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SYMPLECTIC 4-MANIFOLDS
WITH HERMITIAN WEYL TENSOR

VESTISLAV APOSTOLOV AND JOHN ARMSTRONG

Abstract. It is proved that any compact almost Kähler, Einstein 4-manifold
whose fundamental form is a root of the Weyl tensor is necessarily Kähler.

1. Introduction

An almost Kähler manifold is an almost Hermitian manifold for which the fun-
damental 2-form is closed, and therefore symplectic. If, additionally, the almost
complex structure is integrable, we have a Kähler manifold.

The initial motivation for this paper is the conjecture due to Goldberg [16] that
a compact almost Kähler, Einstein manifold is necessarily Kähler. This conjecture
is still far from resolved, however, a number of results have been proved, mainly
in dimension 4, when additional curvature conditions are added. Of course, these
additional curvature conditions are necessarily conditions on the Weyl tensor of the
manifold.

On an oriented Riemannian 4-manifold, the Weyl tensor decomposes under the
action of SO(4) into two components — the so-called self-dual and anti-self-dual
Weyl tensors, W+ and W−. If, moreover, the manifold is almost Hermitian, then
the self-dual Weyl tensor decomposes under the action of U(2) into three further
pieces. So the self-dual Weyl tensor of an Einstein, almost-Hermitian 4-manifold has
3 interesting components. To see this, consider W+ as a trace-free self-adjoint map
from the bundle

∧+ of self-dual 2-forms to itself. Since
∧+ decomposes under U(2)

as R⊕[[
∧0,2]], we can write W+ as a matrix with respect to this block decomposition

as follows: (
κ
6 W+

2

(W+
2 )∗ W+

3 − κ
12 Id

)
,

where the smooth function κ is the so-called conformal scalar curvature, W+
2 corre-

sponds to the part of W+ that interchanges the two factors of the U(2)-splitting of∧+, and W+
3 is a trace-free, self-adjoint endomorphism of the (real) rank 2 vector

bundle [[
∧0,2]] underlying the anti-canonical bundle

∧0,2.
Correspondingly, there are three special types of almost Hermitian, Einstein

4-manifolds each imposing one additional condition on the self-dual Weyl tensor:
1. κ is constant (equivalently, the manifold has constant ∗-scalar curvature),
2. W+

2 vanishes (equivalently, the manifold is weakly ∗-Einstein),
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4502 VESTISLAV APOSTOLOV AND JOHN ARMSTRONG

3. W+
3 ≡ 0, (equivalently, the fundamental form is a root of the Weyl tensor).

Manifolds with some of the above curvature properties constitute some of the most
natural types of special almost Hermitian Einstein 4-manifolds. It is natural, there-
fore to attempt to prove the Goldberg conjecture with the addition of one or more
of the above conditions.

In [3] it is shown that a compact, almost Kähler Einstein manifold satisfying
condition (1) is necessarily Kähler. The equivalent result for condition (2) is shown
in [4]. In fact a stronger result is proved: all non-Kähler, almost Kähler, Einstein
4-manifolds satisfying (2), even locally, are given by a construction due to Paul
Tod. All these examples are in addition self-dual, i.e., W− identically vanishes.

The purpose of this paper is to prove that compact almost Kähler, Einstein
4-manifolds satisfying (3) are necessarily Kähler.

Condition (3) arises naturally in the study of Hermitian geometry. On any Her-
mitian 4-manifold, the Weyl tensor automatically satisfies the condition W+

3 = 0.
For this reason we shall refer in this paper to manifolds satisfying this condition as
having a “Hermitian Weyl tensor”. Condition (3), however, does not imply the inte-
grability of the almost Hermitian structure, but in certain circumstances knowledge
of the Weyl tensor can be enough to show that an almost Hermitian structure is in
fact Hermitian. For example, the Riemannian Goldberg–Sachs theorem (cf. [15],
[20]) tells us that an Einstein 4-manifold admits a compatible Hermitian structure
if and only if the self-dual Weyl tensor (viewed as a symmetric endomorphism of the
self-dual 2-forms) is everywhere degenerate. In this case, the Hermitian structure
produced will satisfy conditions (2) and (3).

The Riemannian Goldberg–Sachs theorem can be generalized from the situation
of Einstein manifolds to manifolds whose Ricci tensor is J-invariant (i.e. it satisfies
Ric(J ·, J ·) = Ric(·, ·)); cf. [21], [1]. We shall show that our results generalize in a
similar way. Specifically, we prove the following:

Theorem 1. Any compact almost Kähler 4-manifold (M, g, J) with J-invariant
Ricci tensor and Hermitian Weyl tensor is Kähler, provided that the Euler charac-
teristic e(M) and the signature σ(M) of M satisfy 5e(M) + 6σ(M) 6= 0.

For a compact (non-flat) Einstein 4-manifold the topological condition stated in
Theorem 1 is verified as a consequence of the Hitchin-Thorpe inequality 2e(M)±
3σ(M) ≥ 0; we thus obtain:

Corollary 1. Any compact almost Kähler, Einstein 4-manifold with Hermitian
Weyl tensor is Kähler.

Another application of Theorem 1 is given in Section 5 (Corollary 2) where a
special class of self-dual, almost Kähler 4-manifolds is considered.

2. Cartan-Kähler theory

Suppose that one wishes to apply the Cartan–Kähler theory (as described in [17])
in order to prove that almost Kähler, Einstein metrics exist. One approach to the
problem would be to take the standard symplectic form Ω on R4 and attempt to find
metrics compatible with this form which are also Einstein. Here and henceforth,
compatible means that the skew-symmetric endomorphism J , the dual of Ω with
respect to the metric g, is an orthogonal almost complex structure, i.e., (g, J,Ω)
is an almost Kähler structure. By Darboux’s theorem, all almost Kähler, Einstein
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SYMPLECTIC 4-MANIFOLDS WITH HERMITIAN WEYL TENSOR 4503

metrics occur in this way. Let us denote by E the tangent space to the space
of metrics compatible with Ω. For any compatible almost Kähler structure (g, J)
the space E (at (g, J)) is identified with the real vector bundle of J-anti-invariant
symmetric endomorphisms of the cotangent bundle T ∗. We can then view the
symbol of the Ricci operator as a map:

S2T ∗ ⊗ E σ(Ric)−−−−→ S2T ∗.

One can easily check that this map is onto. This tells us that for any ρ ∈ S2T ∗ one
can always find algebraic examples of 2-jets of metrics compatible with Ω which
satisfy Ric(g) = ρ.

The next question is whether or not one can find algebraic examples of 3-jets
satisfying this equation and its first derivative — i.e., whether one can find alge-
braic solutions to the first prolongation of the problem. The symbol of the first
prolongation is the map

S3T ∗ ⊗ E σ1(Ric)−−−−→ T ∗ ⊗ S2T ∗.

One can easily check that this map is not onto. To see this consider that the
differential Bianchi identity implies β(∇ρ) = 0 for any solution of Ric(g) = ρ,
where β : T ∗⊗S2T ∗ 7→ T ∗ is some equivariant map. The condition that β(∇ρ) = 0
can be written entirely in terms of the 1-jets of our metric and ρ. Thus it imposes
a condition that any 2-jet solution of the equation Ric(g) = ρ must satisfy if it is
possible for it to be extended to a 3-jet solution. The fact that the sequence

S3T ∗ ⊗ E σ1(Ric)−−−−→ T ∗ ⊗ S2T ∗
β−→ T ∗ −→ 0

is exact tells us that this is the only such condition. Note that exactly the same ob-
struction arises for the more general problem of finding metrics satisfying Ric(g) = ρ
when one does not insist that the metric is compatible with the symplectic form.
For the Einstein equation Ric(g) = λg, the obstruction simply tells us that λ must
be constant on the manifold.

One naturally wonders whether or not there are any higher order obstructions
to extending n-jet solutions to the Einstein equations to (n+ 1)-jet solutions. The
Cartan–Kähler Theorem gives a method of answering this question and it turns
out, [14], that if one is looking for metrics g not necessarily compatible with a
symplectic form, then there are no further obstructions.

However, in the case that we are considering metrics compatible with Ω, we find
that the sequence

S4T ∗ ⊗ E σ2(Ric)−−−−→ S2T ∗ ⊗ S2T ∗
σ1(β)−−−→ T ∗ ⊗ T ∗ −→ 0

is not exact. By calculating the dimension of the image of σ2(Ric) one can see that
there must be some equivariant map γ : S2T ∗ ⊗ S2T ∗ −→ R such that

S4T ∗ ⊗ E σ2(Ric)−−−−→ S2T ∗ ⊗ S2T ∗
σ1(β)⊕γ−−−−−→ T ∗ ⊗ T ∗ ⊕ R −→ 0

is exact. Thus there is some obstruction to extending 3-jet solutions of the almost
Kähler, Einstein equations. We wish to find out in more detail what this obstruction
is.

The original technique for finding this obstruction in an explicit form used a
good deal of spinors and representation theory. The interested reader could consult
[5]. We shall take a different approach in this paper and identify the obstruction
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by more usual tensor methods. In fact we will obtain the relevant formulae in the
case of manifolds with J-invariant Ricci tensor as well as just Einstein manifolds.

The above theory does not lead in a particularly simple way to finding the
obstruction in an explicit form. It merely tells us that there is such an obstruction
and that we will have to examine the 4-jets of the metric to find this obstruction
— even though the obstruction will eventually take the form of a condition on the
3-jets.

The calculations which follow do not rely on the above general theory — however,
the authors would not have had any motivation to examine the 4-jets in such detail
unless it was known that there was an interesting obstruction to be found and
unless there were at least some clues as to where to look.

As a final remark, one might ask if there are any other obstructions to finding
almost Kähler, Einstein metrics. It turns out that there are. In principal one could
persistently prolong all the equations until all the obstructions have been found
and the Cartan–Kähler theorem could be applied. We have attempted to do this,
but gave in once two further obstructions were found.

3. The explicit obstruction

3.1. The self-dual Weyl tensor of an almost Kähler 4-manifold. Let (M, g)
be an oriented four-dimensional Riemannian manifold. We denote by

∧2 =
∧+

⊕
∧− the bundle of real 2-forms on M , where

∧+, resp.
∧−, is the bundle of

self-dual, resp. anti-self-dual, 2-forms, i.e., the eigen-sub-bundle with respect to
the eigenvalue +1, resp. −1, of the Hodge operator ∗, acting as an involution on∧2. We will freely identify vectors and covectors via the metric g and, accordingly,
a 2-form φ with the corresponding skew-symmetric endomorphism of the tangent
bundle T by putting g(φ(X), Y ) = φ(X,Y ), for any vector fields X,Y .

Considering the Riemannian curvature tensor R as a symmetric endomorphism
of
∧2 we have the following well known SO(4)-splitting

R =
s

12
Id + ˜Ric0 +W+ +W−,(1)

where s is the scalar curvature, ˜Ric0 is the the Kulkarni-Nomizu extension of the
traceless Ricci tensor Ric0 to an endomorphism of

∧2 anti-commuting with ∗, and
W± are respectively the self-dual and anti-self-dual parts of the Weyl tensor W .

The self-dual Weyl tensor W+ of (M, g) is viewed as a section of the bundle
S2

0(
∧+) of symmetric, traceless endomorphisms of

∧+ (also considered as a sub-
bundle of the tensor product

∧+⊗
∧+).

Let (M, g, J) be an almost Hermitian 4-manifold, i.e., an oriented Riemannian 4-
manifold (M, g) endowed with an almost complex structure J which is g-orthogonal
(g(JX, JY ) = g(X,Y )) and positive (the orientation induced by J coincides with
the chosen orientation of M). We denote by Ω the corresponding fundamental form
defined by the equality Ω(X,Y ) = g(JX, Y ).

The action of J extends to the cotangent bundle T ∗ by putting (Jα)(X) =
−α(JX), so as to be compatible with the Riemannian duality between T and T ∗.
This action defines an involution on

∧2, say ıJ , acting by ıJ(φ)(X,Y ) = φ(JX, JY ),
which in turn gives rise to the following orthogonal splitting of

∧+:∧+
= RΩ⊕ [[

∧0,2
]],(2)
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where [[
∧0,2]] denotes the bundle of J-anti-invariant real 2-forms, equivalently, the

2-forms φ satisfying ıJ(φ) = −φ. Note that [[
∧0,2]] is the real underlying bundle

of the anti-canonical bundle
∧0,2 of (M,J); the induced complex structure J on

[[
∧0,2]] is then given by (Jφ)(X,Y ) = −φ(JX, Y ).

Consequently, the vector bundle W+ = S2
0(
∧+) of the symmetric traceless en-

domorphisms of
∧+ decomposes into the sum of three sub-bundles, W+

1 ,W+
2 ,W+

3 ,
defined as follows; see [23]:
• W+

1 = R is the sub-bundle of elements preserving the decomposition (2)
and acting by homothety on the two factors; hence is the trivial line bundle
generated by the element 1

8Ω⊗ Ω− 1
12 Id+.

• W+
2 = [[

∧0,2]] is the sub-bundle of elements which exchange the two factors
in (2); the real isomorphism with [[

∧2,0]] is seen by identifying each element
φ of [[

∧0,2]] with the element 1
2 (Ω⊗ φ+ φ⊗ Ω) of W+

2 .
• W+

3 = S2
0([[
∧0,2]]) is the sub-bundle of elements preserving the splitting (2)

and acting trivially on the first factor, RΩ.
Denote by W+

i , i = 1, 2, 3, the corresponding components of the positive Weyl
tensor W+; we then have

W+
1 =

κ

8
Ω⊗ Ω− κ

12
Id+,(3)

where the smooth function κ is the so-called conformal scalar curvature of (g, J);

W+
2 = −1

4
(Ψ ⊗ Ω + Ω⊗Ψ),(4)

for a section Ψ of [[
∧0,2]]; for any (local) section φ of [[

∧0,2]] of square-norm 2 the
component in W+

3 is given by

W+
3 =

λ

2
[φ⊗ φ− Jφ⊗ Jφ] +

µ

2
[φ⊗ Jφ+ Jφ⊗ φ],(5)

where λ and µ are (locally defined) smooth functions.
For any almost Kähler structure (g, J) the covariant derivative ∇Ω of the Kähler

form Ω is identified with the Nijenhuis tensor, the obstruction for integrability of
the almost complex structure J . Furthermore, ∇Ω can be viewed as a real section
of the vector bundle

∧1,0⊗
∧2,0, which allows us to write ∇Ω (with respect to any

section φ of [[
∧0,2]]) in the following form:

∇Ω = a⊗ φ− Ja⊗ Jφ,(6)

where the 1-form a satisfies |∇Ω|2 = 4|a|2 provided that φ is of square-norm 2.
Consequently, the covariant derivatives of φ and Jφ are given by

∇φ = −a⊗ Ω + b⊗ Jφ; ∇Jφ = Ja⊗ Ω− b⊗ φ,(7)

for some 1-form b.
Observe that into the formulas (5) and (6) we have a S1-freedom for the choice

of φ. We shall refer to this as a gauge dependence.
From now on φ will be assumed to satisfy 〈Jφ,Ψ〉 = 0 at any point of M , or

equivalently

Ψ =
|Ψ|√

2
φ,(8)
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where Ψ is the section of [[
∧0,2]] determined by (4). Here, and henceforth, 〈·, ·〉

denotes the extension of the metric g to
∧2, such that the norm of a 2-form is the

half of its usual tensor norm. We also put

Φ = W+
3 (φ) = λφ + µJφ,(9)

so as Φ ≡ 0 iff W+
3 ≡ 0 and Ψ ≡ 0 iff W+

2 ≡ 0 (see (5) and (4), respectively). We
remark that most of our calculation will be made on the open dense subset U ⊂M
of the points x where either Ψx 6= 0, or Ψ ≡ 0 in the neighbourhood of x. However,
a standard continuity argument shows that the gauge independent global formulas
obtained below will hold everywhere on M .

The self-dual Weyl tensor is completely determined by the scalar curvature and
the second covariant derivative of the fundamental form Ω (equivalently, by the first
covariant derivative of the Nijenhuis tensor). Indeed, once the gauge φ is fixed as
above, it is sufficient to determine the smooth functions κ, |Ψ|, λ and µ in terms of
the 1-forms a and b, and the 2-form φ. For that we first make use of the Weitzenböck
formula for self-dual 2-forms; cf. e.g. [8]:

∆ψ = ∇∗∇ψ +
s

3
ψ − 2W+(ψ).(10)

The self-dual 2-form Ω is closed, and therefore harmonic; applying (10) to Ω we
then get

|∇Ω|2 +
2
3
s− 2〈W+(Ω),Ω〉 = 0,

and by (3)–(5) we conclude

κ− s = 6|a|2 =
3
2
|∇Ω|2.(11)

Formula (11) shows that the smooth function κ− s is everywhere non-negative
on M ; it vanishes exactly at the points where the Nijenhuis tensor is zero.

In order to express W+
2 and W+

3 we make use of the Ricci identity:

(∇2
X,Y −∇2

Y,X)(Ω)(·, ·) = −RX,Y (J ·, ·)−RX,Y (·, J ·).(12)

From (6) we get

∇2|∧2Ω = (da− Ja ∧ b)⊗ φ− (d(Ja) + a ∧ b)⊗ Jφ,

so, (12) can be rewritten as

da− Ja ∧ b = −R(Jφ); d(Ja) + a ∧ b = −R(φ).(13)

Finally, by (1), (3)–(5), and (11) the equalities in (13) reduce to

λ = −1
2
(
|a|2 − 〈da, Jφ〉+ φ(a, b)

)
;(14)

µ = −1
2
(
〈da, φ〉+ Jφ(a, b)

)
;(15)

|Ψ| =
√

2
(
〈d(Ja),Ω〉+ Ω(a, b)

)
(16)

= −
√

2
(
δa− Ω(a, b)

)
.

We shall further analyse the above equalities involving the differential Bianchi iden-
tity.
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3.2. The differential Bianchi identity for almost Kähler 4-manifolds with
J-invariant Ricci tensor. The co-differential δW+ of the self-dual Weyl tensor
of (M, g) is a section of the rank 8 vector bundle

V = Ker(tr : T ∗ ⊗
∧+

−→ T ∗),

where tr is defined by tr(α⊗φ) = φ(α) on decomposed elements. The vector bundle
V splits as V = V+ ⊕ V− (see [1]) where

(a) V+ is identified with the cotangent bundle T ∗ by

T ∗ 3 α 7→ A = Jα⊗ Ω− 1
2

4∑
i=1

ei ⊗ (α ∧ ei − Jα ∧ Jei),(17)

V+ 3 A 7→ α = −1
2
J〈A,Ω〉,

where 〈A,Ω〉 denotes the 1-form defined by X 7→ 〈AX ,Ω〉.
(b) V− is identified, as a real vector bundle, to the vector bundle

∧0,1⊗
∧0,2; if

φ is a non-vanishing local section of [[
∧0,2]] satisfying |φ|2 = 2 at any point,

then V− can be again identified with T ∗ by

β ∈ T ∗ 7→ B = Jβ ⊗ φ+ β ⊗ Jφ,(18)

B ∈ V− 7→ β = −1
2
J〈B, φ〉.

We denote by (δW+)+, resp. (δW+)−, the component of δW+ on V+, resp. on
V−. Let α and β be the corresponding 1-forms, where β is determined with respect
to a local section φ of [[

∧0,2]] satisfying (8). By (17), (18), and (3)–(5) one directly
calculates

α = −1
2
J〈δW+,Ω〉 = −dκ

12
+

1
4
JδΨ − |Ψ|

4
√

2
a− JΦ(a);(19)

β =
1
2
(
− J〈δW+, φ〉+

1
2
φ〈δW+,Ω〉

)
(20)

= −κ
8
a+

1
4
√

2
d|Ψ| − 1

8
φ(δΨ)− 1

8
JΨ(a)

−1
2
(
Φ(b) + JδΦ + λa− µJa

)
,

where, we recall, the section Φ, resp. Ψ, of [[
∧0,2]] is determined by (4) and (8),

resp. by (5) and (9). Note that for any section ψ of [[
∧0,2]] we have (see (6))

δ(Jψ) = Jδψ + 〈ψ, φ〉a − 〈ψ, Jφ〉Ja.(21)

Moreover, by (6) and (7) we also get

δφ = Ja− Jφ(b); δ(Jφ) = a+ φ(b).(22)

Taking into account (21), (8) and (22) we simplify (19) and (20) to the following:

Lemma 1. For any almost Kähler 4-manifold the 1-forms α and β are given by

α = −dκ
12
− 3|Ψ|

4
√

2
a+

1
4
δ(JΨ)− JΦ(a);
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β = −κ
8
a+

1
8
√

2

(
d|Ψ|+ |Ψ|Jb

)
− 1

2
(
Φ(b) + δ(JΦ)− λa+ µJa

)
.

Recall that the Cotton-York tensor C of (M, g) is defined by

CX,Y,Z =
1
2

[
∇Z(

s

12
g + Ric0)(Y,X)−∇Y (

s

12
g + Ric0)(Z,X)

]
,

for any vector fields X,Y, Z. Considering C as a 2-form with values in T ∗, the
second Bianchi identity reads as δW = C. In particular, we have the “half” Bianchi
identity

δW+ = C+,(23)

where C+ denotes the self-dual part of CX , X ∈ T .
If the Ricci tensor is J-invariant, we make use of (23) to give an equivalent

expression for the 1-forms α and β in terms of the Ricci tensor and the 1-form a
defined by (6). According to (17)

α(X) = −1
2
J〈C+,Ω〉 = −1

4

4∑
i=1

∇ei(
s

12
g + Ric0)(Jei, JX)

= −1
4

[ds
12

(X)− (δRic0)(X) +
4∑
i=1

Ric0(ei, J(∇eiJ)(X))− Ric0(θ,X)
]

= −1
4

[ds
3

(X) +
4∑
i=1

Ric0(ei, J(∇eiJ)(X))
]
.

Now using (6) and the fact that the Ricci tensor is J-invariant, we get
4∑
i=1

Ric0(ei, J(∇eiJ)(X)) = 0,

and we thus obtain

α = −ds
12
.

Regarding the component of C+ in V−, we have from (18)

β =
1
2
(
− J〈C+, φ〉+

1
2
φ〈C+,Ω〉

)
.

To compute J〈C+, φ〉 we shall proceed in the same way as computing J〈C+,Ω〉;
instead of J we consider the almost complex structure I, whose Kähler form is φ.
The traceless Ricci tensor Ric0 is now I-anti-invariant; involving (6), (7) and the
expression for α that we have already obtained, we eventually get

β = −1
2

Ric0(a).

Comparing with Lemma 1 we obtain the following:

Lemma 2. (Differential Bianchi identity) Let (M, g, J) be an almost Kähler 4-
manifold with J-invariant Ricci tensor. Then the 1-forms α and β are equivalently
given by

α = −ds
12
, β = −1

2
Ric0(a).
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In particular, the following relations hold:

d(κ− s) = −9
√

2
2
|Ψ|a+ 3δ(JΨ)− 12JΦ(a);

Ric0(a) =
κ

4
a− 1

4
√

2

(
d|Ψ|+ |Ψ|Jb

)
+
(
Φ(b) + δ(JΦ)− λa+ µJa

)
.

3.3. The co-differential of α. Starting from Lemma 1, we may easily calculate
the co-differential of the 1-form α using the information we have from (14), (15)
and (16). Specifically, we obtain

Lemma 3. For every almost Kähler 4-dimensional manifold the co-differential of
α is given by either of the following two formulas:

δα = −∆κ
12
− κ

24
(κ− s) +

3
2
|W+

2 |2 − |W+
3 |2(24)

+
1
2
〈∇Ψ,∇Ω〉 − 2β(a);

δα = −∆κ
12

+
κ

8
(κ− s) +

3
2
|W+

2 |2 − |W+
3 |2(25)

−4
(
Φ(a, b)− (δJΦ)(a) + λ|a|2

)
+ 6β(a).

Proof. From (16) we get

δ(|Ψ|a) = |Ψ|δa− d|Ψ|(a) = − 1√
2
|Ψ|2 +

(
|Ψ|Ω(a, b)− d|Ψ|(a)

)
.

By (7) we further obtain

d|Ψ|(a)− |Ψ|Ω(a, b) =
1√
2
〈∇Ψ,∇Ω〉,

where 〈·, ·〉 also denotes the inner product on T ∗ ⊗
∧2. These last two relations

imply

δ(|Ψ|a) = − 1√
2
|Ψ|2 − 1√

2
〈∇Ψ,∇Ω〉.(26)

Clearly,

δ(JΦ(a)) = 〈da, JΦ〉 − (δJΦ)(a).

We make use of (14) and (15) to compute the first term of the right-hand side of
the equality above, and (9), (21) and (22) for computing the second term. The final
result is:

δ(JΦ(a)) = 2(λ2 + µ2) +
(
Φ(a, b)− (δJΦ)(a) + λ|a|2

)
.(27)

The norms of W+
2 and W+

3 (viewed as endomorphisms of
∧2) are easily calculated

by (4) and (5), respectively:

|W+
2 |2 =

1
4
|Ψ|2; |W+

3 |2 = 2(λ2 + µ2).(28)

It now follows from Lemma 1 and the equalities (26), (27) and (28) that

δα = −∆κ
12

+
3
2
|W+

2 |2 − |W+
3 |2 +

3
8
〈∇Ψ,∇Ω〉(29)

−
(
Φ(a, b)− (δJΦ)(a) + λ|a|2

)
.
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Finally, from the expression for β claimed in Lemma 1 and by using (11), one can
rewrite (29) in one of the forms (24) and (25).

Specifying Lemma 3 to the case of Einstein, almost Kähler 4-manifolds we obtain
exactly the obstruction introduced in Section 2:

Proposition 1. For any almost Kähler 4-manifold with J-invariant Ricci tensor,
the following relation holds:

∆(κ− s) = −κ
2

(κ− s) + 18|W+
2 |2 − 12|W+

3 |2(30)

+6〈∇Ψ,∇Ω〉+ 12 Ric0(a, a).

In the case of an Einstein manifold, this condition on the 3-jet of an almost Kähler
4-manifold is precisely the obstruction referred to earlier. Moreover, for any almost
Kähler 4-manifold with J-invariant Ricci tensor and Hermitian Weyl tensor we
further have

∆(κ− s) =
3κ
2

(κ− s) + 18|W+
2 |2 − 36 Ric0(a, a).(31)

Proof. Equality (30) follows by Lemma 3, (24) and Lemma 2 while the relation
(31) follows from Lemma 3, (25), specified to the case when Φ ≡ 0 (see (9)), and
Lemma 2.

Remark 1. The relation (30) is already apparent in the literature; see e.g. [12,
Lemma 2]. In the case of a compact Einstein almost Kähler 4-manifold, after
integrating (30) one obtains exactly the integral formula of Sekigawa [22]:∫

M

(
κ(κ− s) + 12|W+

2 |2 + 24|W+
3 |2
)
dVg = 0.(32)

Since the function κ− s is everywhere non-negative (see (11)), it follows from (32)
that in the case of non-negative scalar curvature we have κ = s, i.e., (g, J) is Kähler
[22].

Remark 2. A companion result of Proposition 1, (30) can be obtained as an ap-
plication of the Weitzenböck formula for 2-forms with values in T ∗ (cf. e.g. [9]);
specifying for a section V of the sub-bundle V− we obtain

2〈d∇δ∇V, V 〉 =
1
2

∆|V |2 + |∇V |2 +
(5s+ 4κ)

12
|V |2 + 〈Ric0, S

V 〉,

where SVX,Y = 〈VX , VY 〉. For an almost Kähler 4-manifold we have a distinguished
section of V−, the the Nijenhuis tensor ∇Ω. If, moreover, the Ricci tensor is J-
invariant, then the Weitzenböck formula for∇Ω reads as (compare with [12, Lemma
1]):

∆(κ− s) = −1
4

(κ+ 5s)(κ− s)− 6|W+
3 |2 − 6|W+

2 |2 − 3〈∇Ψ,∇Ω〉(33)

−12 Ric0(a, a)− 3|(∇2Ω)sym0 |2,
where (∇2Ω)sym0 denotes the symmetric traceless part of ∇2Ω, considered as a
section of T ∗ ⊗ T ∗ ⊗

∧2. The “difference” between (30) and (34) gives another
“curvature obstruction” for existence of compact, strictly almost Kähler 4-manifolds
with J-invariant Ricci tensor. In the case when M is compact and the scalar
curvature is non-negative it follows from (30) and (34) that the almost Kähler
structure is necessarily Kähler; cf. [12].
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4. Proof of results

4.1. Proof of Theorem 1. As Ric0 is a J-invariant, traceless and symmetric
tensor its eigenvalues at any point are equal to

(
|Ric0 |

2
,
|Ric0 |

2
,−|Ric0 |

2
,−|Ric0 |

2
),

where |Ric0 | denotes the norm of Ric0; by using (11) we obtain the following
pointwise inequality:

Ric0(a, a) ≤ |Ric0 |
2
|a|2 =

|Ric0 |
12

(κ− s).

Since the function |Ric0 | is continuous on M , there is a positive constant A > 0,
such that |Ric0 | ≤ A everywhere on M . Then Corollary 1, (31) implies

∆(κ− s) + (3A− 3κ
2

)(κ− s) ≥ 0.

Now, from the maximal principle (see e.g. [6, Prop. 3.75]) we infer that either κ−s
identically vanishes (i.e. (g, J) is Kähler), or else κ − s is everywhere positive on
M . In the latter case it follows from [3] that

2c21(M) + e(M) = 0,

where c21(M) denotes the first Chern number of (M,J). Now our claim follows by
the well known formula of Wu : c21(M) = 2e(M) + 3σ(M).

4.2. Proof of Corollary 1. Assume that (M, g, J) is Einstein, non-Kähler with
Hermitian Weyl tensor. By Theorem 1 we get

5e(M) + 6σ(M) = 0.(34)

On the other hand, for every compact oriented, Einstein 4-manifold the Chern-Weil
formulae read as

e(M) =
1

8π2

∫
M

(
|W+|2 + |W−|2 +

s2

24
)
dVg,

σ(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dVg.

Substituting into (34) we obtain s = 0,W+ = 0,W− = 0, i.e., g is flat. But then
(g, J) must be Kähler-flat because we have κ = s = 0 (see (11)), a contradiction.
�

5. Almost Kähler 4-manifolds and Lagrangian sectional curvature

For some time the question of existence of non-Kähler, almost Kähler 4-manifolds
of constant sectional curvature has been open. Now the answer is known to be
negative, as a consequence of the results in [4, 19].

In this section we use Theorem 1 to study a related problem — existence of
almost Kähler 4-manifolds (M, g, J) whose sectional curvature at any point is con-
stant on the Lagrangian (with respect to the symplectic form Ω) 2-planes. One
may consider this condition as a symplectic counterpart of the notion of constant
holomorphic sectional curvature in the Kähler geometry. A simple local calculation
shows that for any such manifold the Ricci tensor is J-invariant, and the Weyl
tensor is Hermitian and self-dual (see [13], or [2, Lemma 5]). For Kähler surfaces
these conditions simply reduce to the vanishing of the anti-self-dual Weyl tensor;
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the compact ones with this property are completely described in [10] (see also [9],
[11], [18]). Given a compact symplectic 4-manifold (M,Ω) it is plausible to con-
jecture [2] that a compatible almost Kähler structure (g, J) of pointwise constant
sectional curvature on the Lagrangian 2-planes is, in fact, a self-dual Kähler struc-
ture. The conjecture has been confirmed in [2] under the additional assumption
that the scalar curvature is constant.

Theorem 1 in turn gives strong evidence that the conjecture seems to be true. If
there exists a compact strictly almost Kähler 4-manifold (M, g, J) whose sectional
curvature is pointwise constant on the Lagrangian 2-planes, then the Chern-Weil
formula for the signature and Theorem 1 show that the Euler characteristic of M
must be strictly negative while the Betti number b+(M) must be greater than 1; to
the authors’ knowledge there are no examples of compact 4-dimensional symplectic
manifolds satisfying the these topological assumptions. At least in the case that
M admits a complex structure compatible with the orientation induced by J (but
which does not need to be compatible neither with metric nor with the symplectic
form) a simple argument relying on the classification of compact complex surfaces
leads to the following:

Corollary 2. Let (M, g, J) be compact 4-dimensional almost Kähler manifold of
pointwise constant sectional curvature on the Lagrangian 2-planes. Suppose that the
underlying oriented manifold M (considered with the canonical orientation induced
by J) is orientedly homotopic to a compact complex surface. Then J is integrable,
i.e., (g, J) is a self-dual Kähler structure on M .

Proof. Suppose (M, g, J) is an almost Kähler 4-manifold of pointwise constant La-
grangian sectional curvature. A simple local calculation shows that the metric g is
self-dual with J-invariant Ricci tensor, and with Hermitian Weyl tensor; cf. [13]
(see also [2, Lemma 5]). Assume that (g, J) is not Kähler. Since g is self-dual, the
Chern-Weil formula

σ(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dVg =

1
12π2

∫
M

|W+|2dVg

shows that σ(M) ≥ 0. If σ(M) = 0, we have W+ = 0 and J is then integrable
by [2, Cor. 1], a contradiction. We thus have σ(M) > 0, and, by Theorem 1, we
conclude that e(M) < 0.

Let S be a complex surface which is orientedly homotopic to M . It is a well
known result of Grauert that every compact complex surface can be obtain from a
minimal one (called minimal model) by successive blowing ups. It is also well known
that by blowing up a compact complex surface at a point its Euler characteristic
increases by one while its signature decreases by one. Thus, if we denote by S0 a
minimal model of S, we have e(S0) < 0 and σ(S0) > 0. By the Kodaira classification
of complex surfaces (cf. e.g. [7]) the condition e(S0) < 0 implies that S0 is the
projectivization of a holomorphic rank 2 vector bundle over a compact curve of
genus at least 2. But then the signature of S0 is zero, a contradiction.
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