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1 Introduction

Symmetries play a central role in physics and in our understanding of nature. They are
important guiding principle when formulating theories, their presence or absence or their
breaking have profound consequences on the physical properties of models and real-world
systems; last but not least symmetries often provide a larger view in the description of
the systems of interest. From a practical perspective, the presence of a symmetry usually
leads to some kind of simplifications. In particular, for a quantum system the operator
corresponding to the symmetry commutes with the Hamiltonian and hence the two oper-
ators have common eigenvectors or, in other words, the eigenstates of the system can be
characterised by quantum numbers associated with the symmetry operation. The idea of
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exploiting the additional structures imposed by symmetry for various physical objects is
very fruitful and has been recently extended to the study of entanglement too.

When a system is in a pure state, the bipartite entanglement of a subsystem A may be
quantified by the von Neumann entanglement entropy [1–4]. Denoting the reduced density
matrix (RDM) of the subsystem by ρA, the entanglement entropy is defined as

S = −TrρA ln ρA. (1.1)

Alternatively the Rényi entanglement entropies

Sn = 1
1− n lnTrρnA , (1.2)

also provide bipartite entanglement measures in pure states and are related to the von
Neumann one by taking the limit n→ 1.

The explicit idea of considering generally the internal structure if entanglement asso-
ciated with symmetry is rather recent [5–8]. In a symmetric state, the system’s density
matrix ρ commutes with the conserved charge Q̂ corresponding to the symmetry; if in
addition Q̂A, the restriction of Q̂ to this subsystem, satisfies

[ρA, Q̂A] = 0 , (1.3)

then the RDM ρA is block-diagonal with respect to the eigenspaces of Q̂A and, consequently,
the Rényi and von Neumann entropies can be decomposed according to the symmetry
sectors. Let us denote with P(qA) the projectors onto the eigenspace with eigenvalue qA.
The symmetry resolved partition functions can be defined as

Zn(qA) = Tr (ρnAP(qA)) , (1.4)

from which the symmetry resolved Rényi entropies Sn(qA) and the symmetry resolved von
Neumann entropy S(qA) can be naturally obtained as

Sn(qA) = 1
1− n ln

[Zn(qA)
Zn1 (qA)

]
, and S(qA) = − ∂

∂n

[Zn(qA)
Zn1 (qA)

]
n=1

, (1.5)

respectively. This way the total von Neumann entropy can be written as [9]

S =
∑
qA

p(qA)S(qA)−
∑
qA

p(qA) ln p(qA) = Sc + Sf , (1.6)

where p(qA) = Z1(qA) is the probability of finding qA as the outcome of a measurement of
Q̂A. The contribution Sc denotes the configurational entanglement entropy, which measures
the total entropy due to each charge sector (weighted with their probability) [7, 10] and Sf

denotes the fluctuation (or number) entanglement entropy, which instead takes into account
the entropy due to the fluctuations of the value of the charge in the subsystem A [7, 11, 12].
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The calculation of the symmetry resolved partition functions and entropies is generally
a difficult task; the usual way one proceeds includes the replica method and the computation
of the charged moments [6]

Zn(α) = Tr
(
ρnAe

iαQ̂A
)
. (1.7)

Considering quantum field theories (QFTs) a natural way of computing the Rényi entropies
for integer n is provided by the path-integral formalism: TrρnA corresponds to the partition
function on an n-sheeted Riemann surface Rn, which is obtained by joining cyclically the n
sheets along the region A [13–15]. It was recognised in [6] that the charged moments (1.7)
correspond, in the path integral language, to introducing an Aharonov-Bohm flux on one of
the sheets of Rn. An intuitive picture is given by imagining particles with a specific charge
eigenvalue moving from one level of Rn to the other until they return to their original
sheet [6]; if the charge within the subsystem is qA, the total acquired phase of a given
particle is then eiαqA as given by the term eiαQ̂A in eq. (1.7). Focusing on U(1) and ZN
discrete symmetries, the symmetry resolved partition functions can then be computed by
performing a continuous or a discrete Fourier transform in the charge space as [6]

Zn(qA) = Tr (ρnAP(qA)) =



ˆ π

−π

dα
2π Zn(α)e−iαqA , U(1) case,

1
N

N−1∑
α=0

Zn(α)e−i
2παqA
N , ZN case,

(1.8)

where α, qA = 0, . . . , N −1 in the ZN case. Symmetry resolved entropies have been studied
in field theories including conformal field theories (CFTs) [5, 6, 16–18] and the free Dirac
and complex boson field theories [19], in lattice systems such as spin chains and hopping
fermions/bosons [5, 16, 17, 20–25] and also in the contexts of higher dimensional [26, 27],
disordered systems [12, 28], and non-trivial topological phase [29, 30]. Finally we mention
that charged moments like those in eq. (1.7) have been independently studied in field
theoretical frameworks in several different circumstances [31–37].

In a path integral approach to quantum field theories (QFTs), the computation of
either TrρnA or TrρnAeiαQ̂A can equivalently proceed for an n-copy QFT, where specific
boundary conditions are prescribed for the fields φ1, . . . , φn corresponding to the different
copies. Crucially, in 1+1 dimensional relativistic QFTs, there exist local fields in the n-copy
theory that correspond to the boundary conditions imposed on the fundamental fields in
the path integral. These fields have been dubbed branch-point twist fields [14, 38]. The nth
Rényi entropy of an arbitrary spatial subsystem (i.e. consisting also of disjoint intervals)
is equivalent to a multi-point function of the branch-point twist fields in an n-copy theory.
Direct access to these fields is established in 2D CFT, where the scaling dimensions of these
fields are exactly known [14, 39, 40]. These dimensions directly provide the scaling of two-
points function, corresponding to a single interval for a generic CFT [14]. The behaviour of
four-point [41–47] and also higher functions [48] of these twist fields are known for special
CFTs. The main subject of this manuscript is however integrable quantum field theories
(IQFTs). In these theories, the form factor (FF) bootstrap allows for the calculation of
the matrix elements of the twist field [38, 49, 50]. Via the bootstrap, in principle, all
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matrix elements can be computed. However, the correlation functions of the fields at large
distances are usually well described by the first few members of the form factor series.
Such form factor bootstrap program has been used in IQFTs for the calculation of the
entanglement entropy in many different situations [51–66].

The symmetry resolved entropies in CFT can be obtained by composite branch-point
twist fields in essentially the same way as the conventional entropies [6]. The only price
to pay is the introduction of composite branch-point twist fields fusing the action of the
replicas and of the flux of charge (see below for the precise definition). These new compos-
ite branch-point twist fields have been identified for Luttinger liquids [6], for the SU(2)k
Wess-Zumino-Witten models [6], and for the Ising and ZN parafermion CFT [21]. Fur-
thermore, the existence and applicability of such composite twist fields have been recently
demonstrated for the free massive Dirac and complex boson QFT too [19]. These findings
suggest that in perturbed QFTs (corresponding to a relevant perturbation of a given CFT),
the off critical version of the composite branch-point twist field exists. We expect that in
IQFTs their form factors can be determined with the bootstrap program, similarly to the
usual branch-point twist fields [38, 49, 50].

This paper aims to initiate such a program for interacting IQFTs. In particular, we
introduce and discuss appropriate bootstrap equations for the composite branch-point twist
fields, find their first few solutions and compute the long-distance leading behaviour of the
symmetry resolved entropies (similar twist fields have been introduced in [53, 54] and for
non-unitary QFT [56, 57], but in a completely different context and with different aims).
For the sake of simplicity, here we consider the simplest integrable models, namely the
Ising field theory, which is equivalent to a free Majorana fermion QFT, and the sinh-
Gordon (ShG) model, which is a truly interacting QFT. Both models possess the discrete
Z2 symmetry. While from the point of view of IQFT techniques these models are indeed the
simplest possible ones, the resolution of their entanglement in terms of the Z2 symmetry
requires a careful treatment because of the lack of a conserved density (1.3). Integrable
QFTs with continuous symmetry present many more technicalities because of their richer
particle content and for the presence of non-diagonal scattering. Their analysis is still on
the way and will be eventually the subject of subsequent works.

The structure of this paper is as follows. In section 2 the FF approach for conventional
branch-point twist fields is briefly reviewed, focusing on the bootstrap equations and their
solution for the Ising and ShG models. In section 3, we show how the bootstrap equations
can be modified to obtain solutions for the modified branch-point twist fields corresponding
to a given symmetry resolution. For the Ising and ShG models, the two-particle FFs of the
Z2 branch-point twist fields are determined as well. Sections 4 and 5 are explicitly focused
on Ising and ShG models respectively, reporting also ∆-theorem [67] checks of the obtained
form factors; for the Ising model the even particle-number FFs are expressed in terms of
a Pfaffian involving the two-particle matrix elements. Section 6 reports general results
for Z2 symmetry resolved entropies that can be deduced from the IQFT structure. The
leading and sub-leading contributions of the symmetry resolved entanglement are explicitly
calculated in section 7 for the paramagnetic ground state of the Ising model. We conclude in
section 8, which is followed by the appendices containing the determination of the vacuum
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expectation value (VEV) of the Ising Z2 branch-point twist field (appendix A) and some
auxiliary calculations.

2 Form factors of the branch-point twist fields in integrable models

Before presenting our results and discussing the determination of the form factors of mod-
ified branch-point twist fields, it is instructive to give a brief overview of some basic ingre-
dients of IQFTs and in particular on form factors of the conventional branch-point twist
fields. Here we mostly follow the logic of ref. [38] and present some of its results with an
emphasis on the bootstrap equation.

Form factors (FF) are matrix elements of (semi-)local operators O(x, t) between the
vacuum and asymptotic states, i.e.,

FOα1,...,αn(ϑ1, . . . , ϑn) = 〈0|O(0, 0)|ϑ1, . . . ϑn〉α1,...,αn . (2.1)

In massive field theories, the asymptotic states correspond to multi-particle excitations,
with dispersion relation (E, p) = (mαi coshϑ,mαi sinhϑ), where αi indicates the particle
species. In such models, any multi-particle state can be constructed from vacuum state by
means of the particle creation operators A†αi(ϑ) by

|ϑ1, ϑ2, . . . , ϑn〉 = A†α1(ϑ1)A†α2(ϑ2) . . . .A†αn(ϑn)|0〉 , (2.2)

where the operator A†αi(ϑ) creates a particle of species αi with rapidity ϑ and |0〉 is the
vacuum state of the theory. In an IQFT with factorized scattering, the creation and
annihilation operators A†αi(ϑ) and Aαi(ϑ) satisfy the Zamolodchikov-Faddeev (ZF) algebra

A†αi(ϑi)A
†
αj (ϑj) = Sαi,αj (ϑi − ϑj)A†αj (ϑj)A

†
αi(ϑi) ,

Aαi(ϑi)Aαj (ϑj) = Sαi,αj (ϑi − ϑj)Aαj (ϑj)Aαi(ϑi) ,
Aαi(ϑi)A†αj (ϑj) = Sαi,αj (ϑj − ϑi)A†αj (ϑj)Aαi(ϑi) + δαi,αj2πδ(ϑi − ϑj), (2.3)

where Sαi,αj (ϑi − ϑj) are the two-particle S-matrices of the theory.
Our primary interest now is an n-copy IQFT and the corresponding branch-point twist

fields. For simplicity we assume that there is only one particle in the original theory. Then
the scattering between the particles of different and of the same copies is described by

Si,j(ϑ) = 1, i, j = 1, . . . , n and i 6= j,

Si,i(ϑ) = S(ϑ), i = 1, . . . , n,
(2.4)

and the branch-point twist fields are related to the symmetry σΨi = Ψi+1, where n+ i ≡ i.
The insertion of a twist field T (or Tn) in a correlation function can be summarised as

Ψi(y)T (x) = T (x)Ψi+1(y) x > y,

Ψi(y)T (x) = T (x)Ψi(y) x < y,
(2.5)
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and we can also define T̃ , whose action is

Ψi(y)T̃ (x) = T̃ (x)Ψi−1(y) x > y,

Ψi(y)T̃ (x) = T̃ (x)Ψi(y) x < y.
(2.6)

The form factors of the branch-point twist fields satisfy the following relations, which
are simple modifications of the form factor bootstrap equations [68–70]

F
T |...µi,µi+1...
k (. . .ϑi,ϑi+1, . . .) =Sµi,µi+1(ϑi,i+1)F T |...µi+1,µi...

k (. . .ϑi+1,ϑi, . . .), (2.7)

F
T |µ1,µ2,...,µk
k (ϑ1+2πi,ϑ2, . . . ,ϑk) =F

T |µ2,...,µk,µ̂1
k (ϑ2, . . . ,ϑn,ϑ1), (2.8)

−i Res
ϑ′0=ϑ0+iπ

F
T |µ,µ,µ1,µ2,...,µk
k+2 (ϑ′0,ϑ0,ϑ1,ϑ2, . . . ,ϑk) =F

T |µ1,µ2,...,µk
k (ϑ1,ϑ2, . . . ,ϑk), (2.9)

−i Res
ϑ′0=ϑ0+iπ

F
T |µ,µ̂,µ1,µ2,...,µk
k+2 (ϑ′0,ϑ0,ϑ1,ϑ2, . . . ,ϑk) =−

k∏
i=1

Sµ̂,µi(ϑ0i)F T |µ1,µ2,...,µk
k (ϑ1,ϑ2, . . . ,ϑk),

where µ refers to the replica index of the particle, ϑij = ϑi−ϑj and µ̂ = µ+ 1. In addition
relativistic invariance implies

F
T |µ1,µ2,...,µk
k (ϑ1 + Λ, . . . , ϑk + Λ) = esΛF

T |µ1,µ2,...,µk
k (ϑ1, . . . , ϑk), (2.10)

where s is the Lorentz spin of the operator, which is zero for the branch-point twist fields.
As the theories we consider in this paper have no bound states, eqs. (2.7)–(2.9) and (2.10)
give all the constraints for form factors of the branch-point twist fields.

As usual in this context, the so-called minimal form factor F T |j,kmin (ϑ, n) is defined as
the solution of the first two equations, eqs. (2.7) and (2.8). That is, the minimal form
factor satisfies

F
T |k,j
min (ϑ, n) = F

T |j,k
min (−ϑ, n)Sk,j(ϑ) = F

T |j,k+1
min (2πi− ϑ, n) . (2.11)

It is then easy to show that

F
T |i,i+k
min (ϑ, n) = F

T |j,j+k
min (ϑ, n) ∀i, j, k

F
T |1,j
min (ϑ, n) = F

T |1,1
min (2πi(j − 1)− ϑ, n) ∀j 6= 1 ,

(2.12)

from which it follows that

F
T |j,k
min (ϑ, n) =

F
T |1,1
min (2πi(k − j)− ϑ, n) if k > j,

F
T |1,1
min (2πi(j − k) + ϑ, n) otherwise,

(2.13)

and hence the only independent quantity is F T |1,1min (ϑ, n). We can use eq. (2.12) to determine
it, writing

F
T |1,1
min (ϑ, n) = F

T |1,1
min (−ϑ, n)S(ϑ) = F

T |1,1
min (−ϑ+ 2πin, n) . (2.14)

The solution of the last equation is easily obtained by noticing that if it exists a function
f11(ϑ) satisfying

f11(ϑ) = f11(−ϑ)S(nϑ) = f11(−ϑ+ 2πi) , (2.15)
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then
F
T |1,1
min (ϑ, n) = f11(ϑ/n) . (2.16)

Eq. (2.15) is, nevertheless, the standard equation for minimal form factors of conven-
tional local operators, but with an S-matrix S(nϑ) instead of S(ϑ). When S(ϑ) can be
parametrised as

S(ϑ) = exp
[ˆ ∞

0

dt
t
g(t) sinh tϑ

iπ

]
, (2.17)

with some function g(t), the minimal FF is

f11(ϑ) = N exp
[ˆ ∞

0

dt
t

g(t)
sinhnt sin2

(
itn

2

(
1 + iϑ

π

))]
, (2.18)

where the normalisation N ensures that f11(±∞) = 1 and thus

F
T |1,1
min (ϑ, n) = N exp

[ˆ ∞
0

dt
t sinhntg(t) sin2

(
it

2

(
n+ iϑ

π

))]
. (2.19)

The minimal form factors are very useful to obtain all form factors with particle number
k ≥ 2 as they can be used as building blocks, hence simplifying the solution of the bootstrap
equations. The zero and one-particle form factors have to be determined by other means.
The most important quantities are usually two-particle form factors. It can be verified that
the two-particle form factors for the branch-point twist field, satisfying also the kinematic
poles axioms, read [38]

F
T |j,k
2 (ϑ, n) =

〈Tn〉 sin π
n

2n sinh
(
iπ(2(j−k)−1)+ϑ

2n

)
sinh

(
iπ(2(k−j)−1)−ϑ

2n

) F T |j,kmin (ϑ, n)
F
T |1,1
min (iπ, n)

, (2.20)

where 〈Tn〉 = F T0 is the vacuum expectation value (VEV) of T . Furthermore, relativistic
invariance implies that F T |j,k2 (ϑ1, ϑ2, n) depends only on the rapidity difference ϑ1 − ϑ2,
justifying writing F T |j,k2 (ϑ1−ϑ2, n) or merely F T |j,k2 (ϑ, n). It straightforward to show that
for T̂ we have

F
T |j,k
2 (ϑ, n) = F

T̂ |n−j,n−k
2 (ϑ, n) . (2.21)

2.1 Branch-point twist field form factors in the Ising model

The Ising field theory is surely the easiest integrable field theory. It has one massive particle
(a free Majorana fermion) and the simple S-matrix

SIsing(ϑ) = −1, (2.22)

and consequently
F
T |1,1
min (ϑ, n) = −i sinh ϑ

2n . (2.23)

For this model, it has been shown that the FFs of the branch-point twist fields are only
non-vanishing for even particle number [38, 50]. Moreover, the FFs for any even n can be
written as a Pfaffain of the two-particle FF [51].
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2.2 Branch-point twist field form factors in the sinh-Gordon model

The sinh-Gordon model, with Euclidean action

S =
ˆ

d2x

{
1
2 [∂φ(x)]2 + µ2

g2 : cosh [gφ(x)] :
}
, (2.24)

is arguably the simplest interacting integrable relativistic QFT and for this reason it is
often taken as a reference point and has been the subject of an intense research activity
since many decades, see, e.g., [71–80]. Furthermore, it recently became also experimentally
relevant because its non-relativistic limit is the Lieb-Liniger Bose gas [81, 82], a paradig-
matic model for 1D ultracold gases [83]. This limit, joined with the FF program, allowed
for the calculation of many quantities that were too difficult, or even impossible, by other
means [84–90].

The spectrum of the model consists of multi-particle states of a single massive bosonic
particle. The two-particle S-matrix is given by [72]

SShG(θ) =
tanh 1

2

(
ϑ− iπB2

)
tanh 1

2

(
ϑ+ iπB2

) , (2.25)

where B is defined as
B(g) = 2g2

8π + g2 . (2.26)

For the ShG model, the solutions of the system (2.7)–(2.10) have been constructed
in [73, 74, 91].

The function g(t) entering in the parametrisation of the S-matrix (2.17) can be iden-
tified with

g(t) =
8 sinh

(
tB
4

)
sinh

(
t
2

(
1− B

2

))
sinh

(
t
2
)

sinh t , (2.27)

from which

F
T |1,1
min,ShG(ϑ, n) = exp

−2
ˆ ∞

0

dt
t

sinh
(
tB
4

)
sinh

(
t
4 (2−B)

)
sinh (nt) cosh

(
t
2
) cosh

(
t

(
n+ iϑ

π

)) . (2.28)

It is possible to write down an alternative representation of F T |1,1min,ShG(ϑ, n) in terms of
infinite products [38]. For an efficient numerical computation the following mixed repre-
sentation is more useful

F
T |1,1
min,ShG(ϑ,n) =

m∏
k=0

Γ
(

2k+2n+ iθ
π

+2
2n

)
Γ
(
B+4k+2n−2(n+ iθ

π )
4n

)
Γ
(

2−B+4k+2n−2(n+ iθ
π )

4n

)
Γ
(

2k+2n+ iθ
π

2n

)
Γ
(
B+4k+2n−2(n+ iθ

π )+2
4n

)
Γ
(

4−B+4k+2n−2(n+ iθ
π )

4n

)×

×
Γ
(

2k− iθ
π

+2
2n

)
Γ
(

2−B+4k+2n+2(n+ iθ
π )

4n

)
Γ
(
B+4k+2n+2(n+ iθ

π )
4n

)
Γ
(

2k− iθ
π

2n

)
Γ
(

4−B+4k+2n+2(n+ iθ
π )

4n

)
Γ
(

2+B+4k+2n+2(n+ iθ
π )

4n

)
×

×exp

−4
ˆ ∞

0

dt
t

sinh
(
Bt
4

)
sinh

(
t
4(2−B)

)
cosh

(
t
(
n+ iθ

π

))
e−

t
2 e−t(2m+2)

(e−t+1)sinh(nt)

 .
(2.29)
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Similarly to the Ising model, the FFs of the ShG branch-point twist fields are only non-
vanishing for even particle number [38, 50].

A very important relation between the ShG and Ising models is that the S-matrix and
certain form factors of the ShG theory collapse to that of the Ising model, when the limit
B = 1 + i 2

πΘ0 with Θ0 → ∞ is taken [75]. It can be checked that both F
T |1,1
min,ShG(ϑ, n)

and F T |j,k2,ShG(ϑ, n) in this limit collapse to the corresponding quantities in Ising model. This
limit will be an important guide for the case of the composite branch-point twist fields
discussed below.

3 Form factors of the composite branch-point twist fields for Z2
symmetry in integrable models

After the introduction of the bootstrap equations for the FFs of the branch-point twist field,
we now show how these equations can be naturally modified to obtain the corresponding
quantities of the composite branch-point twist fields. At this point, of course, the existence
of such fields is not strictly justified, therefore the formal solutions of the modified bootstrap
equations will be subject to subsequent cross-checks.

To achieve our goal, first of all, we define the semi-local (or mutual locality) index
e2πiγ of an operator O with respect to the interpolating field φ via the condition

O(x, t)φ(y, t′) = ei2πγφ(y, t′)O(x, t), (3.1)

for space-like separated space-time points. Local operators correspond to ei2πγ = 1, while
fields with ei2πγ 6= 1 are called semi-local. It is natural to assume that the phase eiα

corresponding to the flux can be related with the mutual locality index appearing in the
bootstrap equation. This assumption can be based on the intuitive picture associated with
the insertion of the Aharonov-Bohm flux on one of the Riemann sheets. In this picture, the
flux is carried by the particles of the theory, but eq. (3.1) is just an equivalent rephrasing of
this idea because the interpolating field is associated with creating/annihilating particles.

To be more precise about the connection between ei2πγ and eiα, let us consider briefly
a U(1) symmetry for which α is a continuous parameter. From the point of view of the
bootstrap equations, it is more convenient not to favour any of the Riemann sheets by
adding the flux to it, but rather to divide the flux and introducing it on all sheets. This
procedure corresponds to add a phase eiα/n on each sheet and therefore the locality factor
ei2πγ and eiα/n must be equal. The further elaboration of the U(1) symmetry will be the
subject of a subsequent work because, in this case, the particle content of the IQFT is richer
and allows also for non-diagonal scattering leading to more complicated form factors. Here,
we focus on the simpler, yet not trivial, analysis of the Z2 symmetry in models with only
one particle species.

However, for the Z2 symmetry (and more generally for discrete symmetries) there are
two subtleties that we cannot avoid mentioning. The first one is rather fundamental: for
discrete symmetries Noether’s theorem does not guarantee the existence of a conserved
density, hence it is not a priori obvious if the reduced density matrix commutes with the
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symmetry operator. This problem will be discussed in the following sections for the specific
cases of the Ising and ShG QFT. The other issue is that the phase is eiπ = −1 cannot be
divided as eiπ/n among the various sheets, because eiπ/n no longer corresponds to the Z2
symmetry of interest. This latter difficulty can be easily overcome by introducing the flux
corresponding to the phase eiπ = −1 on all sheets. This step is legitimate if the number
of sheets n is odd, as the overall phase acquired by a hypothetical particle winded through
all sheets is still (−1)n = −1. Our argument implies that the composite branch-point
twist fields associated with the Z2 symmetry in the Ising and ShG models is a semi-local
operator with respect to the fundamental field, with locality index e2πiγ = −1. Specialising
the bootstrap equations of a generic semi-local twist field

F
T |...µi,µi+1...
k (. . .ϑi,ϑi+1, . . .) =Sµi,µi+1(ϑi,i+1)F T |...µi+1,µi...

k (. . .ϑi+1,ϑi, . . .), (3.2)

F
T |µ1,µ2,...,µk
k (ϑ1+2πi,ϑ2, . . . ,ϑk) = e2πiγF

T |µ2,...,µk,µ̂1
k (ϑ2, . . . ,ϑn,ϑ1), (3.3)

−i Res
ϑ′=ϑ+iπ

F
T |µ,µ,µ1,µ2,...,µk
k+2 (ϑ′0,ϑ0,ϑ1,ϑ2, . . . ,ϑk) =F

T |µ1,µ2,...,µk
k (ϑ1,ϑ2, . . . ,ϑk), (3.4)

−i Res
ϑ′=ϑ+iπ

F
T |µ,µ̂,µ1,...,µk
k+2 (ϑ′0,ϑ0,ϑ1,ϑ2, . . . ,ϑk) =−e2πiγ∏Sµ̂,µi(ϑ0i)F T |µ1,...,µk

k (ϑ1,ϑ2, . . . ,ϑk),

to the Z2 case, we have

F
T D|...µi,µi+1...
k (. . .ϑi,ϑi+1, . . .) =Sµi,µi+1(ϑi,i+1)F T

D|...µi+1,µi...
k (. . .ϑi+1,ϑi, . . .), (3.5)

F
T D|µ1,µ2,...,µk
k (ϑ1+2πi,ϑ2, . . . ,ϑk) =−F T

D|µ2,...,µk,µ̂1
k (ϑ2, . . . ,ϑn,ϑ1), (3.6)

−i Res
ϑ′0=ϑ0+iπ

F
T D|µ,µ,µ1,µ2,...,µk
k+2 (ϑ′0,ϑ0,ϑ1,ϑ2, . . . ,ϑk) =F

T D|µ1,µ2,...,µk
k (ϑ1,ϑ2, . . . ,ϑk), (3.7)

−i Res
ϑ′0=ϑ0+iπ

F
T D|µ,µ̂,µ1,...,µk
k+2 (ϑ′0,ϑ0,ϑ1,ϑ2, . . . ,ϑk) =

∏
Sµ̂,µi(ϑ0i)F T

D|µ1,...,µk
k (ϑ1,ϑ2, . . . ,ϑk),

where T D denotes the composite branch-point twist field associated with the Z2 symmetry.
The obtained bootstrap equations are compatible with the following exchange relations

of the Z2 branch-point twist fields

Ψi(y)T D(x) = −T D(x)Ψi+1(y) x > y,

Ψi(y)T D(x) = T D(x)Ψi(y) x < y,
(3.8)

and

Ψi(y)T̃ D(x) = −T̃ D(x)Ψi−1(y) x > y,

Ψi(y)T̃ D(x) = T̃ D(x)Ψi(y) x < y ,
(3.9)

as well. These exchange relations can be inferred by regarding the Z2 branch-point twist
fields as the fusion of the conventional branch-point twist field associated with the Sn
permutation symmetry and disorder or Z2 twist field associated with the Z2 symmetry.
This alternative picture relying on the fusion of twist fields associated with symmetries is
also very useful and provides directly the UV dimensions of composite fields [53, 54] as we
shall se in the next sections.
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Having obtained the defining equations for the form factors, following the logic of
section 2, we can write

F
T D|k,j
min (ϑ, n) = F

T D|j,k
min (−ϑ, n)Sk,j(ϑ) = −F T

D|j,k+1
min (2πi− ϑ, n) , (3.10)

for the minimal form factor F T Dmin of the composite branch-point twist field T D. From this
we find

F
T D|i,i+k
min (ϑ, n) = F

T D|j,j+k
min (ϑ, n) ∀i, j, k,

F T
D1,j

min (ϑ, n) = (−1)(j−1)F
T D|1,1
min (2πi(j − 1)− ϑ, n) ∀j 6= 1,

(3.11)

and finally we get

F
T D|j,k
min (ϑ, n) = (−1)(k−j)

F
T D|1,1
min (2πi(k − j)− ϑ, n) if k > j,

F
T D|1,1
min (2πi(j − k) + ϑ, n) otherwise.

(3.12)

Akin to the previous case, the only independent quantity is F T
D|1,1

min (ϑ, n). We exploit
eq. (3.11) to write for odd n

F
T D|1,1
min (ϑ, n) = F

T D|1,1
min (−ϑ, n)S(ϑ) = −F T

D|1,1
min (−ϑ+ 2πin, n) . (3.13)

For even n the above equation is equal to that of F T |1,1min (ϑ, n), but our analysis is valid only
for odd n. The solution of F T

D|1,1
min can be obtained by introducing fD11(ϑ) as

F
T D|1,1
min (ϑ, n) = fD11(ϑ/n) , (3.14)

that satisfies
fD11(ϑ) = fD11(−ϑ)S(nϑ) = −fD11(−ϑ+ 2πi) . (3.15)

Luckily, fD11 can be easily obtained from f11 by multiplying the latter by an appropriately
chosen CDD factor, fCDD. Such a factor must obey

fCDD(ϑ) = fCDD(−ϑ) = −fCDD(−ϑ+ 2πi), (3.16)

guaranteeing that fD11(ϑ) = fCDD(ϑ)f11(ϑ) satisfies eq. (3.15). The correct choice for fCDD
turns out to be

fCDD(ϑ) = 2 cosh ϑ2 . (3.17)

It is easy to check that the ansatz (3.17) satisfies eq. (3.16), but it is not entirely trivial
that there is no further ambiguity for the CDD factor and that eq. (3.17) is the correct
choice for both the Ising and ShG models. Some tests of this statement are carried out in
the next sections for both models by studying the limit n→ 1 of the form factors F T

D|j,k
2

and by exploiting the ∆-theorem.
Putting the various pieces together, the minimal form factor of the composite branch-

point twist field is
F
T D|1,1
min (ϑ, n) = 2 cosh

( ϑ
2n
)
F
T |1,1
min (ϑ, n) . (3.18)
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Given this minimal form factor, it is easy to show that eq. (2.20) for two-particle form
factors is still valid, i.e.

F
T D|j,k
2 (ϑ, n) =

〈T Dn 〉 sin π
n

2n sinh
(
iπ(2(j−k)−1)+ϑ

2n

)
sinh

(
iπ(2(k−j)−1)−ϑ

2n

) F T D|j,kmin (ϑ, n)
F
T D|1,1
min (iπ, n)

, (3.19)

for odd n, where 〈T Dn 〉 = F T
D

0 is the vacuum expectation value of T D. Again, rela-
tivistic invariance implies that F T

D|j,k
2 (ϑ1, ϑ2, n) depends only on the rapidity difference

ϑ1 − ϑ2, thus we can write F T
D|j,k

2 (ϑ, n). It is easy to verify that eq. (3.19) satisfies the
axioms (3.5), (3.6) and (3.7). Analogously to eq. (2.21), we have for T̃ D

F
T D|j,k
2 (ϑ, n) = F

T̃ D|n−j,n−k
2 (ϑ, n) . (3.20)

4 Z2 branch-point twist field in the Ising model

This section is devoted to the composite branch-point twist field of the Ising model. Clearly,
the results for the FFs are interesting in their own right, but the Ising model provides also
several opportunities to test our results and some parts of the arguments on which our
derivation of the bootstrap equation relies. In particular, we can argue for the choice for
the locality index ei2πγ = −1 in the bootstrap equations and we can demonstrate the
existence of the spatial restriction of the Z2 symmetry. To do so, we borrow ideas from [6]
and use the lattice version of the Ising field theory with the Hamiltonian

H = −J
∑
i

(
σzi σ

z
i+1 + hσxi

)
, (4.1)

where σx/zi are the Pauli matrices. The conserved charge corresponding to the Z2 symmetry
is the fermion number parity P̂Q. Here Q̂ = Q̂A + Q̂Ā is the fermion number operator,
which is clearly additive, and Ā denotes the complement of the region A. Crucially, the
parity operator has eigenvalues 0 or 1 and the spacial restriction of this operator is also
additive in a mod 2 sense, i.e.,

P̂A + P̂Ā = P̂ mod 2 , (4.2)

where we introduced the shorthand P̂QA as P̂A.
An important quantity directly related to P̂ is (−1)Q̂. This quantity can be expressed

in several ways allowing for the computation of the symmetry resolved entropies in the
critical point of the Ising model [6] and in its off-critical, lattice version [21], serving as
valuable benchmark for our approach. Writing P̂ as

(−1)Q̂A =
∏
i∈A

σxi , (4.3)

and introducing the disorder operators µzi =
∏
i≤j σ

x
j and µxi = σzi σ

z
i+1 (satisfying the same

algebra of the Pauli matrices), we have

(−1)Q̂A =
∏
i∈A

σxi = µ1µ`, (4.4)
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when the region A is a single interval from site 1 to `. We recall that the disorder operator
exists in the continuum limit as well. From eq. (4.4) it is easy to confirm that the Z2
branch-point twist field is related to fusion of the usual branch-point twist field and the
disorder operator. This picture is confirmed explicitly at the critical point of the Ising
field theory [6], which corresponds to a conformal theory with central charge c = 1

2 . The
scaling dimension of µ is ∆µ = ∆̄µ = 1

16 and the symmetry resolved Rényi entropies for
and interval of length ` read [6]

Sn(PA) = `−(n−1/n)/12 1
2
(
1 + (−1)PA`−1/(4n)

)
+ . . . , (4.5)

where PA is either 0 or 1. The disorder field µ has the property of changing boundary
conditions from periodic to anti-periodic and vice versa. This property corresponds to the
locality index ei2πγ = −1 in the residue and cyclic permutation axioms of the bootstrap
equations for its form factors in the massive theory. The value of this index confirms more
rigorously that, for the Ising QFT, the Z2 branch-point twist field form factors are obtained
from eqs. (2.7), (2.8) and (2.9) with the insertion of ei2πγ = −1, resulting in eqs. (3.5), (3.6)
and (3.7). We recall that the bootstrap equations have physically meaningful solutions only
for odd n when

Tr
(
ρnA(−1)Q̂A

)
= Tr

(
ρnA(−1)nQ̂A

)
, (4.6)

i.e. when the flux can be inserted on each of the n copies.
The solutions for the bootstrap equations (3.5), (3.6) and (3.7) with locality index

ei2πγ = −1 for the Z2 branch-point twist field in the Ising model are easy to obtain. For
the minimal form factor we have

F
T D|1,1
min (ϑ, n) = −i sinh ϑ

n
, (4.7)

from which F T
D|j,k

2 is obtained by (3.19). As anticipated, and also confirmed later on in
this section, the Z2 branch-point twist field can be regarded as a fusion of the conventional
branch-point twist field and the Ising disorder operator (on the same lines of the composite
fields for non-unitary theories [56, 57]). In the off-critical theory, the FFs of both fields
are non-vanishing only for even particle numbers. It is therefore natural to expect that
F T

D

k is also vanishing for odd k. Nevertheless, even with the presence of FFs for odd
particle numbers, their knowledge would be not necessary for any of the considerations of
this paper [50] and, in fact, the VEV and the two-particle FFs encode all the physics we
are currently interested in.

The FFs for even particle number F T D2k with 2k ≥ 4 can be written as a Pfaffian of
the two-particle FF, similarly to the case of the conventional branch-point twist field. For
example, considering the bootstrap equations for particle numbers 2k = 4 and 6, it can
be directly verified that F T Dk indeed admits a Pfaffian representation. In particular, for
j1 ≥ j2 ≥ . . . ≥ j2k, one has

F
T D|j1,...j2k
2k Ising (ϑ1, . . . , ϑ2k, n) = 〈T Dn 〉Pf(W ) , (4.8)
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where W is a 2k × 2k anti-symmetric matrix with entries

Wlm =


F
TD |jl,jm
2 (ϑl−ϑm,n)

〈T Dn 〉
m > l,

(−1)δjl,jm+1 F
TD |jl,jm
2 (ϑl−ϑm,n)

〈T Dn 〉
m < l .

(4.9)

For general k, the Pfaffian structure (4.8) can be shown by induction, following exactly
the same lines of the proof for conventional branch-point twist fields [51]. If the ordering
of the indices ji is not the canonical one, using the exchange axiom (3.5) one can reshuffle
the particles and their rapidities to have j1 ≥ j2 ≥ . . . ≥ j2k so to apply (4.8). When the
order of particles with the same replica index is left unchanged, the reshuffling does not
introduce any ±1 factors.

Non-trivial checks of the solutions are provided by the limit for n → 1 and the ∆-
theorem [67]. For n→ 1, one expects to recover the form factors of the disorder operator;
in particular for the two-particle case we expect

FD2 (ϑ) = i〈µIsing〉 tanh ϑ2 , (4.10)

with 〈µIsing〉 denoting the vacuum expectation value of µIsing. The limit of the Z2 branch-
point twist field in the Ising model is

lim
j,k,n→1

F
T D|j,k
2 (ϑ, n) = lim

j,k,n→1

〈T Dn 〉 sin π
n

2n sinh
(
iπ(2(j−k)−1)+ϑ

2n

)
sinh

(
iπ(2(k−j)−1)−ϑ

2n

) F T D|j,kmin (ϑ, n)
F
T D|1,1
min (iπ, n)

= −〈T D1 〉
−i sinhϑ

− (1 + cosh ϑ) × lim
n→1

sin π
n

−i sinh
(
iπ
n

)
= 〈T D1 〉

i sinhϑ
1 + coshϑ = i〈T D1 〉 tanh ϑ2 , (4.11)

which equals (4.10) since 〈µIsing〉 = 〈T D1 〉 as shown in appendix A, where 〈T Dn 〉 is deter-
mined too. Since also the FFs of the Ising disorder operator can be cast in a Pfaffian form
relying on the two-particle FF, the match between the two-particle FFs implies that

lim
{ji},n→1

F
T D|j1,...,j2k
2k (ϑ1, . . . , ϑ2k, n) = Fµ2k(ϑ1, . . . , ϑ2k). (4.12)

The second test for the validity of the solution is given by the ∆-theorem sum rule [67].
The ∆-theorem states that if at some length scale R the theory can be described by a CFT,
then the difference of the conformal weight of an operator O and its conformal weight in
the infrared (IR) limit can be calculated as (if the integral converges)

D(R)−∆IR = − 1
4π〈O〉

ˆ
x2>R

d2x〈Θ(x)O(0)〉c, (4.13)

where Θ is the trace of the stress-energy tensor. Writing the spectral representation
of (4.13) in terms of form factors, we have

D(r)−∆IR = − 1
2 〈O〉

∞∑
n=1

ˆ dϑ1 . . . dϑn
(2π)nn!

e−rEn(1 + Enr)
m2E2

n

FΘ (ϑ1, . . . , ϑn)FO (ϑn, . . . , ϑ1) ,

(4.14)
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where m is a mass scale r = Rm and mEn are the n-particle energies. For the case of the
massive Ising model, the conformal weights in the IR limit are zero. Hence taking r = 0
in (4.14) gives the UV conformal dimension of the operator O as

∆UV = − 1
2 〈O〉

∞∑
k=1

ˆ dϑ1 . . . dϑk
(2π)kk! E−2

k m−2FΘ
k (ϑ1, . . . , ϑk)FOk (ϑk, . . . , ϑ1) . (4.15)

In the Ising field theory, as well as in its n-copy version, the field Θ has non-vanishing form
factors only in the two-particle sector, so the sum is terminated by the k = 2 contribution.
After easy manipulations, the same as in ref. [38] for the conventional branch-point twist
fields, eq. (4.15) for the Z2 branch-point twist field can be written as

∆T Dn = − n

32π2m2 〈T Dn 〉

ˆ
dϑF

Θ|1,1
2 (ϑ)F T

D|1,1
2 (ϑ, n)∗

cosh2 (ϑ/2)
, (4.16)

with
F

Θ|1,1
2 (ϑ) = −2πim2 sinh ϑ2 . (4.17)

We evaluated the integral in (4.16) numerically for many integer odd n using the
FF (3.19). We found that the numerical calculated integrals match perfectly the prediction
c

24
(
n− n−1)+ ∆

n [6, 53, 54] with c = 1
2 and ∆ = 1

16 for all the considered n. Such perfect
agreement is a strong evidence for the correcteness of the FF F

T D|1,1
2 (ϑ, n) in eq. (3.19).

5 Z2 branch-point twist field in the sinh-Gordon model

As shown in section 3, the solution of the bootstrap equations (3.5), (3.6) and (3.7) is
also possible for the ShG model. These equations include the locality factor ei2πγ = −1
and their solution differs from the FFs of the conventional branch-point twist fields by an
additional CDD factor (3.17) and a different sign prescription in (3.12). As seen in the
previous section, the corresponding solution for the Ising model can be associated with the
Z2 symmetry resolution of entropies. Nevertheless, the question of whether the symmetry
resolution is possible, i.e., some/any reduced density matrices commute with the operator
corresponding to the Z2 symmetry is a rather difficult one for the ShG model. In the
following, we present a series of arguments to claim that such a symmetry resolution is
plausible at least for a single interval in the ground state of the model.

The first argument is based on the application of the Bisognano-Wichmann theo-
rem [92, 93] to the ShG model. This theorem states that for the ground state of a spatially
infinite relativistic QFT, the reduced density matrix of a half-infinite line can be written as

ρ ∝ exp(−2πK), (5.1)

with the modular (or entanglement) Hamiltonian K

K =
ˆ ∞

0
dxxH[ϕ(x)] , (5.2)
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where H is the hamiltonian density. For the ShG model, the hamiltonian density HShG
is invariant under the Z2 transformation ϕ → −ϕ, hence K and ρ commute with the Z2
symmetry operation. The ShG model is a massive theory, and hence it is plausible that the
RDM of an interval still commutes with the symmetry operation, at least for long enough
distance, which is the case for which we eventually apply the novel form factors.

A second argument is given by the conformal limit of the ShG model, which is a free
massless conformal boson. For the ground state of CFTs, the modular Hamiltonian is also
known for a single interval of length 2R [94–96] and reads

K =
ˆ R

−R
dx R

2 − x2

2R HCFT[ϕ(x)] . (5.3)

The Hamiltonian density of the free massless boson is again invariant under the Z2 trans-
formation ϕ→ −ϕ, and, repeating the previous reasoning, the possibility of the symmetry
resolution is justified in the UV regime.

Finally, we consider another limit of the ShG theory, namely when B = 1 + i 2
πΘ0 with

Θ0 →∞. As already noted, in this limit the form factors of the ShG model reduce to those
of the Ising model. As shown below, F T

D|j,k
2,ShG (ϑ,n) is no exception to this rule, because the

CDD factor fCDD(ϑ) is the same for the Ising and ShG models and

F
T |j,k
2,ShG(ϑ, n)→ F

T |j,k
2,Ising(ϑ, n) . (5.4)

Consequently, the limit
F
T D|j,k
2,ShG (ϑ, n)→ F

T D|j,k
2,Ising (ϑ, n) (5.5)

holds: this link between the two models provides another evidence for the plausibility of a
Z2 symmetry resolution of the ShG model.

It is now worth studying some features of these FFs and in particular the two-particle
one, F T

D|j,k
2,ShG (ϑ, n). First of all, similarly to the Ising model, it is expected that F T Dk,ShG

vanishes for odd k. The reason is always the same: the Z2 branch-point twist field can be
regarded as a fusion of the conventional ShG branch-point twist field and the ShG disorder
operator or Z2 twist field (which should not be mistaken for the branch-point twist field).
In the off-critical theory, the FFs of both fields are non-vanishing only for even particle
numbers. Considering now the two-particle FF solution, an interesting insight is given by
the n → 1 limit of F T

D|j,k
2,ShG (ϑ, n). The first few form factors of the ShG Z2 twist field (or

disorder operator) are known and were constructed in [97]. This field can be identified
with the off-critical version of the Z2 twist field of the massless free boson theory, where a
unique field exists which changes the boundary condition of the boson field from periodic
to anti-periodic and vice versa. This field has conformal weight ∆ = 1/16 = 0.0625 [98]
and can be regarded as bosonic analogue of the fermionic disorder operator.

We now show that in the limit n → 1, F T
D|j,k

2,ShG (ϑ, n) coincides with FD2,ShG(ϑ), where
FD2,ShG(ϑ) is the two-particle form factor of ShG Z2 twist field (again, the disorder operator,
not the branch-point one). According to ref. [97],

FD2,ShG(ϑ1, ϑ2) = −2〈µDShG〉
√
eϑ1+ϑ2

eϑ1 + eϑ2
f11,ShG(ϑ1 − ϑ2) , (5.6)
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where f11,ShG is defined in eq. (2.18), 〈µDShG〉 is the vacuum expectation value of the ShG
Z2 twist field, and though not manifest from its form, (5.6) depends only on the difference
of ϑ1 and ϑ2. From F

T D|j,k
2,ShG we can proceed as

lim
j,k,n→1

F
T D|j,k
2,ShG (ϑ, n) =

= lim
j,k,n→1

〈T Dn,ShG〉 sin π
n

2n sinh
(
iπ(2(j−k)−1)+ϑ

2n

)
sinh

(
iπ(2(k−j)−1)−ϑ

2n

) cosh
(
ϑ
2n

)
F
T |j,k
min,ShG(ϑ, n)

cosh
(
iπ
2n

)
F
T |1,1
min,ShG(iπ, n)

=− 〈T D1,ShG〉
cosh

(
ϑ
2

)
F
T |j,k
min (ϑ, 1)

(1 + cosh(ϑ))F T |1,1min,ShG(iπ, 1)
× lim
n→1

sin π
n

cosh
(
iπ
2n

)
=− 2〈T D1,ShG〉

cosh
(
ϑ
2

)
F
T |j,k
min,ShG(ϑ, 1)

(1 + cosh(ϑ))F T |1,1min,ShG(iπ, 1)
= −2〈T D1,ShG〉

cosh
(
ϑ
2

)
(1 + cosh(ϑ))f11,ShG(ϑ) .

(5.7)

At this point, we should just use 〈T D1,ShG〉 = 〈µDShG〉 and
√
eϑ1+ϑ2

eϑ1+eϑ2 = cosh
(
ϑ1−ϑ2

2

)
1+cosh(ϑ1−ϑ2) to prove

our claim.
This finding is consistence with the fact that the ShG Z2 branch-point twist field is a

fusion of the conventional ShG branch-point twist field and the ShG Z2 twist field, from
which the UV dimension c

12
(
n− n−1) + ∆

n with c = 1 and ∆ = 1/16 follows immedi-
ately [53, 54]. We close this section showing that the ∆-theorem [67] is consistent with this
assumption. Unlike for the Ising model, the form factors of the stress energy tensor in the
ShG model are non-vanishing for the k = 4, 6, . . .-particle sectors. In the integral formula
of the ∆-theorem only the two-particle contribution is included and so it is not expected
to be exact, but still to be a very good approximation. We calculated numerically such
total 2-particle contribution for several B confirming such expectation. In the table 1 we
show such comparison for B = 0.4 and 0.6. Notice that the two-particle contribution is
always slightly larger than the expected total value and the difference is larger for larger
B (up to B = 1), which is a general feature of the ShG model. This is very similar to what
observed for the conventional branch-point twist field in ref. [38] and also the difference is
of the same order of magnitude. We stress that the fact that the offset is positive is an
error (as the non-ideal name ‘sum rule’ would suggest): in eq. (4.16) we do not have the
integral of a positive defined quantity.

6 General results on Z2 symmetry resolved entropy in massive QFT

In this section, we first present some basic and elementary facts about the symmetry
resolved entanglement entropies for an arbitrary theory with Z2 symmetry and then exploit
the QFT scaling form to derive some general results valid for arbitrary massive QFTs. For
conciseness in writing formulas, in this and in the following section, we switch to the
notation + and − for the quantum numbers that replace 0 and 1 respectively: since we
focus on Z2 symmetry there is no ambiguity with this notation. Let us recall the definition
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n c
24
(
n− n−1)+ ∆

n
c

24
(
n− n−1) two-particle contribution

1 0.0625 0 0.0664945
3 0.131944 0.111111 0.137754
5 0.2125 0.2 0.221387
7 0.294643 0.285714 0.306779

(a) B = 0.4

n c
24
(
n− n−1)+ ∆

n
c

24
(
n− n−1) two-particle contribution

1 0.0625 0 0.0674768
3 0.131944 0.111111 0.138998
5 0.2125 0.2 0.223242
7 0.294643 0.285714 0.309292

(b) B = 0.6

Table 1. The two-particle contributions of the ∆-theorem sum rule compared with the expected
conformal dimension of Z2 and conventional branch-point twist fields in the ShG model for B = 0.4
(upper) and B = 0.6 (lower table).

of the symmetry resolved partition functions (1.8) in terms the charged moments (1.7):

Zn(±) = 1
2 (Zn(0)± Zn(1)) , (6.1)

where
Zn(0) = TrρnA , (6.2)

and
Zn(1) = Tr

[
ρnA exp

(
iπP̂A

)]
. (6.3)

Here Zn(1) is the charged moment associated with the two-point function of the composite
Z2 branch-point twist field. From eq. (1.5), the symmetry resolved Rényi entropies can be
written as (recall that Z1(0) = 1 by normalisation)

Sn(±) = 1
1− n ln

[Zn(±)
Zn1 (±)

]
= 1

1− n ln
[
Zn(0)± Zn(1)
(1± Z1(1))n 2n−1

]
. (6.4)

In any 2D QFT, the two (charged and neutral) moments entering in the Rényi entropies
of an interval A = [u, v] (with ` = v − u) are written as

Zn(0) = TrρnA = ζnε
2dn〈Tn(u, 0)T̃n(v, 0)〉 , (6.5)

Zn(1) = Tr[ρnA(−1)nQ̂A ] = ζDn ε
2dDn 〈T Dn (u, 0)T̃ Dn (v, 0)〉 , (6.6)

where ε is the UV regulator, ζDn and ζD the normalisation constants of the composite
and conventional branch-point twist fields, respectively, and dn and dDn their dimensions,
given as

dn = 2∆Tn = c

12
(
n−n−1

)
, dDn = 2∆T Dn = 2∆Tn+2∆

n
= c

12
(
n−n−1

)
+2∆

n
, (6.7)
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where ∆ is the dimension of the field that fuses with the conventional branch-point twist-
field to give the Z2 composite one (e.g. the disorder operator in the Ising model or ShG
with dimension ∆ = 1/16).

It is then clear that in the two symmetry resolved entropies (6.4), in the QFT regime
ε � 1, we have Zn(1) � Zn(0) because ∆ is positive. Hence we find the ‘trivial’, yet
general, result

Sn(±) = Sn − ln 2 +O(ε
4∆
n ), (6.8)

where Sn is the total Rényi entropy. For general n the total Rényi entropy is known for
some models, see e.g. [38, 50], but its form is rather cumbersome. Instead, in the von
Neumann limit, the result considerably simplifies in a generic massive model to [38]

S = − c3 lnmε+ U − 1
8K0(2m`) + · · · , (6.9)

where U is a model dependent constant (e.g. calculated for the Ising model in [38]) and
m the mass of the lightest particle of the field theory. We anticipate that for n = 1, the
corrections in (6.8) gets multiplied by ln ε, as we shall see later in this section.

In spite of its triviality, eq. (6.8) shows that in a general Z2-symmetric QFT there
is equipartition of entanglement at the leading order in ε. The term − ln 2 which sums
to the total entropy is a consequence of the fluctuation entropy in eq. (1.6). Indeed, for
ε → 0, we have p(0) = Z1(0) = p(1) = Z1(1) = 1

2 , and hence the number entropy is just
Sf = −2

2 ln 1
2 . Consequently, in eq. (1.6) we have

S = S(+) + S(−)
2 − 2

2 ln 1
2 = S . (6.10)

However, this is not the end of the story. Eq. (6.8) with (6.4) shows that there are
corrections to entanglement equipartition that are calculable within the integrable QFT
framework of this paper. In fact, expanding eq. (6.4) for Zn(1)� Zn(0) we have

Sn(±) = Sn − ln 2± 1
1− n

(
Zn(1)
Zn(0) − nZ1(1)

)
+ · · · . (6.11)

Notice that for generic n > 1, the ratio Zn(1)
Zn(0) is proportional to ε

4∆/n while Z1(1) ∝ ε4∆ and
so the former is the leading correction. The two corrections become of the same order in the
physically relevant limit n → 1. Notice that these corrections are very much reminiscent
of the unusual corrections to the scaling [99, 100] as calculated in massive theories [101].
This is not a coincidence since also unusual corrections in field theory come from the fusion
of the twist field with a relevant operator [100].

Exploiting eqs. (6.5) and (6.6), we have

Zn(1)
Zn(0) = ε4∆/n ζ

D
n

ζn

〈T Dn (u, 0)T̃ Dn (v, 0)〉
〈Tn(u, 0)T̃n(v, 0)〉

. (6.12)

This expression provides the leading term breaking equipartition of entanglement for n > 1.
With the exception of the normalisation amplitudes ζn and ζDn which depend on the precise
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UV regularisation of the theory (lattice in the following), all the quantities entering in the
above ratio are in principle accessible to the bootstrap approach and calculable once the
FFs are known.

In the von Neumann limit, n→ 1, it is convenient to write down some general formula
before taking the limit Zn(1)� Zn(0). In general we have

S(±) = − ∂

∂n

[
Zn(0)± Zn(1)
(1± Z1(1))n 2n−1

]
n=1

= S ± s(1)
1± Z1(1) + ln(1± Z1(1))− ln 2, (6.13)

where, once again, S is the total entropy, and we defined

s(1) ≡ − lim
n→1

∂

∂n
TrρnA(−1)Q̂A . (6.14)

We now take the limit Zn(1)� Zn(0) (implying Z1(1)� 1 and s(1)� S), obtaining

S(±) = S − ln 2∓ SZ1(1)± Z1(1)± s(1) + o(ε4∆) . (6.15)

Here the terms SZ1(1) and s(1) behave as ε4∆ ln ε, while Z1(1) is proportional to ε4∆.
Hence the breaking of equipartition of the von Neumann entanglement entropy at leading
order is fully encoded in the quantities Z1(1) and s(1) defined above. These are obtainable
in the FF approach and we will show with an explicit calculation for the Ising field theory
in the next section. Although these terms breaking equipartition are vanishing in the field
theory limit, they can be straightforwardly evaluated in any numerical computation (e.g.
taking the difference S(+)−S(−) which cancels the leading term and isolate the correction).
Such numerical computations can be verified against the predictions after having identified
(as e.g. done in the next section for the Ising model) or fitted the non-universal UV cutoff
ε. The remaining difference is a universal scaling function of m` which is calculable within
the FF approach, as again shown for the Ising model in the forthcoming section.

7 Entropies from two-point functions of the Z2 branch-point twist field
in the Ising model

In this section we show how the calculation of the symmetry resolved von Neumann en-
tropies can be carried out based on the knowledge of the Z2 branch-point twist field. We
restrict our analysis to an interval in the ground state of Ising model in the paramagnetic
phase, where the entropies can be calculated from the two-point functions of the conven-
tional and composite Z2 branch-point twist field. Our findings will be checked against the
continuum limit of the existing results for the lattice model [21]. The calculation follows
the logic of ref. [38] including also steps like the determination of the vacuum expectation
value of the Z2 branch-point twist-field, the analytic continuation of the charged moments,
and some further technical, but relatively straightforward, algebraic manipulations. The
interested reader is encouraged the consult to corresponding appendices, where we report
all the steps not strictly necessary to follow the main ideas.

The symmetry resolved entropies for one interval can be calculated in terms of two-
point function of the composite and conventional branch-point twist fields just plug-
ging (6.6) and (6.5) into (6.4) and (6.13) (or even to (6.11) and (6.15)). The partition
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sum Zn(0), i.e., eq. (6.5), determines the total entropy and all the required quantities for
its calculation Sn were derived in ref. [38] (including the analytic continuation). Concern-
ing Zn(1) in eq. (6.5), the two-point function of the Z2 branch-point twist field and its
vacuum expectation value can be determined using purely QFT techniques, whereas the
proportionality constant can be fixed by comparing the lattice and QFT results. Explicitly,
we rewrite

Zn(1) = ζDn (mε)2dDn [m−2dDn 〈T Dn (u, 0)T̃ Dn (v, 0)〉] ≡ ζDn (mε)2dDn [(m−2dDn 〈T Dn 〉2)]Hn(m`) ,
(7.1)

so that m−2dDn 〈T Dn (u, 0)T̃ Dn (v, 0)〉 is dimensionless and universal. Furthermore, we isolated
the vacuum expectation value and defined the universal function Hn(m`). Once again, we
stress that both ζDn and (m−2dDn 〈T Dn 〉2) are just numerical amplitudes, i.e. independent of
m and `.

Focusing now on the von Neumann entropy, we only need to know eqs. (6.5) and (6.6)
in the vicinity of n = 1. Hence, on top of Z1(1) given by eq. (7.1), we also need its derivative
in 1 which we rewrite as

s(1) =− lim
n→1

∂

∂n

(
ζDn (mε)2dDnm−2dDn 〈T Dn (u,0)T̃ Dn (v,0)〉

)
=

−Z1(1) lim
n→1

[
d lnζDn
dn +2dd

D
n

dn ln(mε)+ ∂

∂n
ln(m−2dDn 〈T Dn 〉2)+ ∂ lnHn(m`)

∂n

]
. (7.2)

We stress that the entire ` dependence, which is the main focus of this approach, is fully
encoded in the universal function Hn(m`). The easiest part of the above expressions is
ddDn
dn , i.e.

lim
n→1

2dd
D
n

dn = − 1
12 . (7.3)

In the two following subsections we explicitly calculate all amplitudes and two-point func-
tions of Z2 branch-point twist fields.

7.1 Computation of the amplitudes

In eqs. (7.1) and (7.2), a first ingredient yet to be calculated is the amplitude ζDn . For n = 1
there is a straightforward way to get it, exploiting the fact that T D1 equals the standard
disorder operator. We can then write

lim
QFT
〈µ1µj〉Lat = ζD1 ε

2dD1 〈T D1 (0, 0)T̃ D1 (aj, 0)〉 , (7.4)

where the expectation values 〈·〉Lat are taken on the ground state of the lattice Hamilto-
nian (4.1) with lattice spacing a. We recall dD1 = 1

8 . Here lim
QFT

denotes the continuum limit
of the lattice model, which is

J →∞, a→ 0, h→ 1, (7.5)

with
m = 2J |h− 1|, 2Ja = v = 1 , (7.6)
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where m is the field theoretical mass and v the velocity of light, that in our notation is 1.

The continuum limit µ(x) of the disorder operator µxj ≡
j∏

j′=1
σxj′ is [107]

µ(ja) = s̄J
1
8µxj , with s̄ = 2

1
12 e−

1
8A

3
2 , (7.7)

where A = 1.282427129 . . . is Glaisher’s constant. Using now that T D1 (x, 0) = µ(x, 0),
we have

lim
QFT
〈µx1µxj 〉Lat = 1

s̄2J
1
4
〈µ(0, 0)µ(aj, 0)〉 (7.8)

The only missing ingredient to find ζD1 is the relation between the lattice spacing a and
the UV regulator ε that was established in [38] and reads

ε = χa, with χ = 0.0566227 . . . . (7.9)

Finally, comparing eqs. (7.4) and (7.8), we get

ζD1 = 1
s̄2

( 2
χ

) 1
4

= 1.32225 . . . . (7.10)

An alternative way of calculating ζD1 consists in taking the continuum limit of the exact
lattice result for the charged moment Z(Lat)

n (1) calculated in ref. [21] for a long interval
(there it was denoted by S(−)

n and was derived in the XY model, being a generalisation of
Ising). In the paramagnetic phase (h > 1) in which we are interested, it was found [21]

lim
`→∞

|Z(Lat)
n (1)| =

[
(kk′)2n (k′n)4

16n−1k2
n

] 1
12

, (7.11)

where k = 1/h, k′ =
√

1− k2 and kn and k′n =
√

1− k2
n are the solution of the transcen-

dental equation

exp
[
−πnI(k′)

I(k)

]
= exp

[
−πI(k′n)

I(kn)

]
, (7.12)

with

I(k) =
ˆ 1

0

dx
(1− x2) (1− k2x2) , (7.13)

i.e., the complete elliptic integral. Obviously k1 = k and k′1 = k′. Hence, for n = 1,
eq. (7.11) is just lim`→∞ |Z

(Lat)
1 (1)| =

√
k′, that close to the critical point is (2(h− 1))1/4 =

(2ma)1/4. On the other hand, directly in the continuum limit we have eq. (7.1), which in
the limit of large separation and for n = 1 is

lim
`→∞

ζD1 ε
2dD1 〈T D1 (0, 0)T̃ D1 (`, 0)〉 = ζD1 ε

1
4m

1
4 s̄2, (7.14)

that provides for ζD1 exactly the same result as in eq. (7.10).
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The other amplitude to be calculated is ∂ ln ζDn
∂n

∣∣∣
n=1

in eq. (7.2). We can use the last

procedure to get this amplitude using s(Lat)(1) ≡ − d
dnZ

(Lat)
n (1) derived from eq. (7.11)

in [21], obtaining, for h > 1,

lim
`→∞

|s(Lat)(1)| =
√
k′

3

[
ln 2− 1

2 ln
(
kk′
)
− I(k)I(k′)

π

(
1 + k2

)]
. (7.15)

Recalling that, by definition, lim
QFT

Z(Lat)
n (1) = Zn(1), we have

lim
QFT

Z(Lat)
n (1) = lim

`→∞
ζDn ε

2dDn 〈T Dn (0, 0)T̃ Dn (`, 0)〉n = ζDn ε
2dDn 〈T Dn 〉2 . (7.16)

Rearranging the previous expression, one can extract ζDn and its derivative with respect to
n to get

dζDn
dn

∣∣∣
n=1

= lim
QFT

−s(Lat)(1)
ε

1
4 〈T D1 〉2

− Z
(Lat)
1 (1)
ε

1
2 〈T D1 〉4

(
〈T D1 〉2

dε2dDn

dn

∣∣∣
n=1

+ ε
1
4
d〈T Dn 〉2

dn

∣∣∣
n=1

)
. (7.17)

The QFT limit of lattice quantities are simply

lim
QFT

s(Lat)(1) = (2am)
1
4

( ln (am)
12 − ln 2

4

)
+ o(a

1
4 ) , (7.18)

and
lim
QFT

Z
(Lat)
1 (1) = (2am)

1
4 + o(a

1
4 ) . (7.19)

Instead, the VEV 〈T Dn 〉2 and its derivative are explicitly calculated in appendix A, cf.
eqs. (A.31) and (A.32). Putting everything together, we finally have

dζDn
dn

∣∣∣
n=1

= lim
a→0

−2
1
4
(

ln(am)
12 − ln 2

4

)
χ

1
4 〈m−

1
8T D1 〉2

− 2
1
4

(ma)
1
4
(
χ

1
4 〈m−

1
8T D1 〉2

)2×

×
(
〈m−

1
8T D1 〉2

d(maχ)2dDn

dn

∣∣∣
n=1

+ (maχ)
1
4
d〈m−

1
8T Dn 〉2

dn

∣∣∣
n=1

)
= −0.007124 . . . . (7.20)

Notice that the term in ln(am) cancels, as it should. We also used ε = aχ, cf. eq. (7.9).

7.2 The two-point function of Z2 branch-point twist fields

Now we change focus and consider the two-point function entering in eqs. (7.1) and (7.2).
For n = 1, the two-point function of the composite fields in Z1(1) is just to the two-point
function of the disorder operators, which can be also expressed in terms of a solution of a
Painlevé III type differential equation [107]. However, for our purposes, the two-particle
approximation of the two-point functions is more useful because it provides not only the
two-point function at n = 1, but also its derivative with respect to n. In this two-particle
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approximation, the correlation function for generic n can be written as (cf. eq. (3.19)
with (4.7))

〈T Dn (`, 0)T̃ Dn (0, 0)〉 ≈ 〈T Dn 〉2 +
n∑

j,k=1

ˆ ∞
−∞

dϑ1dϑ2
(2π)22! |F

T D|j,k
2 (ϑ12, n)|2e−rm(coshϑ1+coshϑ2)

= 〈T Dn 〉2
(

1 + n

4π2

ˆ ∞
−∞

dϑfD(ϑ, n)K0 (2m` cosh (ϑ/2))
)
, (7.21)

where fD(ϑ, n) is implicitly defined as

〈T Dn 〉2fD(ϑ, n) =
n∑
j=1
|F T

D|1,j
2 (ϑ, n)|2 = |F T

D|1,j
2 (ϑ, n)|2 +

n−1∑
j=1
|F T

D|1,j
2 (2πij − ϑ, n)|2 .

(7.22)

We have already argued that the k-particle form factors of the Z2 branch-point twist field
vanish for odd k in both the Ising and ShG models. It has been also shown that the
possible presence of a one-particle FF is irrelevant for the leading behaviour of the total
entropy [50]. Overall, eq. (7.21) allows us to identify the universal function Hn(m`) in
eq. (7.1) in the two-particle approximation as

H2pt
n (m`) = 1 + n

4π2

ˆ ∞
−∞

dϑfD(ϑ, n)K0(2m` cosh(ϑ/2)) , (7.23)

an expression that is valid for a generic Z2 symmetric theory with only the precise form of
fD(ϑ, n) depending on the model. Eq. (7.23) with (7.22) provides an explicit final result
for the Rényi entropies for any odd integer n ≥ 3 (we recall our FFs are derived for odd
n). The calculation of the von Neumann limit n → 1 is more involved because it requires
the analytic continuation of eq. (7.22) which is not an obvious matter, as we will see soon.
However, before embarking in this more difficult calculation, let us consider the explicit
form of Z1(1). In this case, the form factors of the Z2 branch-point twist field become
those of the disorder operator, cf. eq. (4.10), getting Fµ2 ∝ tanhϑ/2, cf. eq. (4.11). Hence
we immediately have

H2pt
1 (m`) = 1+ 1

4π2

ˆ ∞
−∞

dϑ tanh2
(
ϑ

2

)
K0 (2m` cosh (ϑ/2)) = 1+ 1

8π
e−2m`

(m`)2 +O
(
e−2m`

(m`)3

)
,

(7.24)
where the leading term in the m` expansion is obtained below, but it can also be extracted
using the fact that the integral in (7.24) can be rewritten in terms of the Meijer’s G-function
(although its form is not illuminating and we do not report it here).

Looking at eq. (7.2) for s(1), we still need the derivative of both the VEV and of the
universal function H2pt

n (m`). The former is rather cumbersome, but does not require any
particular care and it is then reported in appendix A, see eq. (A.32) for the final result.
Conversely, the analytic continuation of H2pt

n (m`) is more thoughtful and we report its
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details in the following. In the two-particle approximation, the required derivative reads

lim
n→1

∂

∂n
H2pt
n (m`) = 1

4π2

ˆ ∞
−∞

dϑf̃D(ϑ, 1)K0 (2`m cosh (ϑ/2))

+ lim
n→1

1
4π2

ˆ ∞
−∞

dϑ
(
∂

∂n
f̃D(ϑ, n)

)
K0 (2`m cosh (ϑ/2)) , (7.25)

where we introduced f̃D(ϑ, n) which is the analytic continuation of fD(ϑ, n). The eval-
uation of f̃D(ϑ, 1) and of its the derivative, nevertheless, involves some subtleties related
to the proper analytic continuation in n of the FFs, which is non-trivial as carefully dis-
cussed in ref. [38] for the conventional branch-point twist field. For any integer odd n ≥ 3,
f̃D(ϑ, n) = fD(ϑ, n). This is no longer true for n = 1: f̃D(ϑ, 1) is not a continuous function
in ϑ, as it equals

f̃D(ϑ, 1) = tanh2 ϑ

2 , (7.26)

everywhere except at ϑ = 0, where f̃D(0, 1) = −1
2 . In other words, f̃D(ϑ, 1) equals

fD(ϑ, 1) everywhere, except at ϑ = 0. Consequently, its derivative contains a δ-function.
The calculation is detailed in appendix C, where one finally arrives to eq. (C.13), i.e.,

lim
n→1

∂

∂n
f̃D(ϑ, n) = 1

2
1− coshϑ+ 2ϑ

sinhϑ
cosh2 ϑ

2
−π2 1

2δ(ϑ) = 4ϑsinh2(ϑ/2)
sinh3 ϑ

−tanh2(ϑ/2)−π2 1
2δ(ϑ) .

(7.27)
It follows that the final result for eq. (7.25) is

lim
n→1

∂

∂n
H2pt
n (m`) = 1

π2

ˆ ∞
−∞

dϑϑ sinh2(ϑ/2)
sinh3 ϑ

K0 (2`m cosh (ϑ/2))− 1
8K0(2m`) . (7.28)

This term, together with (7.24) includes the entire ` dependence of the symmetry resolved
von Neumann entropies and it represents our final full result.

However, putting the various pieces together is not illuminating without expanding
for large m` as we are going to do now. The leading term in (7.28) clearly comes from
the K0(m`) factor, but it is worth discussing a simple method to obtain a systematic
large ` expansion. To obtain the subleading terms by evaluating the integrals in eqs. (7.28)
and (7.24), one first recognises that for large `, the integral is dominated by the contribution
of the region close to ϑ = 0. One can then expand as a function of ϑ = 0 the function
which multiply K0(m`) in the integrand, and evaluate the asymptotic behaviour of

1
4π2

ˆ ∞
−∞

dϑK0

(
2m` cosh ϑ2

)(
ϑ

2

)2n
= 1
π2

ˆ ∞
1

dxarccosh2nx√
x2 − 1

K0(2m`x) . (7.29)

Expanding arcosh(x) around x = 1, exploiting the asymptotic behaviour of the Bessel
function K0(z) ≈ e−z

√
π
2z , and keeping the leading x− 1 type terms, we and up with

1
π2

ˆ ∞
1

dxe−2m`x
√

π

4m`
2n
√
x− 12n−1
√

2
=

Γ
(
n+ 1

2

)
4π3/2

e−2m`

(m`)n+1 (1 +O((m`)−1) , (7.30)
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which gives the leading `-dependent term for (7.29). In this way, one readily derive the
expansion in the r.h.s. of eq. (7.24) and

lim
n→1

∂

∂n
H2pt
n (m`) = −1

8K0(2m`) + 1
4π

e−2m`

m`
+O

(
e−2m`

(m`)2

)
. (7.31)

7.3 Putting the pieces together

In this subsection we put together the different pieces of the symmetry resolved entropies.
We first of all write down the expressions for Z1(1) and s(1) including the leading correc-
tions and then comment on the symmetry resolved entropy. Z1(1) is obtained by plugging
eqs. (7.24) and (7.14) into eq. (7.1), getting

Z1(1) = ζD1 (mε)
1
4 s̄2

(
1 + 1

8π
e−2m`

(m`)2 +O
(
e−2m`

(m`)3

))
, (7.32)

s̄ = 2
1
12 e−

1
8A

3
2 and ζD1 = 1.32225 . . . , as obtained in section 7.1. In a similar fashion, s(1)

is obtained by plugging eqs. (7.31), (7.24) into (7.2), getting

s(1) = −ζD1 (mε)
1
4 s̄2

(
1 + 1

8π
e−2m`

(m`)2 +O
(
e−2m`

(m`)3

))

×
[
− lnmε

12 + C − 1
8K0 (2`m) + 1

4π
e−2m`

m`
+O

(
e−2m`

(m`)2

)]
, (7.33)

where we introduced the combination of amplitudes

C = lim
n→1

(
d ln ζDn
dn + d

dn ln
(
m−2dDn 〈T Dn 〉2

))
= −0.065992 , (7.34)

with the numerical value coming from lim
n→1

d ln ζDn
dn = −0.00538786 and lim

n→1

d
dn

ln
(
m−2dDn 〈T Dn 〉2

)
= −0.0606041, as calculated in section 7.1. Slightly rephrasing the

formula using ε = χa, we have

s(1) = (2am)
1
4

(
1 + 1

8π
e−2m`

(m`)2 +O
(
e−2m`

(m`)3

))

×
[( ln (am)

12 + lnχ
12 − C

)
+ 1

8K0 (2`m) +− 1
4π

e−2m`

m`
+O

(
e−2m`

(m`)2

)]
, (7.35)

which can be cross-checked against the lattice result (7.18). The equality of − ln 2
4 in (7.18)

and lnχ
12 − C can be regarded as a consistency check of the calculations. In our results for

s(1) i.e., in eqs. (7.33) and (7.35) we also kept the leading and subleading terms accounting
for the `-dependence. The analogous term incorporating `-dependence has not been derived
for the lattice model and represent one of our main achievements.

With (7.32) for Z1(1) and (7.33) for s(1), we can finally use (6.15) to write down
the symmetry resolved entropies including corrections too. Keeping the ε1/4 ln ε and ε1/4
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terms, we end up with

S(±) =−1
6 lnmε+UIsing−

1
8K0(2m`)−ln2±

( 2
χ

) 1
4

(εm)
1
4

(
1+ 1

8π
e−2m`

(m`)2

)[
ln(εm)

4 +

−UIsing−C+ 1
4K0 (2m`)− 1

4π
e−2m`

m`

]
+O

(
e−3m`,ε

1
4 lnεe

−2m`

(m`)3 ,ε
1
4
e−2m`

(m`)2

)

=−1
6 lnmε−0.131984− 1

8K0(2m`)−ln2±2.437866(εm)
1
4

[
ln(εm)

4

(
1+ 1

8π
e−2m`

(m`)2

)
+

+0.197976+ 1
4K0 (2m`)− 1

4π
e−2m`

m`

]
+O

(
e−3m`,ε

1
4 lnεe

−2m`

(m`)3 ,ε
1
4
e−2m`

(m`)2

)
.

(7.36)

As already anticipated on a general ground in section 6 eq. (6.8), we find at leading order
equipartition of entanglement, i.e. S(+) = S(−)+ . . . . On top of this, the above expression
can be used to find the first term breaking equipartition which can be easily extracted by
taking the difference

S(+)−S(−)
2 = 2.437866(εm)

1
4

[
ln(εm)

4

(
1+ 1

8π
e−2m`

(m`)2

)
+0.197976+ 1

4K0 (2m`)− 1
4π

e−2m`

m`

]

+O
(
e−3m`,ε

1
4 lnεe

−2m`

(m`)3 ,ε
1
4
e−2m`

(m`)2

)
(7.37)

It should be possible to test this prediction by exact numerical lattice computation. Work
in this direction is in progress.

8 Conclusions

In this paper, we introduced an approach suited to the computation of symmetry resolved
entropies in generic massive (free and interacting) integrable quantum field theories. The
essence of the approach is the existence of appropriate modified or composite branch-point
twist fields whose two-point function gives the corresponding charged entropies for a single
interval. Then the form factor bootstrap program provides the matrix elements of such
fields. In particular, here we discussed the Z2 symmetry resolution for Ising model in the
paramagnetic phase and for the sinh-Gordon quantum field theory.

We wrote down the bootstrap equations for the composite Z2 branch-point twist fields
and provided an intuitive picture behind the choice of the locality factors entering these
equations. The two-particle form factors for Z2 branch-point twist fields were calculated for
the Ising both models considered here. For the Ising model, we were also able to compute
the vacuum expectation value, alias the zero particle form factor, we argued that form
factors with odd particle number vanish, and finally showed that the form factors for any
even particle numbers can are Pfaffian of the two-particle form factors. The obtained form
factor solution was cross-checked verifying that for n→ 1 the form factors of the disorder
operator are recovered and applying the ∆-theorem [67] to reproduce exactly the critical
dimensions of the composite fields.
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Also the sinh-Gordon form factors have been tested in several ways. First, we consid-
ered the limit for the interaction parameter B as B = 1 + i 2

πΘ0 with Θ0 → ∞, in which
the Z2 branch-point twist fields for the Ising model are recovered. Then for n → 1, we
reproduced the disorder operator of the sinh-Gordon model. Applying the ∆-theorem for
the form factors, we recovered the expected UV dimensions with satisfactory precision.
The error is ascribed to the fact that, unlike for the Ising model, the ∆-theorem sum rule
requires an infinite summation and hence the knowledge of all form factors for the Z2
branch-point twist field.

The general approach to extract the ground-state symmetry resolved entropies for an
interval of length ` from the two-point function of composite Z2 branch-point twist fields
is discussed in section 6. In particular, we showed that entanglement equipartition follows
generically from the property that the UV dimension of the Z2 branch-point twist field
is larger than the one for the conventional branch-point twist field. The subleading term
breaking such equipartition is model dependent. The obtained form factors allow for the
complete calculation of the charged and symmetry resolved entropies in the paramagnetic
phase of the Ising model which is presented in great detail, with emphasis on the physically
relevant von Neumann limit n→ 1 (that requires a non-trivial analytic continuation). The
final result for the charged partition sum and entropy are reported in eqs. (7.1) and (7.2)
with the various amplitudes computed in section 7.1 and the universal functions ofm` given
in eqs. (7.24) and (7.28). We stress that these universal functions are the main new physical
results of this paper since all other terms could be equivalently calculated by taking the
continuum limit of the known results for the Ising chain in ref. [21]. From eq. (7.37) we can
see that the leading term breaking equipartition scales like ε

1
4 ln ε, as expected. However,

eq. (7.37) also provides the m` dependence of this equipartition breaking term. It would
be highly desirable to test all these predictions with exact numerical calculations based on
the continuum limit of the spin chain.

There are various possible ways this work can be extended. The most natural one is the
treatment of models with non-diagonal scattering and continuous symmetries, to which the
authors plan to devote another communication. The obtained form factors also allow for
the calculation of entropies in excited states, as long as reduced density matrix commutes
with the symmetry operator. Finally, the crossover from critical to massive regime at fixed
` is a very interesting yet challenging problem, which may require an infinite summation
higher particle form factors or the development of alternative techniques.
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A Vacuum expectation value of T D
Ising

Finding the solutions to the FF bootstrap equations is relatively easy. Often it is also not
difficult to identify these solutions with the corresponding physical fields. Conversely, the
determination of the vacuum expectation value (VEV), i.e., the zero particle FF and the
one-particle FF (if non-vanishing) is generally a difficult task. So far, exact expressions are
known for all fields in the Ising model and for some in ShG, sine-Gordon, Bullogh-Dodd
models, as well as for some of their restrictions, see e.g. [71, 102–104]. For the conventional
branch-point twist fields, an exact expression for the VEV has been provided only for the
Ising model in [38]. In this appendix, we show that for the same model the VEV for T Dn
can also be exactly determined, under some plausible assumptions. We use and modify
ideas borrowed from refs. [38, 105, 106]. In this appendix, we work in the fermionic basis
and denote the j-th copy of the Majorana fermion as ψj . We explicitly exploit the property
that fermionic and spin entanglement are the same for one interval.

As a first step we search for a matrix τ whose action in the space replica space (i.e. on
the vector (ψ1, . . . , ψn)T ) corresponds to the composite Z2 branch-point twist field. Given
that the total phase accumulated by the field in turning around the entire Riemann surface
is −1, the main requirement is τnψj = −ψj , i.e., τn = −I, where I is the n × n identity
matrix. An easy way to proceed is to modify the transformation matrix for the Z2 branch-
point twist-fields [106], as done in ref. [19] for the resolution of the U(1) symmetry (both
papers consider Dirac fermions, but there is no difference for Majorana except that the
phase is fixed). Hence, a first representation of the matrix τ is

τ1 =



0 0 0 0 · · · 0 (−1)n

−1 0 0 0 · · · 0 0
0 −1 0 0 · · · 0 0
0 0 −1 0 0 0
...

... . . . . . . ...

0 0 0 0 . . . 0 0
0 0 0 0 · · · −1 0


(A.1)

where it is clear that τn1 = −I for odd n. However, it was pointed out in [38] that one
has to be careful in the FF approach because fermions of the same copy anticommute, as
conventional fermions do, but the fermions of different copies commute (Sij = 1). Con-
versely, in refs. [19, 106] fermions of different copies anticommute. The anticommutation of
fermions on different copies can be achieved in the FF approach by a change of basis as [38]

|ϑ1, ϑ2〉ac
j1,j2 =

|ϑ1, ϑ2〉j1,j2 j1 ≤ j2,
−|ϑ1, ϑ2〉j1,j2 j1 > j2 .

(A.2)

As argued in [38], the action of a permutation on the fields ψac
j in the new basis is no longer

σψac
j = ψac

j+1 mod n, but instead

σψac
j =

ψac
j+1 j = 1, . . . , n− 1,
−ψac

1 j = n .
(A.3)
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When this permutation is applied n times we have σnψac
j = −ψac

j . Moreover, the eigenval-
ues of the corresponding matrix

τ2 =



0 0 0 0 · · · 0 −1
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 0 0
...
... . . . . . . ...

0 0 0 0 . . . 0 0
0 0 0 0 · · · 1 0


(A.4)

equal those of (A.1) for odd n, which the case we are interested in. We can then iden-
tify both τ2 and τ1 with the transformation matrix that has to be diagonalised for the
determination of the VEV [38].

The eigenvalues of τ1,2 can be written as ei2πk/n with k

k = −(n− 2)/2,−(n− 4)/2 . . . ,−1/2, 1/2, . . . , (n− 4)/2, (n− 2)/2, n/2 . (A.5)

The eigenvectors of τ2 are

ψk = 1√
n

n∑
j=1

e−2πik(j−1)/nψacj , (A.6)

and the inverse transformation is

ψacj = 1√
n

n
2∑

k=−n−2
2

e2πik(j−1)/nψk . (A.7)

The eigenvectors corresponding to the eigenvalues ei2πk/n are complex conjugate pairs for
±k, except k = n/2 with eigenvalue (−1) and real eigenvector equal to 1√

n
(1,−1, 1, . . . , 1).

Hence, we can build n−1
2 complex fermions by ψk and ψ−k as ψ†k = ψ−k for k = 1, . . . , (n−2)

and we are left with one Majorana fermion for k = n/2, which is still a Majorana fermion
as ψ†n/2 = ψn/2. The anticommutation relations {ψk, ψk′} = δk,−k′ , {ψk, ψn/2} = 0 for
k 6= n/2, and {ψn/2, ψn/2} = 1 are ensured by our choice for the basis (A.2).

The structure of the eigenvalues of the transformation τ is compatible with the four-
point function of the Z2 branch-point twist field

〈ψ−k(z)ψk(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

= 1
z − z′

((z − w) (z′ − w′)
(z − w′) (z′ − w)

) k
n

, (A.8)

at the UV critical point: turning clock-wise ψk(z′) around the twist field T D at w, the
correct factor of ei2πk/n is recovered. Eq. (A.8) is an important formula, which is also proved
in appendix B. It leads to the factorisation of the Z2 branch-point twist field, it allows for
the computation of the UV dimensions of the factorised components, and eventually it
leads to the determination of the VEV in the massive theory. The factorisation of the Z2
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branch-point twist field can also be inferred from the results of [105], which in our case
become

T Dn (w) = T Dn
2 ,n

(w)
n−2

2∏
k≥ 1

2

T Dk,n(w) , (A.9)

where action of T Dk,n(w) is non trivial only on the ψ−k and ψk fields. The scaling dimension
of T Dk,n can be can be obtained from the relation [14, 39, 40]

〈Tk(z)T Dk,n(w)T̃ Dk,n(w′)〉
〈T Dk,n(w)T̃ Dk,n(w′)〉

= hk
(w − w′)2

(z − w)2 (z − w′)2 , (A.10)

where Tk is the stress-energy tensor of the ±k components. In fact, using the Ward
identity [108]

〈Tk(z)T Dk,n(w)T̃ Dk,n(w′)〉 =
(

∂w
z − w

+ hTk
(z − w)2 + ∂w′

z − w′
+

hT̃k
(z − w′)2

)
〈T Dk,n(w)T̃ Dk,n(w′)〉 ,

(A.11)
one can deduce that the coefficient hk in (A.10) equals the conformal dimension of the
chiral component of both T Dn and T̃ Dn .

To calculate (A.10), we first show, that the stress-energy tensor can also be factorised
into different k-components. We recall that the 2D free massless Dirac theory can be
written in terms of the two component Dirac spinor Ψ(z, z̄) =

(χ(z)
χ̄(z̄)

)
, where χ and χ̄ are

complex fermion fields. The analytic part of the stress energy tensor is

TDirac(z) = 1
2
(
∂zΨ†Ψ−Ψ†∂zΨ

)
= 1

2
(
∂z
(
χ†(z)χ(z)

)
− χ†(z), ∂zχ(z)

)
, (A.12)

whereas for the neutral Majorana field it reads

TMajorana(z) = −1
2ψ(z)∂zψ(z) . (A.13)

One Dirac field can be constructed from two Majorana fields as

Ψ(z, z̄) =
(
χ(z)
χ̄(z̄)

)
= 1√

2

(
ψ1(z) + iψ2(z)
ψ̄1(z̄) + iψ̄2(z̄)

)
, (A.14)

but in our case, as argued before, it is more convenient to use

Ψk(z, z̄) =
(
χk(z)
χ̄k(z̄)

)
= 1√

2

(
ψk(z)
ψ̄k(z̄)

)
, (A.15)

with our Fourier transformed fields ψk. In this way, the stress-energy tensor of the original
n-copy model is decomposed into k sectors each involving complex fermion fields. Using
eq. (A.12), the stress-energy tensor of the ±k components is

Tk = 1
2
(
∂zψ

†
kψk − ψ

†
k∂zψk

)
, (A.16)

– 31 –



J
H
E
P
1
1
(
2
0
2
0
)
1
3
1

for k = 1
2 , . . . ,

n−2
2 and, similarly for k = n

2

Tn
2

= −1
2
(
ψn

2
∂zψn

2

)
. (A.17)

The total stress-energy tensor is then
n
2∑

k= 1
2

Tk =
n∑
j=1
−1

2 (ψj∂zψj) . (A.18)

Now we explicitly compute the l.h.s. of eq. (A.10) to determine hk. We first notice
that the action of

1
2πi

˛ dz′

z′ − z

(
−1

2 [∂z′ − ∂z]
)
, (A.19)

to the l.h.s. of eq. (A.8) replaces ψ−k(z)ψk(z′) with Tk(z). The operator (A.19) is straight-
forwardly applied to the r.h.s. of eq. (A.8) and so the scaling dimension hk is

hk = k2

2n2 , (A.20)

for k = 1
2 , . . . ,

n−2
2 . Finally Tn

2 ,n
(w, w̄) acts like the conventional disorder operator and so

hn
2

= 1
16 . (A.21)

This dimension can be also rigorously obtained by applying

1
2πi

˛ dz′

z′ − z

(
−1

4 [∂z′ − ∂z]
)
, (A.22)

to
〈ψn

2
(z)ψn

2
(z′)T Dn (w)T̃ Dn (w′)〉

〈T Dn (w)T̃ Dn (w′)〉
= 1
z − z′

((z − w) (z′ − w′)
(z − w′) (z′ − w)

) 1
2
. (A.23)

The factor 1
4 in (A.22) compared to 1

2 in (A.19) is important to obtain the desired
−1

2ψn
2
(z)∂zψn

2
(z) with the correct normalisation. The application of (A.22) to (A.8)

results in
〈Tn

2
(z)T Dn

2 ,n
(w)T̃ Dn

2 ,n
(w′)〉

〈T Dn
2 ,n

(w)T̃ Dn
2 ,n

(w′)〉
= 1

16
(w − w′)2

(z − w)2 (z − w′)2 (A.24)

confirming hn
2

= 1
16 .

Finally, the total dimension of the composite Z2 branch-point twist field is

1
2

n−2
2∑

k= 1
2

k2

2n + 1
16 = 1

48
(
n− n−1

)
+ 1

16n , (A.25)

which is the correct dimension in the Ising CFT as h + h̄ correctly reproduces
1
2

1
12
(
n− n−1)+ 1

8n .
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We have also seen that, winding the complex fermion field χk(z) = ψk(z) around
the twist field, a phase eiπk/n is accumulated for k 6= n

2 , which can be attributed to the
action of a U(1) composite twist field. A plausible assumption is that the decomposition
of branch-point twist fields can be rephrased as

T Dn (w,w̄) = T Dn
2 ,n

(w,w̄)
n−2

2∏
k= 1

2

T Dk,n(w,w̄) =µ(w,w̄)
n−2

2∏
k= 1

2

O k
n

(w,w̄) =µ(w,w̄)
n−1

2∏
l=1
O 2l−1

2n
(w,w̄) .

(A.26)
Assuming that this type of factorisation of the Z2 branch-point twist field also holds in
the off-critical theory we can obtain its vacuum expectation value exploiting the results in
ref. [102]

〈Oα〉 =
(
m

2

)α2 1
G(1− α)G(1 + α) , (A.27)

where G(x) is the Barnes G-function. Hence, for the n-copy Ising theory we have

〈T Dn 〉 =
(
m

2

)(n−n−1
24 + 1

8n−
1
8

)
〈µIsing〉

n−1
2∏
l=1

1
G(1− 2l−1

2n )G(1 + 2l−1
2n )

. (A.28)

Using the exact result for 〈µIsing〉 [107], we can write it as

〈µIsing〉 = m
1
8 2

1
12 e−

1
8A

3
2 = 2

1
4

(
m

2

) 1
8
√

1
G(1

2)G(3
2)
, (A.29)

and finally we have

〈T Dn 〉 = 2
1
4

(
m

2

)(n−n−1
24 + 1

8n

)√√√√√√
n+1

2∏
l=−n−1

2

1
G(1− 2l−1

2n )G(1 + 2l−1
2n )

, (A.30)

or, equivalently, using the integral representation

〈T Dn 〉= 2
1
4

(
m

2

)(n−n−1
24 + 1

8n

)
exp

[ˆ ∞
0

dt
t

(
sinh t coth

(
t
n

)
−n

4sinh2 t
−
(
n−n−1

24 + 1
8n

)
e−2t

)]
.

(A.31)
For n = 1, this formula equals the vacuum expectation value of the disorder operator, as
obvious. For the less trivial derivative in n = 1, we have

d
dn
(
m−2dDn 〈T Dn 〉2

)∣∣∣
n=1

=
{ ln2

12 A
32

1
6 e−

1
4 +2

1
4 exp

[ˆ ∞
0

dt
t

(cosh t−1
2sinh2 t

− 1
4e
−2t
)]
×

×
ˆ ∞

0

dt
t

(
t/sinh t−1

2sinh2 t
+ 1

12e
−2t
)}

=−0.111738 . . . . (A.32)

B Conformal dimensions

In this appendix we show that eq. (A.8) holds for Z2 branch-point twist field in the c = 1
2

CFT. Let us recall what we want to prove here:

〈ψ−k(z)ψk(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

= 1
z − z′

((z − w) (z′ − w′)
(z − w′) (z′ − w)

) k
n

. (B.1)
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The way we proceed is very similar to refs. [19, 105]. We apply the conformal transformation

ξ =
(
z − w
z − w′

) 1
n

, (B.2)

which maps the Rn Riemann surface with branch-points w and w′ to the complex plane
ξ ∈ C. After this uniformising mapping, the twist fields in eq. (B.1) do not disappear, but
they become the disorder operator of the Ising CFT. This is a manifestation of the fact
that T D is the fusion of T and the disorder field µ. To check the validity of this idea, we
first compute the scaling dimension of T D along these lines.

Consider therefore the quantity

〈Tj(z)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

. (B.3)

After the mapping (B.2), we have

〈Tj(z)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

=

〈[(
dξ
dz

)2
Tj(ξ) + c

12 {ξ, z}
]
µ(0)µ(∞)

〉
〈µ(0)µ(∞)〉

= c

12 {ξ, z}+
(dξ
dz

)2 〈µ(0)Tj(ξ)µ(∞)〉
〈µ(0)µ(∞)〉 , (B.4)

that can be written as

〈Tj(z)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

= (w−w′)2

(z−w)2 (z−w′)2

[
c
1−n−2

24 +
(
ξ

n

)2
lim

α→0,β→∞

〈µ(α)Tj(ξ)µ(β)〉
〈µ(α)µ(β)〉

]

= (w−w′)2

(z−w)2 (z−w′)2

[
c
1−n−2

24 +
(
ξ

n

)2
lim

α→0,β→∞

1
16

(α−β)2

(α−ξ)2 (ξ−β)2

]

= (w−w′)2

(z−w)2 (z−w′)2

[
c
1−n−2

24 +
(
ξ

n

)2 1
16

1
ξ2

]

= (w−w′)2

(z−w)2 (z−w′)2

[
c
1−n−2

24 + 1
16n2

]
, (B.5)

where we used [109]

〈ψ(z)ψ(z′)σ(w)σ(w′)〉
〈σ(w)σ(w′)〉 = 1

2
1

z − z′

((z − w)(z′ − w′)
(z − w′)(z′ − w)

) 1
2

+
((z − w′)(z′ − w)

(z − w)(z′ − w′)

) 1
2

 . (B.6)

From eq. (B.6), we also have

〈ψ(z)ψ(z′)µ(w)µ(w′)〉
〈µ(w)µ(w′)〉 = 1

2
1

z−z′

((z−w)(z′−w′)
(z−w′)(z′−w)

) 1
2
+
((z−w′)(z′−w)

(z−w)(z′−w′)

) 1
2

 , (B.7)

from which 〈T (z)µ(w)µ(w′)〉
〈µ(w)µ(w′)〉 can be obtained. Multiplying the final result by n and comparing

with the Ward identity (A.10), we find that the right scaling dimension of the holomorphic
part of T Dn which is n−n−1

48 + 1
16n .
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Now let us calculate the quantity 〈ψ−k(z)ψk(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉 . Performing the inverse

transformation from ψk to ψj and introducing the shorthand ω = e2πi/n, we can write

〈ψ−k(z)ψk(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

=
∑
j,j′

ω−(j−1)(k+n/2)ω(j′−1)(k+n/2) 〈ψj(z)ψj′(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

.

(B.8)
We are now slightly more cautious with the conformal mapping (B.2), writing [105]

ξj = ξωj , (B.9)

which maps the jth sheet of the Riemann surface into a wedge of angle 2π/n in C. According
to this transformation, we have

〈ψ−k(z)ψk(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

=

= 1
n

∑
j,j′

[
ω−(j−1)(k+n/2)ω(j′−1)(k+n/2)

(
ξ′j(z)ξ′j′(z′)

) 1
2 〈µ(0)ψj(ξj)ψj′(ξ′j′)µ(∞)〉

〈µ(0)µ(∞)〉

]
=

1
n

∑
j,j′

ω−(j−1)(k+n/2)ω(j′−1)(k+n/2)
(
ξ′j(z)ξ′j′(z′)

) 1
2 1

2

√
ξj(z)/ξj′(z′) +

√
ξj′(z′)/ξj(z)

ξj(z)− ξj′(z′)

 ,
(B.10)

where we used eq. (B.6). We can finally expand in power series and resum as

〈ψ−k(z)ψk(z′)T Dn (w)T̃ Dn (w′)〉
〈T Dn (w)T̃ Dn (w′)〉

=

1
n

∑
j,j′

∞∑
p=0

ω−(j−1)(k+n/2)−pjω(j′−1)(k+n/2)+pj′ 1
2

(
ξ′(z)ξ′(z′)
ξ(z)ξ(z′)

) 1
2
(
ξ(z′)
ξ(z)

)p

+ω−(j−1)(k+n/2)−j−pjω(j′−1)(k+n/2)+j′+pj′ 1
2

(
ξ′(z)ξ′(z′)ξ(z′)

ξ3(z)

) 1
2
(
ξ(z′)
ξ(z)

)p
=n

∞∑
q=1

1
2

(
ξ′(z)ξ′(z′)
ξ(z)ξ(z′)

) 1
2
(
ξ(z′)
ξ(z)

)nq−k−n/2 1
2

(
ξ′(z)ξ′(z′)ξ(z′)

ξ3(z)

) 1
2
(
ξ(z′)
ξ(z)

)nq−k−n/2−1


= n

ξn(z)−ξn(z′)

(ξ′(z)ξ′(z′)
ξ(z)ξ(z′)

) 1
2 (
ξ(z′)

)n/2−k (ξ(z))n/2+k

= 1
z−z′

((z−w)(z′−w′)
(z−w′)(z′−w)

) k
n

,

(B.11)

providing the desired result.

C Analytic continuation for fD(ϑ, n)

The analytic continuation of the quantity f(ϑ, n) (defined in eq. (7.22) by replacing F T
D|1,j

2
with F T |1,j2 ) was carefully analysed in ref. [38]. It was shown that as the analytic contin-
uation f̃(ϑ, n) with domain n ∈ [1,∞) can be defined from f(ϑ, n) for n = 2, 3, . . .. Then
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f̃(ϑ, n) = f(ϑ, n) for integer n such that n ≥ 2, but for n → 1 we have that f(ϑ, 1) = 0
everywhere except in the origin, where it converges to 1

2 . Hence the convergence is non-

uniform, which results in a δ-function in the derivative lim
n→1

∂

∂n
f̃(ϑ, n), yielding

lim
n→1

∂

∂n
f̃(ϑ, n) = π2 1

2δ(ϑ) . (C.1)

The analysis of [38] is very detailed, but its full repetition for our case to obtain f̃D(ϑ, 1)
and lim

n→1

∂

∂n
f̃D(ϑ, n) is not necessary. We only report some essential ideas for the derivation

of f̃(ϑ, n) and then discuss some differences to consider for the Z2 branch-point twist field.
First, we recall the definition

〈Tn〉2f(ϑ, n) =
n−1∑
j=0

F
T |11
2 (−ϑ+ 2πi(j))

(
F
T |11
2 (−ϑ+ 2πi(j))

)∗
=

n−1∑
j=0

s(ϑ, j). (C.2)

For the analytic continuation, we replace j by a continuous variable z. In particular, let
us consider the contour integral

0 = 1
2πi

˛
C
dzπ cot(πz)s(ϑ, z) , (C.3)

where the contour is a rectangle with vertices (−ε− iL, n− ε− iL, n− ε+ iL,−ε+ iL). This
contour integral is zero as when L → ∞, the contributions of the horizontal lines vanish
and in the Ising model the vertical contributions cancel each other due to the periodicity of
s(ϑ, z+n) = S2

Isings(ϑ, z) and S2
Ising = 1. The integrand has poles at z = 1, 2, . . . , n−1 and

also at z = 1
2 ±

ϑ
2πi and z = n− 1

2 ±
ϑ

2πi . Evaluating the residues, for real ϑ we end up with

n−1∑
j=1

s(ϑ, j) = − tanh ϑ2
Im
(
F
T |11
2 (−2ϑ+ iπ, n)− F T |11

2 (−2ϑ+ i2πn− iπ, n)
)

〈Tn〉
, (C.4)

and hence the analytic continuation is [38]

f̃(ϑ, n) = − tanh ϑ2
Im
(
F
T |11
2 (−2ϑ+ iπ, n)− F T |11

2 (−2ϑ+ i2πn− iπ, n)
)

〈Tn〉
. (C.5)

We can repeat the same steps for the Z2 branch-point twist field. We can write fD as

〈T Dn 〉2fD(ϑ.n) =
n−1∑
j=0

F
T D|11
2 (−ϑ+ 2πij)

(
F
T D|11
2 (−ϑ+ 2πij)

)∗
=

n−1∑
j=0

sD(ϑ, j) (C.6)

and consider the contour integral
1

2πi

˛
C
dzπ cot(πz)sD(ϑ, z) = − 1

n
, (C.7)

with the same contour as in eq. (C.3). Unlike eq. (C.3), this integral is non-zero. While the
vertical contributions again cancel each other, the horizontal contributions are non zero,
because

lim
L→∞

sD(ϑ, x± iL) = − 1
n2 , (C.8)
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and hence the result is − 1
n . We can evaluate the l.h.s. of eq. (C.7) by the residue theorem;

the poles are at the same positions as in eq. (C.3), i.e. z = 1, 2, . . . , n − 1, at z = 1
2 ±

ϑ
2πi ,

and z = n− 1
2 ±

ϑ
2πi , because the pole structure of the FFs F T

D|11
2 and F T |11

2 is the same.
Evaluating the residues, we end up with

n−1∑
j=1

sD(ϑ, j) = − tanh ϑ2
Im
(
F
T D|11
2 (−2ϑ+ iπ, n) + F

T D|11
2 (−2ϑ+ i2πn− iπ, n)

)
〈T Dn 〉

− 1
n
,

(C.9)
from which the analytic continuation is inferred

f̃D(ϑ.n) = − tanh ϑ2
Im
(
F
T D|11
2 (−2ϑ+ iπ, n) + F

T D|11
2 (−2ϑ+ i2πn− iπ, n)

)
〈T Dn 〉

− 1
n
.

(C.10)
It is easy to check that f̃D(ϑ, n) = fD(ϑ, n) for odd and integer n ≥ 3.

The derivative of f̃D(ϑ, n) can be obtained without further work exploiting the prop-
erty that the function f̃D(ϑ, n) + f̃(ϑ, n) is smooth and converges to a smooth function as
n→ 1. Indeed, using eqs. (C.5) and (C.10) we immediately have

f̃D(ϑ, n) + f̃(ϑ, n) = tanh
(
θ

2

) (coth
(
θ

2n

) (
−2 cosh

(
θ
n

)
+ cos

(
π
n

)
+ 1

))
n
(
cos

(
π
n

)
− cosh

(
θ
n

)) − 1
n
, (C.11)

and consequently

lim
n→1

f̃D(ϑ, n) + f̃(ϑ, n) = tanh2 ϑ

2 ,

lim
n→1

∂

∂n
[f̃D(ϑ, n) + f̃(ϑ, n)] = 1

2
1− coshϑ+ 2ϑ

sinhϑ
cosh2 ϑ

2
,

(C.12)

leading to the main results of this appendix

lim
n→1

f̃D(ϑ, n) =

tanh2 ϑ
2 ϑ 6= 0

−1
2 ϑ = 0

,

lim
n→1

∂

∂n
f̃D(ϑ, n) = 1

2
1− coshϑ+ 2ϑ

sinhϑ
cosh2 ϑ

2
− π2 1

2δ(ϑ).

(C.13)

We conclude this appendix mentioning the behaviour for n → ∞, for which we are
going to show that the limiting functions for f̃D(ϑ, n) and f̃(ϑ, n) are the same. More
precisely, we have that

lim
n→∞

f̃D(ϑ, eiφn+ c) =
(
2ϑ2 + π2) tanh

(
ϑ
2

)
ϑ (ϑ2 + π2) , (C.14)

for any constant c and any direction φ on the complex plane. This large n behaviour is re-
lated to the unicity of the analytic continuation [38] by Carlson’s theorem [110]. Indeed, let
us suppose the existence of another function g̃D(ϑ, n), which satisfies g̃D(ϑ, n) = fD(ϑ, n)
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for odd n-s with n ≥ 3. We assume that |g̃D(ϑ, n)| < Ceq|n| for Re(n) > 0 and with q < π
2 ;

this assumption is motivated by the fact that both Tr (ρnA) and Tr
(
ρnA(−1)nQ̂A

)
behave

so for finite systems, see again ref. [38] for a detailed discussion. Then Carlson’s theorem
can be applied to f̃D(ϑ, n) − g̃D(ϑ, n) and implies that the difference is identically zero,
i.e. the continuation is unique. To be more precise, we use Carlson theorem in its standard
form [110] by applying it to f̃D(ϑ, 2n + 1) − g̃D(ϑ, 2n + 1), with n = 1, 2, 3, 4, . . .. The
only price to pay is that the growth on the imaginary axis must be bounded by Ce

π
2 |n|

rather than the usual restriction Ceπ|n|. Anyhow, this is compatible with both the limiting
behaviour of fD(ϑ, n) and our motivating assumptions for g̃D(ϑ, n).
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