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SUMMARY

 This paper presents the software package SYMORO+ for the automatic symbolic

modelling of robots. This package permits to generate the direct geometric model, the inverse

geometric model, the direct kinematic model, the inverse kinematic model, the dynamic

model, and the inertial parameters identification models.

The structure of the robots can be serial, tree structure or containing closed loops. The

package runs on Sun stations and PC computers, it has been developed under

MATHEMATICA and C language. In this paper we give an overview of the algorithms used

in the different models, the computational cost of the dynamic models of the PUMA robot

are given.

KEYWORDS: Symbolic calculation, robots, modelling, identification, kinematic, dynamic,

simulation.

1. INTRODUCTION

Many works have been devoted to the automatic generation of the symbolic modelling

of robots. Most of these works were interested in the generation of some models or more

especially in the dynamic model only. SYMORO+ generates almost all the symbolic models

needed in the simulation, control, identification, and design of robots. This package is the

result of the research work of the robotics team of the "Laboratoire d'Automatique de

Nantes",  in the field of modelling, control and identification of robots.
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The programs generating the different models are developed using MATHEMATICA [1]. A

graphic interface, written in language C, is developed such that the user can define his robot

or the desired model using recent stations environment. The main interface page is seen in

figure 1, on which we distinguish the parameters of the robot and the following main menus :

Robot, Geometric, Kinematic, Dynamic,   Identification, Optimizer.

The functions and models corresponding to these menus are given in table 1.

The paper is organized as follows: Section 2 gives the parameters needed to define a robot,

then sections 3,…, 7 present the different models which can be generated by SYMORO+, an

idea will be given to describe the algorithms which are used in generating the different

models.

Figure 1 : Main page of SYMORO+
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Robot         Geometric Kinematic

New   Transformation matrix... Jacobian matrix...

Open... Fast geometric model... Inverse Jacobian & determinant...

Save  I.G.M Pieper method Velocity of links

Save as... I.G.M Paul method Acceleration of links

Quit I.G.M general method JPQP         

                            Constraint geometric eq. of loops Constraint kinematic eq. of loops

                                

Dynamic Identification Optimizer

I.D.M Newton Euler method Base inertial parameters

I.D.M Lagrange method Dynamic Identification model

Inertia matrix Energy Identification model

Centrifugal, Coriolis & Gravity torque Filtered dynamic Identification model

Direct dynamic model  

Table 1 :  Functions and models of the menus of SYMORO+

2- ROBOT DESCRIPTION

The definition of a robot is carried out using the menu Robot. The software package

SYMORO+ can treat serial, tree structure or closed loop robots. The description of the

geometry of the robot is carried out using the notations of Khalil and Kleinfinger [2]. At first

the number of moving links (NL), the number of joints (Nj) and the type of structure (serial,

tree structure or closed) must be given. The following three sets of parameters (figure 1) are

then defined either numerically or symbolically :

2.1 The geometric parameters

These parameters define the kinematic of the structure, the type of joints and the location of

the link frames with respect to its antecedent [2]. The coordinate frame j is assigned fixed

with respect to link j. The zj axis is along the axis of joint j, the xj axis is along the common

perpendicular of zj and one of the following axis on the same link. The geometry of the robot

is defined by the following parameters (for j=1,…,Nf):



-4-

-γj, bj, αj, dj, θj, rj defining frame j with respect to its antecedent frame a(j), figure 2, in serial

robots γj, bj are equal to zero. It is to be noted that the joint variable qj is equal to θj if j is

rotational and equal to rj for j translational,

- σj  defining the type of joint j. σj = 0 for j rotational, σj = 1 for j translational,

- the antecedent frames a(j),

- µj indicates if the joint j is motorized (active) or not (passive). In open loop robots (serial or

tree structure robots) all the joints are supposed active.

It is to be noted that the number of frames Nf in serial or tree structure robot is equal to the

number of moving links NL. In the case of closed loop robot we suppose each closed loop

opened in one of its passive joint to construct an equivalent tree structure, then we add two

frames on one of the links surrounding the opened joints. If the number of the opened joint is

k the number of the corresponding additional frames will be k and k+B, these two frames are

aligned but their antecedent frames are not the same (figure 3). Thus in the case of closed

loop robots

Nf = NL + 2B

where B = Nj  - NL = number of closed loops.

2.2 Dynamic parameters

These parameters are composed of inertial and friction parameters. For each link the

following parameters have to be defined:

[ XXj, XYj, XZj, YYj,YZj, ZZj, MXj, MYj, MZj, Mj, Iaj],  and  [ Fvj, Fsj]

where:

-(XXj, ...,ZZj) are the elements of the inertia matrix jJj, defining the inertia of link j, around

the origin of frame j,

-(MXj,MYj, MZj) are the elements of jMSj defining the first moments of link j,

-Mj the mass of link j,

- Iaj  
inertia of motor j referred to the joint side.

Fvj, Fsj  are the viscous and static friction coefficients of joint j.

2.3 General parameters

The following parameters can also be defined.

- The location of the base of the robot with respect to a general fixed frame (matrix Z).

- joint velocities (QPj) and accelerations (QDPj).

- external forces of each link on the environment (FXj, FYj, FZj)

- external moments of each link on the environment (Cxj, CYj,CZj).

- The speed and the acceleration of the base of the robot.

- the acceleration of gravity: g = [G1  G2  G3 ]T.
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3- THE GEOMETRIC MODELS

The following models can be obtained under menu Geometric.

3.1 The direct geometric model: The direct geometric model, gives the position and

orientation of the end effector as function of the motorized joints variables. It can be obtained

by the multiplication of the transformation matrices along the path between the base of the

robot and the terminal link.

A frame j will be defined with respect to frame r, by the following (4x4) transformation

matrix :

rTj  = 









rAj  rPj

0 0 0  1
  (1-a)

where

* rAj defines the orientation of frame j with respect to frame r.

* rPj defines the position of the origin of frame j with respect to frame i.

The frame j coordinate will be defined with respect to frame i, with i =a(j), by the following (4x4)

matrix :

iTj=  









CγjCθj–SγjCαjSθj –CγjSθj–SγjCαjCθj SγjSαj djCγj+rjSγjSαj

SγjCθj+CγjCαjSθj –SγjSθj+CγjCαjCθj –CγjSαj djSγj–rjCγjSαj

SαjSθj SαjCθj Cαj rjCαj+bj

0 0 0 1

 (1-b)

 where :

* S= sin, C= cos,

In the case of open loop robots the direct geometric model is defined by the transformation

matrix of the terminal link referred to the base. In the case of closed loop robots the constraint

equations defining the relation between the passive joint variables, in the path between the

terminal link and the base, and the motorized joints outside this path can be obtained by

solving the geometric constraint equations (section 3.4), in order to obtain the location of the

end effector as function of motorized joints only.

3.2 Fast geometric model

This function gives the transformation matrix between two frames in customized form, using

intermediate variables in order to minimize its calculation cost.



-6-

3.3 The inverse geometric model

The inverse geometric model is the closed form solution giving all the configurations of

the robot corresponding to a given location of the end effector. In our software package three

methods are used :

* The first is derived from the work presented in [3, 4]. This method gives the solution of six

degrees of freedom robot provided that one of the following conditions is verified:

- the robot contains three translational joints.

- the robot has three rotational joints defining a spherical joint (their axes are intersecting).

* The second method is derived from the work given in [5,6]. This method can provide the

solution of most of the current industrial robots.

* the third method is derived from the general method of Raghavan and Roth [7, 8], where

the solution of one variables is given as a polynomial equation of degree 16 at most, then the

other variables can be obtained.

In the case of closed loop robots, the programs (Pieper, Paul, or general method) give the

solution of the joints on the direct path between the base of the robot and the end effector. To

get the values of the motorized joint positions outside this path the geometric constraint

equations of the loops must be resolved, as seen in the following section.
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Figure 2: Definition of  link frames.
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Figure 3: Frames associated with the opened joint.

3.4 Geometric constraint equations of loops

The direct and inverse geometric models of closed loop robots can be considered as the direct

and inverse geometric robot of the serial path from the base to the terminal link plus the

solution of the geometric constraint equations of the closed loops of the robot.

We make use of the method developed in [4]. The solution is ensured analytically for each

closed loop with less than five passive joints.The geometric constraint equations can be

obtained by solving the transformation matrix along the loop (figure 3) which is equal to the

identity matrix:

BTi ... jTk+B  =  I4 (2)

with  I4 is the 4x4 identity matrix.

4- THE KINEMATIC MODELING

The direct kinematic model defines the velocity of the end effector as function of the joint

velocities. It can be written as:

  




 rVn

 rωωωωn
    =  rJn  

.
q (3)

 where:

 
.
q  is the vector of joint velocities,
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rVn,  rωωωωn define the translational and angular velocities of frame n referred to frame r,

 rJn   is the Jacobian matrix of link n, referred to frame r.

The following models can be generated from the menu kinematic

4.1 Calculation of the Jacobian matrix

SYMORO+ calculates the Jacobian matrix using the method developed by Renaud [9] . It

gives the Jacobian matrix as the product of three matrices, two of them are of full rank and

the third contains simple terms such that :

rJn=









rAi 03

03
rAi

  









I3  –i^Lj,n

03 I3

  iJn,j   (4)

with 03 and I3 denotes the zero and identity (3x3) matrix respectively, the symbol ^ means the

3x3 matrix of the vector product;  such that ax b= â  b.

The vectoriel matrix Jn,j  is given as :

Jn,j=







σfaf+ –σf(afxLf,j) … σnan+ –σn(anxLn,j)

–σfaf … –σnan

(5) 

where

f is the first joint on the path between the base and link n, such that f=1 in the case of serial

robots.

aj is the unit vector along the axis zj

Li,j is the position vector connecting the origin of frame i to that of frame j

–σj  is equal to 1 if j is rotational, and equal to 0 if j is translational 

4.2 Calculation of the velocities of the links

The translational and angular velocities of links can be calculated using relation (3), they can

be calculated more efficiently, from the number of operations point of view, by the following

recursive algorithm, for j=1,...,NL,

jωωωωi  = jAi  
iωωωωi (6a)

jωωωωj = jωωωωi + 
–σ j  q

.
 j 

jaj (6b)

jVj = jAi (
iVi +

iωωωωi  x iPj) + σj q
.
 j 

jaj (6c)
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where i= a(j) denotes the link antecedent to j, and jaj is the unit vector [0  0  1]T. The initial

values 0ωωωω0 and 0V0 are the velocities of the base.

4.3 Calculation of links accelerations

Differentiating equation (3), we get the translational and  rotational acceleration of link n as :







.

Vn

.
ωωωωn 

    =  
.
J n  

.
q  +  Jn  

..
q      (7)

The calculation of link accelerations using (7) is time consuming, it is more efficient to

calculate the link accelerations by the following recursive equations, which can be obtained

by differentiating equations (6):

jωωωω
.  

j = jAi 
iωωωω
.  

i + 
–σ j  ( q

..
 j 

jaj + jωωωωi x  q
.
 j 

jaj) (8)

jUj =   jωωωω.̂  
j + jωωωω^ 

j  
jωωωω^ 

j (9)

jV
.
 
j = jAi [

iV
.
 
i+

iUi 
iPj]+σj [q

..
 j

jaj+2jωωωωix q
.
 j 

jaj] (10)

where: i= a(j) , jωωωωi  and jωωωωj are calculated using equations (6).

4.4 Calculation of  
.
J 

.
q   of the links

In some applications (task space control), we need to calculate the vector  
.
J 

.
q . From equation

(7) it can be seen that  
.
J 

.
q  can be obtained by the use of the recursive equations (8,..10) and

by assuming q
..
 j equal zero [10].

4.5 Kinematic constraint equations

This function gives the relation between the velocities of the passive joints as function of the

velocities of the motorized joints. It can be calculated by equating the velocities on the

terminal frame of each loop using the two sides of the loop. From figure 3, we get:







Vk 

ωωωωk 
    = kJk  

.
q 1 =  k+BJk+B  

.
q 2 (11)

where 
.
q 1 and  

.
q 2 denote the velocities of the joints from the root of the loop to the opened

joint, along each side of the loop.
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As function of the type of the loop, spatial or planar, and the type of the opened joint,

redundant rows in equation (11) can be automatically eliminated [11].

Doing this procedure on all the loops we obtain the kinematic constraint equation as :

 






Wa Wp 0

Wac Wpc Wc
  









.

qa

.
qp

.
qc

   = 0 (12)

where  
.
q a, 

.
q p, 

.
q c represent the velocity of active (motorized), passive, and opened joints

respectively.

from the first row of equation (12) we obtain :

 q
.
 p 

 
= – W

-1

p   Wa  q
.
 a =   W

  
 q
.
 a (13)

The acceleration constraint equation can also be given by differentiating equation (12) with

respect to the time as:

 






Wa Wp 0

Wac Wpc Wc
  









q

..
a

q
..

p

q
..

c

 +




ψψψψ

ΦΦΦΦ
   = 0 (14)

In fact ψψψψ and ΦΦΦΦ are calculated using a recursive method similar to that calculating  
.
J 

.
q  as

given in section 4.4.

4.6 Inverse kinematic model

The inverse kinematic model gives 
.
q  as function of the link velocities Vn, ωωωωn. The solution

implies to calculate the inverse of the Jacobian matrix, which is reduced to the inversion of

iJj. The determinant is also provided to study the singular configurations of the robot.

5- THE DYNAMIC MODELING

The following models can be obtained in the menu dynamic.

5.1 Inverse dynamic model (I.D.M)
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The inverse dynamic model gives the motor torques or forces as a function of the joint

positions, velocities and accelerations. The calculation of this model represent the computed

control law which decouples and linearizes the equation of motion of the robots. The model

generated by our program has a reduced number of operations, such that it can be used for

dynamic control applications, and this is thanks to the use the base inertial parameters (see

section 6) and a customized Newton Euler algorithm which is linear in the inertial parameters

[12].

The I.D.M using Newton Euler algorithm is given as follows :

The following notations will be used:

Fj   total forces on link j,

Mj total moments on link j around the origin oj.

fj force on link j due to motor j and its antecedent link i,

mj   moment on link j due to motor j and the antecedent link i.

fe,j the force of link j on the environment,

me,j the moments of link j on the environment,

ΓΓΓΓ motor torques or forces vector,

g   acceleration of gravity,

The algorithm consists of two recursive calculations :

a- The forward calculation, for j=1,…,NL, is given as:

jFj = Mj 
jV

.
 
j + jUj 

jMSj (15)

jMj = jJj 
jωωωω
.  

j + jωωωωj x (jJj 
jωωωωj) + jMSjx jV

.
 
j (16)

where jωωωωj, 
jωωωω
.  

j, 
jV

.
 
j, 

jUj are calculated using equations.(6,8,9,10).

To take into account the gravity forces the gravity acceleration will be subtracted from the

translational acceleration of the base such that :

  0V
.

 
0 = 0V

.
 
b - g , 0ωωωω

.
 
0  = 0ωωωω

.
 
b,   0ωωωω0 =  0ωωωωb

b– By studying the equilibrium of each link, the backward  recursive calculation, for

j=NL,…,1, gives:

jfj    = jFj + ∑ jfk + jfe,j (17)

ifj   = iAj 
jfj (18)

jmj = jMj+  ∑ jAk
kmk+ ∑ jPkx jfk + jme,j (19)

projecting ifj  or jmj  on the joint axis and taking into account the inertia and frictions of the

actuators, we get the motor torque as :



-12-

Γj  = (σj 
jfj + 

–σ j 
jnj)

T jaj + Iaj q
..
 j  + Fvj q

.
 j  + Fsj sign (q

.
 j ) (20)

the sum sign in  equations (17) and (19) is on k, which denote all the links successors of j

such that a(k)=j.

For serial robot, the maximum number of operations of this algorithm is equal to 92NL-127

multiplications and 81NL-117 additions, for NL= 6 these relations give 425 multiplications

and 369 additions. This number will be further reduced for real robots, where many of the

geometric parameters of distances are zero and those of angles are equal to kπ/2, with k

integer, and in particularly if the links are supposed symmetric. Table 2 gives the number of

operations for the 6 d.o.f PUMA robot (using base inertial parameters as defined in section

6.4) .

5.2 Dynamic model of Closed loop robots

The joint positions of the equivalent tree structure of a closed loop robot can be written as :

qtr =  





qa

qp
  (21)

where qa, qp represent the positions of active and passive joints respectively.

The dynamic model of a closed-loop structured robot can be obtained as a function of the

corresponding tree structure dynamic model using the following relation [13,14]:

ΓΓΓΓm = GT ΓΓΓΓtr = = Γ Γ Γ Γ a + WT
 ΓΓΓΓp (22)

where:

ΓΓΓΓm is the (mx1) vector of the torques of motorized joints,

G =(∂qtr /∂qa) is the Jacobian matrix of qtr with respect to qa ,

W is defined in equation (13).

ΓΓΓΓtr is the (NLx1) vector of the joint torques (or forces) of the corresponding tree structure,

which is supposed as:

ΓΓΓΓtr    =    






ΓΓΓΓa

ΓΓΓΓp
 

where ΓΓΓΓa and ΓΓΓΓp denote the vectors of the torques corresponding to active and passive joints

respectively.

ΓΓΓΓtr can be obtained using Newton-Euler algorithm as given in section 5.1, while G can be

obtained from the resolution of kinematic constraint equations.

5.3 Direct dynamic model (D.D.M)
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The direct dynamic model is used to simulate the robot dynamics, it permits to calculate the

joint accelerations as a function of the input torques or forces. Since the general form of the

inverse dynamic model can be written as:

 ΓΓΓΓ   =  A 
..
q  + B(q, q

.
 )q

.
  + Q (23)

where  :

A is the inertia matrix of the robot,

B(q, q
.
 )q

.
  gives the Coriolis and centrifugal forces,

Q is the gravity forces.

The direct dynamic model can be obtained as follows:

..
q   =  A-1 

[ ΓΓΓΓ –  H ] (24)

where:

  H = B(q, q
.
 )q

.
  + Q (25)

Thus the calculation of  A, and H represent the direct dynamic model.

5.3.1 Calculation of the vector H

The vector H can be calculated by the Newton-Euler method, given in section 5.1 by

noting that, see equation (23), it is equal to ΓΓΓΓ under the condition that ..q  = 0. To calculate H

efficiently a separate function is given to calculate it using a customized symbolic calculation.

Table 2 gives the number of operations for calculating H for the PUMA robot (using base

inertial parameters).

5.3.2 Calculation of the inertia matrix A

The calculation of the matrix A is given by an algorithm similar to the algorithm of

Newton-Euler [15]. By using the fact that  the jth column of A is equal to ΓΓΓΓ if :

q
.
  = 0,  g = 0,  

..
q   = ej             (26)

with ej is the unit  (NL x 1) vector, whose elements are equal to zero except the jth component

which is equal to 1.

To increase the efficiency of this method, we make use of the symmetrical property of A and

we use the generalized link inertial parameters. The generalized link is defined as the

fictitious link composed of link j and all the succeeding links articulated on it [16]. The

algorithm is thus composed of two steps, the calculation of the inertial parameters of the

generalized links and a customized Newton-Euler algorithm which take into account the

conditions of equation (26).

The inertial parameters of the generalized link j are denoted as:

 M
+

j  , jJ
+

j   ,  jMS
+

j  , they will be calculated by the following algorithm :
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Initialization : for  j = 1,..., NL
 :

jJ
+
j

 = jJj ,  
jMS

+
j

 = jMSj ,  M
+
j

 = Mj 

for  j =NL ,..., 2 and  a(j) ≠ 0 :

a(j)MSj =   a(j)Aj 
jMSj (27)

a(j)J
+
a(j)  = a(j)J

+
a(j) 

 + a(j)Aj 
jJj 

jAa(j) – [ a(j)^P j a(j) ^
MS 

j + ( 
a(j)^P j a(j) ^

MS 
j )

T ] + a(j)^P 
j
a(j)^P

T
j   Mj (28)

a(j)MS
+
a(j)   =  a(j)MS

+
a(j)

  +  a(j)Aj  jMSj +  a(j)Pj Mj (29)

M
+
a(j)   = M

+
a(j) 

 + Mj (30)

Using the conditions (26) in Newton Euler algorithm, the recursive forward calculation will

be reduced to:

jFj = σj [ 0    0   Mj
+]T+ 

–σ j [ -MYj
+  MXj

+   0]T (31)

jMj =  
–σ j  [ XZj

+   YZj
+   ZZj

+ ]T + σj [ MYj
+   -MXj

+   0 ]T (32)

The recursive backward calculation of the I.D.M will be reduced to

jfj = jFj (33)

jmj=σj[ MYj
+ -MXj

+  0 ]T+
–σ j[ XZj

+  YZj
+  ZZj

+ ]T (34)

Aj,j = σj Mj
+ +  

–σ j ZZj
+ + Iaj (35)

where: Aj,j is the (j,j) element of the matrix A

To calculate the other elements of the column j (Aa(j),j,…, Asj(0),j), where sj(0) indicates the

succeeding link of the base on the path between link 0 and link j, we continue the backward

calculations which gives the following relations for k=j, a(j), a(a(j)),…,sj(0) :

a(k)fa(k) = a(k)Ak kfk (36)

a(k)ma(k) = a(k)Ak kmk + a(k)Pk x a(k)fa(k) (37)

Aa(k),j = a(k)aT
a(k)(σj 

a(k)fa(k) + 
–σ j 

a(k)m(ak))  (38)

Ai,j = 0 if link i is not on the path between link j and link 0.

Table 2, gives the number of operations for calculating the inertia matrix for the PUMA robot

(using base inertial parameters).

5.4 Direct dynamic model without calculating the inertia matrix
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An algorithm derived from the work of [17,18] is programmed in customized form to get

directly the joint accelerations as function of joint positions, velocities and torques without

calculating nor inverting the inertia matrix. This algorithm can be used only for open loop

robots. Table 2 gives the number of operations for calculating the D.D.M for the PUMA

robot (using base inertial parameters) .

5.5 Dynamic model using Lagrange equation

This function calculates the elements of the matrices A, B, and Q of the dynamic model

defined in equation (23). Two methods has been developed to get the elements of B : the first

based on differentiating the inertia matrix of the robot obtained in section 5.3; the other

method uses the algorithm developed in [19]. Table 2 gives the number of operations for

calculating the coefficients of the matrices A and B for the PUMA robot (using base inertial

parameters).

6- THE IDENTIFICATION MODEL

In order to use the dynamic model in simulation or control we need to know the values of

the dynamic (inertial and friction) parameters. The most appropriate method to evaluate these

parameters is the use of the identification techniques. Many identification models which are

linear in the dynamic parameters are proposed:

the dynamic model, the filtered dynamic model, and the energy model. All these models are

generated in SYMORO+ as given in the following sections.

6.1 The dynamic identification model: The dynamic model can be used to identify the

inertial parameters [20,21,22]. Since the dynamic model is linear in the dynamic parameters,

as defined in section 2.2, it can be written as follows:

 ΓΓΓΓ   =  D(q,q
.
  ,

..
q ) K (39) 

where

K is the (Npx1)vector of dynamic parameters.

D is (NLxNp) matrix.

NP is the number of inertial and friction parameters.

To identify K a sufficient number of equations can be obtained by calculating relation (39) at

different times. The least squares solution is generally used in the solution

SYMORO+ gives the symbolic expressions of the elements of the matrix D using customized

symbolic calculation. The calculation of the column j of the matrix D is obtained from the

Newton Euler algorithm of the inverse dynamic model, section 5.1, with the assumption that
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the the jth inertial parameters, denoted as Kj, is equal to one while all the other inertial

parameters are equal to zero. It is to be noted that the calculation of  jωωωωj, 
jωωωω
.  

j, 
jV

.
 
j, 

jUj for j =

1,...,NL is calculated only once for all the columns.

6.2 The filtered dynamic identification model

The filtered dynamic model is proposed in [23,24,25] in order to get a model which is not

function of the joint accelerations. We have proposed and programmed a new method to get

this model in SYMORO+ [26]. The main idea of the proposed algorithm is derived from the

Lagrangian equation which is given as:

ΓΓΓΓ  =  
d

dt
  
∂L

∂q
.
    –   

∂L

∂q
      (40)

with :

L  the Lagrangien of the system, equal to E – U,

E the kinetic energy of the system,

U the potential energy of the system.

Equation (40), can be written as :

ΓΓΓΓ  =  
d D1 (q, q

.
) K

dt
   + D2 (q, q

.
  ) K   (41)

where

D1 (q, q
.
 ) K =    

∂ E

∂ q
.
   (42)

and

D2 (q, q
.
  ) K  = -  

∂E

∂q
    +   

∂U

∂q
  (43)

Applying a numerical filter, denoted F, of second order or higher, on the two sides of equation

(41) gives :

ΓΓΓΓf  = D1df (q, q
.
 ) K  + D2f (q, q

.
  ) K (44)

where the subscript "f" means the application of the filter F, and "df" means the application of

a  filter F ' which associate to the filter F a derivative action. For instance in the case of using

second order filter F and F ' could be taken as:  :

F(s) = 
a2

(s+a)2
   (45)

F '(s) = 
a2 s

(s+a)2
   (46)

SYMORO+ gives the symbolic expressions of the elements of the matrices D1 and D2 using

customized symbolic calculation using the algorithm presented in [26].
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6.3 The energy identification model

 Using the dynamic model in the identification need to estimate or measure the joint

accelerations. To overcome this difficulty a model based on the energy theorem has been

proposed [27].

To simplify the writing we assume that the friction is neglected. From the energy theorem we

get:

 ⌡⌠
t1

t2

  
.
q T ΓΓΓΓ  dt  = H(t2) –H(t1) = ∆∆∆∆h(q,q

.
 )  K (47)

where :

H(ti)  is the total energy (kinetic and potential) at time ti, it is linear in the inertial parameters

and can be written as :

H = h(q,q
.
 )  K               (48)

h is a row matrix function of q and q
.
  .

Since the kinetic and potential energies of link j can be written as :

Ej= 
1

2
  [jωωωωj

T jJj 
jωωωωj+Mj 

jVj
T jVj +2 jMSj

T (jVj x jωωωωj)]         (49)

Uj  =  – 0gT (0Pj + 0Aj 
jMSj) (50)

where,

0g is the acceleration of gravity referred to frame zero.

0Pj is the position of the origin of frame j w.r.t. frame zero.

0Aj is the 3x3 transformation matrix giving the orientation of frame j w.r.t. frame 0, such that

:

   0Aj = [0sj   
0nj   

0aj]  (51)

with sj , nj, aj are the unit vectors along the x, y, and z axis respectively.

The coefficients of the inertial parameters in the vector h can be given as follows :

hXXj =  
1

2
  ω1,j ω1,j

hXYj =  ω1,j ω2,j

hXZj =  ω1,j ω3,j

hYYj =  
1

2
  ω2,j ω2,j

hYZj =  ω2,j ω3,j

hZZj =  
1

2
  ω3,j ω3,j (52)

hMXj=  ω3,j V2,j – ω2,j  V3,j   – 0gT 0sj
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hMYj =  ω1,j V3,j – ω3,j  V1,j  – 0gT  0nj

hMZj =  ω2,j V1,j – ω1,j  V2,j – 0gT 0aj

hMj =  
1

2
  jVjT jVj – 0gT 0Pj

where, jωωωωj  and jVj are represented by the vectors :

 jωωωωj  =  [ω1,j   ω2,j   ω3,j]
T (53)

  jVj =  [V1,j   V2,j   V3,j]
T (54)

To identify K a sufficient number of equations can be obtained by calculating relation (47)

between different intervals of time. The least squares solution is generally used in this

identification.

SYMORO+ calculates the elements of the matrix h using customized symbolic calculation.

6.4 The base inertial parameters

The base inertial parameters are defined as the minimum parameters which can be used to get

the dynamic model. They represent the set of parameters which can be identified using the

dynamic or energy model, thus its determination is essential for the identification of the

inertial parameters of robots. They constitute also the parameters to be adapted during an

adaptive dynamic control strategy. The use of the base parameters in all the dynamic models

presented in section (5) leads to reduce their computation complexity  [12].

These parameters can be obtained from the classical inertial parameters by eliminating those

which have no effect on the dynamic model and by regrouping some others. In [28,...,33] we

have presented symbolic and numerical methods to calculate these parameters for serial, tree

structured, or closed loop robots. These algorithms have been programmed in SYMORO+.

The program generates a new file of inertial parameters which can be used directly in the

Dynamic or Identification menus.

7. OPTIMIZATION OF THE MODELS

The models obtained under customized symbolic form can be optimized from the number of

operations point of view using the optimizer menu. The optimized output file can be given in

either of the following format: Fortran, Mathematica, C, Maple, Matlab, such that the

generated model can be used directly by these systems.

8. CONCLUSION
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This paper presents the software package of symbolic modelling of robots SYMORO+.

This package generates  all the models needed in the simulation, identification, control and

design of robots. The algorithms used in deriving these models have been presented, they

have been programmed using MATHEMATICA system. A friendly user interface is

developed in C. The paper gives also an overview of the best algorithms which can be used in

modelling the robots. Current extension is concerned with the modelling of flexible robots

[34] structure and walking legged robots.
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