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Symmetry-resolved entanglement detection using partial

transpose moments
Antoine Neven 1✉, Jose Carrasco 1✉, Vittorio Vitale 2,3, Christian Kokail4,5, Andreas Elben 4,5, Marcello Dalmonte2,3,

Pasquale Calabrese2,3,6, Peter Zoller 4,5, Benoȋt Vermersch 4,5,7, Richard Kueng 8 and Barbara Kraus 1

We propose an ordered set of experimentally accessible conditions for detecting entanglement in mixed states. The k-th condition

involves comparing moments of the partially transposed density operator up to order k. Remarkably, the union of all moment

inequalities reproduces the Peres-Horodecki criterion for detecting entanglement. Our empirical studies highlight that the first four

conditions already detect mixed state entanglement reliably in a variety of quantum architectures. Exploiting symmetries can help

to further improve their detection capabilities. We also show how to estimate moment inequalities based on local random

measurements of single state copies (classical shadows) and derive statistically sound confidence intervals as a function of the

number of performed measurements. Our analysis includes the experimentally relevant situation of drifting sources, i.e. non-

identical, but independent, state copies.
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INTRODUCTION

In the past years, a considerable effort led to the building of larger
and larger Noisy Intermediate-Scale Quantum (NISQ) devices1–3.
For the benchmarking of such devices comes the need for more
scalable tools in order to characterize the underlying many-body
quantum state (see e.g.4 and references therein). For instance,
characterizing the entanglement properties of these quantum
states is, besides the intrinsic theoretical interest, essential to
gauge the performance and verify the proper working of the NISQ
devices.
As a first prominent example among the tools to characterize

entanglement, there is the concept of entanglement witness5,6. An
entanglement witness is a functional of the quantum density
matrix that separates a specific entangled state from the set of all
separable states (for examples of entanglement witnesses in
various types of systems, see e.g. ref. 7 and references therein).
When this function is linear, it can be identified with an observable
whose expectation value can be used to decide whether the
target state is entangled or not. By contrast, in this work, we shall
focus on a superset of the set of separable states: the set of states
with positive partial transpose. In other words, we will focus on
sufficient conditions for entanglement (equivalently, necessary
conditions for separability).
From the numerous theoretical sufficient conditions for

entanglement that have been developed in the literature, many
cannot be straightforwardly implemented experimentally, mainly
because they require the (exponentially expensive) knowledge of
the full density matrix8–10. This is for instance the case of the
celebrated PPT condition5,11, which states that a separable state ρ
always has a positive semi-definite (PSD) partial transpose (PT) ρΓ

for any bipartite splitting of its subsystems. Thus, if ρΓ has (at least)
a single negative eigenvalue, then ρ is entangled. The negativity,
which resulted from this condition, is a highly used entanglement
measure for mixed states12–14.

This powerful entanglement condition, which found many
applications in theoretical works15–22, is difficult to apply in
experimental conditions as the PT spectrum is difficult to access.
To overcome this challenge, it was shown in ref. 23 that valuable
information about the PT spectrum can be obtained from a few PT
moments trðρΓÞ

k
only. Using the first three PT moments, an

entanglement condition, called p3-PPT, was proposed and shown
to be useful for detecting entangled states in several different
contexts. Moments trðρΓÞ

k
have the advantage that they can be

estimated using shadow tomography23 in a more efficient way
than if one had to reconstruct ρ via full quantum state
tomography.
Indeed, the k-th order PT moment of a state ρ can be expressed

as the expectation value of some k-copy permutation operator O23,
i.e. trðρΓÞ

k
¼ tr Oρ�k

� �
. As shown in ref. 24, the classical shadow

formalism allows to estimate such an expectation value from
independent classical snapshots ρ̂1; ¼ ; ρ̂k (which can each be
obtained from post-processing single-qubit measurement out-
comes) through the U-statistics estimator ôk ¼ tr Oρ̂1 � � � � � ρ̂kð Þ.
Therefore, as in other randomized measurements protocols
probing entanglement23–33, the classical shadows formalism only
requires (randomized) single-qubit measurements in experiments
realizing the single-copy state ρ. In this paper, we follow this idea
of using PT moments to build experimentally computable
entanglement conditions, and extend the p3-PPT condition in
two directions.
On the one hand, we propose different entanglement detection

strategies depending on how many PT moments can be
estimated. Starting from the third-order moment, we show that
the estimation of each higher-order moment gives access to an
independent entanglement condition. Interestingly, if all the PT
moments can be estimated, this set of conditions is then
necessary and sufficient for the state to be PPT (i.e. to have a
positive semi-definite partial transpose). Of course, the higher the
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moment, the larger the number of experimental runs needed. In
case of higher-order moments cannot be accessed, we show how
to obtain an optimal entanglement condition using PT moments
of order up to three.
On the other hand, we investigate the effect of symmetries on

this entanglement detection method. As shown in ref. 34 for the
case of dynamical purification, taking symmetries into account to
define symmetry-resolved (SR) versions of the tools usually used
to characterize quantum states can enable a finer characterization
of some quantum features and even reveal phenomena that
cannot be observed without symmetry-resolution. For states
preserving an extensive quantity, we define SR versions of the
PT-moment inequalities mentioned previously and show that
these are indeed better suited to detect the entanglement of such
states. Furthermore, we also show that these SR inequalities
provide a sufficient entanglement condition for states that do not
possess any symmetry.
The conditions derived here are particularly interesting from an

experimental (and numerical) point of view, as low moments of
(partially transposed) density operators are accessible. We show
how source drifts in an experiment can be taken into account and
how the quantities which are of interest here can be accurately
estimated via local measurements on single copies of the state.

RESULTS

Definitions and summary of results

In this section, we introduce the basic definitions needed for the
entanglement detection criteria below, and summarize in a
succinct manner our main results. Given a bipartite state ρ=
ρAB, we denote by ρΓ its partial transpose with respect to
subsystem B. We say that ρ is PPT if ρΓ is positive semi-definite,
and NPT otherwise. All NPT states are entangled, however there
are entangled states, known as bound-entangled states, that are
not NPT. We focus here on the detection of NPT entangled states.
We denote the k-th order moment of a matrix M by

pkðMÞ � tr Mk : (1)

We will mostly consider moments of ρΓ, and sometimes use the
short-hand notation pk≡ pk(ρ

Γ). In the presence of symmetries, the
partial transpose can be cast in block diagonal form: we denote as
ρΓðqÞ the resulting blocks, where q indicates a quantum number,
and define the corresponding moments pkðρ

Γ

ðqÞÞ as from Eq. (1).
We start by recalling the p3-PPT condition of ref. 23, i.e. that any

PPT state satisfies

p3ðρ
ΓÞp1ðρ

ΓÞ ⩾ ðp2ðρ
ΓÞÞ

2
: (2)

Any state violating this condition is NPT and therefore entangled.

The p3-PPT condition will serve as a reference point below in
accessing the predictive power of the proposed relations.
Throughout this paper, we will establish and analyse different

sets of necessary (and sometimes also sufficient) PPT conditions
based on PT moments. An exhaustive list summarizing these
conditions is given below, together with two important results
regarding the experimental estimation of the PPT conditions using
classical shadows.
i) the first set of conditions, which we dub Dn conditions, also

contains polynomial inequalities in the moments pk of order up to
k⩽ n. The first non-trivial such a condition is D3, and reads:

p3ðρ
ΓÞ ⩾ �

1

2
ðp1ðρ

ΓÞÞ
3
þ
3

2
p1ðρ

ΓÞp2ðρ
ΓÞ: (3)

Knowing only the first three moments p1(ρ
Γ), p2(ρ

Γ) and p3(ρ
Γ), this

condition is optimal for detecting entanglement if 1/2⩽ p2(ρ
Γ)⩽ 1.

Knowing moments of order up to the dimension of ρΓ, the set of
Dn conditions provides a necessary and sufficient condition for
NPT entanglement;
ii) the second set of conditions, dubbed Stieltjesn, involves

inequalities among the moments pk of order up to n. The
condition Stieltjes3 is equivalent to p3-PPT, while Stieltjes5 reads:

det

p1 p2 p3

p2 p3 p4

p3 p4 p5

0

B@

1

CA ⩾ 0 (4)

and similar conditions are obtained including higher moments;
iii) in case high-order moments are difficult or too expensive to

access, we also show how to obtain an optimized, necessary
condition for PPT using only PT moments of order up to three. We
call this condition D

opt
3 ;

iv) all of the above conditions can be cast in terms of ρΓðqÞ , in
which case we add the prefix SR (for symmetry-resolved). For
instance, the SR-p3-PPT condition for sector q reads

p3ðρ
Γ

ðqÞÞp1ðρ
Γ

ðqÞÞ ⩾ ðp2ðρ
Γ

ðqÞÞÞ
2
: (5)

Since these conditions are sensitive to the presence of negative
eigenvalues in a specific symmetry sector, they are typically much
more sensitive than their non-SR counterparts, as illustrated in Fig. 1.
In the SR case, it is worth mentioning that also the SR-D2

condition,

p2ðρ
Γ

ðqÞÞ ⩽ ðp1ðρ
Γ

ðqÞÞÞ
2
; (6)

is non-trivial;
v) we show how SR conditions can, in fact, be applied to

arbitrary states, via the application of a proper transformation on
the density matrix of interest. In practice, this transformation is

Fig. 1 An illustration of the proposed method for entanglement detection. We assume the experimentally relevant situation of a source
producing non-identical but independent copies {ρ1,…, ρN} ("drift''). Randomly chosen unitaries Ui are applied to the qubits of each copy and
then measured in the standard basis. Using classical shadows24, these measurement outcomes are post-processed to obtain the moments

pj ¼ trðρΓavgÞ
j
. As explained in the main text, we combine those moments to derive inequalities whose violation implies that the state ρavg is

NPT, thus showing that at least one of the states ρk produced by the source is entangled. We also show how symmetry-resolution techniques
can be used to enhance entanglement detection capabilities.
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effectively carried out in the post-processing step of the classical
shadows;
vi) as illustrated in Fig. 1, the uncertainty in estimating the

moments can be bounded, in principle, using the classical
shadows formalism. Here, we show how to combine those
bounds to provide rigorous confidence intervals for SR-D2, which
considerably strengthens the impact of our results in real
experiments.

Entanglement detection from partial transpose moments

In this section, we present entanglement conditions based on PT
moments. We extend the idea behind the p3-PPT condition (c.f. Eq.
(2)) of ref. 23 in two directions. On the one hand, we present a set
of inequalities involving all the PT moments which provides a
necessary and sufficient condition for the underlying state to be
PPT. In addition, each condition of this set is itself a necessary PPT
condition. On the other hand, we show how to optimize such
entanglement conditions when only a few low-order PT moments
are accessible.
The idea behind this set of conditions is to use Descartes’ rule of

signs on the characteristic polynomial of a Hermitian matrix to
obtain a set of moment inequalities that has to be satisfied by any
PSD matrix. Applied to the partially transposed matrix ρΓ, such
conditions can then be used to detect the entanglement of NPT
quantum states. More precisely, using the definition of the
elementary symmetric polynomials on d variables,

eiðx1; ¼ ; xdÞ ¼
X

1 ⩽ j1<���<ji ⩽ d

xj1 � � � xji ; (7)

for i= 1,…, d, and e0(x1,…, xd)= 1, we derive in the Methods
section the following lemma.

Lemma 1. A Hermitian matrix A of dimension d is PSD if and only if
ei(λ1,…, λd)⩾ 0 for all i= 1,…, d,where λ1,…, λd are the eigenvalues
of A, and ei denote the elementary symmetric polynomials (Eq. (7)).

Using Newton’s identities, which relate the elementary sym-
metric polynomials, ek, in the eigenvalues of A to the moments of
A through the recursive formula

k ek ¼
Xk

i¼1

ð�1Þi�1
ek�i piðAÞ; (8)

each inequality ei⩾ 0 can be transformed into an inequality
involving moments of A of order up to i. We denote by Di these
moments inequalities. As an illustration, the conditions D1 to D4

read

p1ðAÞ ⩾ 0; (9)

p2ðAÞ ⩽ ðp1ðAÞÞ
2; (10)

p3ðAÞ ⩾ �
1

2
ðp1ðAÞÞ

3 þ
3

2
p1ðAÞp2ðAÞ; (11)

p4ðAÞ ⩽
1
2

ðp1ðAÞÞ
2 � p2ðAÞ

� �2
� 1

3
ðp1ðAÞÞ

4 þ 4
3
p1ðAÞp3ðAÞ;

(12)

respectively. One has p1(ρ
Γ)= 1 for any quantum state ρ, implying

that D1 is trivially satisfied. Similarly, since p2(ρ
Γ) is equal to p2(ρ)

(i.e., to the purity of ρ) for any quantum state ρ, the inequality D2 is
also trivially satisfied. Therefore, when ρ is a quantum state, the
first non-trivial inequality for ρΓ is D3. As will be shown in the next
section, it is sometimes more efficient (in order to detect
entanglement) to apply these inequalities to projections of ρΓ

onto specific subspaces, rather than to ρΓ itself. We would like to
stress here that, in that case, the argument above does not hold,

so that the inequality D2 is not trivially satisfied and can already
reveal the presence of entanglement.
When applied to ρΓ, Lemma 1 and Newton’s identities (8) can

thus be used to detect NPT entangled states from PT moments
only. From an experimental point of view, this is an important
aspect of this entanglement detection scheme, as PT moments are
experimentally more affordable to estimate than, for instance, the
whole spectrum of ρΓ. As PT moments are more expensive to be
estimated the higher the order, these inequalities should be
considered starting from those involving the lowest moment
orders. Even though showing that a state is NPT with this method
can in principle require the knowledge of all the PT moments, we
will provide many experimentally relevant instances where
entanglement can be effectively detected from low-order
moments even in the presence of errors. To this end, we provide
confidence intervals for the quantities of interest granting that a
certain inequality is violated with high probability (see Theorem 1
and the Supplementary Information).
Similarly, let us mention here that necessary and sufficient

conditions for a matrix to be PSD can be expressed as different
sets of polynomial inequalities in its moments. One of such sets
can be deduced from the well-known (truncated) Stieltjes
moment problem (see Methods). In the part dedicated to
applications, we illustrate the usefulness of these inequalities by
applying them to the entanglement detection of the ground state
of the XXZ model (c.f. Fig. 5). Let us finally also mention that, from
a few moments of a Hermitian matrix, one can also obtain bounds
on the distance between this matrix and the PSD cone35.

Optimized condition for low-order moments. Due to (experimen-
tal) constraints, it might not be possible to determine all, but only
a few PT moments. This is why, we show here how to optimize
necessary PPT conditions using only PT moments of order up to
three. From the previous sections, we already have two examples
of such conditions, namely the p3-PPT and D3 conditions. As
illustrated in Fig. 2, the p3-PPT (D3) condition is tighter than D3 (p3-

Fig. 2 Entanglement conditions of order three. The plot of the
value of the third moment p3 saturating the p3-PPT (dashed orange

curve), the D3 (dashed green line), and the optimal D
opt
3 (thick black

curve) conditions as a function of the second moment p2 for a
normalized Hermitian matrix. According to the p3-PPT condition, any
state ρ with a value of p3(ρ

Γ) below the dashed orange curve is
entangled. Similarly, the condition D3 shows that any state ρ with a
value of p3(ρ

Γ) below the dashed green line is entangled. From this
plot, it is clear that, for p2(ρ

Γ) > 1/2, all entangled states detected by
the p3-PPT condition are also detected by D3, which coincides with

D
opt
3 in this case. When p2(ρ

Γ) < 1/2, the p3-PPT condition is then

stronger than D3, and D
opt
3 represents a slight improvement over the

p3-PPT condition. As illustrated in the applications, this slight
improvement can nevertheless be important for the detection of
physically relevant states.
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PPT) for states with purity larger (smaller) than 1/2, respectively. As
the low-order moments are easier to access experimentally, we
now address the question about the optimal inequality involving
PT moments of order up to three.
To answer this question, we use the following approach. For

fixed values p1 and p2 of the first two moments, we determine the
minimal value pmin

3 that the third moment can reach for any PSD
matrix. From this bound, we know that any Hermitian matrix with
a smaller third moment is necessarily not PSD. Note that we want
here to minimize p3 because it is an odd moment (for which
negative eigenvalues would have the tendency to decrease the
value of the moment). For an even moment, we would instead
maximize the value of this moment over PSD matrices. This is also
reflected in the Dn conditions (9)-(12), where the inequality sign
alternates between even and odd values of n. Naturally, we restrict
ourselves to values of p1 and p2 which are compatible with a PSD
matrix, and therefore satisfy Eqs. (9) and (10). Recall that for the
partial transpose of a density operator, this is always fulfilled.
Given a d × d PSD matrix A, with non-zero eigenvalues λ1,…, λr,

for some r ∈ [1, d], this optimization can be performed with the
help of Lagrange multipliers. As shown in the Methods section,
this leads to solutions with only two distinct eigenvalues λa, λb
with multiplicity ra, r− ra, respectively, for ra∈ [1, r]. Assuming,
without loss of generality, that λa ⩾ λb, the optimization of p3 leads
then to ra= r− 1. For each value of r, the optimal value of p3 can
be easily determined in the interval [1/r, 1/(r− 1)]. For r= 2 this
leads to D3 whereas for r > 2 one obtains an optimal value of p3
which is slightly better than p3-PPT. Observe that pmin

3 ðp2Þ is a
piece-wise function and the derivative ∂pmin

3 =∂p2 is discontinuous
at points p2= 1/r (see Fig. 2).
In case higher-order PT moments can be accessed experimen-

tally, one may consider optimizing higher-order PPT conditions. In
principle, the Lagrange multipliers method we used to optimize
the entanglement condition using PT moments of order at most
three can be straightforwardly extended to optimize higher-order
PPT conditions. In practice, however, the number of variables
would grow with the moment order, making the analytical
resolution of the optimization problem more involved. In the
simultaneous but independent work36, the authors also consider
this optimization problem and explicitly carry out the optimization
of the PPT condition using PT moments of order up to four
(though with a slightly different method). In addition, they provide
a numerical code to perform the optimization with PT moments of
order up to five.

Symmetry-resolved entanglement detection

Symmetries, as they often occur in physical situations, can be
exploited to observe relevant phenomena (see e.g. refs. 34,37–47).
Here, we use symmetries to ease the detection of entanglement.
More precisely, we apply the previously developed tools to
symmetric states, which will lead to conditions of entanglement
involving much lower moments of the partial transpose projected
onto certain subspaces. Despite the fact that these quantities
differ significantly from the moments of ρΓ, we will show later on
that they can nevertheless be estimated using the framework of
classical shadows.
We consider a bipartite state ρ= ρAB, with subsystems A and B

containing n and m qubits, respectively. We assume that this state
commutes with

Pnþm
i¼1 Z i , or similarly with the total number

operator N ¼ N A þN B . Here and in the following, we denote by
X, Y, Z the Pauli operators. Obviously, such a state has a block
diagonal form, i.e.,

ρ ¼
Mnþm

q¼0

ρðqÞ ¼
X

q

QqρQq; (13)

where each block (or sector) is labeled by an eigenvalue q∈ {0, 1,

…, n+m} of the operator N and has support in the correspond-
ing eigenspace. Here,

Qq ¼
X

aþb¼q

ΠaðAÞ � ΠbðBÞ; (14)

with

ΠkðAÞ ¼
X

i1þ���þin¼k

i1 � � � inj i i1 � � � inh j ; (15)

and similarly for B. It has been shown48 that, for this type of
symmetry, the partial transpose ρΓ is also block diagonal, but in a

different basis. In fact, ρΓ ¼ �n
q¼�mρ

Γ

ðqÞ ¼
P

q Pqρ
ΓPq, where Pq is

the projector onto the eigenspace of N A �N B with eigenvalue
q∈ {−m,−m+ 1,…, n}, i.e.

Pq ¼
X

a�b¼q

ΠaðAÞ � ΠbðBÞ: (16)

This can be easily seen as follows. Consider a matrix element
ρab;a0b0 abj i a0b0h j of ρ with eigenvalue i of N A þN B. Precisely, let

us write N A aj i ¼ na aj i, N A a0j i ¼ na0 a
0j i, N B bj i ¼ nb bj i, and

N B b
0j i ¼ nb0 b

0j i with na þ nb ¼ na0 þ nb0 ¼ i. After partial trans-
position, ρab;a0b0 abj i a0b0h j7!ρab;a0b0 ab

0j i a0bh j. One can see that

ðN A �N BÞ ab0j i ¼ ðna � nb0Þ ab0j i and ðN A �N BÞ a0bj i ¼
ðna0 � nbÞ a0bj i with na � nb0 ¼ na0 � nb . This shows that matrix
elements within a block of ρ are mapped, via partial transposition,
to matrix elements within a block of ρΓ.
The size of the sector corresponding to the eigenvalue q in the

block-decomposition of ρΓ is given by

tr Pq ¼
X

a�b¼q

n

a

� �
m

b

� �
¼

nþm

qþm

� �
: (17)

When the partial transpose of a density matrix has a block
structure, it is naturally PSD iff each block is itself a PSD matrix.
Therefore, one can apply the conditions of the previous section
directly to the blocks ρΓðqÞ of the partial transpose. For the p3-PPT
condition, the corresponding symmetry-resolved (SR) inequalities
are simply

p3ðρ
Γ

ðqÞÞp1ðρ
Γ

ðqÞÞ ⩾ ðp2ðρ
Γ

ðqÞÞÞ
2

(18)

for all q=−m,−m+ 1,…, n. Any violation of a PSD condition in
one of the blocks is then sufficient to show that ρΓ has at least one
negative eigenvalue and that ρ is therefore entangled.
When using the Di conditions, symmetry-resolution can be a

significant advantage (see e.g. the applications section). First, the
necessary and sufficient PSD conditions involve moments of order
at most equal to the dimension of the largest block, that is

nþm

bðnþmÞ=2c

� �
, which is necessarily smaller than the dimension

of the density matrix itself. Second, since a block ρΓðqÞ of ρ
Γ is (in

general) not the partial transpose of any density matrix (i.e. there

could be no σ > 0 such that ρΓðqÞ ¼ σΓ), the inequality:

p2ðρ
Γ

ðqÞÞ ⩽ ðp1ðρ
Γ

ðqÞÞÞ
2

(19)

is not necessarily satisfied. This implies that moments of order two
can already be sufficient to detect entanglement.
As stressed in the introduction, using PT-moment inequalities to

detect entanglement is particularly interesting from an experi-
mental point of view, because such PT moments can be
estimated, for instance using shadow tomography23. As we show
in the following lemma, the shadow tomography protocol used in
ref. 23 can also be used to estimate moments of blocks of the
partial transpose (which differ significantly from the PT moments)
by slightly modifying the non-linear observable that has to be
measured.
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Lemma 2. Given a symmetric state ρ= ∑iQiρQi, for each eigenvalue i
ofN A �N B , it holds that

tr ðPiρ
ΓPiÞ

k
¼ tr ðL

ðkÞ
i ρ�kÞ (20)

where the operators L
ðkÞ
i are given by

L
ðkÞ
i ¼

P
a�b¼i

ΠaðA1Þ � 1� � � � � 1� ΠbðBkÞ

� �
�

~SðA1; ¼ ;AkÞ � SðB1; ¼ ; BkÞ

with

~SðA1; ¼ ;AkÞ ¼
P
a1

� � �
P
ak

aka1 � � � ak�1j i a1 � � � akh j ;

SðB1; ¼ ; BkÞ ¼
P
b1

� � �
P
bk

b2 � � � bkb1j i b1 � � � bkh j:
(21)

Here, the sum over each ai (bi) runs from 1 to 2n (2m) respectively.

Proof. First, it is straightforward to see that

trnA1Bk
~SðA1; ¼ ;AkÞ � SðB1; ¼ ; BkÞρ

�k
� �

¼ ððρΓÞ
k
Þ
Γ

: (22)

Then, we have that

tr ðL
ðkÞ
i ρ�kÞ ¼ tr Pi ððρΓÞ

k
Þ
Γ

� �
¼ tr PΓi ðρ

ΓÞ
k

� �

¼ tr Pi ðρΓÞ
k

� �
:

(23)

Here, the first equality follows from the definition of L
ðkÞ
i and Eq.

(22); the second, from tr ðRSΓÞ ¼ tr ðRΓSÞ for any two matrices R, S;
and the third, from PΓi ¼ Pi . Finally, using that Pi ¼ P2i are
orthogonal projectors, the cyclic property of the trace, and the
block structure of ρΓ, we have

tr Pi ðρ
ΓÞ

k
� �

¼ tr Pi ðρ
ΓÞ

k
Pi

� �
¼ tr Piρ

ΓPi
� �k

; (24)

which completes the proof.

Classical shadows. Classical shadows are a convenient formalism
to reason about predicting properties of a quantum system based
on randomized single-qubit measurements performed in single-
copy experiments24. We refer the reader to24 or to the
Supplementary Information for an introduction to classical
shadows. The original classical shadow formalism is contingent
on noiseless measurements and sources that produce i.i.d. states.
Subsequently, it was shown that classical shadows can also handle
noisy measurements49,50. As we show in detail in the Supplemen-
tary Information, the formalism can also be extended to take non-
identical, but independent, state preparations ("drifts”) into
account, i.e. the source produces the states {ρ1, ρ2,…, ρN}. In this
case, each snapshot ρ̂i will have a different expectation value and

1

N

XN

i¼1

ρ̂i !
1

N

XN

i¼1

Eρ̂i ¼
1

N

XN

i¼1

ρi ¼: ρavg ; (25)

i.e., the average of the snapshots converges to the average state.
Since different snapshots are statistically independent, it turns out
that one can estimate linear functions, say tr ðOρavgÞ.
These ideas regarding the prediction of linear observables do

extend to higher-order polynomials. Here, we restrict ourselves to
the quadratic case24, involving up to second-order moments of a
block of the partial transpose. An extension to higher-order
polynomials is conceptually straightforward, but can become
somewhat tedious to analyze23. Let us fix a block label i and
consider the second-order moment inequality restricted to this
block:

D
ðiÞ
2 ðρÞ ¼ tr Piρ

ΓPið Þð Þ
2
� tr Piρ

ΓPið Þ
2

¼ p1ðPiρ
ΓPiÞð Þ

2
� p2ðPiρ

ΓPiÞ ¼ trðQρ� ρÞ ;
(26)

where, using Lemma 2,

Q ¼ L
ð1Þ
i � L

ð1Þ
i � L

ð2Þ
i : (27)

Recall that D
ðiÞ
2 ðρÞ< 0 implies that ρ is entangled. Here, we will

provide confidence intervals in the estimation of D
ðiÞ
2 ðρavgÞ given a

fixed number of measurements. Observe that D
ðiÞ
2 ðρavgÞ< 0 implies

that there is at least a value k∈ {1, 2,…, N} such that D
ðiÞ
2 ðρkÞ< 0.

Thus, D
ðiÞ
2 ðρavgÞ< 0 implies that the source is able to produce

entangled states.
Let us finally introduce (see the Supplementary Information for

details) the empirical average, over N(N− 1) pairs of independent
snapshots,

bD
ðiÞ

2 ¼
1

NðN � 1Þ

X

i≠j

tr Qρ̂i � ρ̂j
� �

: (28)

We can fix the desired approximation accuracy ϵ and a probability-
of-error threshold δ to obtain a lower bound on the measurement
budget N. For simplicity, let us consider a non-trivial sector (i.e. q ≠
−m, n) and assume n+m⩾ 4. Then one has the following
theorem (see the Supplementary Information for a slightly better
bound).

Theorem 1. (Error bound for D
ðiÞ
2 ) Fix ϵ∈ (0, 1) (accuracy of the

approximation), δ∈ (0, 1) (probability-of-error threshold), a biparti-
tion AB, as well as a symmetry sector i. Suppose that we perform

N ⩾
2nþmtr ðPiÞ

ϵ
2δ

1

2
4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42 þ 2
ϵ
2δ2nþm

tr ðPiÞ

s !

þ 1 (29)

randomized, single-qubit measurements on independent states.
Then,

bD
ðiÞ

2 � D
ðiÞ
2 ðρavgÞ

			
			 ⩽ ϵ with prob: ðat leastÞ1� δ:

It should be noted that this bound corresponds to randomized
measurements performed using local Clifford unitaries (see
Supplementary Information). Using a different measurement
strategy, for instance with global Clifford unitaries, we could
expect a much better scaling of the measurement budget24, but
such global unitary gates are more difficult to implement, and are
still out of reach for most of the current experimental platforms.
Finally, let us stress that this error bound addresses the

estimation of D
ðiÞ
2 ðρavgÞ in terms of a single U-statistics estimator.

The poor scaling in 1/δ can be exponentially improved by dividing
the classical shadow into equally-sized batches and performing
a median-of-U-statistics estimation instead24: 1=δ ! const ´
log ð1=δÞ. However, numerical experiments conducted in ref. 23

suggest that this trade-off is only worthwhile if one attempts to
predict many properties with the same data set.

SR inequalities applied to states without symmetries. In the last
part of this section, we show that the SR inequalities can also be
used to detect the entanglement of arbitrary states, including
those that do not have any symmetry.
The reason for that is that there exists a local channel C that

transforms any state ρ into a state σ � CðρÞ that has the desired
block structure. The channel can be realized with local operations
assisted by classical communication, and can thus not generate
entanglement. Therefore, the initial state ρ must be at least as
entangled as the final block diagonal state σ. This statement holds
for any entanglement measure. As a consequence, if entangle-
ment is detected in σ (which can be investigated using the
symmetry-resolved tools), then ρ is necessarily also entangled. In
other words, looking at the entanglement of σ, the "block-
diagonalized” version of ρ, provides a sufficient condition of
entanglement for ρ. This condition is not necessary as it could be
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that the channel C destroys all the entanglement of ρ.
The local channel that can be used for this approach is the

following:

C : ρ ! CðρÞ ¼
1

2k

X2k�1

i¼0

U
�ðnþmÞ
i ρ ðUy

i Þ
�ðnþmÞ

(30)

where k ¼ blog ðnþmÞc þ 1 and Ui ¼ Z i=2k . The fact that this
channel maps ρ to a state σ that is block-diagonal in the number-
of-excitations basis can easily be seen as follows. First, observe
that for any j∈ {0,…, 2(n+m)

− 1}, the computational basis state jj i

is an eigenvector of Ui, associated to an eigenvalue, ð�1Þjjji=2
k

, that
essentially depends on ∣j∣, the number of excitations of jj i.
Therefore, we have

σ ¼
1

2k

X2ðmþnÞ�1

j;j0¼0

X2k�1

i¼0

ð�1Þ
iðjjj�jj0 jÞ

2k ρj;j0 jj i j0h j: (31)

For any j and j0 having different number of excitations, i.e. such
that jjj≠ jj0j, the sum over i in Eq. (31) vanishes, explaining why σ is
diagonal in the number-of-excitations basis.
As can be seen from the argument above, the non-zero

elements of σ are all equal to the corresponding elements of ρ.
This implies that the channel can effectively be replaced by a sum
of projectors onto all the number-of-excitations sectors. From an
experimental point of view, the practical implementation of this
channel can thus be circumvented by using the observables of
Lemma 2 in the post-processing of the classical shadows.

Applications

In this section, we apply and compare the entanglement
conditions presented in the previous sections on various physical
systems. For the systems possessing a symmetry as discussed
above, we highlight some of the advantages that can result from
considering symmetry-resolved entanglement detection tools.

Entanglement detection in quench dynamics. We begin by
considering the situation of quench dynamics, where entangle-
ment emerges from the dynamics of a many-body Hamiltonian.
We consider the model presented in ref. 34, where the interplay
between coherent dynamics with U(1) symmetry and dissipation
leads to a dynamics of "purification”. Here, we will use the same
formalism to show how entanglement is generated at short
times, and can be detected via the symmetry-resolved versions
of the D2 and p3-PPT conditions. In the next subsection, we will
consider an analogous experimental situation obtained with
trapped ions28.
Our model is described by a master equation

∂tρ ¼ �
i

_
½HXY ; ρ� þ

X

j

γ σ�
j ρσ

þ
j �

1

2
fσþ

j σ
�
j ; ρg


 �
; (32)

with the lowering and raising operators σ�j ¼ ðX j � iY jÞ=2,
σþj ¼ ðX j þ iY jÞ=2, and the Hamiltonian

HXY ¼
_

2

X

i<j

JijðX iX j þ Y iY jÞ (33)

and where γ is the spontaneous emission rate. Here, we consider
open boundary conditions. The hopping between spins i and j is
described by the coefficient Jij and we consider in this subsection
nearest-neighbor hopping Jij= Jδi+1,j with strength J. The initial
state is the Néel state ρð0Þ ¼ ψð0Þj i ψð0Þh j, with ψð0Þj i ¼ #"j i�N=2

.
As shown in ref. 34, the time evolved state ρ(t) of the N spin
system has the block diagonal form of Eq. (13). Moreover, the
partially transposed matrix w.r.t a partition A, ρΓ is also block
diagonal with blocks ρΓðqÞ . Here, the index q represents the
difference between the number of spin excitations in A and the
one in the complement partition B.

As we are interested in short-time dynamics, we can solve Eq.
(32) in first-order in perturbation theory, which is valid for t≪ 1/
J, 1/γ. Considering for concreteness a half-partition A, made of
the first NA sites, we obtain a block with a negative eigenvalue34.
Assuming for simplicity NA= N/2, NA even, we obtain

ρΓð�1ÞðtÞ ¼ γt
XNA=2

m¼1

σ�2mρð0Þσ
þ
2m

(34)

þJt �iσþ
NAþ1ρð0Þσ

þ
NA

þ h:c
� �

: (35)

The presence of a negative eigenvalue in this sector can be
detected from the value of the moments

p1ðρ
Γ

ð�1ÞðtÞÞ ¼
γNAt

2
; (36)

p2ðρ
Γ

ð�1ÞðtÞÞ ¼ 2J2t2; (37)

p3ðρ
Γ

ð�1ÞðtÞÞ ¼ 3γJ2t3; (38)

in leading order in J≫ γNA. In particular, the p3-PPT ratio

p3ðρ
Γ

ð�1ÞðtÞÞp1ðρ
Γ

ð�1ÞðtÞÞ

p2ðρ
Γ

ð�1ÞðtÞÞ
2

¼
3γ2NA

8J2
� 1; (39)

and the D2 condition

p1ðρ
Γ

ð�1ÞðtÞÞ
2

p2ðρ
Γ

ð�1ÞðtÞÞ
¼

γ2N2
A

8J2
� 1; (40)

can be used to reveal the presence of entanglement at short times.
We show in Fig. 3 a numerical confirmation of these results for
various values of γ/J and N= 8, which was obtained by simulating
Eq. (32). We note that, in the present context, utilizing symmetry-
resolution is fundamental to detect entanglement: this is due to
the fact that the negative eigenvalues in ρΓ appear in sectors that
are not macroscopically populated34, so that moments without
symmetry resolution would not be able to detect them.

Experimental demonstration in a trapped-ion quantum simulator.
In the previous section, we showed in an idealized theoretical
setting that entanglement is generated –and can be revealed via
SR-entanglement conditions– at early times after a quantum
quench. Here, we demonstrate this effect experimentally via the
measurement of the SR-D2 and SR-p3-ppT condition using
randomized measurement data taken at early times after quantum

Fig. 3 Symmetry resolved entanglement detection in quench
dynamics with spin excitation loss. We study SR-entanglement in
quench dynamics in a system consisting of N= 8 spins initialized in

a Néel state #"j i�N=2
and evolved with HXX subject to spin excitation

loss with various rates γ (γ/J increases with the darkness of the color,
see insets). We take A= [1, 2, 3, 4] and B= [5, 6, 7, 8]. In panels (a) and
(b), the D2 ratio and p3-PPT ratio of sector q=− 1 are shown,
respectively. Entanglement is detected for values below unity in the
shaded gray areas. The insets in (a) and (b) show the early time value
at t= 0+ of the D2-ratio a) and p3-PPT ratio (b), respectively, as a
function of the decoherence rate γ/J. Black lines are the perturbation
theory results displayed in Eqs. (40) and (39).
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quench in a trapped-ion quantum simulator (c.f. ref. 28). In
particular, we show that the SR-D2 condition and SR-p3-PPT
condition allow for a fine-grained detection of bipartite entangle-
ment, in regimes where the corresponding global conditions23

and conditions relying on the purities of different subsystems28

are not conclusive.
In the experiment reported in ref. 28, a one-dimensional spin-1/

2-chain, consisting of N= 10 spins, was initialized in the Néel state
"#j i�5

and time-evolved with the Hamiltonian HXY [Eq. (33)] where
the coupling parameter Jij follows the approximate power-law
decay Jij ≈ J0/∣i− j∣α, with α ≈ 1.24, J0= 420s−1. The Hamiltonian
evolution exhibits a global U(1)-symmetry conserving the total
magnetization of the system (i.e., [H, ∑iZi]= 0). Symmetry-breaking
terms (such as σþ

i σ
þ
j þ h.c. ) are strongly suppressed due to a

large effective magnetic field28. As detailed in refs. 28,34 weak
decoherence effects are present in the experiment, including
imperfect initial state preparation, local spin-flips and spontaneous
emission during the dynamics, and measurement errors model as
local depolarization. Note that coherent spin-flips do not preserve
the global magnetization and block-diagonal form of the
(reduced) density matrix. On the timescales accessed in the
experiment, these effects are however very weak (causing in
numerical simulations including the above decoherence model a
purity mismatch of the order of 10−5 of the full 10-spin density
matrix ρ vs. the projected one ρQ= ∑qQqρQq at t= 5ms).
In ref. 28 randomized measurements were performed at various

times (t= 0ms,…, 5ms) after the quantum quench. As described
in detail in ref. 34 (see also the Supplementary Information), we can
use this data to estimate SR-PT moments and the SR entangle-
ment conditions via classical shadow formalism24. In Fig. 4, we
present the SR D2 and p3-PPT conditions in the different sectors,
for a subsystem consisting of the neighbouring spins A, B= [4, 5],
[6, 7] and where the partial transpose is taken in the subsystem
A= [4, 5]. Similar to the results of the previous subsection, both
conditions detect entanglement at short times in the sector q=
−1. The corresponding global conditions, in particular the global
p3-PPT condition, do not reveal the presence of entanglement in
this regime [see Fig. 4 b)].
The fact that the SR-D2 condition can reveal the presence of

entanglement is particularly interesting from an experimental
point of view as it implies that entanglement can be detected
from the estimation of only two moments of the partial transpose
(in a sector). For the shadow estimation of D2(− 1), our rigorous
bound from Theorem 1 ensures that ~ 1.3 × 106 measurements
would be sufficient to guarantee entanglement detection with a
probability of 95%. While this represents an upper bound, valid

irrespective of the quantum state in question, for the specific
states in the experiment only 8 × 105 have been performed. The
errorbars of the experimental are then drawn at 1.96σ where the
standard error of the mean σ has been estimated for each data
point using Jackknife resampling. For normally distributed data
with empirical mean μ, μ ± 1.96σ defines a 95% confidence
interval. While normal distribution is here not guaranteed a priori,
we checked through additional numerical simulations of many
experiments (with fixed number of runs per experiment) that
errorbars of length 1.96σ indeed approximate a confidence
interval with confidence level 95%.
While the SR-D2 condition requires only the estimation of first

and second PT-moment, the third order SR-p3-PPT condition
[panel b)], allows to detect entanglement in an even wider time
window. In comparison to the global p3-PPT condition [red curve
in panel b)], this clearly demonstrates the benefit of taking
symmetry-resolution into account.

Entanglement detection in the ground state of the XXZ model. The
XXZ spin chain is a generalization of the Heisenberg chain
including an anisotropy in the interaction along the z direction,
whose Hamiltonian reads:

H ¼ �J
X

i

X iX iþ1 þ
X

i

Y iY iþ1 þ Jz
X

i

Z iZ iþ1

 !

: (41)

We will fix J= 1 as energy unit: Jz sets the strength of the
anisotropy along the z-axis. The phase diagram at zero
temperature is known51: the system hosts an antiferromagnetic
phase when Jz <− 1, a Luttinger liquid for Jz ∈ [− 1, 1], and a
ferromagnetic one for Jz > 1. We might expect that the entangle-
ment conditions we described in the previous sections will detect
that the state is not PPT in the range Jz 2� �1;�1�. Since the XXZ
spin chain exhibits a U(1) symmetry related to magnetization
conservation, we can exploit the symmetry-resolved counterpart
of the Dk conditions, the p3-PPT and their optimized version D

opt
3 .

The simulation results are shown in Fig. 5. We consider the
ground state of an open chain of L= 14 sites. In a) and b), we
select ℓ= 10 sites in the middle as subsystem A and divide it in
two parts A= A1 ∪ A2. We use the negativity as a reference to
benchmark the efficiency of some entanglement conditions to
detect entanglement between A1 and A2.
In Fig. 5a), we calculate the p3-PPT, the D3, the optimal D

opt
3

condition, and the Stieltjes condition using moments up to order
five (see Methods). The convention we choose in the plot is that
entanglement is detected whenever the value is positive. All the
conditions work in most of the interval Jz∈ [− 4, 1], where we
expect entanglement to be sizeable, except for D3 failing in the
vicinity of Jz= 1. The presence of entanglement is confirmed by
the calculation of the negativity (red line).
In Fig. 5b) we focus on the q= 1 sector. In this case, we observe

that all conditions indicate the presence of at least a negative
eigenvalue in the sector ρΓAðq ¼ 1Þ - that is, they are informative
about which sector for the reduced density matrix contributes to
violating PPT. In this specific instance, SR is however not
fundamental in detecting entanglement beyond what non-SR
conditions can.
In Fig. 5c) and d), we carry out the same analysis for

disconnected partitions. We consider A= A1 ∪ A2, where A1
consists of the first l/2 sites and A2 of the last l/2, and L= 14, l
= 10. In Fig. 5c) for Jz ~− 1.9 all the quantities except Stieltjes5 are
below zero, thus not revealing entanglement even though the
negativity is positive. In this plot, one can also see that, for Jz <− 2,
the optimized condition D

opt
3 detects entanglement whereas both

p3-PPT and D3 fail. This illustrates that the slight improvement
obtained from the optimization (see Fig. 2) can be decisive to
detect the entanglement of physically relevant states from the first
three moments only.

Fig. 4 Experimental SR-entanglement detection in a trapped ion
quantum simulator using data obtained in ref. 28. For a total
system of N= 10 spins and subsystem A, B= [4, 5], [6, 7], we present
in a) the SR-D2 ratio and b) SR-p3-PPT ratio as a function of time for
various symmetry sectors . In both panels, entanglement is detected
in regimes where the corresponding global conditions do not reveal
entanglement, as indicated in the shaded grey areas (values below
unity). The points with error bars correspond to the values and
uncertainties extracted from the experimental data from ref. 28,
whereas the dashed (solid) lines are theoretical simulations of
unitary dynamics (taking decoherence effects into account), as
detailed in refs. 28,34.
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Entanglement detection under constrained dynamics. As a third
example, we study the detection of mixed-state entanglement in
subsystems of constrained spin models after a global quantum
quench. Such models have been realized experimentally with
neutral atoms in optical tweezer arrays coupled to Rydberg
states52,53. Below we simulate an experiment, in which moments
of the partially transposed density matrix are obtained from a
classical shadow involving global random unitaries available in
current experimental setups. In particular, we demonstrate that
periodic revivals of mixed state entanglement can be detected
from the conditions D3 and D4 (Eqs. (11) and (12)) requiring only a
small number of experimental runs.
We consider the Fibonacci chain with open boundary condi-

tions described by the Hamiltonian

H ¼ Ω

X

i

P i�1X iP iþ1 ; (42)

where P i ¼ 0j ii 0h j are local projectors. As can be seen from Eq.
(42), each spin undergoes independent Rabi-oscillations as long as
the neighbouring spins are in their ground state 0j i. This
constraint breaks the tensor product structure of the Hilbert
space (as it is the case in a lattice gauge theory54). The model
effectively resembles the experimental situation in52 if the
Rydberg atoms are driven close to resonance and neighbouring
atoms cannot be simultaneously in the state 1j i due to the
Rydberg blockade mechanism. The Hamiltonian (42) has recently
attracted great interest in the context of quantum many-body
scarring55,56. In particular, performing a quantum quench on
special unentangled product states results in long-lived periodic
revivals which have been attributed to the existence of quantum
scarred eigenstates in the many-body spectrum55.

In the following we study the conditions given in Eqs. (11)
and (12), when a quench is performed from a product state
that leads to kinetically constrained dynamics. To this end, the
initial state Ψ0j i ¼ 10j i�N=2

is time evolved with the Hamilto-
nian (42) up to t= 50/Ω. Figure 6a) shows the local Zi-
expectation values exhibiting long-lived persistent oscillations.
This striking departure from a thermalizing behaviour is also
reflected in the slow growth of entanglement entropy (Panel
b). We now analyse the time-resolved behaviour of mixed state
entanglement for a subsystem depicted in the inset of Fig. 6c).
The revivals in the negativity indicate that spins in the
subsystem get periodically entangled and disentangled with
each other. Interestingly, the p3-PPT condition is unable to
detect the revivals, while D3 yields positive values at the first 3
peaks in the negativity. At later times, the D3 fails to detect the
entanglement present in the system, but this entanglement is
still captured by D4.
Finally, we investigate the required number of experimental

runs in order to measure the conditions up to the given error
bar. The classical shadow is constructed by sampling bit strings
from the quantum state after applying a global random unitary
on subsystem A. At each point in Fig. 6c), we collect 5000-bit
strings in different random basis. Such global random unitaries
in Rydberg systems can be implemented via random quenches
with local disorder potentials57. The entire estimation of the
conditions is repeated 20 times in order to obtain statistical
uncertainties. Note that statistical covariances among the
measured moments trðρΓÞ

n
can give rise to nonuniform sizes

for the error bars. In Fig. 6c) we depict the 2σ error bars,
showing that entanglement can be detected with a moderate
experimental effort.
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Fig. 5 Entanglement conditions on the ground state of XXZ model. With X 2 ½D3;D
opt
3 ; Stieltjes5; p

2
2 � p3p1;N� we denote the conditions

computed on ρA and with X(1) the ones on ρA(q= 1). Chain length L= 14, subsystem length ℓ= 10. We consider in a)-b) a connected
subsystem A of length ℓ at the center of the chain; in c)-d) a disjoint interval A consisting of ℓ/2 sites at the beginning and ℓ/2 sites at the end
of the chain. We set the sign of the inequalities such that a positive value indicates the violation of a PPT condition, and thus the presence of
entanglement. To compare data of different magnitude we multiply the Stieltjes5 condition by 102 in a), 105 in b), 104 in c), 105 in d).
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DISCUSSION

The study of entanglement has a long and prominent history in a
variety of disciplines. And with the advent of serious quantum
technologies, reliable entanglement generation is more important
than ever. This work provides a principled approach to reliably
detect bipartite entanglement between subsystem A and sub-
system B. We have presented a set of inequality conditions Dk (1⩽
k⩽ 2∣AB∣). Each Dk is an inequality that involves the first k moments
of the partially transposed density operator. Violation of a single
inequality implies that the underlying density operator cannot
have a PSD partial transpose. This in turn implies that the state
must be entangled. Conversely, if the underlying state is not PPT,
then, there must exist at least one Dk that is violated. This
motivates a sequence of one-sided entanglement tests. Start with
D3 – the lowest non-trivial condition – and check whether it is
violated. If this is the case, we are done. If not, we move on to the
next higher condition (D4) and repeat until we find a violation. For
states having an extensive conserved quantity (such as total
magnetization, in the case of spin systems), both the density
matrix and its partial transpose have a block-diagonal structure48.
In this case, it is advisable to apply these conditions directly to
individual symmetry sectors of the partial transpose. The resulting
sequence of symmetry-resolved conditions is stronger in the
sense that lower-order moments (of blocks of the partial
transpose) suffice to detect entanglement. Importantly, this
approach is not only conceptually sound, but also tractable from
an experimental perspective. The classical shadows formalism24

allows for reliably estimating moments of the partial transpose
from randomized single-qubit measurements. We demonstrated
how to include the experimentally relevant situation of non-
identical (however independent) copies in the analysis and

derived error bounds and confidence intervals for D2, with a
natural extension to quantities involving higher-order moments.
Empirical evaluations complement our theoretical findings.
Applications to several theoretical models, as well as experimental
data, demonstrate both tractability and viability of our approach.
We are confident that this work opens up several interesting

future research directions. Firstly, the sequence of Dk’s is designed
to detect bipartite entanglement in a reliable and experimentally
accessible fashion. A natural next step is to try to extend similar
ideas to multipartite entanglement detection, e.g. using
non–linear entanglement witnesses 58,59. Secondly, the complete
sequence of Dk’s is used to answer a binary question: is the partial
transpose positive or not? Entanglement measures, like the
negativity, address entanglement in a quantitative fashion, but
are also harder to estimate. Is it possible to use moments (or other
density matrix functionals) to define entanglement measures that
are experimentally tractable? The statistical analysis of the
estimation procedure is also far from complete. We have shown
that independence between the states that are produced in each
iteration of an experiment is enough to derive statistically sound
confidence intervals for estimating matrix moments with classical
shadows. This addresses the practically relevant case of drifting
sources, but further extensions to correlated states would also be
appealing. In this context, the quantum de Finetti theorem seems
highly relevant. In future work, we will also investigate how
importance sampling60,61 and/or derandomization24,62 can further
improve moment estimation based on classical shadows. Finally,
another promising direction of research would be to try to detect
and characterize phase transitions in quantum mechanical
Hamiltonians at finite (non-zero) temperatures. Quantum phase
transitions at zero temperature originate from quantum fluctua-
tions, whereas quantum phase transitions at finite temperature
are due to thermal fluctuations. Following ref. 63, quantum phase
transitions at finite temperature can be studied using negativity. It
would be interesting to investigate whether low-order PT
moments, intimately related to the negativity, can also be used
to this end.

Note

While completing the writing of the present work, we became
aware of a work by Yu et al.36, in which similar questions have
been addressed.

METHODS

Descartes’ rule of signs

Let A be a Hermitian matrix of dimension d. Its eigenvalues λ1,…, λd are the
roots of the characteristic polynomial

PðtÞ ¼ det A� t 1ð Þ ¼
Yd

i¼1

ðλi � tÞ: (43)

For convenience, let us now consider the polynomial P(− t), which
effectively replaces the positive eigenvalues of A by negative ones and vice
versa. The coefficients of this polynomial can be expressed using the
elementary symmetric polynomials in its roots, ei(λ1,…, λd), defined as

eiðλ1; ¼ ; λdÞ ¼
X

1 ⩽ j1<���<ji ⩽ d

λj1 ¼ λji ; (44)

for i= 1,…, d and with e0(λ1,…, λd)= 1. This yields

Pð�tÞ ¼
Xd

i¼0

eiðλ1; ¼ ; λdÞ t
d�i : (45)

For a polynomial with real roots (as it is the case here), Descartes’ rule of
sign states that the number of positive roots is given by the number of
sign changes between consecutive elements in the ordered list of its non-
zero coefficients (see ref. 64 and references therein). The matrix A is PSD iff
P(− t) has only negative roots, which by Descartes’ rule is the case iff there

Fig. 6 Entanglement detection in quench dynamics of a kineti-
cally constrained Rydberg chain (42). a Coherent oscillations of the
Zi-expectation values in a quench with an 18-site Fibonacci chain
from a staggered initial state: Ψ0j i ¼ 1010¼j i. b Von Neumann
entropy of half partition of the chain as a function of time if a global
quench is performed on 2 different initial states. c Entanglement
detection in a subsystem of 5 spins (corresponding to the red dots
in the inset), with partial transpose taken with respect to the first
three. All plotted curves are tuned so that positive values indicate
entanglement. The revivals in the negativity indicate periodic
entangling and disentangling of spins within the subsystem. The
goblal p3− PPT condition is unable to detect entanglement in the
entire time window in contrast to the D3 and D4 conditions. The
points are obtained from a classical shadow consisting of 5000
global random unitaries. Error bars are obtained by repeating the
procedure 20 times and estimating the standard error.
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is no sign change in the ordered list of its non-zero coefficients, i.e., iff ei(λ1,
…, λd)⩾ 0 for all i= 1,…, d, since e0(λ1,…, λd)= 1.

Stieltjes moment problem

Given a sequence of moments, ðmnÞ
d
n¼0 , the (truncated) Stieltjes moment

problem consists in finding necessary and sufficient conditions for the
existence of a measure μ on the half-line [0, ∞) such that

mn ¼

Z 1

0

xndμðxÞ; 8n 2 f0; ¼ ; dg: (46)

If such a measure exists, one may wonder whether it is unique or not. For
our purposes, it will be enough to discuss only its existence. Defining the
matrices

AðnÞ ¼

m0 m1 m2 � � � mn

m1 m2 m3 � � � mnþ1

m2 m3 m4 � � � mnþ2

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

mn mnþ1 mnþ2 � � � m2n

0

BBBBBBB@

1

CCCCCCCA

(47)

and

BðnÞ ¼

m1 m2 m3 � � � mnþ1

m2 m3 m4 � � � mnþ2

m3 m4 m5 � � � mnþ3

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

mnþ1 mnþ2 mnþ3 � � � m2nþ1

0

BBBBBBB@

1

CCCCCCCA

; (48)

a solution to this problem can be stated as follows65. If d is odd – such that
d= 2k+ 1 for some integer k – there exists such a measure μ if and only if

AðkÞ ⩾ 0; BðkÞ ⩾ 0 and ðmk ; ¼ ;m2kþ1Þ
T 2 R½AðkÞ�; (49)

where, given a matrix M, the notation M⩾ 0 indicates that M is PSD and
RðMÞ denotes the range of M. If d is even – such that d= 2k for some
integer k – there exists such a measure μ if and only if

AðkÞ ⩾ 0; Bðk � 1Þ ⩾ 0 and

ðmkþ1; ¼ ;m2kÞ
T 2 R½Bðk � 1Þ�:

(50)

These solutions to the Stiltjes moment problem can be used to obtain
entanglement conditions. Given λ1,…, λr the eigenvalues of ρΓ for some
density matrix ρ, let us define the (atomic) eigenvalue distribution function

dμðxÞ ¼
Xr

i¼1

δðx � λiÞ ; (51)

where δ is the Dirac delta distribution. If ρ is PPT, this density function has
support on [0, ∞) and reproduces the moments of ρΓ, as

mn ¼

Z 1

0

xndμðxÞ ¼ pnðρ
ΓÞ: (52)

Therefore, according to the solution of the Stieltjes moment problem
mentioned above, the moments of any PPT state necessary satisfy either
condition (49) or (50), depending on the value of r. The violation of any of
these conditions for a set of PT moments thus reveals that the
corresponding state must be entangled. The range condition may require
the knowledge of all the moments to be checked, but the PSD conditions
can be broken into sets of simpler conditions. And some of them only
involve low order moments. Indeed, it is well known (see e.g.66) that a
matrix is PSD if and only if all its principal minors are non-negative. For
instance, looking at the principal minor at the intersection of the first two
rows and columns of B(k), one obtains the condition m1m3 � ðm2Þ

2
⩾ 0.

This condition is nothing but the p3-PPT condition (which we know is
useful to detect entanglement23). Extending this principal minor to the
third row and column, one gets another PPT condition:

det

m1 m2 m3

m2 m3 m4

m3 m4 m5

0

B@

1

CA ⩾ 0: (53)

We call this condition Stieltjes5. We illustrate in the Applications section
(c.f. Fig. 5) that this condition is also useful for entanglement detection.
Numerical computations suggest that this condition is a powerful tool to
detect the entanglement of random mixed states, in the sense that it

detects more random entangled states than either p
opt
3 or D5. Not all

Stieltjes moment conditions are this powerful, though. For instance, the
principal minor condition for the first two rows and columns of A(k) is
trivial.
Note that, because we consider here an atomic density function, we

have m0= r. We could naturally renormalize the density function so that
m0= 1, but it would imply a re-scaling of the first moment, i.e., the trace of
ρΓ would be 1/r. Since the partial transpose and the density function
cannot be normalized at the same time, we chose to keep normalized
partial transposes.

Optimizing conditions involving moments up to degree three

Given a PSD matrix A, with non-zero eigenvalues λ1,…, λr, for some
r 2 ½1;dimA�, consider the Lagrangian function

Lðλ1; ¼ ; λr ; C1;C2Þ ¼
Xr

i¼1

λ3i þ C1

Xr

i¼1

λ2i � p2

 !
þ C2

Xr

i¼1

λi � p1

 !
;

(54)

where C1 and C2 are Lagrange multipliers.
Here we show that, for all 1⩽r⩽ dimA, the stationary points (λ1,…, λr) of

the Lagrangian function (54) are such that the variables λi can take at most
two distinct values. These stationary points, for which the derivatives of the
Lagrangian (54) with respect to each variable vanish, satisfy the set of
equations

3λ2i þ 2C1λi þ C2 ¼ 0 ; i ¼ 1; ¼ ; r (55)

Xr

i¼1

λ2i ¼ p2 ; (56)

Xr

i¼1

λi ¼ p1 : (57)

We first sum up Eq. (55) for all values of i and then insert Eqs.(56) and (57)
into it. This yields

C2 ¼
�2C1p1 � 3p2

r
: (58)

Inserting this relation into Eq. (55) and considering this equation for two
distinct values of i, say 1 and k ≠ 1, one can eliminate the variable C1 to get
a relation between λ1 and λk. After some algebra, one finds

λk ¼ λ1 or λk ¼
λ1p1 � p2
λ1r � p1

: (59)

Since this argument holds for any k ≠ 1, it must hold that the eigenvalues λi
are either all equal or can only take two distinct values. In the first case, in
which all the eigenvalues are equal, one obtains the isolated points (p2, p3)
= (1/r, 1/r2) in Fig. 2 in the main text. In the second case, the rank r PSD
matrices corresponding to the stationary points of the Lagrangian (54)
have a spectrum with ra degenerate eigenvalues λa and r− ra eigenvalues
λb. Assuming, without loss of generality, λa > λb, one can show that the
minimal value of the third moment is obtained when ra= r− 1.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Received: 31 March 2021; Accepted: 8 September 2021;

REFERENCES

1. Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX

Quantum 1, 020101 (2020).

2. Preskill, J. Quantum computing in the nisq era and beyond. Quantum 2, 79

(2018).

3. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical

Physics in the United States (The National Academies Press, 2020).

4. Eisert, J. et al. Quantum certification and benchmarking. Nat. Rev. Phys. 2,

382–390 (2020).

A. Neven et al.

10

npj Quantum Information (2021)   152 Published in partnership with The University of New South Wales



5. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states:

necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996).

6. Terhal, B. M. Bell inequalities and the separability criterion. Phys. Lett. A 271, 319

(2000).

7. Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from

theory to experiment. Nat. Rev. Phys. 1, 72 (2019).

8. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entangle-

ment. Rev. Mod. Phys. 81, 865–942 (2009).

9. Gühne, O. & Tòth, G. Entanglement detection. Phys. Rep. 474, 1 (2009).

10. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems.

Rev. Mod. Phys. 80, 517–576 (2008).

11. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413

(1996).

12. Życzkowski, K., Horodecki, P., Sanpera, A. & Lewenstein, M. Volume of the set of

separable states. Phys. Rev. A 58, 883–892 (1998).

13. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65,

032314 (2002).

14. Plenio, M. B. Logarithmic negativity: A full entanglement monotone that is not

convex. Phys. Rev. Lett. 95, 090503 (2005).

15. Calabrese, P., Cardy, J. & Tonni, E. Entanglement negativity in quantum field

theory. Phys. Rev. Lett. 109, 130502 (2012).

16. Calabrese, P., Cardy, J. & Tonni, E. Entanglement negativity in extended systems: a

field theoretical approach. J. Stat. Mech. 2013, P02008 (2013).

17. Castelnovo, C. Negativity and topological order in the toric code. Phys. Rev. A 88,

042319 (2013).

18. Eisler, V. & Zimborás, Z. Entanglement negativity in the harmonic chain out of

equilibrium. New J. Phys. 16, 123020 (2014).

19. Wen, X., Chang, P.-Y. & Ryu, S. Topological entanglement negativity in chern-

simons theories. J. High Energ. Phys. 2016, 12 (2016).

20. Ruggiero, P., Alba, V. & Calabrese, P. Entanglement negativity in random spin

chains. Phys. Rev. B 94, 035152 (2016).

21. Blondeau-Fournier, O., Castro-Alvaredo, O. A. & Doyon, B. Universal scaling of the

logarithmic negativity in massive quantum field theory. J. Phys. A: Math. Theor.

49, 125401 (2016).

22. Ruggiero, P., Alba, V. & Calabrese, P. Negativity spectrum of one-dimensional

conformal field theories. Phys. Rev. B 94, 195121 (2016).

23. Elben, A. et al. Mixed-state entanglement from local randomized measurements.

Phys. Rev. Lett. 125, 200501 (2020).

24. Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum

system from very few measurements. Nat. Phys. 16, 1050 (2020).

25. Van Enk, S. J. & Beenakker, C. W. Measuring Trρn on single copies of ρ using

random measurements. Phys. Rev. Lett. 108, 110503 (2012).

26. Elben, A., Vermersch, B., Dalmonte, M., Cirac, J. I. & Zoller, P. Rényi entropies from

random quenches in atomic hubbard and spin models. Phys. Rev. Lett. 120,

050406 (2018).

27. Elben, A., Vermersch, B., Roos, C. F. & Zoller, P. Statistical correlations between

locally randomized measurements: A toolbox for probing entanglement in many-

body quantum states. Phys. Rev. A 99, 052323 (2019).

28. Brydges, T. et al. Probing rényi entanglement entropy via randomized mea-

surements. Science 364, 260–263 (2019).

29. Knips, L. et al. Multipartite entanglement analysis from random correlations. npj

Quantum Inf 6, 51 (2020).

30. Ketterer, A., Wyderka, N. & Gühne, O. Characterizing multipartite entangle-

ment with moments of random correlations. Phys. Rev. Lett. 122, 120505

(2019).

31. Zhou, Y., Zeng, P. & Liu, Z. Single-copies estimation of entanglement negativity.

Phys. Rev. Lett. 125, 200502 (2020).

32. Ketterer, A., Wyderka, N. & Gühne, O. Entanglement characterization using

quantum designs. Quantum 4, 325 (2020).

33. Ketterer, A., Imai, S., Wyderka, N. & Gühne, O. Certifying multiparticle entangle-

ment with randomized measurements. https://arxiv.org/abs/2012.12176 (2020).

34. Vitale, V. et al. Symmetry-resolved dynamical purification in synthetic quantum

matter. https://arxiv.org/abs/2101.07814 (2021).

35. De Las Cuevas, G., Fritz, T. & Netzer, T. Optimal bounds on the positivity of a

matrix from a few moments. Commun. Math. Phys. 375, 105–126 (2020).

36. Yu, X.-D., Imai, S. & Gühne, O. Optimal entanglement certification from moments

of the partial transpose. Phys. Rev. Lett. 127, 060504 (2021).

37. Goldstein, M. & Sela, E. Symmetry-resolved entanglement in many-body systems.

Phys. Rev. Lett. 120, 200602 (2018).

38. Xavier, J. C., Alcaraz, F. C. & Sierra, G. Equipartition of the entanglement entropy.

Phys. Rev. B 98, 041106 (2018).

39. Feldman, N. & Goldstein, M. Dynamics of charge-resolved entanglement after a

local quench. Phys. Rev. B 100, 235146 (2019).

40. Bonsignori, R., Ruggiero, P. & Calabrese, P. Symmetry resolved entanglement in

free fermionic systems. J. Phys. A: Math. Theor. 52, 475302(23) (2019).

41. Tan, M. T. & Ryu, S. Particle number fluctuations, rényi entropy, and symmetry-

resolved entanglement entropy in a two-dimensional fermi gas from multi-

dimensional bosonization. Phys. Rev. B 101, 235169 (2020).

42. Fraenkel, S. & Goldstein, M. Symmetry resolved entanglement: exact results in 1d

and beyond. J. Stat. Mech. 2020, 033106 (2020).

43. Murciano, S., Giulio, G. D. & Calabrese, P. Symmetry resolved entanglement in

gapped integrable systems: a corner transfer matrix approach. SciPost Phys. 8, 46

(2020).

44. Azses, D. & Sela, E. Symmetry-resolved entanglement in symmetry-protected

topological phases. Phys. Rev. B 102, 235157 (2020).

45. Turkeshi, X., Ruggiero, P., Alba, V. & Calabrese, P. Entanglement equipartition in

critical random spin chains. Phys. Rev. B 102, 014455 (2020).

46. Murciano, S., Bonsignori, R. & Calabrese, P. Symmetry decomposition of negativity

of massless free fermions. SciPost Phys. 10, 111 (2021).

47. Parez, G., Bonsignori, R. & Calabrese, P. Quasiparticle dynamics of symmetry-

resolved entanglement after a quench: Examples of conformal field theories and

free fermions. Phys. Rev. B 103, L041104 (2021).

48. Cornfeld, E., Goldstein, M. & Sela, E. Imbalance entanglement: Symmetry

decomposition of negativity. Phys. Rev. A 98, 032302 (2018).

49. Chen, S., Yu, W., Zeng, P. & Flammia, S. T. Robust shadow estimation. PRX

Quantum 2, 030348 (2021).

50. Koh, D. E. & Grewal, S. Classical shadows with noise. https://arxiv.org/abs/

2011.11580 (2020).

51. Gogolin, A. O., Nersesyan, A. A. & Tsvelik, A. M. Bosonization and Strongly Corre-

lated Systems (Cambridge Univ. Press, Cambridge, 2004).

52. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator.

Nature 551, 579–584 (2017).

53. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quan-

tum simulator. Nature 595, 227 (2021).

54. Surace, F. M. et al. Lattice gauge theories and string dynamics in rydberg atom

quantum simulators. Phys. Rev. X 10, 021041 (2020).

55. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity

breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

56. Ho, W. W., Choi, S., Pichler, H. & Lukin, M. D. Periodic orbits, entanglement, and

quantum many-body scars in constrained models: Matrix product state approach.

Phys. Rev. Lett. 122, 040603 (2019).

57. Vermersch, B., Elben, A., Dalmonte, M., Cirac, J. I. & Zoller, P. Unitary n-designs via

random quenches in atomic hubbard and spin models: Application to the

measurement of rényi entropies. Phys. Rev. A 97, 023604 (2018).

58. Gühne, O. & Lütkenhaus, N. Nonlinear entanglement witnesses. Phys. Rev. Lett. 96,

170502 (2006).

59. Jungnitsch, B., Moroder, T. & Gühne, O. Taming multiparticle entanglement. Phys.

Rev. Lett. 106, 190502 (2011).

60. Hadfield, C., Bravyi, S., Raymond, R. & Mezzacapo, A. Measurements of quantum

hamiltonians with locally-biased classical shadows. https://arxiv.org/abs/

2006.15788 (2020).

61. Rath, A., van Bijnen, R., Elben, A., Zoller, P. & Vermersch, B. Importance sampling

of randomized measurements for probing entanglement. http://arxiv.org/abs/

2102.13524 (2021).

62. Huang, H.-Y., Kueng, R. & Preskill, J. Efficient estimation of Pauli observables by

derandomization. Phys. Rev. Lett. 127, 030503 (2021).

63. Lu, T.-C. & Grover, T. Structure of quantum entanglement at a finite temperature

critical point. Phys. Rev. Research 2, 043345 (2020).

64. Bensimhoun, M. Historical account and ultra-simple proofs of descartes’s rule of

signs, de gua, fourier, and budan’s rule. https://arxiv.org/abs/1309.6664 (2013).

65. Curto, R. E. & Fialkow, L. A. Recursiveness, positivity, and truncated moment

problems. Houston J. Math. 17, 603–635 (1991).

66. Meyer, C. D.Matrix Analysis and Applied Linear Algebra (Society for Industrial and

Applied Mathematics, 2000).

ACKNOWLEDGEMENTS

We would like to thank Ion Nechita for pointing out the Stieltjes moment problem to

us. J.C., B.K., and A.N. acknowledge financial support from the Austrian Science Fund

(FWF) stand-alone project: P32273-N27, the FWF: FG-5, and the SFB BeyondC. BV

acknowledges funding from the Austrian Science Foundation (FWF, P 32597 N), and

the French National Research Agency (ANR-20-CE47-0005, JCJC project QRand). The

work of MD and VV is partly supported by the ERC under grant number 758329

(AGEnTh), by the MIUR Programme FARE (MEPH), and has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant

agreement No. 817482 (Pasquans). P.C. acknowledges support from ERC under

Consolidator grant number 771536 (NEMO). C.K., A.E., and P.Z. acknowledge support

by European Union’s Horizon 2020 research and innovation programme under Grant

Agreement No. 817482 (Pasquans) and Simons Collaboration on Ultra-Quantum

Matter, which is a grant from the Simons Foundation (651440, P.Z.).

A. Neven et al.

11

Published in partnership with The University of New South Wales npj Quantum Information (2021)   152 

https://arxiv.org/abs/2012.12176
https://arxiv.org/abs/2101.07814
https://arxiv.org/abs/2011.11580
https://arxiv.org/abs/2011.11580
https://arxiv.org/abs/2006.15788
https://arxiv.org/abs/2006.15788
http://arxiv.org/abs/2102.13524
http://arxiv.org/abs/2102.13524
https://arxiv.org/abs/1309.6664


AUTHOR CONTRIBUTIONS

B.K., P.C., and P.Z. conceived the ideas behind this work. J.C., A.N., and B.V. developed

the theory for the partial transpose moment inequalities presented in this work. R.K.

developed the statistical analysis related to the classical shadow formalism in the

case of a drifting source. A.E., B.V., and M.D. developed the theory, performed the

numerical simulations and the analysis of the experimental data for the application to

quench dynamics. V.V. and M.D. performed the numerical simulations for the XXZ

spin chain. C.K. performed the numerical simulations for the Fibonacci chain. All

authors discussed the results and contributed to the writing of the final manuscript. J.

C. and A.N. contributed equally to this work.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41534-021-00487-y.

Correspondence and requests for materials should be addressed to Antoine Neven

or Jose Carrasco.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2021

A. Neven et al.

12

npj Quantum Information (2021)   152 Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-021-00487-y
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Symmetry-resolved entanglement detection using partial transpose moments
	Introduction
	Results
	Definitions and summary of results
	Entanglement detection from partial transpose moments
	Optimized condition for low-order moments

	Symmetry-resolved entanglement detection
	Classical shadows
	SR inequalities applied to states without symmetries

	Applications
	Entanglement detection in quench dynamics
	Experimental demonstration in a trapped-ion quantum simulator
	Entanglement detection in the ground state of the XXZ model
	Entanglement detection under constrained dynamics


	DISCUSSION
	Note

	METHODS
	Descartes&#x02019; rule of signs
	Stieltjes moment problem
	Optimizing conditions involving moments up to degree three

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


