 4.9. Furthermore, as g = f + h−
∑∞

ℓ=k+1 fℓ with

h −
∑∞

ℓ=k+1 fℓ = g − f ∈ supp
C

R~,~k, g is the unique element of Pk,k(C1+n) that coincides with

f modulo supp
C

R~,~k, see Corollary 4.3. But this means that g = 0 because f ∈ supp
C

R~,~k, so
∑k

ℓ=0 fℓ = −h ∈ 〈〈J − ~k 〉〉∗id. �

For µ /∈ {~k | k ∈ N0 }, of course, supp
C

R~,µ = P~(C
1+n)u1 is the ∗-ideal generated by 1, or

equivalently, by {J − ~k} ∪ P0,0(C1+n).

5 Proof of the Main Theorem

In order to construct representations of positive Hermitian elements as sums of Hermitian squares,

certain invariant functionals that one obtains by averaging over the U(1 + n)-action will be helpful:

Definition 5.1 For all k ∈ N0, the linear functional ωkav : Pk,k(C1+n) → C is defined as the one

that fulfils

〈ωkav , z
KzL 〉 := δK,L

K!n!

(k + n)!
(5.1)

for all K,L ∈ N1+n
0 with |K| = |L| = k.

The crucial properties of these functionals are:

Proposition 5.2 For all k ∈ N0, the linear functional ωkav on Pk,k(C1+n) fulfils

〈ωkav , J
k 〉 = 1 (5.2)

and it is U(1 + n)-invariant, i.e.

〈ωkav , f ⊳ u 〉 = 〈ωkav , f 〉 (5.3)
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holds for all f ∈ Pk,k(C1+n) and all u ∈ U(1 + n).

Proof: The multinomial formula for J k together with the definition of ωkav yield

〈ωkav , J
k 〉 =

∑

K∈N1+n
0

,|K|=k

k!

K!
〈ωkav , z

KzK 〉 =
∑

K∈N1+n
0

,|K|=k

k!n!

(k + n)!
= 1 .

In order to check the U(1+ n)-invariance, recall that U(1+ n) acts on Pk,0(C1+n) by pullbacks and

that this action is unitary with respect to the inner product of PO,~(C
1+n), for all ~ ∈ ]0,∞[. We

can consider ~ = 1 in the following, then { (K!)−1/2zK | K ∈ N1+n
0 with |K| = k } is a 〈 · | · 〉1-

orthonormal basis of Pk,0(C1+n). So let u ∈ U(1 + n) be given, then there exists a unitary matrix

(ρ(u)K,L)K,L representing the action of u on Pk,0(C1+n) in this basis, i.e.

(K!)−1/2zK ⊳ u =
∑

M∈N1+n
0

,|M |=k

ρ(u)K,M(M !)−1/2zM

holds for all K ∈ N1+n
0 with |K| = k. Using that U(1 + n) also acts on Pk,k(C1+n) by pullbacks,

one therefore finds that

〈
ωkav , (z

KzL) ⊳ u
〉
=

〈
ωkav , (z

K ⊳ u)(zL ⊳ u)
〉

= (K!)1/2(L!)1/2
∑

M,N∈N1+n
0

|M |=|N |=k

〈
ωkav ,

(
ρ(u)K,M (M !)−1/2zM

)(
ρ(u)L,N (N !)−1/2zN

) 〉

= (K!)1/2(L!)1/2
∑

M∈N1+n
0

,|M |=k

ρ(u)K,M ρ(u)L,M
n!

(k + n)!

= (K!)1/2(L!)1/2δK,L
n!

(k + n)!

= 〈ωkav , z
KzL 〉

holds for all K,L ∈ N1+n
0 with |K| = |L| = k. �

Corollary 5.3 For all k ∈ N0 and all f ∈ Pk,k(C1+n), the identity

J k〈ωkav , f 〉 =

∫

u∈U(1+n)
(f ⊳ u) ν(u) (5.4)

holds, where ν denotes the unique right-invariant volume form on U(1 + n) that fulfils
∫

U(1+n) ν = 1.

Proof: Given f ∈ Pk,k(C1+n), then let fav :=
∫

u∈U(1+n)(f ⊳ u) ν(u) ∈ Pk,k(C1+n). Using the

right-invariance of ν one finds that fav ⊳u
′ =

∫

u∈U(1+n)(f ⊳ uu
′) ν(u) = fav holds for all u′ ∈ U(1+n),

i.e. fav is U(1 + n)-invariant. As all such U(1 + n)-invariant elements of Pk,k(C1+n) necessarily are

scalar multiples of J k, there exists α ∈ C such that fav = αJ k. It now follows that

J k〈ωkav , f 〉 = J k

∫

u∈U(1+n)
〈ωkav , f ⊳ u 〉 ν(u) = J k

〈
ωkav , fav

〉
= αJ k

〈
ωkav , J

k
〉
= αJ k = fav . �
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It thus makes sense to define:

Definition 5.4 We define the averaging operator · av :
⊕

k∈N0
Pk,k(C1+n) →

⊕

k∈N0
Pk,k(C1+n),

∑

k∈N0

fk 7→
(∑

k∈N0

fk

)

av
:=

∑

k∈N0

J k〈ωkav , fk 〉 . (5.5)

Proposition 5.5 For all f ∈
⊕

k∈N0
Pk,k(C1+n) there exist d ∈ N0, u1, . . . , ud ∈ U(1 + n) and

λ1, . . . , λd ∈ [0, 1] with
∑d

j=1 λj = 1 such that

fav =
d∑

j=1

λjf ⊳ uj . (5.6)

Proof: Given f =
∑∞

k=0 fk ∈
⊕

k∈N0
Pk,k(C1+n) with homogeneous components fk ∈ Pk,k(C1+n),

then it follows from Corollary 5.3 that fav =
∫

u∈U(1+n)(f ⊳ u) ν(u), where ν is again the unique

normalized right-invariant volume form on U(1 + n), and where the integral is taken in the finite

dimensional vector space V :=
⊕kmax

k=0 Pk,k(C1+n) with kmax ∈ N0 sufficiently large such that f ∈ V .

From ν being normalized it follows that fav lies in the closure of the convex hull of the compact subset

S := { f ⊳ u | u ∈ U(1 + n) } of V . By Caratheodory’s theorem, every element of the convex hull of S

can be expressed as a convex combination of d := 1+dimV elements of S. Thus the convex hull of S

is the image of the continuous map ∆(d−1)×Sd → V ,
(
λ1, . . . , λd, f ⊳ u1, . . . , f ⊳ ud

)
7→

∑d
j=1 λjf ⊳ uj

with ∆(d−1) :=
{
(λ1, . . . , λd) ∈ [0, 1]d

∣
∣
∑d

j=1 λj = 1
}

the compact (d − 1)-simplex. However, this

convex hull, being the image of the compact space ∆(d−1) × Sd under a continuous map, is compact

and therefore is already closed, and consequently contains fav. So fav =
∑d

j=1 λjf ⊳ uj for suitable

(λ1, . . . , λd) ∈ ∆(d−1) and u1, . . . , ud ∈ U(1 + n). �

One can also combine the functionals ωkav into one especially useful functional on P~(C
1+n)u1 :

Definition 5.6 For all ~ ∈ ]0,∞[ and all µ ∈ R, define ω
~,µ;av : P~(C

1+n)u1 → C,

f 7→ 〈ω~,µ;av , f 〉 :=

∞∑

k=0

~
k
(µ

~

)

↓,k
〈ωkav , fk 〉, (5.7)

where fk ∈ Pk,k(C1+n) are the homogeneous components of f and with the falling factorial ( · )↓,k

from (4.25).

Proposition 5.7 Let ~ ∈ ]0,∞[, µ ∈ R and f ∈ P~(C
1+n)u1 be given, then

〈ω~,µ;av , f 〉1− fav ∈ 〈〈J − µ 〉〉∗id. (5.8)

Proof: From fav =
∑∞

k=0(fav)k =
∑∞

k=0 J
k〈ωkav , fk 〉 with (fav)k ∈ Pk,k(C1+n) the homogeneous

components of fav, together with Lemma 4.9 for ℓ := 0, g := 1, it follows that

〈ω~,µ;av , f 〉1− fav =

∞∑

k=0

(

~
k
(µ

~

)

↓,k
1− J k

)

〈ωkav , fk 〉 ∈ 〈〈J − µ 〉〉∗id . �
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This property of the functional ω
~,µ;av can be used in order to determine a representation of −1 as a

sum of Hermitian squares, up to a contribution of 〈〈 J −µ 〉〉∗id, provided that one finds f ∈ P~(C
1+n)u1

for which 〈ω
~,µ;av , f

∗ ⋆~ f 〉 < 0 holds. In order to explicitly calculate this expression, we need:

Lemma 5.8 For all x, y ∈ C and all k ∈ N0 we have

(x+ y)↓,k =

k∑

t=0

(
k

t

)

(x)↓,t(y)↓,k−t . (5.9)

In particular,
k∑

t=0

(
k

t

)
(z)↓,2k−t

(2k − t+ n)!
=

(z)↓,k(z + k + n)↓,k
(2k + n)!

. (5.10)

holds for all z ∈ C and k ∈ N0.

Proof: Using the identity
(
k+1
t

)
=

(
k
t−1

)
+

(
k
t

)
one easily proves (5.9) by induction over k. Then

k∑

t=0

(
k

t

)
(z)↓,2k−t

(2k − t+ n)!
=

(z)↓,k
(2k + n)!

k∑

t=0

(
k

t

)

(z − k)↓,k−t(2k + n)↓,t =
(z)↓,k

(2k + n)!
(z + k + n)↓,k . �

Proposition 5.9 For all ~ ∈ ]0,∞[ and all µ ∈ R \
(
{~k | k ∈ N0 } ∪ {−~(1 + n + k) | k ∈ N0 }

)

one has

−1 ∈
(
P~(C

1+n)u1
)++

H
+
(
〈〈 J − µ 〉〉∗id

)

H
. (5.11)

Proof: For all k ∈ N0, µ ∈ R we calculate, using identity (5.10) from the previous Lemma 5.8:

〈
ω~,µ;av ,

(
zk0z

k
1

)∗
⋆~

(
zk0z

k
1

) 〉
=

〈

ω~,µ;av ,
∑k

t=0

~
t(k!)2

t!((k − t)!)2
zk−t0 zk−t0 zk1z

k
1

〉

=

k∑

t=0

~
2k(k!)2

t!((k − t)!)2

(
µ

~

)

↓,2k−t

〈
ω2k−t
av , zk−t0 zk−t0 zk1z

k
1

〉

=

k∑

t=0

~
2k(k!)3n!

t!(k − t)!(2k − t+ n)!

(
µ

~

)

↓,2k−t

= ~
2k(k!)2n!

k∑

t=0

(
k

t

)
(µ/~)↓,2k−t
(2k − t+ n)!

= ~
2k(k!)2n!

(µ/~)↓,k(µ/~+ n+ k)↓,k
(2k + n)!

.

If µ /∈ {~k | k ∈ N0 } ∪ {−~(1 + n + k) | k ∈ N0 }, then one can find an exponent k ∈ N for which

α := −〈ω
~,µ;av , (z

k
0z

k
1)

∗ ⋆~ z
k
0z

k
1 〉 > 0: Indeed, if µ > 0, then one can choose k as the smallest element

of N for which µ/~− (k− 1) < 0, and if µ < 0, then choosing k as the smallest element of N fulfilling

µ/~+ n+ k > 0 works.

Combining Propositions 5.5 and 5.7 now shows that there exist h ∈ 〈〈J − µ 〉〉∗id, d ∈ N0,
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u1, . . . , ud ∈ U(1 + n) and λ1, . . . , λd ∈ [0, 1] with
∑d

j=1 λj = 1 such that

−α1− h =
d∑

j=1

λj
(
(zk0z

k
1)

∗ ⋆~ z
k
0z

k
1

)
⊳ uj =

d∑

j=1

λj(z
k
0z

k
1 ⊳ uj)

∗ ⋆~ (z
k
0z

k
1 ⊳ uj) ∈

(
P~(C

1+n)u1
)++

H

holds. Rescaling by α−1 one finds that −1 ∈ (P~(C
1+n)u1)++

H + (〈〈 J − µ 〉〉∗id)H. �

This proves Theorem 4.7 for momenta µ ∈ [0,∞[ \ {~k | k ∈ N0 }. For µ ∈ {~k | k ∈ N0 }, however,

we need a different approach:

Lemma 5.10 Let ~ ∈ ]0,∞[ and let f ∈ Pk,0(C1+n) be a homogeneous holomorphic polynomial of

degree k ∈ N. Then ff ∈
(
P~(C

1+n)u1
)++

H
+

(
〈〈 J − ~(k − 1) 〉〉∗id

)

H
.

Proof: From

zk0 ⋆~ z
k
0 =

k∑

t=0

~
t(k!)2

t!((k − t)!)2
(z0z0)

k−t and
〈
ωk−tav , (z0z0)

k−t
〉
=

(k − t)!n!

(k − t+ n)!

it follows that
(
zk0 ⋆~ z

k
0

)

av
=

k∑

t=0

~
t(k!)2n!

t!(k − t)!(k − t+ n)!
J k−t .

By Proposition 5.5 there exist d ∈ N0, u1, . . . , ud ∈ U(1+n) and λ1, . . . , λd ∈ [0, 1] with
∑d

j=1 λj = 1

such that

d∑

j=1

λj(z
k
0 ⊳ uj) ⋆~ (z

k
0 ⊳ uj) =

d∑

j=1

λj(z
k
0 ⋆~ z

k
0 ) ⊳ uj =

(
zk0 ⋆~ z

k
0

)

av
=

k∑

t=0

~
t(k!)2n!

t!(k − t)!(k − t+ n)!
J k−t

holds, and consequently

d∑

j=1

λj
(
(zk0 ⊳ uj)f

)∗
⋆~

(
(zk0 ⊳ uj)f

)
= f ⋆~

( d∑

j=1

λj(z
k
0 ⊳ uj) ⋆~ (z

k
0 ⊳ uj)

)

⋆~ f

= f ⋆~

( k∑

t=0

~
t(k!)2n!

t!(k − t)!(k − t+ n)!
J k−t

)

⋆~ f

=

k∑

t=0

~
t(k!)2n!

t!(k − t)!(k − t+ n)!
J k−tff .

As (zk0 ⊳uj)f ∈ Pk,k(C1+n) ⊆ P~(C
1+n)u1 , the above term is an element of (P~(C

1+n)u1)++
H . Define

g :=

k∑

t=0

~
t(k!)2n!

t!(k − t)!(k − t+ n)!

(
J k−tff − ~

k−t(−1)↓,k−tff
)
,
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then g ∈ (〈〈 J − ~(k − 1) 〉〉∗id)H by Lemma 4.9. Moreover,

k∑

t=0

~
t(k!)2n!

t!(k − t)!(k − t+ n)!
~
k−t(−1)↓,k−t = ~

k(k!)2n!
k∑

t=0

(−1)k−t

t!(k − t+ n)!

=
~
k(k!)2n!

(k + n)!

k∑

t=0

(−1)k−t
(
k + n

t

)

=
~
k(k!)2n!

(k + n)!

(
k − 1 + n

k

)

=
~
kk!n

k + n
,

using that
(
k+n
t

)
=

(
k−1+n
t−1

)
+

(
k−1+n

t

)
for all t ∈ {0, . . . , k} with the convention that

(
k−1+n

−1

)
:= 0.

Putting everything together we find that

ff =
k + n

~kk!n

( d∑

j=1

λj
(
(zk0 ⊳uj)f

)∗
⋆~

(
(zk0 ⊳uj)f

)
−g

)

∈
(
P~(C

1+n)u1
)++

H
+
(
〈〈 J −~(k−1) 〉〉∗id

)

H
. �

Proposition 5.11 For all k ∈ N and all ~ ∈ ]0,∞[ one has

P
k,k(C1+n) ⊆ supp

C

((
P~(C

1+n)u1
)++

H
+

(
〈〈 J − ~(k − 1) 〉〉∗id

)

H

)

. (5.12)

Proof: It is sufficient to show that imzKzL+ i−mzLzK ∈ (P~(C
1+n)u1)++

H + (〈〈 J − ~(k− 1) 〉〉∗id)H

for all K,L ∈ N1+n
0 with |K| = |L| = k and all m ∈ {0, 1, 2, 3}.

First note that J k = (J − ~(k − 1)) ⋆~ J
k−1 ∈ 〈〈J − ~(k − 1) 〉〉∗id. From this and the previous

Lemma 5.10 it follows that

−zMzM =
M !

|M |!

(
∑

N∈N1+n
0

|N |=k,N 6=M

|N |!

N !
zNzN −J k

)

∈
(
P~(C

1+n)u1
)++

H
+

(
〈〈 J − ~(k − 1) 〉〉∗id

)

H

for all M ∈ N1+n
0 with |M | = k. Making use of Lemma 5.10 again, one finds that

imzKzL + i−mzLzK = (zK + i−mzL)(zK + i−mzL)− zKzK − zLzL

is an element of
(
P~(C

1+n)u1
)++

H
+

(
〈〈 J − ~(k − 1) 〉〉∗id

)

H
for all K,L ∈ N1+n

0 with |K| = |L| = k

and all m ∈ {0, 1, 2, 3}. �

This essentially proves Theorem 4.7 for momenta µ ∈ {~k | k ∈ N0 }. In more detail, we have:

Proof (of the main Theorem 4.7): Let ~ ∈ ]0,∞[ be given, then we have to show that the

inclusion R~,µ ⊆ (P~(C
1+n)u1)++

H + (〈〈 J − µ 〉〉∗id)H holds:

First assume that µ ∈ [0,∞[ \{~k | k ∈ N0 }. In this case, Proposition 5.9 applies and shows that

−1 ∈ (P~(C
1+n)u1)++

H + (〈〈 J − µ 〉〉∗id)H, so (P~(C
1+n)u1)++

H + (〈〈 J − µ 〉〉∗id)H = (P~(C
1+n)u1)H,

which certainly contains R~,µ. Now consider the case µ = ~k, k ∈ N0. By Proposition 4.10, the
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∗-ideal supp
C

R~,~k is generated by {J − ~k1} ∪ Pk+1,k+1(C1+n), so Proposition 5.11 shows that

supp
C

R~,~k ⊆ supp
C

((
P~(C

1+n)u1
)++

H
+

(
〈〈 J − ~k 〉〉∗id

)

H

)

.

By Proposition 4.8, this implies R~,~k ⊆ (P~(C
1+n)u1)++

H + (〈〈 J − ~k 〉〉∗id)H. �

6 Wick Star Product on CPn

In this section we briefly recall the construction of a deformation quantization of CPn from [1, 2]

by reduction of the Wick star product on C1+n, keeping µ = 1 fixed and varying ~ ∈ R. We then

determine the ∗-representation theory of the quantized polynomial ∗-algebra on CPn that one obtains

this way.

Recall that elements of the reduction P0(C
1+n)1-red can be identified with polynomial functions

on the real algebraic set CPn, see e.g. [14, Sec. 6] for details: Any f ∈ P0(C
1+n)u1 defines a map

Ψ0(f) : CP
n → C, [w] 7→ Ψ0(f)([w]) := f(w), where w ∈ Z1 is any representative of [w] ∈ CPn with

J (w) = 1. The resulting space of polynomials on CPn is P(CPn) := {Ψ0(f) | f ∈ P0(C
1+n)u1 }.

The kernel of the map Ψ0 : P0(C
1+n)u1 → P(CPn) is just the ∗-ideal 〈〈 J − 1 〉〉∗id in P0(C

1+n)u1 ,

i.e. with respect to the pointwise product. By deforming Ψ0 one can retain this relation for almost all

values of ~ and thus construct a product on P(CPn) with a rational dependence on ~: For ~ ∈ R\{0}

define Ψ~ : P~(C
1+n)u1 → P(CPn),

f 7→ Ψ~(f) :=

∞∑

k=0

~
k
(1

~

)

↓,k
Ψ0(fk) (6.1)

with fk ∈ Pk,k(C1+n) the homogeneous components of f ∈ P~(C
1+n)u1 .

Lemma 6.1 Let ~ ∈ R \
(
{0} ∪

{
1
k

∣
∣ k ∈ N

})
. Then the kernel of Ψ~ is precisely the ∗-ideal

〈〈 J − 1 〉〉∗id of P~(C
1+n)u1 , and Ψ~ is a surjective map and fulfils Ψ~(f

∗)([w]) = Ψ~(f)([w]) for all

f ∈ P~(C
1+n)u1 , [w] ∈ CPn.

Proof: We have 〈〈 J − 1 〉〉∗id ⊆ kerΨ~ since

Ψ~

(
(J − 1) ⋆~ z

KzL
)
= Ψ~

(
J zKzL − (1− ~|K|)zKzL

)
= ~

|K|+1
(1

~

)

↓,|K|+1
Ψ0

(
(J − 1)zKzL

)
= 0

holds for all K,L ∈ N0 with |K| = |L|. Now consider f =
∑d

k=0 fk ∈ kerΨ~, with fk ∈ Pk,k(C1+n)

the homogeneous components of f and d ∈ N0. Define

g :=

d∑

k=0

~
k−d

((1

~
− k

)

↓,d−k

)−1
J d−kfk ∈ P

d,d(C1+n) .

It follows from Lemma 4.9 that g − f ∈ 〈〈J − 1 〉〉∗id, hence g = (g − f) + f ∈ kerΨ~. But on

homogeneous polynomials, the maps Ψ~ and Ψ0 coincide up to a non-zero scalar factor, so Ψ0(g) = 0.

Therefore g = 0 by homogeneity, and f ∈ 〈〈J − 1 〉〉∗id holds. This shows that kerΨ~ = 〈〈 J − 1 〉〉∗id.
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Surjectivity of Ψ~ is clear because since Ψ~ and Ψ0 coincide up to a non-zero scalar factor on

all homogeneous polynomials, and an easy calculation shows that Ψ~(f
∗)([w]) = Ψ~(f)([w]) for all

f ∈ P~(C
1+n)u1 , [w] ∈ CPn. �

As a consequence one can endow P(CPn) with a reduced (rational) star product:

Definition 6.2 For all ~ ∈ R \ { 1
k | k ∈ N }, define the ∗-algebra P~(CP

n) as the vector space

P(CPn) with product ⋆red,~ : P(CPn)× P(CPn) → P(CPn),

(
Ψ~(f),Ψ~(g)

)
7→ Ψ~(f) ⋆red,~ Ψ~(g) := Ψ~(f ⋆~ g) (6.2)

and with pointwise complex conjugation as ∗-involution.

Note that the only ~ ∈ R \ { 1
k | k ∈ N } for which the ∗-algebras P~(CP

n) and P~(C
1+n)1-red

are isomorphic is ~ = 0. In the following we will determine the ∗-representations of P~(CP
n) for

~ ∈ R \
(
{0} ∪ { 1

k | k ∈ N }
)

by classifying all its quadratic modules.

If ~ ∈ ]0,∞[ \
{

1
k

∣
∣ k ∈ N

}
, then it follows immediately from Proposition 5.9 that any ∗-repre-

sentation of P~(CP
n) must be trivial. The following lemma can be used to transfer this to negative

values of ~:

Lemma 6.3 For ~ ∈ ]0,∞[ the map Θ~ : P~(C
1+n) → P−~(C

1+n),

f 7→ Θ~(f) :=

(

exp
(

−~

∑n

j=0

∂2

∂zj∂zj

)

f

)

◦ · , (6.3)

where · : C1+n → C

1+n denotes the componentwise complex conjugation, is a ∗-isomorphism, i.e. Θ~

is a linear bijection that fulfils

Θ~(f ⋆~ g) = Θ~(f) ⋆−~ Θ~(g) and Θ~(f
∗) = Θ~(f)

∗ (6.4)

for all f, g ∈ P(C1+n).

Proof: The map P(C1+n) ∋ f 7→ ϑ~(f) := exp
(
−~

∑n
j=0

∂2

∂zj∂zj

)
f ∈ P(C1+n) fulfils Θ~(f) =

ϑ~(f) ◦ · for all f ∈ P(C1+n). Now define the “anti-Wick product”

f ⋆̃~ g :=
∑

K∈N1+n
0

(−~)|K|

K!

∂|K|f

∂zK
∂|K|g

∂zK
∈ P(C1+n)

for all f, g ∈ P(C1+n). It is well-known that the “equivalence transformation” ϑ~ fulfils ϑ~(f ⋆~ g) =

ϑ~(f) ⋆̃~ ϑ~(g) for all f, g ∈ P(C1+n), see e.g. [23, Prop. 2.18]. This in combination with the identity
∂
∂zj

(f ◦ · ) = ( ∂f∂zj ) ◦ · for f ∈ P(C1+n), j ∈ {0, . . . , n} yields Θ~(f ⋆~ g) = Θ~(f) ⋆−~ Θ~(g) for all

f, g ∈ P(C1+n). Checking that Θ~(f
∗) = Θ~(f)

∗ for all f ∈ P(C1+n) is straightforward. �

Proposition 6.4 If ~ ∈ R \
(
{0} ∪

{
1
k

∣
∣ k ∈ N

}
∪
{
− 1

1+n+k

∣
∣ k ∈ N0

})
, then −1 ∈ P~(CP

n)++
H ,

so every ∗-representation of P~(CP
n) on a pre-Hilbert space is trivial, i.e. the zero representation.
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Proof: If ~ ∈ ]0,∞[ \
{

1
k

∣
∣ k ∈ N

}
, then we have seen in Proposition 5.9 that −1 ∈ P~(C

1+n)u1 is,

up to a contribution of (〈〈 J −1 〉〉∗id)H, a sum of Hermitian squares. So Ψ~(−1) = −1 ∈ P~(CP
n)++

H .

If ~ ∈ ]−∞, 0[ \ {− 1
1+n+k | k ∈ N0 }, then µ := 1 − |~|(1 + n) and |~| fulfil the assumptions of

Proposition 5.9. Therefore −1 ∈ (P|~|(C
1+n)u1)++

H + (〈〈 J − µ 〉〉∗id)H holds. Applying the ∗-isomor-

phism Θ|~| from the previous Lemma 6.3 and noting that Θ|~|(J ) = J − |~|(1 + n)1, we find that

−1 ∈ (P~(C
1+n)u1)++

H + (〈〈 J − 1 〉〉∗id)H. So again Ψ~(−1) = −1 ∈ P~(CP
n)++

H . �

Proposition 6.5 If ~ = − 1
1+n+k , k ∈ N0, then there exists only one quadratic module Q~ on

P~(CP
n) with −1 /∈ Q~, and P~(CP

n)/ supp
C

Q~ is a finite dimensional C∗-algebra isomorphic

to the matrix ∗-algebra Cdn,k×dn,k with dn,k =
(
n+k
k

)
.

Proof: Consider the map Ψ~ ◦Θ|~| : P|~|(C
1+n)u1 → P~(CP

n). By Lemmas 6.1 and 6.3, Ψ~ ◦Θ|~|

is a surjective ∗-homomorphism (i.e. linear, multiplicative, and intertwines the ∗-involutions). Its

kernel is the ∗-ideal of P|~|(C
1+n)u1 that is generated by J − |~|k1, because Θ|~|(J − |~|k1) =

J − |~|(1 + n + k)1 = J − 1. Because of this, there is a 1-to-1 correspondence between quadratic

modules of P~(CP
n) and quadratic modules of P|~|(C

1+n)u1 that contain (〈〈 J − |~|k 〉〉∗id)H.

It only remains to show that the quadratic module R|~|,|~|k of P|~|(C
1+n)u1 is the unique one that

contains (〈〈 J −|~|k 〉〉∗id)H, but not −1: As a consequence of Theorem 4.7, every quadratic module of

P|~|(C
1+n)u1 containing (〈〈 J − |~|k 〉〉∗id)H must contain R|~|,|~|k. But R|~|,|~|k is also maximal under

all quadratic modules of P|~|(C
1+n)u1 that do not contain −1: This follows from the observation that

its image under the reduction map [ · ]|~|k : P|~|(C
1+n)u1 → P|~|(C

1+n)|~|k-red ∼= C

dn,k×dn,k is given

by the positive-semidefinite Hermitian matrices in Cdn,k×dn,k , which is a maximal quadratic module,

see e.g. [4, Sec. 2]. �
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