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Abstract
Deep learning-based variant callers are becoming the standard and have achieved superior SNP calling
performance using long reads. In this paper, we present Clair3, which makes the best of two major
method categories: pile-up calling handles most variant candidates with speed, and full-alignment tackles
complicated candidates to maximize precision and recall. Clair3 ran faster than any of the other state-of-
the-art variant callers and performed the best, especially at lower coverage.

Main Text
The �rst preprint of DeepVariant1 was released in late 2016, marking the beginning of the use of deep
learning-based methods (DL methods) instead of traditional statistical methods for variant calling. Over
the years, several DL methods have been developed. We are now witnessing a complete take-over, led by
DeepVariant for short-read variant calling. Long-read variant calling, using Oxford Nanopore (ONT) data,
on the other hand, has been dominated by DL-methods since the beginning, primarily owing to the
di�culty caused by its higher base error rate in general. Although the DL methods for short-read and long-
read have a lot in common, the problem of long-read variant calling is considered more di�cult. This led
to two major designs – using pileup or full-alignment as the input of the decision-making neural network
– which are signi�cantly different in both performance and speed. Long-read variant callers, including
Clairvoyante2, Clair3, and Nanocaller4, are pileup-based, in which the read alignments are summarized
into features and counts before being inputted into a variant calling network. PEPPER-Margin-
DeepVariant5 (PEPPER) is full alignment-based. The input to the DeepVariant variant calling network is
kept with spatial information in the read alignments and is tens of times larger than the pileup inputs in
terms of size. Medaka6 is consensus-based; it uses pileup input to generate a diploid consensus in the
�rst iteration and two haploid consensuses in the second. The differences between the reference and
consensuses are identi�ed and combined into variants. These are all state-of-the-art algorithms; the
pileup-based algorithms are usually superior in terms of time e�ciency and the full-alignment algorithms
provide the best precision and recall. However, while the two designs are not mutually exclusive, there
have not been any studies combining pileup calling and full-alignment calling.

To �ll the gap, we developed Clair3, the successor to Clair, which makes the best of both designs. It runs
as fast as the pileup-based callers and performs as well as the full alignment-based callers.
Supplementary Figure 1 shows the work�ow for Clair3. The philosophy behind Clair3 is to trust the full-
alignment model unless the pileup model can make a quick but reliable decision. First, the pileup calling
network goes through all the variant candidates that passed a coverage threshold and an alternative
allele frequency threshold. Next, the high-quality pileup calls are used to phase the alignments and as
part of the �nal output. Then, the alignments phased by WhatsHap7 are used to generate full-alignment
input that is ~23 times larger in size than the pileup input for each low-quality pileup call for full-
alignment calling. Finally, the full-alignment calls are integrated with the high-quality pileup calls as the



Page 3/13

�nal output. More details and parameters about the Clair3 work�ow, input/output, and network
architecture are provided in Methods. 

We benchmarked Clair3 against PEPPER (the current top-performing long-read variant caller), Medaka
(ONT’s in-house developed variant caller), Longshot8 (non-deep learning-based; works only with SNP),
and Clair (the Clair3 predecessor) on two GIAB9, 10 samples: HG003 and HG004. HG003 was tested on
models (including a pileup and a full-alignment model) trained on HG001, 2, 4 and 5. HG004 was tested
on models trained on HG001, 2, 3 and 5. The model availability and training details are in Methods. We
chose to use ONT data base-called using Guppy 4 (version 4.2.2) for two reasons: 1) compared to the
Guppy 5, which was released in mid-2021, Guppy 4’s read accuracy is ~1.8% lower11, which is more
challenging to variant calling, so it can better test the speed and performance of different variant calling
methods, and 2) as at the completion date of this paper, Guppy 4 base-called reads were still the latest
version available for download by the Human Pangenome Reference Consortium12. A summary of the
datasets used for training and testing is shown in Supplementary Table 1. The correct PEPPER and
Medaka models for Guppy 4 data were chosen for benchmarking. We used PEPPER v0.4, which is the
latest version that supports Guppy 4 data. The links to the dataset, and the versions, commands and
parameters used for each tool are available in the Supplementary Notes. 

The benchmarking results at coverage from 10x to 90x are shown in Figure 1a, Supplementary Table 2,
and Supplementary Table 3. The observations of different tools on HG003 and HG004 are almost
identical, ruling out the possibility of any tools’ over�tting to a particular sample. In terms of the SNP F1-
score, Clair3 outperformed the other tools at lower coverage (10x to 30x) and performed similar to
PEPPER above 30x. Above 50x, the SNP F1-score improvement became more subtle. However, the Indel
F1-score kept increasing with coverage, although it slowed down above 50x. Looking at the precision and
recall at 50x (Figure 1b), in terms of SNP, Clair3 achieved 99.67% and 99.60%, which is similar to
PEPPER’s 99.61% and 99.63%. In terms of Indel, Clair3 achieved 90.86% and 64.73%, higher than
PEPPER’s 87.62% and 57.42%. In terms of speed (Figure 1c), Clair3 and Clair ran the fastest (~8 hours),
and PEPPER was second-fastest (~30 hours). We then compared Clair3 to PEPPER using the CMRG v1
small variant benchmarking dataset13, which covers repetitive and highly polymorphic medically relevant
genes, so it is more challenging than using GIAB. However, CMRG v1 is based on HG002. To ensure no
testing variant was involved in training, instead of training a new model with HG002 left out, we
selectively benchmarked the 5,837 (out of 21,232) small variants that are in CMRG v1, but not GIAB
HG002. The results are shown in Supplementary Figure 2 and Supplementary Table 4. Similar to the
trends observed for HG003 and HG004, Clair3 outperformed PEPPER at 10x to 30x on SNP, and had a
similar performance above 30x. We compared Clair3 to PEPPER by different genomic contexts according
to the GIAB genome strati�cations14 v2.0 on HG003 at 50x. The results are shown in Supplementary
Figure 3 and Supplementary Table 5. In SNPs, Clair3 outperformed PEPPER on precision in low
complexity and functional regions, but not in low mappability and segmental duplication regions. Clair3
and PEPPER had the same recall in different regions. In Indels, Clair3 outperformed PEPPER in both
precision and recall in all regions. After the initial version, Clair3 and PEPPER have released new versions
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v0.1-r11 and r0.8, respectively. Clair3 remains supporting the more challenging Guppy 4 data, while
PEPPER has stopped supporting. We benchmarked the two latest versions on HG003 Guppy 5 data. The
results are shown in Supplementary Table 6, and veri�ed the conclusions from previous experiments that
Clair3 outperforms PEPPER when coverage is constrained (at 10x and 20x), and runs ~3-4 times faster
overall. 

The success of the Clair3 method lies in the effective distinction between true and false calls during
pileup calling, so that only necessary candidates are sent to the much more computationally intensive
full-alignment calling. Figure 2a shows that an effective distinction was achieved using variant quality.
Using HG003 at 50x as an example, most false variant calls and false reference calls had a quality
between 0 to 10, while the true calls were between 15 to 30. In reality, while the correctness of a pileup call
is not known in advance, we empirically decided to send the bottom 30% of the pileup variant calls and
the bottom 10% of the pileup reference calls to full-alignment calling as the default settings of Clair3 (See
Methods). In the previous example, quality cut-off 16 was chosen for the variant calls, which resulted in
98% of the false variant calls and only 9% of the true variant calls being sent to full-alignment calling.
Similarly, cut-off 19 was chosen for the reference calls, so that 98% of the false reference calls and only
11% of the true reference calls were sent to full-alignment calling. Figure 2b shows that ~62% of the
pileup failed variant calls and ~31% of the pileup failed reference calls were correctly called in full-
alignment calling. We tested sending different percentages of pileup variant calls to full-alignment
calling, from 0% (pileup calling only) to 100% (full-alignment calling only). The results are shown in
Figure 2c and Supplementary Table 7. Clair3’s default, which had a similar performance to full-alignment
calling but ran ~4 times faster, showed that integrating pileup and full-alignment calling is a better
strategy than relying on only one of them.

The benchmarks focused on the more challenging ONT data, but the Clair3 method is not restricted to a
certain sequencing technology. It should work particularly well in terms of both runtime and performance
on noisy data. Clair3 was released six months ago and is currently in its ninth revision, having integrated
plenty of feedback from the community and ONT. We observed in PEPPER’s recent update (r0.7 on Dec
22nd, 2021) that a module in the front of the pipeline that was used solely for variant candidate selection
was repurposed to output summary-based variant calls to relieve the heavy full-alignment calling
workload. We expect integrating pileup and full-alignment calling to be a common practice in deep
learning-based variant calling in the future.

Method

The Clair3 work�ow
As Supplementary Figure 1 shows, pileup candidates that are above a coverage threshold and an allele
frequency threshold are extracted, and then called using the pileup network. The pileup calls are grouped
into variant calls (genotype 0/1, 1/1, and 1/2) and reference calls (0/0). Both groups are ranked
according to variant quality (QUAL). High-quality heterozygous SNP calls (top 70% in 0/1 calls) are used
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in WhatsHap phasing to produce phased alignment for input to the full-alignment network. Low-quality
pileup calls (defaulted to the lowest 30% of variants and 10% of reference calls) are then called again
using the full-alignment network. Finally, the full-alignment calls and high-quality pileup calls are
outputted. Clair3 supports both VCF and GVCF output formats. 

Input/Output
Clair3 uses a pileup input design simpli�ed from that of its predecessors, and a full-alignment input to
cover as many details in the read alignments as possible. Supplementary Figure 4 visualizes the pileup
and full-alignment inputs of a random SNP, insertion, deletion, or non-variant. The pileup input is 594
integers – 33 genome positions wide with 18 features at each position – A+, C+, G+, T+, IS+, I1S+, DS+,

D1
S+, DR+, A-, C-, G-, T-, IS-, I1S-, DS-, D1

S-, and DR-. A, C, G, T, I, D, +, - means the count of read support of the

four nucleotides: insertion, deletion, positive strand, and negative strand. Superscript “1” means only the
indel with the highest read support is counted (i.e., all indels are counted if without “1”). Subscript “S”/“R”
means the starting/non-starting position of an indel. For example, a 3bp deletion with the most reads
support will have the �rst deleted base counted in either D1

S+ or D1
S-, and the second and third deleted

bases counted in either DR+ or DR-. The design was determined experimentally, but the rationale is that for
1bp indels that are easy to call, look into the differences between the “S” counts, but reduce the quality if
the “R” counts and discrepancy between positions increase. The pileup output is the same as that for
Clair, but short of the two indel length tasks. The indel allele (or two indel alleles) with the highest reads
support is used as the output according to the decision made in the 21-genotype task. The full-alignment
input is 23,496 integers – 8 channels of 33 genome positions and 89 maximum representable reads. The
description of the eight channels is in the Supplementary Note. The full-alignment output is the same as
that of Clair. The two indel length tasks can represent the exact indel length from -15 to 15bp, or below
-15bp/ above 15bp. An indel call with an exact length will output the most reads-supported allele at that
length. Otherwise, the most reads-supported allele below -15bp/ above 15bp is outputted. In training, indel
length task 1 is given the smaller number, and in all our variant calling experiments, no length predictions
in task 1 larger than in task 2 were observed. The maximum supported coverage of pileup/full-alignment
input was 144/89. Random subsampling was done on excessive coverage. If the coverage in a full-
alignment input was below 89, the reads were centered. 

Network architecture
The pileup and full-alignment networks are shown in Supplementary Figure 5. The pileup network uses
two bidirectional long short-term memory (Bi-LSTM) layers with 128 and 160 LSTM units. Stacked LSTM
layers enable the network to learn the characteristics of raw sequential signal from different aspects at
each position, but without increasing memory capacity, which enables the network to converge faster.
Compared to Clair, the transpose-split layer is removed for a 40% speedup with a small performance loss
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that is taken care of in full-alignment calling. The full-alignment network is derived from residual neural
network (ResNet) and uses three standard residual blocks. A convolutional layer is added on top of each
residual block to expand channels but reduce dimensionality across channels. A spatial pyramid
pooling15 (SPP) layer is used to tackle the problem of varying coverage in full-alignment input. SPP is a
pooling layer that removes a network's �xed-size constraint, thus avoiding the need for input cropping or
warping at the beginning. The SPP layer generates various receptive �elds using three pooling scales
(1x1, 2x2, and 3x3) in each channel. It then pools the receptive �elds of all channels and generates a
�xed-length output for the next layer. In both networks, the dropout rates of 0.2 for the �atten layer, 0.5 for
the penultimate dense layer, and 0.2 for the task-speci�c �nal dense layers, are empirically determined. 

Model availability and training
Pretrained models are provided in Clair3’s installation. Models for speci�c chemistries and basecallers
that are tested and supported by the ONT developers are available through Rerio
(https://github.com/nanoporetech/rerio). The detailed steps, options, and caveats for training a pileup
model and a full-alignment model are available in Clair3’s GitHub repo and are continually updated. The
pretrained models, while targeted for use in production, were trained using multiple GIAB samples with
known variants and 10 coverages for each sample, as described in Clair, but they always hold out
chromosome 20 in Clair3. We used the following new training technics in Clair3. (1) Representation
Uni�cation: a variant can be represented in multiple forms14. Traditional variant calling methods rely on
postprocessing (e.g., hap.py, RTG Tools) to equate multiple forms. However, to generate correct training
samples, Clair3 must unify a variant’s representations between the alignments and the truth variants.
Supplementary Figure 6 shows four cases in which the alignments and the truth variants have different
representations that would confuse the training if not uni�ed. Clair3 chooses to align the truth variants'
representation to the alignments. The �ve detailed steps are shown in Supplementary Figure 7. First, the
truth variants and alignments are phased (if not yet done) using WhatsHap. Second, among the
candidates with alternative allele frequency ≥0.15, con�dent and in situ matches between the alignments
and truth variants are identi�ed and excluded from computationally intensive step 3. Third, the best
match between the possible haplotypes of the truth variants and candidates is sought. Each of the truth
variants can be either positive (using its reported genotype) or negative (using 0|0), and their Cartesian
product forms possible haplotypes of the truth variants. Similarly, each candidate can be either 0|0, 0|1
(or 1|0 according to the phased alignments), or 1|1, and their Cartesian product forms the possible
haplotypes of the candidates. A pairwise comparison is then done to �nd equivalent haplotypes between
the two Cartesian products, and among all equivalents, the candidate haplotype with the most reads
support is selected. The variants in the haplotype are used as the new truth variants. This step is
computationally intensive, so in practice, we applied the step to partitions with at most 15 candidates and
required less than 100bp between the candidates. Fourth, low alternative allele frequency (≥0.08 but
<0.15) candidates with in situ matches between the alignments and the truth variants were chosen. Fifth,
the truth variants or uni�ed variants generated in steps 2, 3 and 4 were merged. In our benchmarks,

https://github.com/nanoporetech/rerio
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representation uni�cation alone in general increased the SNP recall by ~0.2% and Indel recall by ~2%. (2)
Ratio of variants to non-variants samples for training: In Clair, the ratio was �xed at 1:2. In Clair3, we
tested ratios up to 1:10 for both pileup and full-alignment model training, and we observed a monotonic
but decelerated performance increase with more non-variants added to the training. Since focal loss is
used to alleviate the effect of training class imbalance, another possible explanation is that the 21-
genotype output task that Clair3 relies primarily on is insensitive to the ratio because it judges only the
genotype of a candidate instead of whether a candidate is a variant or not. We chose 1:5 and 1:1 as the
default ratio for pileup and full-alignment model training, respectively, to strike a balance between model
performance and training speed. (3) Use of phased alignments: Deep-learning and full-alignment based
variant callers DeepVariant and PEPPER concluded that using phased alignments is essential to their
high performance. In Clair3, high-quality heterozygous pileup calls are used to phase the input alignments
using the ‘phase’ and ‘haplotag’ modules in WhatsHap. The phased alignments are used as input for full-
alignment calling. When training a full-alignment model, two training samples for each variant, one using
phased alignments and the other unphased, are used to ensure the model works when alignments cannot
be properly phased. In our benchmarks, the use of phased alignments alone, in general, increased the
SNP F1-score by ~0.1%, and the Indel F1-score by ~6%. (4) New optimization methods: Clair3 removed
both the cyclical learning rate and learning rate decay strategies used in Clair, and now uses the Ranger
optimizer (Recti�edAdam16 plus Lookahead17) for automated warm-up, faster convergence, minimal
computational overhead, etc. In our benchmarks, compared to Clair, the new optimizer alone, in general,
increased the overall F1-score of pileup calling by ~0.2% (tested with three repetitions with random seed
changed in weight initialization). 

Benchmarking methods and computational concerns
We used �ve GIAB samples, HG001 to 5, for either model training or testing. When using either HG003 or
HG004 for testing, the other four samples were used for training. We selected 10% of the training samples
for validation and chose the best-performing epoch in the �rst 30 epochs in the validation data for
benchmarking. We used hap.py14 to compare the called variants against the true variants, and used
Clair3’s ‘GetOverallMetrics’ module to generate three metrics, ‘precision’, ‘recall’, and ‘F1-score’, for �ve
categories: ‘overall’, ‘SNP’, ’Indel’, ‘Insertion’, and ‘Deletion’. We used qfy.py with V2.0 GIAB genome
strati�cations to evaluate Clair3’s performance in challenging and targeted regions of the genome.
Runtimes were gauged on a server with two 2.1GHz Intel Xeon Silver 4116s, with 24 cores, and 256GB
memory at 2666MHz. With the same setting, Clair3 �nished in ~8 hours using ~50x of ONT Guppy 4 data
and in ~4.5 hours with the same amount of Guppy 5 data. The memory consumption of each Clair3
calling process is about 1GB.

Brief summary of methods tested showing no or negligible
improvement
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(1) Use of more residual blocks in the full-alignment network: We added a fourth residual block with 512
channels. The number of parameters increased from 2,989,210 to 9,812,634. The runtime doubled, but
the performance change was negligible, even though the terminal training loss fell. (2) Local realignment:
This technique is essential for high indel calling performance in state-of-the-art, short-read, small variant
callers. But it worked differently on long reads. We tried local realignment using a 2000bp window in
regions with a high density of candidates using a local realignment algorithm similar to that of
DeepVariant. We observed that while it increased the recall, local realignment tripled the runtime and
introduced ~10% of new non-variant candidates, which in turn, lowered the precision. In Clair3, we
implemented local realignment, but disabled it on long reads as the default. (3) Including variants outside
high-con�dence regions in training: To increase variant training samples, we explored including variants
outside the high-con�dence regions in training, but observed negative performance improvement in Clair.
In Clair3, the GIAB truth datasets we used were upgraded from version 3.3.2 to 4.2.1, but we had the same
observation that including variants outside the high-con�dence regions in training jeopardized model
performance. (4) Selecting candidates for full-alignment calling based on reference sequence complexity:
Variant calling is more di�cult in the “low complexity” and “di�cult to map” regions. In addition to
selecting candidates by pileup calling quality ranking for full-alignment calling, we added those
candidates at positions with relatively low sequence entropy (the lowest 30% of the whole genome).
About three times more candidates were selected for full-alignment calling, but the performance increase
was negligible.
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Figure 1

Benchmarking results on HG003 and HG004. (a) The SNP/Indel F1-score of different tools at multiple
coverage from 10x to 90x. In terms of the SNP F1-score, Clair3 outperformed the other tools at lower
coverage (10x to 30x) and performed similar to PEPPER above 30x. Above 50x, the SNP F1-score
improvement became more subtle. (b) The precision against the recall of different tools at 50x coverage.
In terms of Indel, Clair3 achieved 90.86% and 64.73%, higher than PEPPER’s 87.62% and 57.42%. (c) The
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runtime breakdowns of different tools at 50x coverage. Clair3 and Clair ran the fastest (~8 hours), and
PEPPER was second-fastest (~30 hours).

Figure 2

Pileup and full-alignment calling working details and synergy on HG003 at 50x coverage. (a) The variant
quality distribution of the true and false variant/reference pileup calls. The �gure shows that an effective
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distinction was achieved using variant quality. (b) The performance of full-alignment on pileup failed
variants of different variant quality. The �gure shows that ~62% of the pileup failed variant calls and
~31% of the pileup failed reference calls were correctly called in full-alignment calling. (c) The F1-score
when different proportions of low-quality variant/reference calls enter full-alignment calling. The �gure
shows that integrating pileup and full-alignment calling is a better strategy than relying on only one of
them.
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