
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Symphony: View-Driven Software Architecture
Reconstruction

A. van Deursen, C. Hofmeister, R. Koschke,
L.M.F. Moonen, C. Riva

REPORT SEN-R0404 APRIL 27, 2004

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Symphony: View-Driven Software Architecture
Reconstruction

ABSTRACT
Authentic descriptions of a software architecture are required as a reliable foundation for any
but trivial changes to a system. Far too often, architecture descriptions of existing systems are
out of sync with the implementation. If they are, they must be reconstructed. There are many
existing techniques for reconstructing individual architecture views, but no information about
how to select views for reconstruction, or about process aspects of architecture reconstruction
in general. In this paper we describe view-driven process for reconstructing software
architecture that fills this gap. To describe Symphony, we present and compare different case
studies, thus serving a secondary goal of sharing real-life reconstruction experience. The
Symphony process incorporates the state of the practice, where reconstruction is problem-
driven and uses a rich set of architecture views. Symphony provides a common framework for
reporting reconstruction experiences and for comparing reconstruction approaches. Finally, it is
a vehicle for exposing and demarcating research problems in software architecture
reconstruction.

1998 ACM Computing Classification System: D.2.9, D.2.2, D.2.5, D.2.7
Keywords and Phrases: reverse engineering; case studies; process

Note: This work was carried out under project SEN1.1, software renovation.

Symphony: View-Driven Software Architecture Reconstruction

Arie van Deursen
CWI & Delft Univ. of Technology

The Netherlands

Arie.van.Deursen@cwi.nl

Christine Hofmeister
Lehigh University

USA

hofmeister@cse.lehigh.edu

Rainer Koschke
University of Stuttgart

Germany

koschke@informatik.uni-stuttgart.de

Leon Moonen
Delft Univ. of Technology & CWI

The Netherlands

Leon.Moonen@computer.org

Claudio Riva
Nokia Research Center

Helsinki, Finland

claudio.riva@nokia.com

Abstract

Authentic descriptions of a software architecture are re-

quired as a reliable foundation for any but trivial changes

to a system. Far too often, architecture descriptions of exist-

ing systems are out of sync with the implementation. If they

are, they must be reconstructed.

There are many existing techniques for reconstructing in-

dividual architecture views, but no information about how to

select views for reconstruction, or about process aspects of

architecture reconstruction in general. In this paper we de-

scribe view-driven process for reconstructing software archi-

tecture that fills this gap. To describe Symphony, we present

and compare different case studies, thus serving a secondary

goal of sharing real-life reconstruction experience.

The Symphony process incorporates the state of the prac-

tice, where reconstruction is problem-driven and uses a rich

set of architecture views. Symphony provides a common

framework for reporting reconstruction experiences and for

comparing reconstruction approaches. Finally, it is a vehicle

for exposing and demarcating research problems in software

architecture reconstruction.

1. Introduction

Many software engineering tasks are hard to conduct without

relevant architectural information. Examples include migra-

tions, auditing, application integration, or impact analysis.

To illustrate the latter, consider the “Basel II” agreement

of the Basel Committee on Banking Supervision which regu-

lates financial risk estimation and reporting.1 Analysts from

Forrester research have estimated that migrating to “Basel II”

will cost banks such as ING or Deutsche Bank approximately

115 million Euros. 60% of these costs concern changes to the

bank’s information systems. Such high impact changes can-

not be made without a clear picture of the architecture of the

underlying information systems.

1 See www.bis.org/bcbs/ and www.forrester.com

In an ideal world, the relevant architectural information

is documented at the time architectural decisions are made,

updated whenever these decisions are revised, and readily

available when needed for a particular task. Unfortunately,

architectural information, when available at all, is often out-

dated and incorrect, or inappropriate for the task at hand.

Software architecture reconstruction is the process of ob-

taining a documented architecture for an existing system. Al-

though such a reconstruction can make use of any possible

resource (such as available documentation, stakeholder in-

terviews, domain knowledge), the most reliable source of in-

formation is the system itself, either via its source code or

via traces obtained from executing the system.

Architecture reconstruction in practice has been pre-

dictably ad-hoc, using simple tools and a large amount of

manual interpretation. Researchers have been trying to im-

prove the state of the practice primarily by providing better

techniques and tools (e.g., cluster or concept analysis, pro-

gram analysis, and software visualization). The application

of these techniques usually involves three steps: extract raw

data from the source, apply the appropriate abstraction tech-

nique, and present or visualize the information obtained.

Although research papers presenting reconstruction tech-

niques typically describe the steps needed for the successful

application of one specific technique, a number of questions

remain. What problems require architecture reconstruction?

What are typical views that should be recovered? Which

techniques are suitable for reconstructing particular views?

How can different views be presented so that they actually

hepl to deal with the problem at hand? In this paper we pro-

pose Symphony, a method that aims at helping reconstruc-

tion teams in answering such questions.

Symphony2 is the result of a systematic analysis of (1) our

own experiences in software architecture reconstruction, (2)

2 The name Symphony reflects that a successful reconstruction is the

result of the interplay of many different instruments. Moreover, the authors’

collaboration in the area of software architecture reconstruction started in

the music room of Castle Dagstuhl in Germany.

cases conducted by close colleagues, and (3) the various ap-

proaches that have been published in the literature. In partic-

ular, the paper integrates four different reconstruction cases

carried out by the authors. These cases are used through-

out the paper to illustrate each step of Symphony. They are

described in more detail in the appendix.

Moreover, the case studies demonstrate the importance of

viewpoints in focusing the reconstruction activities to solve

a particular problem. Different viewpoints and correspond-

ing techniques were used in all case studies, underlining the

need to recognize viewpoints as first-order elements of any

architecure reconstruction process.

Having a method like Symphony can help practitioners by

giving them guidance in performing an architecture recon-

struction. In addition, Symphony provides a good concep-

tual framework for comparing case studies. It can help re-

searchers by providing a unified approach to reconstruction,

with consistent terminology and a basis for improving, refin-

ing, quantifying, and comparing reconstruction processes.

Furthermore, the Symphony method is view-based in

recognition of the importance of multiple architectural views

not only in presenting architecture but more fundamentally in

defining the reconstruction activities. Previous research has

focused on recovering a single architectural view or a few

preselected views. Part of the Symphony process is the dis-

covery of the views that should be reconstructed in order to

solve the problem at hand.

This paper is organized as follows. First we summarize

related work in Section 2. Then, we define our terminol-

ogy on architectural views in Section 3. In Section 4 we

provide an overview of the Symphony steps, which are then

described in Sections 5 and 6. In Section 7 we summarize

our contributions and opportunities for future work.

2. Related Work

Software architecture reconstruction is an active area of re-

search, as illustrated by the recent software architecture re-

construction workshops held in conjunction with the Work-

ing Conference on Reverse Engineering in 2001, 2002, and

in 2003 in Dagstuhl, as well as the workshops organized by

the SEI on asset mining for software product lines.

Although there is a substantial body of published work in

the area of reverse architecting, we are not aware of other pa-

pers addressing the software architecture reconstruction pro-

cess per se. In this section, we summarize those papers that

deal with software architecture reconstruction and discuss

the process elements covered by them. Note that a signifi-

cant amount of related work is furthermore discussed in our

presentation of the various Symphony steps.

Software architecture reconstruction is a special form of

software reverse engineering. Many reverse engineering ap-

proaches are based on an extract–abstract–present cycle, in

which sources are analyzed in order to populate a reposi-

tory, which is queried in order to yield abstract system repre-

sentations, which are then presented in a suitable interactive

form to the software engineer. Tilley et al. [31] describe

the extract–abstract–present approach in more detail, refer-

ring to the steps as data gathering, knowledge inference, and

information presentation.

A number of reverse engineering activities focus on soft-

ware architecture reconstruction. Kazman et al. [11] pro-

pose an iterative reconstruction process where the histori-

cal design decisions are discovered by empirically formulat-

ing/validating architectural hypotheses. They also point out

the importance of modeling not only system information but

also a description of the underlying semantics [11]. Their

approach is currently extended to include the reorganization

of recovered assets into software product lines [30].

Finnigan et al. [10] propose the Software Bookshelf: a

toolkit to generate architecture diagrams from source text.

Ding and Medvidovic describe the Focus approach, which

contrasts a logical (idealized, high-level) architecture with a

physical (as implemented, as recovered) one [8]. By apply-

ing refinement to the logical and abstraction to the physical

architecture, the two are brought together incrementally.

All the previous works differs from Symphony in that they

address a determined goal, concrete techniques, and a certain

fixed sets of views to be reconstructed, whereas Symphony

provides a general reconstruction model.

3. Views in Symphony

Software architectures are generally described by models

and their rationales. The goal of Symphony is to reconstruct

such models (and their rationales if possible). These models

are created using viewpoints and presented using views.

3.1. Views and Viewpoints

A view is a representation of a whole system from the per-

spective of a related set of concerns [15]. While it is now

generally accepted that the architecture description should

be composed of multiple views, the terminology related to

views is not yet widely accepted. In this paper, we refer to

the IEEE 1471 standard [15].

In IEEE 1471, a view conforms to a viewpoint. While a

view describes a particular system, a viewpoint describes the

rules and conventions used to create, depict, and analyze a

view based on this viewpoint [15]. A viewpoint specifies the

kind of information that can be put in a view.

The use of architectural viewpoints and views is a key as-

pect of Symphony. In forward design, different architectural

viewpoints are useful for separating engineering concerns,

which reduces the complexity of design activities. When the

resulting design is captured in separate views, this separation

Target Source

layer uses layer

layer contains program

layer contains copybook

program uses program

program copies copybook

fi le conforms-to naming-convention

layer prescribes naming-convention

table joined-with table

program C/R/U/D table

program enforces

integrity-constraint

layer C/R/U/D table

program uses-DB-utility parameter-list

table has-primary-key column-list

table has-index column-list

column-list compared-with column-list

Figure 1. Some viewpoints for Assessment case.

of concerns helps stakeholders and architects understand the

architecture.

For architecture reconstruction, multiple viewpoints and

views are also beneficial. Different viewpoints help the ar-

chitect determine what information should be reconstructed

in order to solve the problem. The existence of a library of

viewpoints found to be generally useful gives the architect a

basis for reasoning about how different kinds of architectural

information shed light on the problem. Separation of con-

cerns still plays a role, but now in allowing the architect to

reason separately about how each viewpoint could contribute

to a solution of the problem.

3.2. Source, Target, and Hypothesis

A source view is a view of a system that can be extracted

from artifacts of that system, such as source code, build files,

configuration information, documentation, or traces.

Some source views discussed in this paper are at such a

detailed level that they are not generally considered to be

architectural views. For instance, the source view may cover

abstract syntax trees and control flow graphs.

A target view is a view of a software system that describes

the as-implemented architecture and contains the informa-

tion needed to solve the problem/perform the tasks for which

the reconstruction process was carried out.

A hypothetical view describes the architecture of the sys-

tem, but perhaps not accurately. It can be a reference or

a designed architecture used to check conformance of the

implemented architecture to a norm. It can be a postulated

architecture, describing the current understanding of the ar-

chitecture of a system, and used to guide the reconstruction.

This view is typically created by interviewing the system ex-

perts or by examining the existing documentation.

To illustrate the roles of source, target, and hypothetical

views we take a look at a reconstruction conducted as part of

a quality assessment of a system written mostly in Cobol.

The hypothetical view case consisted of the documenta-

tion and presentations offered by the system supplier, who

argued that there was no reason for concerns on the qual-

ity of the system because of the layering, customization, and

data handling mechanisms that were included in the archi-

tecture. It was used to guide the design of the target model

and for finding potential architectural violations.

Refinement

Problem Statement

process designer reconstructor

Source Viewpoints

stakeholders

actor in

data flow
Information
Interpretation

Target Viewpoints
Mapping RulesProblem

StatementProblem
Elicitation

Concept
Determination

Source Viewpoints

Knowledge
Inference

Data
Gathering

Library of
Viewpoints

Target Viewpoints

Figure 2. Interaction during reconstruction design.

A selection of the relations contained in the source and

target views is shown in Figure 1. The relations are grouped

in a module viewpoint (first row) and a data viewpoint (sec-

ond row). The target view provides an architectural perspec-

tive of the system as implemented, while the source view

includes those relations that can be readily derived from the

system’s source code. As an example, the target model in-

cludes CRUD (Create, Read, Update, Delete) information in-

dicating how components manipulate data elements. In some

cases, this information may be directly available from the

sources (e.g., program file contains SQL statement). In the

system at hand, the source model was more complex, since

data manipulation was encapsulated in (generated) data util-

ities, requiring analysis of control (who calls these utilities)

and data flow (what parameters are passed to the utility).

The target model recovered helped to identify layering vi-

olations, data integrity checks that were bypassed, and ad hoc

mixture of custom and product code complicating upgrades

to future product releases.

4. Symphony Steps

Symphony has two stages. During Reconstruction Design,

the problem is analyzed, viewpoints for the target views are

selected, source views are defined, and mapping rules from

source to target views are designed. The Reconstruction Ex-

ecution analyzes the system, extracts the source views, and

applies the mapping rules to populate the target views.

Typically the two stages are iterated: Reconstruction exe-

cution reveals new reconstruction opportunities, which lead

to a refined understanding of the problem and a refined re-

construction design. The source viewpoints, target view-

points, and mapping rules evolve throughout the process.

The outcomes of Symphony are twofold: Reconstruction

Design results in a well-defined procedure for reconstructing

the architecture of the system. This procedure may be useful

beyond the scope of the current reconstruction: it can play

a role in continuous architecture conformance checking and

in future reconstructions. Reconstruction Execution yields

the architecture description needed to solve the problem that

triggered the original reconstruction activity.

Views

Views
Target
Views

Views
Architectural

stakeholders

Data

reconstructor

Repository
Data
Gathering

actor in

data flow

Knowledge
Inference

TargetSource

Information
Interpretation

Map

Views

Source

Figure 3. Reconstruction execution interactions.

The various Symphony reconstruction steps are illustrated

in Figures 2 and 3. Design steps include Problem Elicitation

and Concept Determination, and are discussed in Section 5.

Execution steps include Data Gathering, Knowledge Infer-

ence, and Information Interpretation, discussed in Section 6.

5. Reconstruction Design

During reconstruction design we distinguish problem elici-

tation in which the problem triggering the reconstruction is

analyzed and discussed with stakeholders, and concept de-

termination, in which the architectural concepts relevant to

the problem at hand and a recovery strategy are identified.

5.1. Problem Elicitation

Reconstructing architectures requires software architecture

experts to study a system and an active involvement of stake-

holder representatives, such as testers, developers, manage-

ment, the business owning the system, and system users.

These people are usually in strong demand in other places

of the project or the organization. Therefore, there must be

a compelling reason to start a reconstruction. Typical rea-

sons include performance problems, high maintenance costs,

poor reliability, and considerations concerning system re-

placement or system extensions. These reasons can typically

be collected in a short (one or two page) memorandum offer-

ing a management perspective on the problem at hand.

This memorandum forms the starting point for a software

reconstruction activity, and the first step is to elaborate this

problem statement. This is the purpose of Symphony’s Prob-

lem Elicitation step and requires the involvement of more

technical people in the problem analysis.

In our experience, individual technical people involved

in system development typically have a fairly good idea of

specific technical problems in their area of expertise (e.g.,

database administration, networking, user interfaces). In the

problem elicitation step these different perspectives should

be integrated into one overall picture.

There are several techniques that can be used during prob-

lem elicitation, such as structured workshops, checklists, role

playing, and scenario analysis. As an example, in the assess-

ment case discussed previously, we started with a workshop

for which all stakeholders were invited. In this particular

case, each participant was asked to report his best and worst

experience with the system analyzed.

Outcomes of Symphony’s Problem Elicitation step in-

clude summaries of interviews, workshop sessions, and rele-

vant discussions; summaries of available high-level relevant

documentation, if available; an elaboration and refinement

of the problem statement based on these summaries; and an

initial list of documentation and other resources that can be

used during the reconstruction.

Observe that the original memorandum, the collected

summaries and the refined problem statement may very well

be “architecture-agnostic”: they must be expressed in terms

familiar to the stakeholders. The translation of the problems-

as-perceived to software architecture concepts is the purpose

of the “concept determination” step.

The diversity of motivations for architecture reconstruc-

tion is exemplified by the four different case studies that

lead to the design of Symphony. Two of them, namely,

the Assessment and Nokia case, are true industrial cases.

The other two were conducted in an academic—nevertheless

realistic—setting to better understand architecture recon-

struction. As mentioned earlier, a more detailed description

of the case studies can be found in the appendix.

Assessment case. The Assessment case (partly described

in [6]) involves an assessment of the quality characteristics of

a commercial software product written mostly in Cobol that

was being customized for a particular client. In the course of

the customization process (which took two years) the client

grew more and more concerned about the data integrity, reli-

ability, and maintainability. An independent assessment was

commissioned which should help to decide whether to con-

tinue the project. Source code and documentation were avail-

able for use in this assessment.

Nokia case. The products of Nokia are typically organized

in product families in order to reduce the development costs

and maximize the reuse of the assets. The architects’ needs

can be summarized as follows: (1) comprehending the as-

implemented architecture of the products, (2) managing the

organization of components and their logical dependencies

in the platform, and (3) enforcing conformance to architec-

tural rules. The main goal is to provide the architects with

up-to-date information by reconstructing the same architec-

tural views that they typically use during design.

Compiler case. In this case, the as-built architectures of

two large and complex compilers were to be compared

against a reference architecture. Although the actual moti-

vation was to evaluate an extension to the original reflexion

method by Murphy et al. [20], the case study can indeed be

viewed as a realistic task in which an as-built architecture is

to be compared against an idealized architecture.

Duke’s Bank case. The goal of this reconstruction was to

understand Duke’s Bank and to determine the abstractions to

use in such a system. The motivation was to learn how to

mapping

rules

1
1

specifies

{OR}
 source

viewpoint

1
1

specifies

target

viewpoint

1
1
 1

maps to

1
1

specifies

compared to

viewpoint for

hypothetical

view
1
1

1
 1

extracted from

1
1

specifies

map

*
*

{OR}

implementation

fact

source

view

*

*
*

target

view

1
1
1

abstracted from

hypothesized

architectural fact

*
*

hypothetical

view

1
1

1
1
 1

*

*
*

Figure 4. Viewpoints and Views in Symphony

reconstruct so that it can be done more efficiently for future

examples. An additional challenge in this case study was to

exercise the reconstruction with off-the-shelf tools, such as

Rational Rose, grep, emacs, etc.

5.2. Concept Determination

Once the problem is understood, the Concept Determina-

tion step is used to determine the architectural information

needed to solve the problem and the way to derive this in-

formation. In this step, the architect is a process designer,

defining the architectural reconstruction that will take place

in the final three steps.

There are five outcomes of this step, each of which is de-

scribed in the remainder of this section. The UML diagram

in Figure 4 summarizes the relationships involving the view-

points and mapping rules produced in this step.

Identify Potentially Useful Viewpoints. The first step to-

wards defining the target viewpoint is to identify a set of

viewpoints that contain the information the stakeholders be-

lieve will be needed to solve the problem as described in

Problem Elicitation. Stakeholders typically know which

viewpoints will be useful, or have at least some initial

ideas. After getting input from the stakeholders, the archi-

tect should review the problems and questions, looking for

additional useful viewpoints. Although the architect is re-

sponsible for producing the list of viewpoints, ultimately the

stakeholders must agree to them.

These viewpoints can come from a library of well-known

viewpoints, or a new viewpoint can be created for a spe-

cific reconstruction. If the problem is not understood well

enough to identify viewpoints of interest, the Problem Elici-

tation step should be re-applied.

One of the most commonly used viewpoints for architec-

ture reconstruction is the Module viewpoint [13]. It identifies

the layers, subsystems, and modules in the system and de-

scribes relationships (e.g. usage-dependency and decompo-

sition) among them. Other common viewpoints are the Code

architecture viewpoint, which describes directory structure

and build relationships, and the Execution viewpoint, which

describes the runtime entities and their mapping to physi-

cal resources [13]. The Conceptual viewpoint [13], describ-

ing the functionality of the system in terms of components

and connectors, is less commonly used for reconstruction be-

cause it is a more abstract view and is therefore more difficult

to reconstruct. (See also [4] for examples of Styles, which is

their term for viewpoints.)

The Module viewpoint was also used for all four case

studies. The Nokia and Duke’s Bank cases used the Code,

Execution, and Conceptual viewpoints in addition, whereas

the Assessment case study used two other viewpoints (Data

and Customization) in addition to the Module.

For reconstruction it may be useful to create new view-

points, ones which are not used in forward design. An exam-

ple is the Reflexion Model used by Murphy and Notkin [26].

Their Reflexion Model is based on the usage-dependency

relationship in the standard Module viewpoint. It contains

three relationships (convergence, divergence, absence) that

indicate whether the usage-dependencies reflected in the

source code conform to those in the hypothetical view.

Define/Refine Target Viewpoint. As Figure 4 shows, the

target viewpoint specifies the target view that will be an out-

put of the reconstruction process. The stakeholders should

also agree to the target viewpoint.

One useful approach for creating the target viewpoint is

to use the Stakeholder/View tables described in [4], adapted

somewhat for reconstruction. In its original form this is a

three-step process culminating in a prioritized list of views

needed for documenting a software system.

In Symphony, the first step, producing a candidate view

list, begins with the potentially useful viewpoints already

identified. Each of these should be listed along with the ex-

tent to which it is important for solving the problem. The sec-

ond step is to identify the specific relationships of each view-

point that are needed. The third step is to prioritize these re-

lationships and eliminate any duplicates. During this process

the architect should be thinking about similarities among the

relationships, which can be derived from others, which are

most critical to solving the overall problem, and should try

to consolidate them to arrive at the set of relationships in the

target viewpoint.

Not all relationships in the target viewpoint will come

from a standard viewpoint. For example, the Duke’s Bank

case is a J2EE application, where one servlet can “forward”

to another, and a jsp can “include” another. These were ini-

tially covered by adding a “module forw/incl/etc. module”

relationship to the target viewpoint. (In a later refinement

this relationship was combined with the usage-dependency

relationship, but that determination could not safely be made

at the outset.)

As another example, Figure 5 summarizes the Mur-

phy/Notkin Reflexion work in terms of Symphony. Here the

target viewpoint contains relations extracted from the Mod-

Starting Viewpoint Target Viewpoint Source Viewpoint Mapping Rules

Reflexion module convergence module dir contains dir Relation: fi le maps to module
(variant of module divergence module dir contains fi le Rules:

Module view) module absence module func alloc to fi le (fi calls fj) ∧ (fi alloc to filex) ∧ (filex maps to mm)
Module view module callsa module func calls func . . . ⇔ ((mm callsa mn) maps to (fi calls fj))

module callsh module ((mm callsa mn) maps to (fi calls fj)) ⇒ (mm callsa mn)
trace target to (module callsa module) (mm convergence mn) ⇔ (mm callsa mn) ∧ (mm callsh mn)
source view maps to (mm divergence mn) ⇔ (mm callsa mn) ∧ ¬(mm callsh mn)

(func calls func) (mm absence mn) ⇔ ¬(mm callsa mn) ∧ (mm callsh mn)

Figure 5. Viewpoints and Mapping Rules Used in Reflexion Example

ule and Reflexion viewpoints.

The Compiler case study used the Reflexion work as a

starting point, so initially its target viewpoint was the same

as in Figure 5. However, during the course of the recon-

struction it became clear that the target viewpoint needed to

be modified to support hierarchies of modules, so in a sec-

ond iteration the relationship “module contains module” was

added.

Define/Refine Source Viewpoint. The source viewpoint

specifies the source view. The source view will contain in-

formation extracted from the source code and gathered from

other sources; the source viewpoint formally describes this

information. The challenge in defining a source viewpoint

is to determine what information will be needed in order to

create the target views. Thus defining the source viewpoint

needs to be done in conjunction with defining the mapping

from source to target viewpoint.

In the Reflexion example (Figure 5), the source view-

point contains some architectural and some lower-level in-

formation, but all of it can be directly extracted from the

code. This was not true for all of our case studies: al-

though automatically-extractable facts formed the basis of

the source viewpoint in all, a few relied in addition on re-

lationships that can be populated only by manual interpreta-

tion of the sources. For instance, in the Compiler case, we

had to inspect the results of an overly conservative automatic

pointer analysis to filter out obviously wrong results.

The Assessment case study had a second iteration to re-

fine the source viewpoint. In the first iteration the definition

of the source viewpoint was driven by the information exist-

ing tools could produce. Since this was inadequate for pro-

ducing the desired target viewpoint, a second iteration was

used with a refined mapping and an expanded source view-

point.

Define/Refine Mapping Rules. The mapping rules are

ideally a formal description of how to derive a target view

from a source view. Realistically, parts will often be in the

form of heuristics, guidelines, or other informal approaches.

If a mapping can be completely formalized, the reconstruc-

tion can be fully automated. As said earlier, this is not typ-

ically possible for software architecture, thus we expect the

mapping to contain both formal and informal parts.

Figure 4 shows that the mapping rules specify the map.

The ’mapping rules’ entity is an association class connect-

ing the target viewpoint and source viewpoint. Thus it de-

scribes the ’maps to’ association between these two entities.

The map, as the instantiation of the mapping rules, describes

how specific implementation facts in the source view are ab-

stracted to architectural facts in the target view.

In the four case studies and the Reflexion example the

mappings all contain some informal parts. In the Reflex-

ion example and the Assessment case study, the relation “file

maps to module” must be manually populated to produce

the map. However, the rest of the mapping is a set of for-

mal rules used to compute the target views (Figure 5). Sim-

ilarly, the mapping in the Nokia case study relies primarily

on a series of transformations formalized in relational alge-

bra. At the other extreme, the mapping in the Duke’s Bank

case study contains a number of rules about how entities in

J2EE applications are related, but they provided only partial

information for creating the map. Most of the map creation

was done manually.

Determine Role and Viewpoint of Hypothetical Views.

In addition to the above activities, the stakeholders and archi-

tect must determine whether a hypothetical view is needed

and what its role will be. This role depends on the purpose of

the reconstruction. The most common roles of a hypothetical

view are as a guide during the reconstruction activity and as

a baseline to compare with the system’s current architecture.

When serving as a baseline there are two ways the com-

parison can be done. One is to create an explicit com-

parison view, with the comparison embodied in the tar-

get view. The Reflexion example and the Compiler case

study have such a target view: it identifies modules, usage-

dependencies among them, and identifies which of these

usage-dependencies match those in the hypothetical view

and which do not. In Figure 5 part of the target viewpoint

is the callsh relation, which specifies the hypothetical view

(called the ’high-level model’ in [26]).

The second way to use a hypothetical view as a baseline is

informally. In this case it is used in the last step, Information

Interpretation. Typically the architect browses both the target

view and hypothetical view, compares them, and based on

the results may decide to perform another iteration of the re-

construction process, modifying the target viewpoint, source

viewpoint, mapping, or some combination of these.

The Nokia and Assessment case studies used a hypotheti-

cal view both for guidance and as a baseline. The hypotheti-

cal view guided the definition of the target viewpoint, helped

in populating the map, and served as a baseline during Infor-

mation Interpretation.

The hypothetical view also has a viewpoint that must be

defined. If the hypothetical view is embedded in the target

view (as in the Reflexion example) then its viewpoint is de-

fined as part of the target viewpoint. This is shown as the

containment relationship between the two viewpoints in Fig-

ure 4. If the hypothetical view is not embedded, then typi-

cally its viewpoint is very similar to the target viewpoint so

that comparison is straightforward. In Figure 4 this is shown

as the ’extracted from’ relationship between the two view-

points.

6. Reconstruction Execution

During reconstruction execution, an extract–abstract–

present approach is used, tailored towards the specific needs

of architecture reconstruction. The three steps populate the

source view, apply the mapping rules to create the target

views, and interpret the results to solve the problem at hand.

6.1. Data Gathering

Intent. The goal of the Data Gathering step is to collect

the data that is required to recover selected architectural con-

cepts from a system’s artifacts. The motivation is that the

truth about the actual (concrete) architecture is in the sources.

However, in general, one can look at other artifacts of the

system than just its source code. These other artifacts in-

clude a system’s buildfiles/makefiles, (unit) tests, configura-

tion files, etc. The data gathered are stored in a repository

and processed in the Knowledge Inference step.

Examples. The types of data that we have gathered in the

case studies are described in Figure 6. These facts are at

a low level expressing knowledge in terms of source code

elements (hence the term source views). In Knowledge In-

ference these facts are abstracted (or lifted) to higher levels.

Techniques. Techniques for data gathering can be divided

in static and dynamic analyses of the system. Static analyses

analyze the system’s artifacts to obtain information that is

valid for all possible executions (e.g, program structure or

potential calls between different modules).

Dynamic analyses collect information about the system

as it executes. The results of such an analysis are typically

valid for the run in question, but no guarantees can be made

for other runs. Dynamic analysis is done by tracing the exe-

cution paths/profiles of the code and analyzing them for pat-

terns, sequences, and dependencies. Such traces can be col-

lected using code instrumentation, debugging, and profiling

tools, or by connecting to a (prepared) runtime environment.

Note that these kinds of analyses do not necessarily have

to be developed by the team that is using them to recover the

architecture. Suitable results can be imported from a wide

range of reverse engineering tools (such as clustering tools,

data flow analysis tools, etc.). In practice, often a pragmatic

mix-and-match approach for data gathering is applied, com-

bining the results from various extraction tools using script-

ing and glueing, for example, based on UNIX utilities such

as join, split, awk and perl.

Below, we will look a little further into methods for ex-

tracting facts from textual artifacts such as program code,

buildfiles, etc. since that is the most used technique for data

gathering. For a more detailed discussion of various meth-

ods for source model extraction, we refer to the related work

described in [23].

Manual Inspection. Our experiences show that some of

the data needed for a reconstruction project can be easily

gathered manually by: examining the directory structure, ob-

serving the behavior, or by exploring the source code for bea-

cons that signal aspects of interest [24]. In our cases, this in-

cluded for example the package structure and build relations

for Duke’s Bank and the verification of client-server separa-

tion in the Assessment case.

Lexical Analysis. Several tools are available that perform

lexical analysis of textual files. The most well-known is

probably grep that searches text for strings matching a reg-

ular expression. Tools like grep generally give little support

to process the matched strings, they just print matching lines.

Such support is available in more advanced text processing

languages such as awk, perl, and lex that allow one to ex-

ecute certain actions when a specific expression is matched.

The Lexical Source Model Extractor (LSME) uses a set

of hierarchically related regular expressions to describe lan-

guage constructs that have to be mapped to the source

view [25]. Use of hierarchical patterns avoids some of the

pitfalls of plain lexical patterns but maintains the flexibility

and robustness of that approach.

In our case studies, data gathering based on grep and

perl scripting was used for the Nokia case, parts of the

Assessment case and parts of the Duke’s Bank case.

Syntactic Analysis. Parser based approaches are used to

increase the accuracy and level of detail that can be ex-

pressed. These typically create a syntax tree of the input and

allow the users to traverse, query, or match the tree to look

for certain patterns. This relieves them from having to han-

dle all aspects of a language and focus on interesting parts.

The Compiler case study uses syntactical analysis (extended

with semantical analysis described below).

Fuzzy parsing. Fuzzy parsers are parsers that are able to

discard tokens and recognize only certain parts of a program-

ming language [18]. This can be seen as a hybrid between

lexical and syntactical analysis. These fuzzy parsers are hand

crafted to perform a specific task. They focus mainly on

parsing C and C++ to support program browsing. Typically

this involves extracting information regarding references to a

symbol, global definitions, functions calls, file includes, etc.

Case Example Relation Extraction Technique

Assessment module containment, copybook usage lexical analysis using Java regular expression matching

dynamic program calls island grammars and data flow analysis

Compiler variable access parsing

dynamic function call parsing and points-to analysis

Duke’s Bank directory structure, build relationships manual inspection of directories/buildfi les

class inheritance and containment examination using Rational Rose and grep/emacs

Nokia directory containment, fi le inclusion, function calls lexical analysis based on regular expression matching

Figure 6. Some examples of the various data gathering techniques used in the cases.

Island Grammars. Island grammars are a novel technique

that can be used to generate robust parsers from grammar

definitions [23]. Island grammars combine the detailed spec-

ification possibilities of grammars with the liberal behavior

of lexical approaches. The robust parsers generated from is-

land grammars combine the accuracy of syntactical analysis

with the speed, flexibility, and tolerance usually only found

in lexical analysis. This makes this approach very suitable

for developing source model extractors, even if the resulting

extractor is used only for a single project. The DocGen docu-

mentation generator used in our Assessment case uses island

grammars for data gathering [5].

Semantical Analysis. Additional techniques such as name

and type resolution, data flow analysis and points-to analysis

can be used to improve the results from other analyses (gen-

erally on a syntactical basis). For example, in our Compiler

case study, points-to analysis was used to determine more ac-

curate call graphs than could be retrieved from just applying

syntactical analysis. In the Assessment case study, a simple

form of data flow analysis was used to trace program calls

via a dynamic call handler.

Output. The output of the data gathering stage is a popu-

lated repository containing the extracted source views.

6.2. Knowledge Inference

Intent. The goal of the Knowledge Inference step is to de-

rive the target view from the source view (typically a large

relational data set describing the implementation of the sys-

tem). The reconstructor creates the target view by condens-

ing the low-level details of the source view and abstract-

ing them into architectural information. The mapping rules

and domain knowledge are used to define a map between

the source and target view. For example, if the mapping

contains a rule about using naming conventions to combine

classes into modules, the resulting map lists each class and

the module to which it belongs. This activity may require

either interviewing the system experts in order to formal-

ize architecturally-relevant aspects not available in the im-

plementation or to iteratively augment the source view by

adding new concepts to the source viewpoint.

Depending on the degree of formalization of the mapping,

this step can be fully or partly automated. We expect the

Knowledge Inference step to be conducted initially in close

cooperation with the system experts and, as more domain

knowledge becomes formalized, more automation is added.

This step can be summarized in the following activities: (1)

create the map (containing the domain knowledge), and (2)

combine the source view with the map to produce the target

view. In practice, the map is often created iteratively, with

each iteration refining the map or raising its level of abstrac-

tion until it can produce a satisfactory target view.

Techniques. Existing techniques can be categorized as

manual, automatic, or semi-automatic. Manual approaches

typically use simple, general-purpose tools and manual in-

spection of the system. While they may use reconstruction-

specific tools such as SHRiMP, Rigi, PBS, and Bauhaus to

help visualize intermediate results, there is no automated

support for the process (see for example [21]).

Semi-automatic approaches help the reconstructor create

architectural views in an interactive or formal way. They

typically rely on the manual definition of the map. Differ-

ences among the approaches concern the expressiveness of

the language used for defining the transformations, support

for calculating transitive closures of relations, degree of re-

peatability of the process, amount of interaction required by

the user, and the types of architectural views that can be gen-

erated.

Relational algebra approaches allow the reconstructor to

define a repeatable set of transformations for creating a par-

ticular architectural view. In the work of Holt et al. [14] rela-

tional algebra is used for creating a hierarchical module view

of the source code (by grouping source files into modules

and calculating the module dependencies). The reconstruc-

tor must manually prepare the containment relations, but new

relationships can also be inferred using algebra propositions.

Postma [27] uses relational partition algebra (RPA) [9] to

calculate module dependencies from dependencies extracted

from code. RPA is also used to check the conformance of an

extracted target view with a hypothetical view (established

in the design phase). The process is repeatable and is part

of the build process. Riva has proposed a method for infer-

ring the architectural information based on relational algebra

and Prolog [28]. Mens [22] uses logic meta programming

(Prolog) for mapping implementation artifacts to high-level

design and for checking conformance of architectural rules.

More light-weight examples are the Reflexion

Model [26], Tcl scripts for defining graph transforma-

tions in Rigi, SQL queries for defining grouping rules (Dali),

or the ad-hoc graph query language (GReQL) of GUPRO.

Fully automatic approaches are based on different kinds

of clustering algorithms: coupling, file names, concept anal-

ysis, type inference.

All the case studies fall into the category of semi-

automated approaches. The map between source view and

target view was created manually. The map bridged the gap

between conceptually different entities (e.g., source entities

versus logical component and connectors in the Duke’s bank

case) or concrete and hypothesized elements in the source

and target views (e.g., the mapping of concrete modules onto

hypothesized modules in the reflexion method for the Com-

piler case). The manual map, then, allowed to propagate and

lift relations between source entities to entities in the target

view automatically.

For the creation of the map, technological, organizational,

and often historical background knowledge as well as do-

main knowledge is required. For instance, the Duke’s Bank

case leveraged knowledge of web applications, the J2EE in-

frastructure, and recommended design patterns. J2EE types

provided information about which file executes in which

container and which classes are separate components. De-

sign patterns helped identify data-transfer classes and helper

classes. The application functionality guided decisions about

creating interfaces, combining classes into modules, and de-

termining connectors.

The mapping is often difficult because of hidden depen-

dencies. One interesting experience in the Duke’s Bank case,

for instance, was the identification of “logical” or “hidden”

interfaces. These were not explicitly visible in the source

code and were discovered only by studying the control flow

of the application and data sharing between classes that had

no explicit dependencies. Obviously, the quality of the data

gathering is key to a successful knowledge inference. The

realization of poor data quality forces us to reiterate the data

gathering with different means.

Output. The output is an enriched and structured reposi-

tory where the source view and the domain knowledge has

been combined to create the target view.

6.3. Information Interpretation

Intent. The target views—selected to address a particular

problem—are inspected, interpreted, and eventually applied

to solve the problem. To these ends, the target views need

to be made accessible both physically and mentally to all

stakeholders.

Motivation. The views that result from Knowledge Infer-

ence are not the answer to the problem but provide a foun-

dation to address the problem. In the Information Interpre-

tation, conclusions are drawn from the reconstructed views.

These conclusions then lead to measures to be taken to rem-

edy the problem. (The measures themselves are not part of

the reconstruction process.)

Ideally, the viewpoints were selected to allow an imme-

diate use of the views; however, even if the viewpoints are

carefully tailored, it might become difficult to get an answer

at the level of the target views because they may span a huge

information space. In such cases, presentations are required

that make this information space amenable to all stakehold-

ers. The presentation must be readable and traceable. Read-

ability relates to the ability to easily find and grasp relevant

information in the views; traceability allows us to trace the

inferred knowledge back to the original data.

Techniques. The scope of the presentation (i.e., the arti-

facts and their aspects to be presented) is already given in

form of the selected viewpoints and target views. The view-

ers and task to be achieved are stated in the Problem Elicita-

tion. We focus on presentation and interaction issues here.

Although the selected viewpoints define the vocabulary

and semantics for the representation, they do not define how

to present the information. Information presentation ad-

dresses this problem, where we take presentation quite lib-

erally: any means to communicate information to a viewer,

be it textually, graphically, or through other forms of human

perception including any form of interaction with the pre-

sentation. Sight is the most often addressed form of human

perception by information presentation in the software archi-

tecture domain; that is why we are using the narrower term

visualization instead of perception in the following.

Presentation issues have to do with effective visual com-

munication including the visual vocabulary, the use of the

specific visual elements to convey particular kinds of infor-

mation, the organization of visual information, and the order

in which material is presented to the viewer. Most applica-

tion domains have their own conventions and symbology that

should be used for the visual vocabulary and elements.

Due to lack of space, we refer the reader to overviews

on software visualization in the literature [32, 17, 2]. Yet,

at least we want to point out that graphs seem to be a ”nat-

ural” visualization of architecture elements and their (often

binary) relations, as confirmed by independent surveys that

indicate their popularity [2, 19] (in the end, class and object

diagrams in UML are just graphs with predefined semantics

and rendering characteristics). In the Compiler, Assessment,

and Nokia case studies, graphs were used to convey the in-

formation.

The aspect of interaction refers to the way the visualiza-

tion is constructed. Visualizations range from ”hard-wired”,

where the viewer has no influence on the presentation, to ar-

bitrary redefinition by the viewer. Visualizations should not

be static pictures, but should offer querying, zooming in and

out, navigation along cross-references and hierarchies, selec-

tive hiding, and gathering of transitive relations.

Some of the case studies used ”‘standard”’ elements, such

as hyperlinked HTML or PDF documents with embedded

UML diagrams (the Nokia and Assessment cases). UML

was also used in the Duke’s Bank case, but here the dia-

grams were crafted manually. Simple types of visualization,

namely, textual ones and tables, were also used where ap-

propriate (e.g., the Assessment case used tables for metrics).

The Nokia, Assessment, and Compiler cases used navigat-

able visualizations with zooming and filtering capabilities.

We believe that all case studies could have benefited from

more advanced and carefully selected means of visualiza-

tion. Visualization issues were brought up as an afterthought

and, hence, the potential of visualization was only partially

leveraged. The reason for this shortcoming is simply that

the means of presentation chosen in the case studies were

mostly opportunistically selected from available tools. The

focus in these cases was to solve the problem quickly with

available tools. As the initial processes are repeated more

often, we expect that their maturity will improve by a more

careful consideration of presentation issues.

A particular problem of software architecture is the need

to understand a combination of multiple views, which is fur-

ther complicated when the views are of conceptually differ-

ent viewpoints. There have been several suggestions to the

”view fusion” problem. If the views overlap in some of their

entities, one can use certain inferences to map entities with

no immediate correspondence to entities in the other view.

For instance, Kazman and Carrière use ”lifting” operations

along containment relations to fuse views [16]. If the entities

may be mapped onto source code, one could leverage over-

lapping source code regions to identify correspondencies be-

tween entities [3]. If there is no such simple correspon-

dence, the mapping is typically manual. Hillard, Rice, and

Schwarm [12], for instance, systematically cross reference

related entities from distinct views and use Ross’s model tie

process from Structured Analysis to integrate the views [29].

These cross-references are created as part of Symphony’s

Knowledge Inference in the form of the maps and stored so

that the connection among views is made explicit. The cross-

references may be implemented and inserted into the views

by available frameworks [1, 7]. Multiple views occured in all

case studies (in the Compiler case, the mapping and the de-

pendencies propagated from the source to the target entities

were also visualized).

Output. The output of the Information Interpretation is a

hyperstructure offering a holistic perspective on the software

system as a foundation for investigating the concrete archi-

tecture’s impact on the problems signaled. This hyperstruc-

ture includes traceability links between views and links to

other software artifacts, such as the source text, relevant doc-

umentation, etc. The ideal hyperstructure allows you to ex-

plore the system at various levels of abstraction: it lets you

zoom in and zoom out between sources and architecture and

navigate between views.

7. Concluding Remarks

In this paper we have presented Symphony, a software archi-

tecture reconstruction process that: (1) incorporates the state

of the practice, where reconstruction is problem-driven and

uses a rich set of architecture views; (2) provides guidance

for performing reconstruction, including pointers to appli-

cable technology; (3) allows specific reconstructions to be

systematically compared; and (4) allows reconstruction ap-

proaches to be systematically compared.

Symphony consists of two stages. The first stage (Prob-

lem Elicitation and Concept Determination) produces a re-

peatable and reusable reconstruction strategy that creates the

views necessary to address the original problem. Although

not an ultimate goal, the problem-dependent viewpoints cre-

ated or refined in the Concept Determination phase are an-

other reusable output of this stage.

The second stage of Symphony concerns the execution of

the reconstruction strategy. This stage operates only at the

level of views constrained by the viewpoints created before.

Their outcome is the foundation for addressing the problem

for which the particular reconstruction is carried out. A sec-

ondary outcome is the sequence of mappings from the source

views to the target views. This sequence allows one to trace

back the information in the views to the artifacts from which

they were derived.

This paper also shares real-life reconstruction experience

by presenting and comparing different case studies. Recon-

struction in practice is problem-driven, using not a fixed set

of views but ones chosen to solve the particular problem. The

viewpoints used in practice are not confined to the Module

viewpoint typically used in the research literature.

Viewpoint selection and definition is an important part of

the Symphony process. Using viewpoints to specify the input

and output of an activity allows us to decompose the recon-

struction process systematically and to review the outcome

of each activity. In addition, we can reuse an activity—once

defined and used for a reconstruction process—as a building

block to compose new reconstruction processes.

Symphony has been applied in academic and industrial

case studies and unifies other existing reconstruction tech-

niques and methods. The process model described in this

paper allows readers to leverage from that experience when

setting up their own architecture reconstruction efforts. We

provide a step-by-step methodology that can be followed and

give pointers for the selection of appropriate techniques and

methods for each of the phases.

In addition, Symphony provides a common reference

framework that can be used when classifying and compar-

ing various techniques and methods described in the litera-

ture. Such a common reference also helps people to report

on their own reconstruction efforts in a uniform way so that

others can easily understand it.

Last but not least, Symphony is a research tool: it helps

us to find and demarcate research problems in software archi-

tecture reconstruction. For example, Symphony’s viewpoint

emphasis calls for a catalog of reconstruction methods, tech-

niques, and experiences organized by viewpoints. Moreover,

it raises the question what reconstruction-specific viewpoints

exist. Symphony’s inclusion of mappings between source

and target views suggests finding a systematic way to dis-

cover and describe such mappings as a key research question.

Problems like these are hard to tackle. Symphony makes it

possible to address them on a case-by-case basis, offering its

process model as a way to classify and compare results.

Acknowledgements Arie van Deursen and Leon Moonen re-

ceived partial support from ITEA (Delft University of Technology,

project MOOSE, ITEA 01002), and SENTER (CWI, project IDE-

ALS, hosted by the Embedded Systems Institute).

References

[1] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. Chimera: hy-

pertext for heterogeneous software environments. In Proc. European

conference on Hypermedia technology. ACM, 1994.

[2] S. Bassil and R. K. Keller. Software visualization tools: Survey and

analysis. In Proc. Int. Workshop on Program Comprehension (IWPC),

pages 7–17. IEEE CS, May 2001.

[3] M. P. Chase, D. Harris, and A. Yeh. Manipulating recovered soft-

ware architecture views. In Proc. Int. Conf. on Software Engineering

(ICSE), pages 184–194. ACM, 1997.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,

R. Nord, and J. Stafford. Documenting Software Architectures: Views

and Beyond. Addison-Wesley, 2002.

[5] A. van Deursen and T. Kuipers. Building documentation generators.

In Proc. Int. Conf. on Software Maintenance (ICSM), pages 40–49.

IEEE CS, 1999.

[6] A. van Deursen and T. Kuipers. Source-based software risk assess-

ment. In Proc. Int. Conf. on Software Maintenance (ICSM). IEEE CS,

2003.

[7] P. Devanbu, R. Chen, E. Gansner, H. Müller, and A. Martin. Chime:

Customizable hyperlink insertion and maintenance engine for soft-

ware engineering environments. In Proc. Int. Conf. on Software Engi-

neering (ICSE). ACM, 1999.

[8] L. Ding and N. Medvidovic. A light-weight, incremental approach to

software architecture recovery and evolution. In Proc. Working Conf.

on Software Architecture (WICSA), pages 191–200. IEEE CS, 2001.

[9] L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach to

support software architecture analysis. Software Practice and Experi-

ence, 28(4):371–400, 1998.

[10] P. J. Finnigan, R. C. Holt, I. Kalas I, S. Kerr, K. Kontogiannis, H. A.

Müller, J. Mylopoulos, S. G. Perelgut, M. Stanley, and K. Wong. The

software bookshelf. IBM Systems Journal, 36(4):564–593, Oct. 1997.

[11] G. Y. Guo, J. M. Atlee, and R. Kazman R. A software architecture re-

construction method. In Proc. Working Conf. on Software Architecture

(WICSA), pages 15–33, 1999.

[12] R. F. Hillard II, T. B. Rice, and S. C. Schwarm. The architectural

metaphor as foundation for system engineering. In Proc. Ann. Symp.

of the Int. Council on Systems Engineering, 1995.

[13] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture.

Object Technology Series. Addison Wesley, 2000.

[14] R. C. Holt. Structural manipulations of software architecture using

tarski relational algebra. In Proc. Working Conf. on Reverse Engi-

neering (WCRE), 1998.

[15] IEEE P1471-2000. IEEE recommended practice for architectural de-

scription of software-intensive systems, 2000.

[16] R. Kazman and S.J. Carrière. View extraction and view fusion in archi-

tectural understanding. In Proc. Int. Conf. on Software Reuse (ICSR),

1998.

[17] C. Knight and M. Munro. Mediating diverse visualisations for com-

prehension. In Proc. Int. Workshop on Program Comprehension

(IWPC), pages 18–25. IEEE CS, May 2001.

[18] R. Koppler. A systematic approach to fuzzy parsing. Software Practice

and Experience, 27(6):637–649, 1997.

[19] R. Koschke. Software visualization in software maintenance, reverse

engineering, and reengineering: A research survey. Journal on Soft-

ware Maintenance and Evolution, 15(2):87–109, 2003.

[20] R. Koschke and D. Simon. Hierarchical reflexion models. In Proc.

Working Conf. on Reverse Engineering (WCRE). IEEE CS, Nov. 2003.

[21] P. K. Laine. The role of sw architectures in solving fundamental prob-

lems in object-oriented development of large embedded sw systems.

In Proc. Working Conf. on Software Architecture (WICSA), 2001.

[22] K. Mens. Automating architectural conformance checking by means

of logic meta programming. PhD thesis, Departement Informatica,

Vrije Universiteit Brussel, 2000.

[23] L. Moonen. Generating robust parsers using island grammars. In Proc.

Working Conf. on Reverse Engineering (WCRE), pages 13–22. IEEE

CS, Oct. 2001.

[24] L. Moonen. Exploring Software Systems. PhD thesis, Faculty of Natu-

ral Sciences, Mathematics, and Computer Science, University of Am-

sterdam, Dec. 2002.

[25] G. C. Murphy and D. Notkin. Lightweight lexical source model ex-

traction. ACM Transactions on Software Engineering and Methodol-

ogy, 5(3):262–292, July 1996.

[26] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion mod-

els: Bridging the gap between design and implementation. IEEE CS

Transactions on Software Engineering, 27(4):364–380, Apr. 2001.

[27] A. Postma. A method for module architecture verifi cation and its ap-

plication on a large component-based system. Information and Soft-

ware Technology, 45:171–194, 2003.

[28] C. Riva. Architecture reconstruction in practice. In Proc. Working

Conf. on Software Architecture (WICSA), 2002.

[29] D. T. Ross. Removing the limitations of natural languages (with the

principles behind the RSA language). In Proc. the Software Engineer-

ing Workshop. Academic Press, 1980.

[30] C. Stoermer, L. O’Brien, and C. Verhoef. Practice patterns for archi-

tecture reconstruction. In Proc. Working Conf. on Reverse Engineering

(WCRE). IEEE CS, 2002.

[31] S. Tilley, S. Paul, and D. B. Smith. Towards a framework for program

understanding. In Proc. Int. Workshop on Program Comprehension

(IWPC), pages 19–28. IEEE CS, 1996.

[32] M. Wiggins. An overview of program visualization tools and systems.

In Proc. 36th Annual Southeast Regional Conf., pages 194–200. ACM,

1998.

A. Case Study Descriptions

In this appendix we provide descriptions of the reconstruc-

tion case that formed the starting point for Symphony.

A.1. Compiler Case Study

Problem Elicitation: The purpose of the reconstruction in

the compiler case study was to find out how well the actual

architectures of existing compilers conform to the canonical

architecture of compilers. Two large and complex compilers

were analyzed, namely, sdcc, a C compiler for microcon-

trollers (100 KLOC), and cc1, the C compiler (400 KLOC)

of the Gnu compiler collection (gcc).

Resources: The ressources available in this case study

were the source code of the two compilers, a compiler refer-

ence architecture as described in textbooks on compiler de-

sign, our own background knowledge in building such com-

pilers, and the Bauhaus toolkit for program analysis and ar-

chitecture reconstruction.

Source and Target Viewpoints and Mapping An exten-

sion to the reflexion method was used to perform the com-

parison between the actual architectures and the reference

architecture. The source and target viewpoints are described

in Figure 7.

Source Viewpoint Target Viewpoint

dir contains dir module convergence module
dir contains module module divergence module
module contains declaration module convergence module
declaration depends-ona module contains module

declaration module depends-ona module
module depends-onh module

Figure 7. Viewpoints in Compiler Case

The depends-on
a

denotes the actual references between

declarations as derived from the source code. The types of

references extracted are summarized in Figure 8.

Iterations: There were two iterations at the design stage

of Symphony. In one of them, the target viewpoint was re-

fined in adding hierarchical modules. The original reflexion

Reference Type Description

static call statically bound call of function

dynamic call call through function pointer

access use, set, or address-taken of a

variable or record component

r-access address-taken of a function

signature type occurs in function signature

of-type type of a variable or record

component

local-var-of-type function has local variable of type

based-on-type one type uses another type for its

declaration

Figure 8. Extracted reference types.

method by Murphy and colleagues has only non-nested mod-

ules in the hypothetical module viewpoint. Typical compiler

architectures are described at varying levels of detail, how-

ever. For this reason, we extended the target viewpoint by

allowing nested modules. The extension required us to ad-

just the original definitions of convergence, divergence, and

absence in the reflexion model. A second refinement was re-

quired in the source viewpoint. Both compilers use not just

direct calls, but also calls through function pointers. These

indirect calls were added to the source viewpoint.

There were several iterations at the execution stage, in

which the mapping from source entities to modules in the

hypothesized target view as well as the hypothetical target

view were refined.

Data Gathering The data was gathered through parsing

and global name and type resolution. To resolve the function

pointer calls statically, we used a Steensgaard-based points-

to analysis.The analyses were all supported by the Bauhaus

toolkit.

Information Interpretation: The resulting reflexion

model can be presented naturally as a graph. The Bauhaus

toolkit offers a graph visualization and navigation tool that

supports nested graphs and source code views. The nodes

and edges in the graph are traversable and linked to the

source. This way, the resulting reflexion model could be

browsed and the absences and divergences investigated

easily.

The outcome of this case study was the comparisons of

the two actual architectures to the reference architecture as

well as the comparison between the two actual architectures

themselves. Different architectural patterns and architectural

anomalies were found in the actual architectures.

A.2. A Symphony for Nokia

Nokia is a worldwide telecommunication company develop-

ing telecommunication equipments and terminals. Products

are typically organized in product families in order to re-

duce the development costs and maximize the reuse of the

assets. Over the past years, we have developed an archi-

tecture reconstruction process for one Nokia product family

(hereafter referred as NPF). In this section we recast the NPF

reconstruction process [28] to the Symphony process model.

Nokia sensitive details have been omitted as much as possi-

ble and the diagrams were simplified where possible.

Problem elicitation. NPF evolved from a small set of

products to a software platform for developing tens of prod-

ucts. Its evolution is driven by the consolidation of family

assets in the platform and the development of new features

for the various products. The architects need to clearly un-

derstand and control the assets available in the platform and

ensure that architectural rules are respected in the products.

Their needs can be summarized as follows: (1) comprehend-

ing the as-implemented architecture of the products, (2) man-

Other
Library

Hw Driver

Directory
 BuildLibrary
 libContainLib

Function

call

System

Method

call

Class

0..*

1

0..*

1

has_method

Entity

1

1

1

1

File

1
1

contain

1..*

1

1..*

1

contain_file

libContainFile

include

def_func

Package

1..*
 1
1..*
 1

Component

1..*

1

1..*

1

compContainFile

1..*

1

1..*

1

Task

1..*
 1
1..*
1

Service

Application

call

ServerIF

message

message

Server
 event

message

event

Figure 9. Source and target viewpoints for NPF.

aging the organization of components and their logical de-

pendencies in the platform, and (3) enforcing conformance

to architectural rules. The main goal is to provide the archi-

tects with up-to-date information by reconstructing the same

architectural views that they typically use during design.

Concept determination Discussions with the architects

and the current design documentation suggested that the

following viewpoints would match most of the architects’

needs: component view (the logical components, their inter-

faces and their logical relationships), task view (task alloca-

tion and inter-task communication), development view (orga-

nization of the source code and their dependencies), deploy-

ment view (physical location of components in the processing

units), feature view (run-time implementation of a feature),

organizational view (organization of the development activi-

ties, such as projects, programs, sites).

The target viewpoint was determined from the reference

architecture of NPF (describing architectural styles, rules

and conventions for all NPF products) and from discussions

with the experts. The target viewpoint for NPF is shown

in Figure 9 (gray entities are also in the source viewpoint).

This approach guarantees the correct level of abstraction and

granularity to satisfy the needs of the architects.

Data gathering. The entities that are directly detectable in

the source code (e.g., Directory, File, Function, Server, Ap-

plication, Service) are recovered by processing the source

code either with scripts based on regular expressions or com-

mercial front-ends. The choice of the technology depends

on the accuracy we want in the target views. Other enti-

ties (e.g., System, Package, Component, HW driver, Library,

Other) are recovered by interviewing the architects. For this

purpose, we fill a component inventory database with infor-

mation about components, their type, interfaces (as intended

by the architects), ownership, the hierarchical organization

of components in packages and the mapping from compo-

nents to source files. The union of the gathered data and the

component inventory represents the source view for NPF.

Knowledge inference The target views are derived from

the source view with a series of transformations formalized

in relational algebra. In the case of the component view, we

select the logical components, their interfaces, and their hier-

archical organization in packages and calculate their logical

dependencies by lifting the low-level dependencies.

Information presentation The views are regularly pub-

lished in the intranet and are consulted by the develop-

ment teams in their daily tasks. The views are published in

simple and easy-to-interpret formats: hierarchical graphs in

Rigi, hyper-linked web pages and UML diagrams in Ratio-

nal Rose. The diagrams allow the users to browse the various

dependencies (high and low level) starting from the top-level

packages of NPF.

A.3. Duke’s Bank with Symphony

Problem Elicitation: The ultimate goal of the Duke’s

Bank reconstruction was to determine how best to describe

its software architecture and what kind of tools would be

useful for reconstructing the architecture of J2EE web ap-

pliations. Thus a subgoal was simply to understand its archi-

tecture.

Resources: The resources available were an online tuto-

rial (a document) and the source code for Duke’s Bank.

The Conceptual, Module, Execution, and Code architecture

views were used as the starting point for determining the tar-

get viewpoints. Only general-purpose tools such as grep,

emacs, Rational Rose, etc. were used for this exploratory

reconstruction.

Iterations: As shown in Figure 10, the process began with

four iterations, each having a different target viewpoint. The

fifth iteration served to refine the Module view based on

knowledge gained during the previous iteration. Similarly,

the sixth iteration served to refine the Conceptual view to

reflect the final Module view produced in the previous iter-

ation. In the seventh iteration, both Code and Execution ar-

chitecture views were refined in order to reflect the modules

found in the Module view. (In the first and second iterations,

each class was assumed to be a separate module.)

Data Gathering: Data Gathering used general-purpose

tools and much manual work.

Code arch view: examine directories.

Execution view: observe executing application; review

J2EE reference documents.

Module view: use Rose, grep, emacs, and read source

code.

Conceptual view: observe behavior of application; read

source code; read diagrams in Duke’s Bank tutorial.

Starting Viewpoint Target Viewpoint Source Viewpoint Mapping

First Code arch view module allocated-to fi le directory structure; class name matches fi le name;

iteration: module in deployable-fi le package structure; Java rules about packages;

(e.g. .jar fi le) fi le names treat each class as a module

Second cross-view module instantiated-in container build relationships; rules about fi le types

iteration: Execution view container executes-in process; deployable-fi le read-by instantiated in

process alloc-to host-machine process (JVM) container types

Third Module view module provides interface; method calls method; rules for combining

iteration: module uses interface; class fwd/incl/etc. class; methods into interfaces

module uses module; class contains method and classes into modules;

module contains module identify “logical” interfaces

trace target to source module contains class

module fwd/incl/etc. module

Fourth Conceptual view input-form sent-to component; navigation map; identify connectors;

iteration: component displays page; tracing through source code; rules about the execution

port attached-to role; page contains input-form behavior of J2EE types

component has port; connector has role (servlet, jsp, JavaBean, etc.)

Figure 10. Viewpoints and Mapping Rules Used in Duke’s Bank

Knowledge Inference: Knowledge Inference was done

manually and relied heavily on domain knowledge.

Code arch view: straightforward.

Execution view: apply J2EE rules for component types.

Module view: create interfaces from methods; com-

bine classes into modules; identify data-transfer classes and

helper classes; refine by combining forw/incl with uses; re-

fine by adding module knows module; refine by adding log-

ical interfaces.

Conceptual view: determine connectors; split pages into

input forms; group processing by tier.

Information Interpretation: The following standard

techniques were used to document the software architecture

of Duke’s Bank.

Code arch view: tables.

Execution view: diagram.

Module view: set of diagrams (each focuses on a different

part of the system, e.g. Dispatcher and all its relationships is

a separate diagram).

Conceptual view: set of diagrams (user navigating to a

page and the resulting response, e.g. ATM link, ATM page,

ATM response).

In addition to resulting in a documented software archi-

tecture, the reconstruction uncovered some open questions

that were to be resolved by further reconstructions of other

applications. One issue was the small granularity of com-

ponents in the conceptual view and modules in the module

view, which is driven by the different characteristics of dif-

ferent J2EE class types (servlet, jsp, JavaBean, entity bean,

etc.). While existing extraction tools could be adapted to

extract most of the information for the source view, certain

information is implicit and is not amenable to automated ex-

traction. The mapping could be made more formal, although

certain part will likely always need manual input (identifying

components, connectors, interfaces, and modules).

A.4. Assessment Case

Problem Elicitation The reconstruction was conducted to

support the assessment of the quality characteristics of a

commercial software product written mostly in Cobol that

was being customized for a particular client. Characteristics

investigated include reliability, maintainability, and data in-

tegrity.

Resources Resources available in the reconstruction in-

cluded documentation at various levels of abstraction and the

full source code. Moreover, selected stakeholders were avail-

able for interviews, such as

• the lead architect from the supplier

• representatives from the teams responsible for data mi-

gration, system customization, and deployment

• the problem owner / business representatives.

Views The most important views included the module,

data, customization, and component-connector views. Se-

lected source and target relations for the data and module

view are shown in Figure 1.

The viewpoints were chosen to help address the concerns

raised by the client purchasing and customizing the system.

The target model recovered helped to identify layering vio-

lations, data integrity checks that were bypassed, and ad hoc

mixture of custom and product code complicating upgrades

to future product releases.

Iterations The model was evolved and populated in a num-

ber of iterations:

1. Organize a stakeholder workshop, describe the prob-

lems discussed, identify relevant information, get first

impression for relevant views.

2. Do automated source code analysis with already exist-

ing Cobol redocumentation tools such as DocGen [5].

These tools are based on data gathering using a Java reg-

ular expression library, inference using SQL querying

and Java programming, and presentation using graph

visualization, HTML, tabular information, and metrics.

3. Analyze the layers in the module view. Partition pro-

grams and copybooks according to naming conventions.

4. Analyze table usage for the data view. Discovered that

the DocGen table analysis is insufficient for the case at

hand. Additional information required included joins,

indexes, and integrity checks. Extracted and presented

using Perl.

5. Analyze the customization code and variation points.

Partition system into product and custom code based

on naming conventions. In addition, try opportunistic

search for customer names / expected customization key

words in product to find violations.

6. Client-server protocol analysis. Identify servers and

clients based on documentation. Analyze scalebility

of underlying communication protocol by reverse en-

gineering this protocol from the C code (by hand). Crit-

icize, and propose alternative (standard) protocols.

The last four steps were not done strictly sequential, but

by two different people working in parallel. Each step also

included browsing and searching the models obtains thus far,

focusing in particular at trends and outliers (file size, revision

istories, fan in, fan out, number of table columns).

