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1 Introduction

The study of entanglement measures in the context of low-dimensional quantum field theory
is a very active field of research within theoretical physics. Activity has been particularly
intense since the early work of Calabrese and Cardy [1] which both extended previous
results [2, 3] and also, crucially, brought those results to the attention of a much wider
scientific community. These theoretical results, in conjunction with numerical and analytical
work in integrable spin chain models [4–7], revealed how certain entanglement measures,
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i.e. the entanglement entropy [8], display universal scaling at conformal critical points.
This observation has many implications, a very important one being that computing the
entanglement entropy of a pure state is one of the most numerically effective ways of checking
for criticality and, if found, determining the universality class the model belongs to.

A recent development in this field is the growing interest in a type of entanglement
termed symmetry resolved entanglement. In the context of conformal field theory (CFT),
a definition of this quantity was put forward in [9], where it was related to correlation
functions of generalised (or composite) branch point twist fields. The role of symmetries
and the contribution of symmetry sectors to the total entanglement was also studied in [10]
simultaneously and independently of [9]. In the context of entanglement, branch point twist
fields were first introduced in [1] as associated to conical singularities in conformal maps and
in [11, 12] as symmetry fields associated to cyclic permutation symmetry in 1+1D quantum
field theories (both critical and gapped). The basic idea is that in theories that possess an
underlying symmetry (say U(1) symmetry in a complex free boson theory or in sine-Gordon
theory) entanglement can be expressed as a sum over contributions from different symmetry
sectors. Remarkably such contributions are experimentally measurable [13–16], which
provides further motivation to study this quantity. In order to make these statements
more transparent, let us introduce some basic notation. Let |Ψ〉 be a pure state of a 1+1D
quantum field theory (QFT) and let us define a bipartition of space into two complementary
regions A and Ā so that the Hilbert space of the theory H also decomposes into a direct
product HA ⊗HĀ. Then the reduced density matrix associated to subsystem A is obtained
by tracing out the degrees of freedom of subsystem Ā in

ρA = TrĀ(|Ψ〉〈Ψ|) , (1.1)

and the von Neumann and nth Rényi entropy of a subsystem A are defined as

S = −TrA(ρA log ρA) and Sn = log(TrAρnA)
1− n , (1.2)

where TrAρnA := Zn/Zn1 can be interpreted as the normalised partition function of a theory
constructed from n non-interacting copies or replicas of the original model. As is well
known, S = limn→1 Sn.

In the presence of an internal symmetry, we can also define a symmetry operator Q and
its projection onto subsystem A, QA. By construction, we have that [QA, ρA] = 0 and if q is
the eigenvalue of operator QA in a particular symmetry sector, then Zn(q) = TrA(ρnAP(q))
with P(q) the projector onto the symmetry sector of charge q, can be identified as the
symmetry resolved partition function. In terms of this object, the symmetry resolved
entanglement entropies (SREEs) can be written as

Sn(q) = 1
1− n log Zn(q)

Zn1 (q) and S(q) = lim
n→1

Sn(q) . (1.3)

As discussed in [9] these quantities can best be obtained in terms of their Fourier modes,
the charged moments Zn(α) = TrA(ρnAe2πiαQA) as

Zn(q) =
ˆ 1

2

− 1
2

dαZn(α)e−2πiαq , (1.4)

– 2 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
7

where we have assumed for convenience that we are dealing with U(1) symmetry as will
be mostly the case in this paper (for discrete symmetries the integral can be replaced by
a sum). The factor 2π in the exponential can be absorbed into the normalisation of the
parameter α, but the present normalisation is chosen for convenience as it leads to more
elegant expressions later on.

Starting from these basic ideas, SREEs have been computed and discussed for many
classes of models, ranging from 1+1D CFTs [9, 10, 17–25], to free [26–28] and interacting
integrable quantum field theories [29–31], holographic settings [32–36], lattice models [10, 17–
19, 26, 37–44], out of equilibrium [14, 18, 42, 45–48] and for systems with more exotic types
of dynamics [49–54].

The aim of this paper is to study the SREEs in the context of zero-density excited states
in 1+1D gapped systems in the scaling limit. Consider a bipartition, as outlined above, in
a system of total length L and a subsystem of length ` such that the quantity r = `/L in
the scaling limit `, L→∞ remains finite with r ∈ [0, 1]. In this scaling limit, a zero-density
excited state is simply a QFT state describing a finite number of excitations above the
ground state. In a series of papers [55–58] the increase of the entanglement entropies and
logarithmic negativity1 with respect to their ground state values was computed and found
to take a remarkably universal and simple form. They depend only on r, on the number of
excitations and on their statistics. The results were originally derived by employing the
branch point twist field approach in free fermion and free boson theories, thus might seem
quite limited. However, it was argued in [55] (and illustrated on the example of one and
two magnon states) that the formulae should hold much more generally, for interacting
and even higher-dimensional theories,2 as long as a notion of localised excitations exists.
These claims have been substantiated through additional recent results. In particular, a
series of works by Rajabpour and collaborators [59–64] has expanded previous work in
various directions: by obtaining finite volume corrections, new formulae for systems where
quasiparticles are not localised, and finally by establishing that the formulae indeed hold
for generic magnon states, thus also in interacting theories, in [64]. Similar formulae have
also been found for interacting higher-dimensional theories in [65] and even in the presence
of an external potential, arising from a semiclassical limit [66]. Indeed, the formulae found
in [55] were not entirely unexpected as they can be derived for semiclassical systems [67],
however their wide range of applicability, well beyond the semiclassical regime, as well as
their derivation in the context of QFT were new.

In this paper we want to combine these two topics, symmetry resolved entropies and
excited states, to investigate how the entropy of excited states may be seen as a sum over
symmetry sectors in the presence of an internal symmetry. We will focus our attention on
the complex free fermion and boson theories. The total excited state entanglement of (real)
free fermions and bosons was studied in [56, 57] and their symmetry resolved entanglement
in the ground state was studied in [28]. This paper can be seen as a generalisation of
these works.

1In some of these papers more complex bipartitions were also considered, e.g. multiple disconnected regions.
2In [58] the same formulae were shown to hold for free bosons in any dimension if r is replaced by the

ratio of generalised volumes.
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Our motivation to study these types of states from this viewpoint is, first and foremost,
to provide exact formulae for the SREEs of at least a class of excited states in 1+1D QFT.
This is interesting because the SREE of the ground state of 1+1D QFTs has generally a
very complicated form, only accessible perturbatively in some parameter, as discussed in
many papers [9, 10, 17–31]. For the present states, it is possible to show that their SREEs
are as complex as those of the ground state, i.e. knowing the former is sufficient to know
the latter. Moreover, for special cases when the ground state is trivial, the SREEs can be
obtained exactly. Further motivation is provided by the fact that, contrary to the total
entropy, the SREEs are entanglement measures that allow us to distinguish between charged
and neutral excitations, even if in the present paper we focus only on charged particles. An
example where both charged and neutral excitations are present is the sine-Gordon model
in the interacting regime, which was studied in [30].

Our main results can be summarised as follows.
Let ZΨ

n (L, `, α) be the charged moments of the symmetry resolved nth Rényi entropy of
a connected region of length `, in a pure state |Ψ〉nL of an n-replica theory in finite volume
L. Then, the ratio of moments

lim
L→∞

ZΨ
n (L, rL;α)
Z0
n(L, rL;α) =: MΨ

n (r;α) , (1.5)

between the state |Ψ〉nL and the ground state |0〉nL, in the infinite volume limit with r fixed,
is given by a universal formula, which depends very simply on r and α. There are two
particularly useful cases from which more general formulae can be constructed. When
|Ψ〉nL = |1ε〉nL is a state of a single particle excitation with U(1) charge ε we have that

M1ε
n (r;α) = e2πiεαrn + (1− r)n , (1.6)

whereas for a state of k identical excitations of charge ε we have that

Mkε

n (r;α) =
k∑
j=0

[fkj (r)]ne2πijεα , (1.7)

where fkj (r) := kCj r
j(1− r)k−j and kCj = k!

j!(k−j)! is the binomial coefficient. Formula (1.7)
is the building block for all other results (formula (1.6) is the k = 1 case of (1.7)). A generic
state comprising s groups of kεii identical particles of charge εi will have

M
k
ε1
1 ...kεss

n (r;α) =
s∏
i=1

M
k
εi
i

n (r;α) . (1.8)

For α = 0 these formulae reduce to those found in [55–58]. However, whereas in those papers
the results represented the difference between ground state and excited state entanglement
entropies, in this case they represent the ratio of charged moments, rather than the SREEs
themselves. Thus, physically speaking, their interpretation is different. In order to obtain
the SREE it is necessary to isolate the charged moments of the excited state. This can be
easily done analytically, as we will see later and allows us to write the SREEs in terms of
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the ground state entropies. For instance, for the same state |Ψ〉nL = |1ε〉nL considered above,
the SREEs (Rényi and von Neumann) are given by

S1ε
n (r; q) = 1

1− n log Z1ε
n (r, q)

(Z1ε
1 (r, q))n = 1

1− n log Z
0
n(q − ε)rn + Z0

n(q)(1− r)n
(Z0

1 (q − ε)r + Z0
1 (q)(1− r))n , (1.9)

and

S1ε
1 (r;q) =−Z

0
1 (q−ε)r log r+Z0

1 (q)(1−r) log(1−r)+[r∂nZ0
n(q−ε)+(1−r)∂nZ0

n(q)]n=1
rZ0

1 (q−ε)+(1−r)Z0
1 (q)

+log(Z0
1 (q−ε)r+Z0

1 (q)(1−r)) , (1.10)

in terms of the ground state partition functions and their derivatives, which can be related
back to the ground state entropies. Here ZΨ

n (r, q) are the symmetry resolved partition
functions in the state |Ψ〉 and Z0

n(q) are those of the ground state, which are independent
of r in the scaling limit considered here. The formulae for the SREEs of other states are
rather cumbersome and we discuss more general cases in section 4.

This paper is organized as follows: in section 2 we review the branch point twist field
approach to entanglement measures and its application to the study of zero-density excited
states. In section 3 we describe how branch point twist fields can be employed to obtain
the ratio of charged moments and present key aspects of the computation for complex
free bosons and fermions. In section 4 we discuss how the SREE of excited states can be
obtained from the ratio of charged moments. In section 5 we recall how the same results can
be obtained from simple qubit states. These have coefficients that represent the probabilities
of finding a certain number of excitations in a certain space region. In this case the SREE
can be obtained explicitly. We conclude in section 6. In appendix A we summarize the form
factor calculation for complex free bosons and in appendix B for complex free fermions. In
appendix C we discuss the finite-volume expansion of the ground state two-point function
of composite twist fields.

2 Building blocks

In this section we review very briefly the definition of (composite) branch point twist fields
and their role in the computation of the SREEs of excited states.

2.1 Entropy of excited states and branch point twist fields

It has been known for a long time that at least in 1+1D all standard entanglement measures,
such as the von Neumann and Rényi entropies, can be expressed either in terms of correlators
of special quantum fields known as branch point twist fields (for QFT) [11] or in terms of
local operators (for spin chain models) [68, 69]. In both cases the fields/operators involved
act on replica theories, that is models that are constructed as n non-interacting copies of
the original theory. The value of n defines the Rényi index for the Rényi entropy, whereas
the von Neumann entropy is obtained in the limit n→ 1. The process of replication gives
rise to a new theory which is symmetric under permutation of any of the copies. This
includes symmetry under cyclic permutation of copies and in QFT this symmetry gives rise
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to a quantum symmetry field, the branch point twist field Tn. As it turns out, it is this
cyclic permutation symmetry which plays an important role in the context of entanglement.
This can be motivated by the structure of the manifold where the quantity TrAρnA takes its
values, as discussed in [1, 11] and many other places. From these considerations it emerges
that the Rényi entropies of a connected subsystem extending from x = 0 to x = ` can
be obtained from the equal-time correlator of two branch point twist fields, thanks to the
identification:

TrρnA = ε4∆nn
L〈Ψ|Tn(0)T̃n(`)|Ψ〉nL , (2.1)

where ε is a short-distance non-universal cut-off and ∆n is the conformal dimension of the
branch point twist field [1, 11, 70, 71]:

∆n = c

24

(
n− 1

n

)
with c the central charge . (2.2)

Note that the expression (2.1) holds both at and away from criticality, and in the latter case
∆n is the conformal dimension of the branch point twist field in the CFT which describes
the short-distance (massless) limit of the QFT under consideration. In addition, T̃n = T †n is
the hermitian conjugate of Tn, which from the symmetry viewpoint implements the reverse
cyclic permutation of copies. Finally, as introduced earlier, |Ψ〉nL is a pure state in its replica
version (hence the index n) at finite volume L, that is the tensor product of n identical
states. Because of the definitions (1.2) differences of Rényi or von Neumann entropies are
independent of ε. They depend only on the ratio

RΨ
n (`, L) :=

n
L〈Ψ|Tn(0)T̃n(`)|Ψ〉nL
n
L〈0|Tn(0)T̃n(`)|0〉nL

with RΨ
n (r) := lim

L→∞
RΨ
n (rL, L) , (2.3)

where |0〉nL is the finite-volume replica ground state. In the scaling limit this becomes a
function of |Ψ〉n and r only and, for the states considered in the Introduction, is given by
the same equations (1.6), (1.7) and (1.8) if we set α = 0.

Once this picture has been established, explicit computations are possible by different
approaches. For instance, we may exploit conformal invariance for critical systems or
employ an expansion in terms of (finite-volume) matrix elements of Tn, typically the
case in integrable QFTs (see e.g. [72–75]). These matrix elements are called form factors
and a programme for their computation has long been one of the great achievements of
IQFT [76, 77]. For the branch point twist field a generalised programme was developed
in [11] and thereafter applied to many different models.

2.2 Composite branch point twist fields

In [9] a generalisation of the branch point twist field formulation for the symmetry resolved
entanglement was proposed. The formulation is very natural and leads to the identification
of the charged moments with a two-point function

ZΨ
n (L, `;α) = ε4∆α

nn
L〈Ψ|T αn (0)T̃ αn (`)|Ψ〉nL , (2.4)
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in much the same spirit as (2.1). The new field T αn and its conjugate are composite twist
fields (CTFs) which can be understood as the massive versions of the CFT field:

T αn (y) := : T Vα : (y) = n2∆α−1 lim
x→y
|x− y|2∆α(1− 1

n)
n∑
j=1
Tn(y)Vjα(x) , (2.5)

where Vα is the symmetry field associated with the internal symmetry of the theory. For
instance, for the complex free fermion and boson it will be a U(1) field with U(1) charge
related to the index α. ∆α is the conformal dimension of this field and Vjα is a copy of this
field living in copy j of the replica theory. In the context of entanglement, similar composite
fields with the same conformal dimension

∆α
n := ∆n + ∆α

n
, (2.6)

appeared first in [78–80], with the difference that, unlike in [9], in those papers the field Vα
was not assumed to be a symmetry field but a completely generic one.

The main result of this paper is the finding that, similar to the quantity (2.3), also the
ratio of the moments (2.4) between an excited state and the ground state takes a simple
universal form for many theories/excited states, as reviewed in the introduction. Thus, we
are interested in the quantity

MΨ
n (r;α) = lim

L→∞

n
L〈Ψ|T αn (0)T̃ αn (rL)|Ψ〉nL
n
L〈0|T αn (0)T̃ αn (rL)|0〉nL

, (2.7)

which is a function of the ratio r, the charge α and the state |Ψ〉n. Let us now discuss how
these ratios may be computed in practise, employing a form factor approach.

3 Symmetry resolved entanglement of excited states

The CTF approach provides for us a natural way to obtain the ratio of two-point functions,
that is the ratio of charged moments (2.7). Once we have computed the ratios MΨ

n (r;α) we
will see that at least for free theories and for other specific types of states (such as certain
qubit states) it is possible to also obtain the SREEs of the excited state. Let us start by
performing our computations in complex free bosons and fermions.

3.1 (Composite) branch point twist field factorisation

The key technical problem that was solved in [56] is the question of how to evaluate finite
volume matrix elements of the branch point twist field. The same question arises for the
CTF. Although a finite volume form factor programme for generic local fields exists [81, 82]
this cannot be directly employed for twist fields (its extension to this case is still an open
problem). In the absence of such a programme, an alternative approach can be used for
complex free theories, where the internal U(1) symmetry on each replica can be exploited
to diagonalise the action of the (composite) branch point twist field [83]. In fact, this

– 7 –
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diagonalisation procedure can also be employed in infinite volume to compute the form
factors of T αn , as done in [28]. The idea is that we can find a factorisation

T αn =
n∏
p=1
Tp+α , T̃ αn =

n∏
p=1
T−p−α , (3.1)

for complex free bosons and

T αn =
n−1

2∏
p=−n−1

2

Tp+α , T̃ αn =
n−1

2∏
p=−n−1

2

T−p−α , (3.2)

for complex free fermions, of the CTFs where the factors Tp+α are all U(1) fields with U(1)
charge p+α. These U(1) were employed in [28], albeit with a different normalisation of the
parameter α. These fields are the result of “fusing” two U(1) fields of charges p and α; the
fields Tp employed in [56] in terms of which the branch point twist field can be decomposed,
and the U(1) field Vα, which for free theories has dimension

∆α = α2

2 for free fermions , (3.3)

∆α = |α| − α
2

2 for free bosons . (3.4)

The fact that in this special case both types of field are U(1) fields means that their fusion
is achieved just by adding their charges.

The fields Tp+α satisfy the usual equal-time exchange relations for U(1) fields, which
involve what is termed a factor of local commutativity γp+α = exp(2πi(p+ α)/n), that
is, the phase that a neutral field ϕ(x) accrues when taking a trip around the U(1) field.
As reviewed in [56], this factor is the key ingredient in determining the form factors of
these fields.

3.2 Computation of MΨ
n (r;α)

The computation presented in [56] for the total entanglement entropy may be easily extended
to the case of the ratio MΨ

n (r;α) in excited states. First of all, a word is due regarding
the excited state |Ψ〉nL. In general, any state in the replica QFT can be characterised in
terms of the rapidities and quantum numbers of the excitations above the ground state.
Considering a free complex theory, we may define creation operators (aεj)†(θ) where ε = ±
is the U(1) charge of the particle, j = 1, . . . , n is the copy number, and θ is its rapidity.
Unlike the works [55–58] where complex theories were considered only in order to access
results for real ones, here we are interested in obtaining results for complex models. For
this reason, the type of excited states that we want to consider is in fact simpler and more
natural than those studied in previous works. The type of k-particle excited state that we
are interested in consists of n identical copies of a standard k-particle state

n∏
j=1

(aε1j )†(θ1)(aε2j )†(θ2) · · · (aεkj )†(θk)|0〉nL , (3.5)

– 8 –
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where θi are the rapidities, ji the copy numbers and εi = ± specifies the type of complex
boson/fermion that is created by the action of the creation operator (aεiji)

†(θi). Let us start
by considering the complex free boson case.

3.3 Complex free boson

In order to represent the state we need to move to a basis where the CTF action is diagonal
and factorised. In this basis, the state can be expressed in terms of creation operators a†j(θ)
and b†j(θ) associated with the two types of boson. They are related to the creation operators
in the standard basis as [56]

a
†
p(θ) = 1√

n

n∑
j=1

e
2πijp
n (a+

j )†(θ) and b
†
p(θ) = 1√

n

n∑
j=1

e−
2πijp
n (a−j )†(θ) (3.6)

where p = 1, . . . n. In summary, the two sets of creation operators are simply Fourier modes
of each other. This is also the case for free fermions, but the range of values of p is different,
in line with (3.2).

As an example, let us consider the case of one single excitation k = 1. We will write
the state as |1ε〉nL where ε = ± represents the U(1) charge of boson type. In the original
basis, this would simply be the state (aε1)†(θ)(aε2)†(θ) . . . (aεn)†(θ)|0〉nL, that is a state where
a single complex boson of rapidity θ and charge ε is present in each replica. In the diagonal
basis, such a state takes the form

|1+〉nL =
∑
{N+}

An({N+})
n∏
p=1

[a†p(θ)]N
+
p |0〉np,L , |1−〉nL =

∑
{N−}

An({N−})
n∏
p=1

[b†p(θ)]N
−
p |0〉np,L ,

(3.7)
where the indices {N±} = {N+

1 , N
−
1 , . . . , N

+
n , N

−
n } are boson occupation numbers in each

sector and they are constrained by the condition that they must add up to n
n∑
p=1

N±p = n . (3.8)

The coefficients A({N±}) can be obtained systematically from the relationships (3.6) and
their inverses. Combining the factorisation of the CTF with the form of the state, we can
then write the two-point function as

n
L〈1+|T αn (0)T̃ αn (`)|1+〉nL =

∑
{N+}

∑
{M+}

A∗n({N+}) An({M+}) (3.9)

×
n∏
p=1

n
p,L〈0|[ap (θ)]N

+
p Tp+α(0) T−p−α(`) [a†p(θ)]M

+
p |0〉np,L .

n
L〈1−|T αn (0)T̃ αn (`)|1−〉nL =

∑
{N−}

∑
{M−}

A∗n({N−}) An({M−}) (3.10)

×
n∏
p=1

n
p,L〈0|[bp (θ)]N

−
p Tp+α(0) T−p−α(`) [b†p(θ)]M

−
p |0〉np,L .
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This can be computed in the standard way, by inserting a sum over a complete set of states
between the two U(1) fields as detailed in appendix A. A particular subtlety of this kind of
computation is that, because of finite volume, the momenta/rapidities of excitations are
quantised and non-zero matrix elements correspond to particular quantisation conditions
that take the monodromy of the fields into account. In particular we have:

P (θ±i ) = m sinh θ±i = 2πJ±i ±
2π(p+ α)

n
, J±i ∈ Z , (3.11)

where θ±i are understood as rapidities of particles of type a†j(θi) and b†j(θi), respectively,
which would be present in the sum over intermediate states. Similarly the rapidity θ is
also quantised through P (θ) = 2πI for I ∈ Z. Note the quantity p+α

n is never an integer
for α ∈ [−1

2 ,
1
2 ] and p 6= n (p = n corresponds to the identity field). This guarantees that

only non-diagonal form factors (that is matrix elements involving only distinct right and
left states) will be involved in the computation of the leading large-volume contribution
to (3.9).

Once a sum over a complete set of states is inserted in (3.9) the problem reduces to
the computation of matrix elements of the U(1) fields Tp+α. Such matrix elements have
been known for a long time but they were re-derived in [28, 56]. Because of the free nature
of the theory, all matrix elements are given in terms of permanents whose basic building
block are the two-particle form factors

fnp+α(θ12) = p〈0|Tp+α(0) a†p(θ1)b†p(θ2)|0〉p = −τp+α sin π(p+ α)
n

e
(
p+α
n
− 1

2

)
θ12

cosh θ12
2

, (3.12)

where τp+α is the vacuum expectation value of Tp+α and θ12 = θ1 − θ2.
In summary, all results obtained in [56] follow through for the CTF with the replacement

p→ p+ α and the choice of an appropriate state. In particular, the ratio of the moments
for an excited state of one excitation are nearly identical to formula (4.19) in [56], namely

M1±
n (r;α) =

∑
{N±}

|An({N±})|2
n∏
p=1

(N±p !)[gn±(p+α)(r)]N
±
p = e±2πiαrn + (1− r)n , (3.13)

which is, as anticipated, the formula (1.6) and where

gnp (r) := 1−
(

1− e
2πip
n

)
r . (3.14)

For free bosons, this can be generalised to states containing k identical excitations to
find (1.7). For states containing k different excitations (with different rapidities and any
combination of charges εi) the result is

M1ε1 ...1εk
n (r;α) =

k∏
s=1

∑
{N±}

|Cn({N±})|2
n∏
p=1

N+
p,s! N−p,s!

(
gnp+α(r)

)N+
p,s
(
gn−p−α(r)

)N−p,s
=

k∏
j=1

[
e2πiεjαrn + (1− r)n

]
, (3.15)

– 10 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
7

where each εj in the excited state is either + or −. In particular, if all charges are identical,
the product may be replaced by a power k. In these formulae Cn({N±} and An({N±}
are coefficients which are determined by the form of the state in the diagonal basis. Both
results are special cases of (1.8). These formulae are also derived in appendix A.

3.4 Complex free fermion

For complex free fermions the computation is very similar, but states involving identical
excitations are forbidden and the relationship between the original creation operators and
those in the diagonal base is also slightly different. We now have

a
†
p(θ) = 1√

n

n∑
j=1

e
2πijp
n (a+

j )†(θ) and b
†
p(θ) = 1√

n

n∑
j=1

e−
2πijp
n (a−j )†(θ) (3.16)

where p = −n−1
2 , . . . n−1

2 , in terms of operators (a±j )†(θ) which anticommute for distinct
values of j. The U(1) twist field form factors are also modified to [85]

fnp+α(θ12) = p〈0|Tp+α(0) a†p(θ1)b†p(θ2)|0〉p = iτp+α sin π(p+ α)
n

e
(
p+α
n

)
θ12

cosh θ12
2

. (3.17)

The structure of a state consisting of a single particle excitation is as for the free boson,
namely

|1+〉nL =
n∏
j=1

(a+
j )†(θ)|0〉nL =

n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ωjpa†p(θ)|0〉nL , (3.18)

|1−〉nL =
n∏
j=1

(a−j )†(θ)|0〉nL =
n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ω−jpb†p(θ)|0〉nL , (3.19)

with ω = e−
2πi
n . For instance, for n = 2 we have:

|1+〉2L = 1
2

(
ia†− 1

2
(θ)− ia†1

2
(θ)
)(
−a†− 1

2
(θ)− a†1

2
(θ)
)
|0〉2L = −ia†− 1

2
(θ)a†1

2
(θ)|0〉2L , (3.20)

and

|1−〉2L = 1
2

(
−ib†− 1

2
(θ) + ib†1

2
(θ)
)(
−b†− 1

2
(θ)− b†1

2
(θ)
)
|0〉2L = ib†− 1

2
(θ)b†1

2
(θ)|0〉2L . (3.21)

Similarly, for n = 3:

|1+〉3L = ia†−1(θ)a†0(θ)a†1(θ)|0〉3L , |1−〉3L = −ib†−1(θ)b†0(θ)b†1(θ)|0〉3L. (3.22)

As we can see, due to the anticommutation relations amongst creation operators, many
contributions now cancel each other so that the states take extremely simple forms in the
new diagonal basis. One can easily show by induction that the general structure of the
states (3.18) and (3.19) is:

|1+〉nL = eiκ

n−1
2∏

p=−n−1
2

a
†
p(θ)|0〉nL , |1−〉nL = e−iκ

n−1
2∏

p=−n−1
2

b
†
p(θ)|0〉nL (3.23)
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with κ a real parameter that can be computed for each specific state but will play not role
in our computation. Making use of the factorisation (3.2) we can expand the fermionic
two-point function in terms of a sum over the form factors (3.17). The details are presented
in appendix B. For a state consisting of a single excitation the result is

M1±
n (r;α) =

n−1
2∏

p=−n−1
2

gn±p±α(r) =
n−1

2∏
p=−n−1

2

[
1− (1− e±

2πi(p+α)
n )r

]
.

Since the quantities e±
2πip
n are the nth roots of +1 for n odd, and the nth roots of −1 for n

even, we can show:
n−1

2∏
p=−n−1

2

(
x− e±

2πip
n y

)
= xn + (−y)n , (3.24)

which, after setting x = 1− r, y = −re± 2πiα
n gives:

n−1
2∏

p=−n−1
2

gn±p±α(r) = e±2πiαrn + (1− r)n , (3.25)

that is, the same formula as for free bosons, albeit resulting from a rather different product
of g-functions. Similarly, all free boson formulae presented in the previous subsection are
recovered for free fermions, as long as we consider only distinct excitations. Further details
are presented in appendix B.

4 Symmetry resolved entanglement entropies

Having obtained the ratios of charged moments we now proceed to computing the SREE
of excited states. To this aim, we need to isolate the charged moments of the excited
state and then compute their Fourier transform as defined in (1.4). In other words, we
need to multiply our results of the previous sections by the ground state correlator in the
infinite-volume limit considered here. Note that this ground state correlator will generally
be different for different theories, even if they all satisfy the formulae (1.6)–(1.8).

For (local) 1+1D QFTs, such as complex free theories, the ground state correlator in our
scaling limit reduces to its disconnected part, that is the square of the vacuum expectation
value (VEV) of the field T αn . This result follows simply from clustering of correlators in
local QFT, but can also be demonstrated explicitly from the finite volume expansion of the
ground state two point function. This expansion is presented in appendix C for complex free
fermions. In particular, looking at equation (C.5) we can see how, despite the complexity
of the expansion, in infinite volume the only surviving term in the sum corresponds to the
product of VEVs |τp+α|2. The same statement holds for complex free bosons, where the
expansion is identical except for the permutation signs, which are absent from the formula,
and a small change to the exponential factors. As mentioned earlier, it is also common to
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normalise the correlators by the inclusion of a UV cut-off, so that the natural quantity to
compute is

ZΨ
n (r;α) = Z0

n(α)MΨ
n (r;α) with Z0

n(α) := ε4∆α〈T αn 〉2 , (4.1)

where ZΨ
n (r;α) are the charged moments of the excited state in our particular scaling limit

and Z0
n(α) are the moments of the ground state where 〈T αn 〉 is the VEV of the CTF. As we

know, from general dimensionality arguments as can be found for instance in [84], the VEV
has a very particular dependence on the mass scale and the conformal dimension of the
CTF. In fact, we have that

〈T αn 〉 = vαnm
4∆α

n , (4.2)

where vαn is a function that depends on the model and can be determined by requiring CFT
normalisation of the CTF (that is, that the CFT two-point function has numerical coefficient
of 1) and ∆α

n is given by (2.6). The Fourier transform of the ground state moments has
been studied in detail for free QFTs in [27, 28], thus we will not revisit its computation
here. Instead, we show that, assuming Z0

n(α) to be known, it is possible to express the
symmetry resolved partition functions and entropies of excited states fully in terms of those
of the ground state. The reason for this is that the functions MΨ

n (r;α) depend on α in an
extremely simple manner, namely through factors of the form e±2πijα only. Thus, in order
to compute the SREE of an excited state, the only non-trivial integrals that we need to
consider are of the form

ˆ 1
2

− 1
2

dαZ0
n(α)e−2πiα(q±j) = Z0

n(q ± j) . (4.3)

For instance, using (1.6), the simple example of a single excitation of charge ε gives the
following relationship amongst partition functions

Z1ε
n (r; q) = Z0

n(q − ε)rn + Z0
n(q)(1− r)n . (4.4)

Therefore, the symmetry resolved Rényi and von Neumann entropies of such a state would
be given by formulae (1.9) and (1.10), respectively. They can in turn be written in terms of
the SREE and partition function of the ground state (i.e. eliminating derivative terms) by
recalling that

∂nZ0
n(q)

∣∣∣
n=1

= −Z0
1 (q)[S0

1(q)− logZ0
1 (q)] . (4.5)

Similar relations are found for more complicated cases, such as (1.7), that is an excited
state of k identical excitations of charge ε. In this case we find instead

Sk
ε

n (r; q) = 1
1− n log

∑k
j=0

[
fkj (r)

]n
Z0
n(q − εj)[∑k

j=0 f
k
j (r)Z0

1 (q − εj)
]n , (4.6)
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and the symmetry resolved von Neumann entropy

Sk
ε

1 (r; q) = −

∑k
j=0

[
Z0

1 (q − εj)fkj (r) log fkj (r) + fkj (r) ∂nZ0
n(q − εj)

∣∣∣
n=1

]
∑k
j=0 f

k
j (r)Z0

1 (q − εj)

+ log
k∑
j=0

fkj (r)Z0
1 (q − εj) . (4.7)

Unlike for the charged moments, the entropies of other states are not simple sums/products
of the formulae above. However, the kind of integrals involved are of the same type so that
the computation can be performed in a similar manner for any excited state. As a last
example, let us consider the ratio of charged moments for an excited state of two particles
of opposite charges. We have that

Z1+1−
n (r; q) =

ˆ 1
2

− 1
2

dαZ0
n(α)(rn + e2πiα(1− r)n)(rn + e−2πiα(1− r)n)e−2πiαq

= Z0
n(q)(r2n + (1− r)2n) + (Z0

n(q − 1) + Z0
n(q + 1))rn(1− r)n , (4.8)

so that the Rényi entropy is

S1+1−
n (r; q) = 1

1− n log Z
0
n(q)(r2n + (1− r)2n) + (Z0

n(q − 1) + Z0
n(q + 1))rn(1− r)n

[Z0
1 (q)(r2 + (1− r)2) + (Z0

1 (q − 1) + Z0
1 (q + 1))r(1− r)]n ,

(4.9)
from which the von Neumann entropy follows as above.

In conclusion, the SREE of the kind of excited states considered here can be expressed
in terms of the SREE and partition function of the ground state. This statement holds
for any systems where formulae (1.6)–(1.8) apply and where the ground state contribution
is well-defined, which, as we shall see below and in subsequent work [86], includes a wide
range of models, well beyond free QFTs.

We conclude this section by recalling that a key property of the SREEs of the ground
state both in QFT [9] and interacting quantum spin chains [10] is the property of equipar-
tition at leading order. That is, within a certain range of parameters3 the SREEs of all
charge sectors are charge independent. It is clear from the formulae above that this property
also holds for the SREEs of excited states, as their charge dependence is solely encoded in
the symmetry resolved partition function and entropies of the ground state. Thus if the
entropy is equipartite in the ground state it will also be so in excited states.

5 Qubit states

Besides the QFT approach based on twist fields that we have presented so far, there
are alternative ways in which the entanglement of excited states may be studied. In the
works [55–57] several models and approaches were considered, including the study of the

3For massive QFT this range typically corresponds to the double limit of large subsystem size `� 1 and
| log(mε)| � 1 where m is a typical mass scale and ε a UV cut-off (see e.g. [30, 31]).
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entanglement of certain qubit states. In the present context, such states are also useful as
they provide a simpler way of obtaining our formulae for the ratios of charged moments, even
if their associated SREEs will be different, in fact much simpler than those of QFT states.

Considering the bipartite Hilbert space H = HA⊗HĀ, where each factor can be related
to the Hilbert space for Nj sets of j indistinguishable qubits (with N = ∑

j Nj), we can
construct state of this Hilbert space H as

|Ψqb〉 =
∑

q∈
∏
j≥1{0,1,...,j}

Nj

√
pq|q〉 ⊗ |q̄〉 (5.1)

where the function pq := ∏
i f

qi
ji

(r) (see the definition in (1.7)) represents the probability of
finding a particle configuration q = {qi : i = 1, . . . , N} in the corresponding entanglement
region and |q̄〉 is the state where the qubits are inverted. The entanglement entropy
associated with this state captures the excess entanglement of an excited state containing
Nj sets of j indistinguishable excitations if we assume that the probability of finding an
excitation in subsystem A is r. We identify the qubit state 1(0) with the presence (absence)
of a particle and the non-trivial binomial coefficients account for the (un)distinguishability
of excitations. Instead, in the case of the SREE, a similar computation as performed in [56]
gives the charged moments of the state. Notice that, as explained in [9], only particles in
subsystem A acquire a phase when they go around a loop on the n-sheeted Riemann surface
with the Aharonov-Bohm flux inserted. This also means that, unlike for the entanglement
entropies, the charged moments are not symmetric under exchange of r and 1− r, as we
have seen in all our formulae so far.

Assuming that the charge operator associated with the internal symmetry is Q =
QA ⊗ 1Ā + 1A ⊗QĀ, that is the charge operator can be decomposed into its projections
into regions A and Ā, then

e2πiαQA |Ψqb〉 = e2πiαQA
∑

q

√
pq|q〉 ⊗ |q̄〉 =

∑
q
e2πiα(n+

q −n−q )√pq|q〉 ⊗ |q̄〉 , (5.2)

where the summation is over q ∈ ∏j≥1{0, 1, . . . , j}Nj and n±q is the number of positively/
negatively charged particles in subsystem A for a particular configuration q. Note that ρA
and QA share the same eigenbases and therefore commute. The charged moments of this
qubit state are given by the usual formula TrA(ρnAe2πiαQA) so that, adapting this formula
to our state and using instead the notation ρq and Qq to denote the reduced density matrix
and charge operator associated with the qubit state (5.1), the charged moments become

Tr(ρnqe2πiαQq) =
∑
q′
〈q′|ρnq e2πiαQq |q′〉 =

∑
q′
e

2πiα(n+
q′−n

−
q′ )〈q′|ρnq |q′〉 . (5.3)

The density matrix can be written as:

ρq = Trq̄(|Ψqb〉〈Ψqb|) =
∑
q̄′
〈q̄′|Ψqb〉〈Ψqb|q̄′〉 =

∑
q̄′

∑
q
pq δq̄,q̄′ |q〉〈q| , (5.4)

so that plugging this expression into (5.3) we obtain

Tr(ρnqe2πiαQq) =
∑
q′

∑
q̄′

∑
q
e

2πiα(n+
q′−n

−
q′ ) pnq δq̄,q̄′ δq,q′ =

∑
q̄′

∑
q
e2πiα(n+

q −n−q ) pnq δq̄,q̄′ , (5.5)
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which reproduces all results (1.6), (1.7) and (1.8) upon specifying the corresponding qubit
state. For instance, for the simple case of a single excitation, the relevant state is

|Ψqb〉 =
√
r|10〉+

√
1− r|01〉 , (5.6)

from which (1.6) is easily reproduced.

5.1 Symmetry resolved entanglement entropies

We close this section by noting that for qubit states, the results obtained are directly
the moments of the state (i.e. we can think of the ground state as being trivial in these
cases). This means that the formulae (1.6)–(1.8) are directly the quantities we need to
Fourier-transform in order to obtain the SREEs. The simplicity of the formulae allows us to
obtain the SREEs exactly, something that is typically beyond reach for QFT. Noting that

ˆ 1
2

− 1
2

dα e−2πiαx = sin πx
πx

= δx,0 for x ∈ Z , (5.7)

it is easy to show that

S1ε
n (r; q) = 1

1− n log
[
δq,εr

n + δq,0(1− r)n(
δq,εr + δq,0(1− r)

)n
]
, (5.8)

and

Sk
ε

n (r; q) = 1
1− n log

∑k
j=0

[
fkj (r)

]n
δq,εj[∑k

j=0 f
k
j (r)δq,εj

]n , (5.9)

from which the von Neumann entropies easily follow. Due to the simplicity of the states
however, we can easily see that all the entropies above are identically zero, whenever any of
the delta-functions is 1. This can be interpreted as the statement that the SREE does not
give any additional information about these states. Another way to put this, is to say that
the only property that matters in establishing formulae (5.8)–(5.9) is whether particles are
distinguishable or not and in both formulae particles are identical by construction, so that
specifying the charge does not add any relevant information.

The situation is different though if we consider states containing at least some distinct
excitations. For instance, for a state of k distinct excitations of the same charge ε we have
that the charged moments are given by

(rn + e2πiεα(1− r)n)k =
k∑
j=0

kCj (1− r)nje2πiεαjrn(k−j) , (5.10)

so performing the Fourier transform we get

S1ε1ε...1ε
n (r; q) = 1

1− n log
∑k
j=0 kCj (1− r)njδq,εjrn(k−j)[∑k
j=0 kCj (1− r)jδq,εjr(k−j)

]n , (5.11)
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thus for a particular value of the charge we have

S1ε1ε...1ε
n (r; εj) = 1

1− n log kCj (1− r)njrn(k−j)[
kCj (1− r)jr(k−j)

]n = log kCj . (5.12)

In this case the SREE tells us about the number of equally likely configurations which
produce a charge εj in region A and is independent of n. Many other configurations can be
considered, all of which produce different results, with similar interpretations. For instance,
for a state with one positively and one negatively charged particle, the Fourier transform of
the function

(rn + e2πiα(1− r)n)(rn + e−2πiα(1− r)n) , (5.13)

gives the simple formula

S1+1−
n (r; q) = 1

1− n log (r2n + (1− r)2n)δq,0 + rn(1− r)n(δq,1 + δq,−1)[
(r2 + (1− r)2)δq,0 + r(1− r)(δq,1 + δq,−1)

]n , (5.14)

and
S1+1−
n (r; 0) = 1

1− n log r2n + (1− r)2n

(r2 + (1− r)2)n , S1+1−
n (r;±1) = 0 . (5.15)

In this case the q = 0 result is n-dependent and gives a non-trivial symmetry resolved von
Neumann entropy:

S1+1−
1 (r; 0) = log(r2 + (1− r)2)− r2 log r2 + (1− r)2 log(1− r)2

r2 + (1− r)2 , S1+1−
1 (r;±1) = 0 .

(5.16)
In this example the SREE of the q = 0 sector is non-trivial as there are now two possible
configurations that we can associate with such a charge, namely both particles being in
region A and no particle being in region A. Thus there is a difference in the SREEs of
states involving two particles with the same or distinct charges, even for the simple states
considered here. Additional examples are presented in figure 1.

It is worth noting that all formulae in this section are in agreement with those in
section 4 if we identify the function (5.7) with the ground-state partition function Z0

n(q).
Therefore, the study of qubit states provides a neat application of the general results of
section 4 for the case of a trivial, unentangled, ground state.

Because of the simplicity and explicit nature of all the formulae in this subsection,
it is now possible to compute precisely the two contributions to the total von Neumann
entropy that are often discussed in the literature, namely the configurational entropy and
the number entropy [9, 10]. Calling SΨ

1 (r) the total von Neumann entropy of the state |Ψ〉
we can write

SΨ
1 (r) =

∑
q

(p(q)SΨ
1 (q; r)− p(q) log p(q)) , (5.17)

where p(q) := ZΨ
1 (r; q), that is the symmetry resolved partition function of the state for

n = 1 and the term ∑
q p(q) log p(q) is the number entropy. This represents the probability

of obtaining the value q when measuring the charge.
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Figure 1. Symmetry resolved entropies of various qubit states in the zero charge sector as functions
of r. Left: the symmetry resolved von Neumann entropy of the charge zero sector for states of
equal numbers k of identical positively and negatively charged particles. In the figure k = 1, 2, 3, 4
giving larger entropy for higher k. The maxima at r = 1/2 are log 2, log 6, log 20 and log 70, that is
log(2k)!− 2 log(k!) which counts the number of distinct arrangements of two groups of k identical
particles. Right: the symmetry resolved Rényi entropy of the charge zero sector of a state consisting
of four identical positively and four identical negatively charged excitations for n = 2, 4, 8, 20. The
larger n is, the more sharply peaked at r = 1/2 the functions become. The value at r = 1/2 is log 70,
independent of n.

It is easy to work out an explicit example and see the features of these two contributions.
For the same state of two excitations of distinct charges (5.15)–(5.16) we have that

p(0) = r2 + (1− r)2, p(±1) = r(1− r) , (5.18)

so that the number entropy is simply

(r2 + (1− r)2) log(r2 + (1− r)2) + 2r(1− r) log(r(1− r)) , (5.19)

and the configuration entropy is

(r2 + (1− r)2)S1+1−
1 (r; 0) , (5.20)

with S1+1−
1 (r; 0) given by (5.16). It is very easy to evaluate (5.17) with these contributions

and to recover the known formula for the total von Neumann entropy of a state of two
distinct excitations −2r log r− 2(1− r) log(1− r) as found in [55, 56]. We note also that the
number entropy takes its maximum (absolute) value 3/2 log 2 at r = 1/2, and that it can
itself be considered a measure of entanglement, as discussed for other examples in [87, 88].

We close this subsection by noting that the entropy formulae for qubit states considered
here do not have the property of equipartition, that is, they depend explicitly on the charge
sector as we see for instance from eq. (5.15). This is no contradiction as the property of
equipartition [10] is typically a leading order property (for instance in [10] it holds for small
magnetization). In the case of qubit states we have exact formulae rather than leading order
expressions, thus they depend on the charge. Indeed, they provide probably the simplest
example where such a dependence can be easily shown.
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6 Conclusions

In this paper we have computed the symmetry resolved entanglement entropy and its
moments for zero-density excited states. These are defined as excited states consisting of
a finite number of excitations above the ground state in a scaling limit where both the
volume of the system and the volume of each subsystem are taken to infinity, keeping their
ratio constant.

It is known from previous work [55–64] that the difference between the entanglement
entropy of the excited state and that of the ground state, also known as excess entropy,
takes an extremely simple and universal form for non-interacting 1+1D QFTs and also
for certain highly excited states of CFT [20]. Since this excess entanglement represents
the extra contribution to entanglement of an excited state above a non-trivially entangled
ground state it has also been realised that the same extra contribution is obtained when
the ground state is trivial. For this reason both a free QFT and a qubit picture lead to the
same results, even if the underlying theories are extremely different. Finally, it has also
been shown that the results extend to free bosons in any dimension [57] and more generally,
to any situations where excitations are localised, in the sense that either the correlation
length or the De Broglie wave length of the excitations are small compared to region sizes.

The results in this paper are extensions of the work we have just summarised and
hold under the same assumptions. However, while the work above dealt with the excess
entanglement, the present work deals with the SREE and its associated charged moments
(that is, the Fourier transform of the associated partition function). It turns out that
the ratio of charged moments between the excited and ground states, takes a universal
form which is a simple generalisation of the results for the excess entropy. While this
generalisation is very natural and not difficult to obtain from previous work, what is perhaps
more novel and surprising is that from the ratio of charged moments, provided these are
well-defined in the infinite volume ground state, it is also possible to obtain exact expressions
for the SREE of the excited states. These expressions can be written solely in terms of the
SREE and symmetry resolved partition function of the ground state, thus are again very
widely applicable. In particular, when qubit states are considered, totally explicit formulae
for the SREEs can be obtained in this manner. Although the focus of this paper has been
on models with U(1) symmetry, we expect analogous formulae to hold for other symmetries,
both continuous and discrete.

There are various problems that we plan to address in the near future: extending
our results to interacting and higher-dimensional theories as well as providing numerical
verification of our formulae. We will present these results in [86]. Looking further, we would
like to extend these results to the symmetry resolved negativity and to study finite-volume
corrections employing the form factor techniques presented here. It would also be interesting
to investigate the correlation functions of CTFs in infinite volume for free theories, along
the lines of [73, 75].
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A Complex free boson computation

In this appendix we present the form factor computation of the ratio of charged moments
in detail, focusing on the complex free boson theory.

A.1 Single-particle excited states

Once the two-point function in (3.9) is obtained we can compute it by inserting a sum over
a complete set of states between the U(1) fields as follows:

n
L〈1+|T αn (0)T̃ αn (`)|1+〉nL =

∑
{N+}

∑
{M+}

A∗n({N+})An({M+})
n∏
p=1

∞∑
m±=0

∑
{J±}

m+∏
j=1

m−∏
r=1

1
m+!m−!

×n
p,L〈0|[ap (θ)]N

+
p Tp+α(0)a†p(θ+

j )b†p(θ−r )|0〉np,L
×n
p,L〈0|ap(θ+

j )bp(θ−r )T−p−α(`) [a†p(θ)]M
+
p |0〉np,L , (A.1)

and similarly for the |1−〉nL case. Since the matrix elements involved are related to the
infinite-volume form factors, we can rewrite the previous expression up to exponentially
decaying corrections as

n
L〈1+|T αn (0)T̃ αn (`)|1+〉nL =

∑
{N+}

∑
{M+}

A∗n({N+}) An({M+})
n∏
p=1

∞∑
m±=0

∑
{J±}

1
m+!m−!

× e
i`

(∑m+

j=1 P (θ+
j )+

∑m−

r=1 P (θ−r )−M+
p P (θ)

)
√
LE(θ)N

+
p +M+

p ∏m+
j=1 LE(θ+

j ) ∏m−
r=1 LE(θ−r )

× Fn,p
N+
p +m++m−(θ+

1 . . . θ
+
m+ , θ̂, . . . θ̂, θ

−
1 . . . θ

−
m−)

× Fn−p,n
M+
p +m++m−(θ . . . θ, θ̂−1 . . . θ̂−m− , θ̂

+
1 . . . θ̂

+
m+) , (A.2)

being θ̂±j = θ±j + iπ, E(θ) = m cosh θ and P (θ±j ), P (θ) given by the Bethe-Yang quantisation
condition (3.11). The complete formula for the form factors above was given in [56] and
they can be fully expressed as sums of products of two-particle form factors. They are
non-vanishing for N+

p = M+
p = m+ −m− and zero otherwise.
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If the same intermediate rapidity θ+
j is paired up in the Wick-contraction sense with the

rapidity of the excited state θ from the in- an out-states, the dominant contribution in the
form factor product will come from kinematic poles. In other words, if θ+

j ∼ θ two-particle
form factors will appear as follows:

Fn,p
N+
p +m++m−(θ+

1 . . . θ
+
m+ , θ̂ . . . θ̂, . . . ) ∼ N+

p f
n
p+α(θ+

j − θ̂)

× Fn,p
N+
p +m++m−−2(θ+

1 . . . θ
+
j−1θ

+
j+1 . . . θ

+
m+ , θ̂ . . . θ̂ . . . )

Fn−p,n
M+
p +m++m−(θ . . . θ, . . . θ̂+

1 . . . θ̂
+
m+) ∼M+

p f
n
n−(p+α)(θ̂ − θ+

j )

× Fn−p,n
M+
p +m++m−−2(θ . . . θ, . . . θ̂+

1 . . . θ̂
+
j−1θ̂

+
j+1 . . . θ̂

+
m+),

where the number of θ̂ (θ) in the arguments of the form factors in the right-hand side
term are now N+

p − 1 (M+
p − 1). The main property of the matrix elements in (A.1) that

determines the final formula for (3.9) is the infinite volume limit of the terms such as∑
J+∈Z

fnp+α(θ+ − θ̂)fnn−p−α(θ − θ̂+)ei`(P (θ+)−P (θ))

cosh θ cosh θ+

∼ (mL)2 ∑
J+
i ∈Z

sin2 π(p+α)
n

π2
e2πir

(
J+−I+ p+α

n

)
(
J+ − I + p+α

n

)2 = (mL)2gnp+α(r) , (A.3)

with gnp+α(r) the functions defined in (3.14) and the indices J+, I are integers resulting
from the quantisation conditions of the rapidities of intermediate states (3.11) and of the
rapidity of the physical one-particle state P (θ) = 2πI with I ∈ Z. We can proceed in an
analogous way for (3.10) obtaining (mL)2gn−(p+α)(r) as the leading contribution.

Once all possible contractions with a rapidity of the excited in- and out- state have been
carried out, the leading large-volume contribution from the summation over the quantum
number J+ is of order L0 and comes from terms with N = M , as shown in appendix B
of [56]. It can be written as

n
L〈1+|T αn (0)T̃ αn (`)|1+〉nL =

∑
{N+}

|An({N+})|2
n∏
p=1

N+
p !
[
gnp+α(r)

]N+
p
∞∏

q+=0

∞∏
m−=0

1
q+!m−!

∑
{J±}∈Z

× e
i`

(∑q+

j=1P (θ+
j )+

∑m−

r=1P (θ−r )
)

∏q+

j=1L
2E(θ+

j )∏m−
r=1L

2E(θ−r )
F p,nq++m−(θ+

1 . . . θ
+
q+ , θ

−
1 . . . θ

−
m−)

×Fn−p,nq++m−(θ̂+
1 . . . θ̂

+
q+ , θ̂

−
1 . . . θ̂

−
m−)

with q+ = m+ − N+
p . Dividing by the finite-volume vacuum two-point function in the

given sector pL〈0|Tp(0)T̃p(`)|0〉pL we obtain the formula (3.13) for the ratio of moments of
the SREE for a one excitation state.

A.2 Free boson (k = 1,n = 2)

In this section we work out an example in detail. Consider a single particle excited state
consisting of a complex boson excitation above the ground state. The relevant state is

(a+
1 )†(θ)(a+

2 )†(θ)|0〉2L = 1
2(−a†1(θ) + a†2(θ))(a†1(θ) + a†2(θ))|0〉2L , (A.4)
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so, comparing to the state (3.7) we have that A2(2, 0) = −A2(0, 2) = −1
2 . Thus

M1+
n (r;α) = 2!

4 (g2
1+α(r)2 + g2

2+α(r)2)

= 1
2
(
1− r + reπi(1+α)

)2
+ 1

2
(
1− r + reπi(2+α)

)2

= 1
2((1− r)2 + r2e2πiα − 2r(1− r)eiπα + (1− r)2 + r2e2πiα + 2r(1− r)eiπα)

= (1− r)2 + e2πiαr2 . (A.5)

A.3 Multi-particle excited states

Below, we describe in detail the computation of the ratio of moments of the SREE for a
state consisting of k particle excitations with equal rapidities and charge signs. These states
have the form:

|k±〉nL =
n∏
j=1

(a±j )†(θ)|0〉nL = 1(√
k!
)n ∑
{N±}

Dn({N±})
n∏
p=1

[(
ã±p

)†
(θ)
]N±p
|0〉nL (A.6)

where in the last equality we have used the expression of the creation operators in the
diagonal basis described in (3.6). The two point function would be:

n
L〈k±|T αn (0)T̃ αn (`)|k±〉nL

= 1
(k!)n

∑
{N±}

∑
{M±}

Dn({N+}) D∗n({M+})
n∏
p=1

∞∑
m±=0

∑
{J±}

m+∏
j=1

m−∏
r=1

1
m+!m−!

× n
p,L〈0|[ã±p (θ)]N

±
p Tp+α(0)a†p(θ+

j )b†p(θ−r )|0〉np,L
× n
p,L〈0|ap(θ+

j )bp(θ−r )T−p−α(`) [(ã±p )†(θ)]M
±
p |0〉np,L , (A.7)

where we have inserted a complete set of states between the two twist fields. Employing the
relation between these matrix elements and the finite volume form factors and the action of
the translation operator on energy states, we get:

n
L〈k±|T αn (0)T̃ αn (`)|k±〉nL = 1

(k!)n
∑
{N+}

∑
{M+}

Dn({N+}) D∗n({M+})
n∏
p=1

∞∑
m±=0

∑
{J±}

1
m+!m−!

× e
i`

(∑m+

j=1 P (θ+
j )+

∑m−

r=1 P (θ−r )−M±p P (θ)
)

√
LE(θ)N

±
p +M±p ∏m+

j=1 LE(θ+
j ) ∏m−

r=1 LE(θ−r )
× Fn,p

N±p +m++m−(θ+
1 . . . θ

+
m+ , θ̂, . . . θ̂, θ

−
1 . . . θ

−
m−)

× Fn−p,n
M+
p +m++m−(θ . . . θ, θ̂−1 . . . θ̂−m− , θ̂

+
1 . . . θ̂

+
m+) .

Once all possible intermediate rapidities have been paired up with the same rapidity of
the excited state in both form factors and the contribution of the ground state factored
out as explained in previous sections, the leading large volume contribution of the ratio of
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moments can be written as:

Mk±
n (r;α) = 1

(k!)n
∑
{N±}

|Dn({N±})|2
n∏
p=1

N±p !
(
gn±(p+α)(r)

)N±p

=
k∑
p=0

( k
p

)
rp(1− r)k−p

n e±2πiαp . (A.8)

Nevertheless, for k-particle excitations with distinct rapidities there could be two different
cases:

• k-particle excitations with distinct rapidities but equal charge sign

• k-particle excitations with distinct rapidities and charge sign

We can summarize the computations for both cases if we consider the following ansatz for
the excited state:

|1ε1 1ε2 . . . 1εk〉nL =
k∏
i=1

n∏
j=1

(aεij )†(θi)|0〉nL =
∑
{N±}

Cn({N±})
k∏
s=1

n∏
p=1

[a†p(θs)]N
+
p,s [b†p(θs)]N

−
p,s |0〉nL

(A.9)
where each εi with i = 1, . . . , k could be + or −. If we consider k-particle excitations with
distinct rapidities but equal charge sign + (−) then all the εi are the same sign and N−p,s
(N+

p,s) vanish. Pairing up the intermediate rapidities with the same rapidity of the excited
state in both form factors means that

N−p,s +m+ = N+
p,s +m−

m− +M+
p,s = m+ +M−p,s

in order for the matrix elements arising in the intermediate steps to be non-vanishing.
Subtracting the contribution of the ground state, the leading large volume contribution to
the ratio of moments can be written as:

M1ε1 1ε2 ...1εk
n (r;α) =

k∏
s=1

 ∑
{N±}

|Cn({N±})|2
n∏
p=1

N+
p,s! N−p,s! [gnp+α(r)]N

+
p,s [gn−p−α(r)]N

−
p,s

 .
(A.10)

Notice that if we study k-particle excitations with distinct rapidities but equal charge sign
this last expression reduces to the following one:

M1± 1±...1±
n (r;α) =

k∏
s=1

 ∑
{N±}

|Cn({N±})|2
n∏
p=1

N±p,s! [gn±(p+α)(r)]N
±
p,s

 , (A.11)

with the conditions m∓ +M±p,s = m± = N±p,s +m∓ for the ± sign state.
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A.4 Free boson (k = 2,n = 2)

On the one hand, consider the following two-particle excited states with distinct rapidities:

|1+1+〉2L = (a+
1 )†(θ1)(a+

1 )†(θ2)(a+
2 )†(θ1)(a+

2 )†(θ2)|0〉2L = 1
4
(
[a†1(θ1)]2 [a†1(θ2)]2

+ [a†2(θ1)]2 [a†2(θ2)]2 − [a†1(θ2)]2 [a†2(θ1)]2 − [a†1(θ1)]2 [a†2(θ2)]2
)
|0〉2L , (A.12)

|1+1−〉2L = (a+
1 )†(θ1)(a−1 )†(θ2)(a+

2 )†(θ1)(a−2 )†(θ2)|0〉2L = 1
4
(
[a†1(θ1)]2 [b†1(θ2)]2

+ [a†2(θ1)]2 [b†2(θ2)]2 − [a†2(θ1)]2 [b†1(θ2)]2 − [a†1(θ1)]2 [b†2(θ2)]2
)
|0〉2L . (A.13)

Hence the ratio of the moments of the SREE for these excited states are given by

M1+1+
2 (r;α) = 1

4
(
[g2

1+α(r)]4 +[g2
2+α(r)]4 +2[g2

1+α(r)]2 [g2
2+α(r)]2)

)
=
(
(1−r)2 +r2e2πiα

)2
, (A.14)

M1+1−
2 (r;α) = 1

4
(
[g2

1+α(r)]2 [g2
−1−α(r)]2 +[g2

2+α(r)]2 [g2
−2−α(r)]2 +[g2

1+α(r)]2 [g2
−2−α(r)]2

+
[
g2
−1−α(r)]2 [g2

2+α(r)]2
)

=
(
(1−r)2 +r2e2πiα

)(
(1−r)2 +r2e−2πiα

)
.

(A.15)

On the other hand, consider the following two-particle excited state with coinciding rapidity:

|2−〉2L = [(a−1 )†(θ)]2 [(a−2 )†(θ)]2|0〉2L

= 1
8
(
[b†1(θ)]4 + [b†2(θ)]4 − 2[b†1(θ)]2 [b†2(θ)]2

)
|0〉2L . (A.16)

Hence the ratio of moments of the SREE for this excited states can be written as

M2−
2 (r;α) = 1

82 (4! [g2
−1−α(r)]4 + 4! [g2

−2−α(r)]4 + 42 [g2
−1−α(r)]2 [g2

−2−α(r)]2)

= (1− r)4 + 4 r2(1− r)2e−2πiα + e−4πiαr4 . (A.17)

B Complex free fermion computation

In this appendix we present the form factor computation of the ratio of charged moments
in detail, focusing on the complex free fermion theory.

B.1 Single-particle excited states

Below, we present the explicit computation of the fermionic two-point function in an excited
state consisting of a single positively-charged particle. Thanks to the factorisation (3.2),
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the latter can be cast as:

n
L〈1+|T αn (0)T̃ αn (`)|1+〉nL (B.1)

=
n−1

2∏
p=−n−1

2

n
p,L〈0|ap (θ) Tp+α(0) T−p−α(`) a†p(θ) |0〉np,L

=
n−1

2∏
p=−n−1

2

∞∑
s=0

∑
{J±i }

1
s!(s+1)!

n
p,L〈0|ap (θ) Tp+α(0) a†p(θ1) . . . a†p(θs+1)b†p(θs+2) . . . b†p(θ2s+1)|0〉np,L

×n
p,L〈0|ap (θ1) . . . ap(θs+1)bp(θs+2) . . . bp(θ2s+1)T−p−α(0) a†p(θ)|0〉np,Le

i`

(∑2s+1
i=1 P (θi)−P (θ)

)

=
n−1

2∏
p=−n−1

2

∞∑
s=0

∑
{J±i }

∣∣∣F p+α,n2s+2 (θ1, . . . , θs+1;θ+ iπ, θs+2, . . . , θ2s+1)
∣∣∣2

s!(s+1)!LE(θ)∏2s+1
i=1 (θi)LE(θi)

e
i`

(∑2s+1
i=1 P (θi)−P (θ)

)
,

where the resolution of the identity is inserted in such a way as to preserve the total charge
of the one-particle state and the Bethe quantum numbers {J±i } are defined as in (3.11).
Notice that since the excitations are fermionic, one could either have J±i ∈ Z or J±i ∈ Z+ 1

2 :
for the sake of simplicity we will consider the case where these numbers are integer.

The non-vanishing contributions in the L → +∞ limit come from the terms in the
previous expression in which the rapidity of the excited state is contracted with θi, i =
1, . . . , s+ 1 in both form factors. The s+ 1 possible contractions in F p+α,n2s+2 give rise to:

F p+α,n2s+2 (θ1, . . . , θs+1; θ̂, θs+2, . . . , θ2s+1)
∼ fnp+α(θi − θ̂)F p+α,n2s (θ1, . . . , θ̌i, . . . , θs+1; θs+2, . . . , θ2s+1) (B.2)

where around the pole:

fnp+α(θi − θ̂) ∼
θ∼θi

mL sin π(p+α)
n cosh θ e

iπ(p+α)
n

π
(
J+
i − I + p+α

n

) (B.3)

so that, considering also the contraction coming from the conjugate form factor, we can
separately perform the s+ 1 summations over the quantum numbers J+

i as

∑
J+
i ∈Z

∣∣∣fnp+α(θi − θ̂)
∣∣∣2 ei`(P (θi)−P (θ))

Lm cosh θ Lm cosh θi

∼
θ∼θi

∑
J+
i ∈Z

sin2 π(p+α)
n e2πir

(
J+
i −I+

p+α
n

)
π2
(
J+
i − I + p+α

n

)2 = gnp+α(r) . (B.4)
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We therefore obtain, in the limit L, `→∞ and for fixed r:

n
L〈1+|T αn (0)T̃ αn (`)|1+〉nL

=
n−1

2∏
p=−n−1

2

gnp+α(r)
∞∑
s=0

1
(s!)2

∑
{J±i }

∣∣∣F p+α,n2s (θ1, . . . , θs;β1, . . . , βs)
∣∣∣2 ei`

∑s

i=1(P (θi)+P (βi))∏s
i=1 LE(θi)LE(βi)

=
n−1

2∏
p=−n−1

2

gnp+α(r)× n
p,L〈0|T α(0)T̃ α(`)|0〉np,L (B.5)

where we re-labelled the rapidities of the negatively charged intermediate states: β1 =
θs+2, . . . , βs = θ2s+1. We can now make use of (3.25) in the evaluation of the ratio, so that
we finally obtain for the free fermionic one-particle states:

M1+
n (r;α) =

n−1
2∏

p=−n−1
2

gnp+α(r) = (1− r)n + e2πiαrn . (B.6)

An analogous result can be obtained for a negatively charged particle, where the phase
above picks up an extra minus sign.

B.2 Multi-particle excited states

The anti-commuting nature of the creation/annihilation operators allows us to obtain an
exact expression for the ratio of the charged moments in the fermionic case, which (unlike
for the free boson) does not require a case-by-case calculation. This is because in the free
fermion case, the structure of the states in the transformed base is extremely simple, as we
shall see. We have non-vanishing two-point functions only with two kind of states:

• k-particle excitations with distinct rapidities, irrespective of the charge signs;

• 2-particle excitations with equal rapidities and different charge signs: |1+1−〉nL .

Below, we consider in detail the case of k-particle states with distinct rapidities. Such states
are written exactly as in the bosonic case:

|1ε1 1ε2 . . . 1εk〉nL =
k∏
i=1

n∏
j=1

(aεij )†(θi)|0〉nL , (B.7)

where εi = ±1, θi 6= θi′ if i 6= i′. Unlike the bosonic case, however, all the operators
anti-commute, so that we can make the ansatz:

|1ε1 1ε2 . . . 1εk〉nL = eiκ

n−1
2∏

p=−n−1
2

k∏
i=1

(aεip )†(θi)|0〉nL , (B.8)

with the identification (a+p )†(θi) = a†p(θi), (a−p )†(θi) = b†p(θi) and the only unspecified
parameter is the phase κ = κ(k, n; {εi}). Notice that the order of the operators in the
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double product can be arbitrarily altered, resulting only in a change in the phase. Without
giving a full proof of the validity of this formula, let us consider a few simple cases
and introduce the notations k± to indicate the number of positively/negatively charged
excitations in the state, with k = k+ + k−:

• n = 2, k+ = 2:

|1+1+〉2L =
2∏
i=1

2∏
j=1

1√
2

1
2∑

p=− 1
2

e−
2πijp

2 a
†
p(θi)|0〉2L

= 1
4

2∏
i=1

(
ia†− 1

2
(θi)− ia†1

2
(θi)

)(
−a†− 1

2
(θi)− a†1

2
(θi)

)
|0〉2L

= 1
4

2∏
i=1

(
−2ia†− 1

2
(θi)a†1

2
(θi)

)
|0〉2L = −

1
2∏

p=− 1
2

2∏
i=1
a
†
p(θi)|0〉2L

• n = 2, k+ = 2, k− = 1:

|1+1+1−〉2L =

 2∏
i=1

2∏
j=1

1√
2

1
2∑

p=− 1
2

e−
2πijp

2 a
†
p(θi)

 2∏
j=1

1√
2

1
2∑

p=− 1
2

e
2πijp

2 b
†
p(θ3)|0〉2L

=

1
4

2∏
i=1

(
−2ia†− 1

2
(θi)a†1

2
(θi)

) 1
2

(
2ib†− 1

2
(θ3)b†1

2
(θ3)

)
|0〉2L

= −i
1
2∏

p=− 1
2

 2∏
i=1
a
†
p(θi)

 b†p(θ3)|0〉2L

• n = 3, k+ = 2:

|1+1+〉3L =
2∏
i=1

3∏
j=1

1√
3

1∑
p=−1

e−
2πijp

3 a
†
p(θi)|0〉3L

=
2∏
i=1

1
3 3

2

(
e

2πi
3 a
†
−1(θi) + a†0(θi) + e−

2πi
3 a
†
1(θi)

)
×
(
e

4πi
3 a
†
−1(θi) + a†0(θi) + e−

4πi
3 a
†
1(θi)

)
(a†−1(θi) + a†0(θi) + a†1(θi))|0〉3L

= −
1∏

p=−1

2∏
i=1
a
†
p(θi)|0〉3L

For a fixed value of n, the structure of more complicated states can be easily worked out
following these simple examples. Using equation (B.8) and the twist field factorisation (3.2),

– 27 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
7

the two-point function reads:

n
L〈1ε1 1ε2 . . .1εk |T αn (0)T̃ αn (`)|1ε1 1ε2 . . .1εk〉nL (B.9)

=
n−1

2∏
p=−n−1

2

n
p,L〈0|ap(θ1) . . . ap(θk+)bp(β1) . . . bp(βk−)

×Tp+α(0)T−p−α(`)a†p(θ1) . . . a†p(θk+)b†p(β1) . . . b†p(βk−)|0〉np,L

=
n−1

2∏
p=−n−1

2

∞∑
s=0

∑
{J±i }

1
s!(s+q)! e

i`

(∑q+s
i=1 P (θ̃i)+

∑s

i=1P (β̃i)−
∑k+

i=1P (θi)−
∑k−

i=1P (βi)
)

×n
p,L〈0|ap(θ1) . . . ap(θ+

k )bp(β1) . . . bp(βk−)Tp+α(0)a†p(θ̃1) . . . a†p(θ̃q+s)b†p(β̃1) . . . a†p(β̃s)|0〉np,L
×n
p,L〈0|ap(θ̃1) . . . ap(θ̃q+s)bp(β̃1) . . . bp(β̃s)T−p−α(0)a†p(θ1) . . . a†p(θk+)b†p(β1) . . . b†p(βk−)|0〉np,L .

In the expansion above we assumed the total charge of the excited state to be positive,
q ≡ k+ − k− > 0. However, the computation steps are unchanged if one assumes q < 0, the
only difference being in the structure of the resolution of the identity. Denoting x̂ := x+ iπ,
the infinite-volume form factor corresponding to the first matrix element reads:

F p+α,nq+2s+k(θ̃1, . . . , θ̃q+s, β̂1, . . . , β̂k− ; β̃1, . . . , β̃s, θ̂1, . . . , θ̂k+) , (B.10)

where the total charge conservation is ensured by the equality q + s+ k− = s+ k+. When
turning to the finite-volume, one needs to divide the previous infinite-volume form factor
by a quantity: q+s∏

i=1
LE(θ̃i)

k−∏
i=1

LE(βi)
s∏
i=1

LE(β̃i)
k+∏
i=1

LE(θi)

 1
2

. (B.11)

Taking into account also the conjugate form factor, this results into a factor ∼ L−q−2s−k

for every term in the expansion (B.9), and the latter reads:
n−1

2∏
p=−n−1

2

∞∑
s=0

∑
{J±i }

1
s!(s+ q)! e

i`

(∑q+s
i=1 P (θ̃i)+

∑s

i=1 P (β̃i)−
∑k+

i=1 P (θi)−
∑k−

i=1 P (βi)
)

×

∣∣∣F p+α,nq+2s+k(θ̃1, . . . , θ̃q+s, β̂1, . . . , β̂k− ; β̃1, . . . , β̃s, θ̂1, . . . , θ̂k+)
∣∣∣2∏q+s

i=1 LE(θ̃i)
∏k−
i=1 LE(βi)

∏s
i=1 LE(β̃i)

∏k+
i=1 LE(θi)

. (B.12)

In the L → ∞ limit, the leading contributions are those coming from simultaneous con-
tractions in both form factors. In turn, in each form factor the simple poles arise from the
pairings of the rapidities θ̂i with θ̃i (these are at most k+ contractions) and from the pairings
of the rapidities β̂i with β̃i (these are at most k− contractions). Again, these pairings have
to be made simultaneously. The terms with s < k− (or equivalently q + s < k+) do not
contribute in the L→∞ limit, as they contain some extra factors of L in the denominator.
On the other hand, the terms with s > k− contain a sum of k+!k−! products of the form:∣∣∣fnp+α(θ̃i − θ̂j)fnp+α(β̂i′ − β̃j′)

∣∣∣2 × residual form factors .
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By making use of (B.3), the simultaneous expansion around the poles leads to the following
leading contribution:

∑
J+
i ,J
−
j′

∣∣∣fnp+α(θ̃i − θ̂j)fnp+α(β̂i′ − β̃j′)
∣∣∣2

cosh θ̃i cosh θi cosh βi′ cosh β̃j′
ei`[P (θ̃i)−P (θj)+P (β̃j′ )−P (βi′ )]

∼ (mL)4 ∑
J+
i ∈Z

sin2 π(p+α)
n

π2
e2πir

(
J+
i −Ij+

p+α
n

)
(
J+
i − Ij + p+α

n

)2
∑
J−
j′∈Z

sin2 π(p+α)
n

π2
e

2πir
(
J−
j′−Ii′−

p+α
n

)
(
J−j′ − Ii′ −

p+α
n

)2

= (mL)4gnp+α(r)gn−p−α(r) . (B.13)

Since each of the k+!k−! terms in the sum contains exactly k+ functions gnp+α and k−

functions gn−p−α we have, relabelling m = s− k− and in the limit L , `→∞, r fixed:

n
L〈1ε1 1ε2 . . . 1εk |T αn (0)T̃ αn (`)|1ε1 1ε2 . . . 1εk〉nL

=
n−1

2∏
p=−n−1

2

∞∑
m=0

∑
{J±i }

1
(m!)2 (gnp+α(r))k+(gn−p−α(r))k−

× ei`
∑m

i=1(P (θ̃i)+P (β̃i))

∣∣∣F p+α,n2m (θ̃1, . . . , θ̃m; β̃1, . . . , β̃m)
∣∣∣2∏m

i=1 LE(θ̃i)LE(β̃i)

=


n−1

2∏
p=−n−1

2

gnp+α(r)


k+ 

n−1
2∏

p=−n−1
2

gn−p−α(r)


k−

n
L〈0|T αn (0)T̃ αn (`)|0〉nL (B.14)

and therefore, thanks to (3.2), the ratio of charged moments is:

M1±1±...1±
n (r;α) = ((1− r)n + e2πiαrn)k+((1− r)n + e−2πiαrn)k− . (B.15)

C Finite-volume two-point function in the ground state

In this appendix we want to investigate the large volume expansion of the correlator

n
L〈0|T αn (0)T̃ αn (rL)|0〉nL , (C.1)

which is the denominator of the ratio of charged moments MΨ
n (r;α) in (2.7). We show

that, as expected, the leading contribution as L→ +∞ is given by the squared modulus of
the vacuum expectation value of the composite twist field T αn , and we compute the first
finite-volume corrections to this quantity. The calculations are carried out in the fermionic
case, but they apply to the free boson case with few changes.

– 29 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
7

The first step in the evaluation of (C.1) is as usual the insertion of a projection onto
asymptotic states:

n
L〈0|T αn (0)T̃ αn (`)|0〉nL

=
n−1

2∏
p=−n−1

2

n
p,L〈0|Tp+α(0) T−p−α(`) |0〉np,L

=
n−1

2∏
p=−n−1

2

∞∑
s=0

∑
{J±i }

1
(s!)2

n
p,L〈0|Tp+α(0) a†p(θ1) . . . a†p(θs)b†p(β1) . . . b†p(βs)|0〉np,L

× n
p,L〈0|ap (θ1) . . . ap(θs)bp(β1) . . . bp(βs)T−p−α(0)|0〉np,Lei`

∑s

i=1(P (θi)+P (βi))

=
n−1

2∏
p=−n−1

2

∞∑
s=0

∑
{J±i }

∣∣∣F p+α,n2s (θ1, . . . , θs;β1, . . . , βs)
∣∣∣2

(s!)2∏s
i=1 L

2E(θi)E(βi)
ei`
∑s

i=1(P (θi)+P (βi)) . (C.2)

Notice that the equal number of particles of the two types is dictated by the fact that twist
fields preserve the total charge of the state. In a free fermion theory, the infinite-volume
form factor of an even number of particle is given by Wick’s theorem:

F p+α,n2s (θ1, . . . , θs;β1, . . . , βs) =
∑
σ∈Ps

τp+α sgn σ
s∏
i=1

fnp+α(θσ(i) − βi)
τp+α

(C.3)

where the fermionic two-particle form factor was given in (3.17) so that the squared modulus
of the 2s-particle form factor is a sum of (s!)2 terms, each of which is a product of s terms
of the type

fnp+α(θi − βj)fnp+α(θk − βj)∗∣∣τp+α∣∣2 = sin2 π(p+ α)
n

e
p+α
n

(θi+θk−2βj)

cosh θi−βj
2 cosh θk−βj

2
. (C.4)

We can therefore explicitly rewrite (C.2) as:

n
L〈0|T αn (0)T̃ αn (`)|0〉nL =

n−1
2∏

p=−n−1
2

∣∣τp+α∣∣2 ∞∑
s=0

sin2s π(p+α)
n

(s!)2(mL)2s

∑
{J±i }

∑
σ,ω∈Ps

sgn σ sgnω

×
s∏
i=1

ei`(P (θi)+P (βi))

cosh θi cosh βi
e
p+α
n

(θσ(i)+θω(i)−2βi)

cosh θσ(i)−βi
2 cosh θω(i)−βi

2

. (C.5)

From this expression we easily see that the vacuum expectation value is corrected by
contributions of multi-particle states, and that in general every 2s-particle state (containing
s particles with positive charge and s particles with negative charge) contributes with a
leading large-volume term ∼ (mL)−2s. Further corrections can be obtained by working out
how the product in the second line of (C.5) depends on L. This is done by solving the
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Bethe equations for sinh θi and sinh βi:

sinh θi =
2π
(
J+
i + p+α

n

)
mL

≡ c+
i

mL
, (C.6)

sinh βi =
2π
(
J−i −

p+α
n

)
mL

≡ c−i
mL

. (C.7)

Where either J+
i , J

−
i ∈ Z or J+

i , J
−
i ∈ Z + 1

2 . Let us consider in detail the expansion up to
s = 1 terms, assuming that J+

1 , J−1 ∈ Z. Some elementary algebra shows that:

e2(θ1−β1) p+α
n

cosh2 θ1−β1
2

= 1 + 2
(
p+ α

n

)
c+

1 − c
−
1

mL
+O

(
1

(mL)2

)
(C.8)

and:
ei`(P (θ1)+P (β1))

cosh θ1 cosh β1
= e2πir(J+

1 +J−1 )

1− (c+
1 )2 + (c−1 )2

2(mL)2 +O
(

1
(mL)4

) . (C.9)

Thus we have:

n
L〈0|T αn (0)T̃ αn (`)|0〉nL =

n−1
2∏

p=−n−1
2

∣∣τp+α∣∣2
1+ sin2 π(p+α)

n

(mL)2

∑
J+

1 ,J
−
1 ∈Z

e2πir(J+
1 +J−1 )

(
1+2

(
p+α

n

)
c+

1 −c
−
1

mL
+O

(
1

(mL)2

)) .
(C.10)

We immediately notice that there is no contribution of order ∼ (mL)−2, as we can regularise
the non convergent double sum:

∑
J+

1 ,J
−
1 ∈Z

e2πir(J+
1 +J−1 ) =

∑
J∈Z

e2πirJ

2

= 0 , (C.11)

as was shown in appendix C of [56]. Considering the ∼ (mL)−3 term we have to evaluate
the double sum: ∑

J+
1 ,J
−
1 ∈Z

e2πir(J+
1 +J−1 )(J+

1 − J
−
1 ) ,

which can also be shown to be zero. This means that first finite volume correction to the
ratio of moments of the SREE is of order (mL)−4, which is a bit more involved as it picks
a contribution also from the first term with s = 2. Investigating these corrections is beyond
the scope of this paper, but we expect to return to this problem and consider finite volume
corrections to the excess (total) entropy in future work.
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