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Abstract: A non-autonomous memristor circuit based on van der Pol oscillator with double periodi-
cally forcing term is presented and discussed. Firstly, the differences of the van der Pol oscillation
of memristor model between Euler method and symplectic Euler method, four-order Runge–Kutta
method (RK4) and four-order symplectic Runge–Kutta–Nyström method (SRKN4), symplectic Euler
method and RK4 method, and symplectic Euler method and SRKN4 method in preserving structure
are compared from theoretical and numerical simulations, the symmetry and structure preserving
and numerical stability of symplectic scheme are demonstrated. Moreover, the analytic solution of the
primary and subharmonic simultaneous resonance of this system is obtained by using the multi-scale
method. Finally, based on the resonance relation of the system, the chaotic dynamics behaviors with
different parameters are studied.

Keywords: memristor circuit; symplectic dynamics; simultaneous resonance; van der Pol oscillator

1. Introduction

In 1927, the illustrious van der Pol equation was proposed to describe the oscilla-
tion effect of triodes in electronic circuits [1]. Then, in physics [2–4], biology [5,6] and
economics [7], the van der Pol equation has become a fundamental model to describe the
oscillation process. Meanwhile, the memristor was defined in 1971 as the fourth basic
circuit device by Academician Chua, following the three basic Double-terminal circuit ele-
ments of resistors, capacitors and inductors [8], it can be regarded as a time-varying resistor,
and its resistance depends on the amount of charge passing through it. As a fundamental
passive circuit element, memristor will be widely used in circuit design as a general RLC
element [9–11]. It is well-known that Chua’s circuit can be realized by only three elements:
inductors, capacitors, and voltage-controlled memristors [12], and van der Pol equation can
be realized by two elements: inductors and memristor [13]. Additionally, the time-varying
characteristics of memristor give it rich dynamical behaviors [14], and a series of chaotic
oscillators are established by using memristors as nonlinear components [15,16]. However,
most memristor chaotic circuits developed in recent years are autonomous systems [17–20],
there are few non-autonomous systems with periodically forcing terms, which introduce
chaos through forcing terms and other parameters, increase regulations and are easier to be
applied in practice. Therefore, it is fascinating to study the non-autonomous memristor
circuit based on a van der Pol oscillator with a periodically forcing term.

All along, the numerical method has been using difference approximation to approx-
imate calculus, but its disadvantage is that it focuses only on the extent to which the
numerical solution approximates the exact solution, without giving more consideration to
the geometric properties of the mechanical system itself as described by the mathematical
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model. Therefore, a new direction in numerical analysis is that geometric numerical inte-
gration is paid more and more attention [21,22]. The well known unpublished report by De
Vogelaere is the first demonstration of the existence of numerical integrators (now called
symplectic integrators) [23], and it was not until later that Feng proposed a new method
to numerically integrate the Hamiltonian system based on symplectic geometry [24], and
this implicit method was later applied by Channell [25]. Meanwhile, Sanz-Sema [26]
and Lasagni [27] found a condition for implicit Runge–Kutta methods to be symplectic,
and Ruth developed an idea of explicit symplectic schemes for the Hamiltonian of the
form H = T(p) + V(q) [28]. Along the line of explicit symplectic schemes, higher order
integrators were presented by Yoshida later on [29]. Then, Qin proposed a multi-step sym-
plectic method and applied it to the numerical analysis of wave problems [30], Forest and
Ruth constructed the symplectic maps for nonlinear motion of particles in accelerators [31],
Yoshida modified non-existence of first integral by symplectic integration methods [32],
Cieśliński compares several discretizations of the simple pendulum equation in a series
of numerical experiments and puts forward a new numerical scheme of improved dis-
crete gradient method [33]. Subsequently, the development, analysis and use of various
numerical solution algorithms for differential equations concerned in geometric numerical
integration [34–39]. These algorithms preserve the geometric or qualitative properties
of the exact solutions, such as an integral or symmetry, or preservation of a differential
invariant such as symplecticity or phase space volume. In engineering, especially for
practical systems such as van der Pol and Duffing oscillator, classic numerical method are
used commonly, but it has dissipation mechanisms, and errors will accumulate. Therefore,
it is very urgent to study the structure preserving methods for these systems.

The path to chaos is also one of the fundamental problems in the study of dynamic
behaviors of specific systems [40–44]. However, most of its studies are inclined towards
Duffing oscillators, and the studies on periodic oscillation solutions of these systems can
be divided into two categories. One is to establish a dynamic model more in line with
engineering practice by considering the complexity of structure from the perspective of
system structure [45]. The other is to study the dynamical behaviors of the system under
complex excitation and the path leading to chaos [46,47]. Nonlinear systems are prone to
resonance. In addition to the primary resonance [48], there also have some special reso-
nance phenomena, such as super-harmonic resonance [49], sub-harmonic resonance [50],
etc. However, most studies are still limited to the response law of nonlinear system un-
der single harmonic excitation. In practical engineering, combination resonance [51] or
simultaneous resonance [52,53] often occurs under multi-frequency excitation, but they are
mentioned rarely, especially for van der Pol equation. The paper is organized as follows:
a non-autonomous memristor circuit based on van der Pol oscillator with a double peri-
odically forcing term is introduced, and the zero intersection and frequency-dependence
characteristics of the memristor are verified by Multisim in Section 2. In Section 3, the sta-
bility and dynamic characteristics are studied, and the differences between Euler method
and symplectic Euler method, four-order Runge–Kutta method and four-order Symplectic
Runge–Kutta–Nyström method, symplectic Euler method and four-order Runge–Kutta
method in preserving symmetry and structure are compared from theoretical and numer-
ical simulation. In Section 4, the analytic solution of the primary and subharmonic (1/3
order) simultaneous resonance of this system is obtained by using the multi-scale method,
then the chaotic dynamical behaviors are studied from the resonance relationship. Finally,
concluding remarks are given in Section 5.

2. Memristor Circuit Based on van der Pol Oscillation Model

The memristor is a device used to describe the relationship between the magnetic flux
ϕ and the charge q in electronic circuits, and it can be expressed by f (ϕ, q) = 0. Memristors
include charge-controlled memristor and flux-controlled memristor [54]. If the f (ϕ, q) is
expressed as the single-valued function of charge, the charge-controlled memristor model
is M(q) = dϕ(q)

dq , and it is expressed as the single-valued function of voltage, the voltage-
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controlled memristor model is W(ϕ) = dq(ϕ)
dϕ , similarly. Where, R(q) and W(q) represent

the memristance and memductance of the memristor, respectively, and they are nonlinear
functions that satisfy M(q) = 1

W(ϕ)
, similar to the resistance and conductance of the resistor.

Van der Pol first derived the van der Pol equation in order to describe the oscillating
effect of triodes in electronic circuits. The van der Pol system is a kind of classical self-
excited oscillation system. As an important mathematical model, the van der Pol system
can be widely used in complex dynamic system modeling. It provides solutions for many
practical engineering problems, and its standard mathematical form is as follows:{

ẋ = y
ẏ = −x + µ(1− x2)y + A cos ωt

(1)

where, µ is nonlinear parameter, A is amplitude of applied excitation and ω is frequency of
applied excitation. On the basis of the form of the system (1), Lu designed the second-order
nonautonomous van der Pol oscillator in the Chua’s diode [55]. So, based on that, we add
excitation source, and built a van der Pol oscillator based on this cubic memristor, as is
shown in Figure 1.

i

iL

iC
C

L

R
u1cos t u2cos t

u

_

W ( )

_

uC

iR

Figure 1. Dual-excitation source memristor circuit based on its van der Pol oscillator.

The capacitor voltage uc and the magnetic flux ϕ of the memristor are selected as state
variables, and the equation of state of the circuit can be written as{

ϕ̇ = uc

u̇c =
−u1 cos ω1t−u2 cos ω2t−uc

RC − W(ϕ)uc
C − ϕ

LC
(2)

where, W(ϕ) is the memductance, and its form is W(ϕ) = αϕ2 + βϕ + γ, which implies
q(ϕ) = α

3 ϕ3 + β
2 ϕ2 + γϕ. Additionally, to explore the circuit properties of the memristor,

a corresponding emulator is designed, as shown inside the frame in Figure 2.

−

−

− −

Figure 2. Emulator for the voltage-controlled generic memristor.
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The voltage between the capacitor electrodes is defined as the internal state of the
memristor, and the applied voltage and output current are set as vi and i, respectively. U1
is inverting amplifier; A1, A2, A3 are multipliers; U2, U3, U4 are inverse integrators and
R1, R2, R3, R4, R5, R6, R7, R8, R9 are resistors of the memristor, the simulation results of the
hysteresis curves and time series are observed, as shown in Figure 3.

− −

−

−

−

−

−

−

−

−1 1
−

−

−

−

−

−

(a) (b)

Figure 3. Multisim simulation results of the hysteresis curves and time series. (a) Characteristic
fingerprint of the memristor. (b) Time series.

As can be seen from Figure 3a, the zero intersection and frequency-dependence
characteristics of the memristor are verified by Multisim, and there is an asymmetric
pinched hysteresis loop with frequency f = 30 Hz and amplitude voltage vi = 5 V, which
verifies the existence of non-ideal memrisitve behavior of the memristor.

Then, let x = ϕ, y = uc, we have{
ẋ = y
ẏ = 1−γR

RC

(
1− αR

1−γR x2 − βR
1−γR x

)
y− 1

LC x + u1
RC cos ω1t + u2

RC cos ω2t
(3)

The Equation (3) can be rewritten as a second-order nonautonomous differential
equation:

ẍ− ξ(1− ∆1x2 − ∆2x)ẋ + ω2
0x = A1 cos ω1t + A2 cos ω2t (4)

where, ξ = 1−γR
RC , ∆1 = αR

1−γR , ∆2 = βR
1−γR , A1 = u1

RC , A2 = u2
RC , ω2

0 = 1
LC , here ξ denotes

stiffness parameter and ξ > 0, ω0 is the natural frequency of this model. Additionally, the
circuit model has the form of a van der Pol equation from Figure 1.

3. Symplectic Dynamic Analysis of van der Pol Self-Excited Oscillator
3.1. Equilibria and Stability

Considering remove the external excitation, the Equation (4) can be expressed as

ẍ− ξ(1− ∆1x2 − ∆2x)ẋ + ω2
0x = 0 (5)

and Equation (5) can be rewritten as{
ẋ = y
ẏ = ξ(1− ∆1x2 − ∆2x)y−ω2

0x
(6)

Hence, the equilibrium of the system is O(0, 0), and the Jacobian matrix at this equilib-
rium is

J =
[

0 1
−ω2

0 ξ

]
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and the corresponding eigenvalue equation can be written as λ2 − ελ + ω2
0 = 0, Then, it is

easy to obtain the eigenvalues as

λ1,2 =
1
2

ξ ± 1
2

√
ξ2 − (2ω0)

2 (7)

Lemma 1 (Lyapunov’s theorem of stability [56]). If X′ = f (t, x), f (t, x) = f (t + T, x),
f (t, x) and ∂ f

∂x are continuous. x ⊂ Rn has a periodic solution X∗(t). If the eigenvalue of the
linear variational equation Y′ = ∂ f

∂x (t, X∗(t))Y has strictly negative real parts, then X∗(t) is
uniformly asymptotically stable. If there is an eigenvalue with strictly positive real parts, then X∗(t)
is unstable.

Lemma 2 (Poincaré-Andronov-Hopf bifurcation existence theorem [57]). Assumption
X′ = A(λ) + F(λ, x) is a Ck, where k ≥ 3, and the planar vector field depends on the scalar
parameter λ, makes F(λ, 0) = 0, DxF(λ, 0) = 0, where |λ| is small sufficiently, if the equation of
the linear part of A(λ) has a pair of pure imaginary root α(λ) + iβ(λ) at the O(0, 0), and eigen-
value with nonzero velocity across the imaginary axis, namely dα(0)

dλ 6= 0. Then, there is
∣∣λ̄∣∣ < λ0,

for any U ∈ R2, O(0, 0) ∈ U, for any λ0 > 0, λ0 is relatively fixed, subject to the equation X′ has
a nontrivial periodic orbits in U.

According to Lemma 1, the relationship between equilibrium state and ξ can be
obtained as shown in the Table 1.

Table 1. The equilibrium state of system (6).

Conditions of ξ Equilibria Equilibria Properties

ξ > 2ω0 O(0, 0) Unstable Node

ξ = 2ω0 O(0, 0) Unstable Degenerate Node

0 < ξ < 2ω0 O(0, 0) Unstable Focus

ξ = 0 O(0, 0) Center

−2ω0 < ξ < 0 O(0, 0) Stable Focus

ξ ≤ −2ω0 O(0, 0) Stable Node

From Table 1, when ξ > 0, equilibria are unstable, and the phase trajectory is asymp-
totic to the equilibrium, the movement of phase points along the phase trace deviates
from the equilibrium to generate an isolated limit cycle. Meanwhile, when ξ changes from
positive to negative, the equilibrium loses stability, because dReλ1,2

dξ = 1
2 6= 0. According

to Lemma 2, Hopf bifurcation is generated at ξ = 0, and bifurcation produces a family of
periodic solutions near the equilibrium O(0, 0).

3.2. Hamiltonian and Exact Solution of Oscillator
3.2.1. Exact Solution Method

Consider ξ is a disturbance term, In order to study the exactness of the solution, here
let ξ = 0, and the system (6) becomes{

ẋ = y
ẏ = −ω2

0x
(8)

Obviously, the system (8) is the Hamilton canonical equation, and the corresponding
Hamiltonian can be defined as

H(x, y) =
ω2

0x2 + y2

2
(9)
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According to Table 1, when ξ = 0, its phase trajectory is a closed-loop orbit centered at
O(0, 0). Here, we take the starting point (0, Y0) on y-axis, then, the undisturbed parameter
equation with time [58] is {

x(t) = Y0 sin ω0t
y(t) = ω0Y0 cos ω0t

(10)

For Equation (10), when t = 0, we have x(t) = 0, y(0) = ω0Y0. Additionally,
the starting point of the exact solution (symplectic scheme) is (0, ω0Y0), the Hamiltonian

becomes H(x, y) =
ω2

0Y2
0

2 . When ξ 6= 0, the system (6) can be written in the form of a
Hamiltonian with periodic perturbation:{

ẋ = ξ f1(x, y) + ∂H(x,y)
∂y

ẏ = ξ f2(x, y)− ∂H(x,y)
∂x

(11)

where, f1(x, y) = 0 and f2(x, y) = y(1− ∆1x2 − ∆2x).
Then, by the Melnikov method, we have Melnikov function

M(Y0) =
∫ T(Y0)

0
(

∂H(x, y)
∂x

f1(x, y) +
∂H(x, y)

∂y
f2(x, y)) =

∫ 2π
ω0

0
y2(1− ∆1x2 − ∆2x)dt (12)

substitute Equation (10) into the Equation (12) to obtain

M(Y0) =
∫ 2π

ω0
0 (ω0Y0 cos ω0t)2(1− ∆1(Y0 sin ω0t)2 − ∆2Y0 sin ω0t)dt

=
∫ 2π

ω0
0 (ω0Y0 cos ω0t)2(1− ∆1(Y0 sin ω0t)2)dt−

∫ 2π
ω0

0 (ω0Y0 cos ω0t)2(∆2Y0 sin ω0t)dt
= πω0Y2

0 (1−
1
4 ∆1Y2

0 )− 0 = πω0Y2
0 (1−

1
4 ∆1Y2

0 )

(13)

When ξ 6= 0 and smaller, the Poincaré mapping will have a hyperbolic fixed point,
and the homoclinic orbital of the Hamilton system (11) will break, so as to generate stable
invariant manifold W1 and unstable invariant manifold W2 of this fixed point. Melnikovs’
theory explains that whether W1 and W2 intersect determines the existence of chaos in the
system. Hence, when M(Y0) = 0, that is Y0 = 0 or Y0 = 2√

∆1
, there is a sufficiently small ξ,

so that stable manifolds W1 and unstable manifolds W2 intersect. Further, dM(Y0)
dt =−4πω0√

δ1
<

0 6= 0, there must be a transversal homoclinic point on the Poincaré section.

3.2.2. Numerical Simulation

For the above, assume that ξ is extremely close to 0, that is ξ = 0, given ∆1 = 16,
ω0 = 10, and obtain Y0 = 2√

∆1
= 0.5, for the Equation (10), the starting point of the

exact solution is (0, ω0Y0) = (0, 5), then the Hamiltonian is H(x, y) = 12.5, and the phase
diagram and time series under exact solution are shown in Figure 4.
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Figure 4. The phase diagram and time series of the exact solution of the Equation (10). (a) Phase
diagram. (b) Time series.

Figure 4 shows the self-excited oscillation output under the initial condition (0, 5) of
the exact solution. The response is sinusoidal waveform with a frequency approaching
ω0. By solving the exact solution, the comparison between symplectic and non-symplectic
methods are prepared.

3.3. Solutions of Numerical Scheme
3.3.1. Euler Scheme

There are many numerical solutions for differential equations, one of these is dis-
cretization. Firstly, the approximate value y0, y1, · · · yn−1, yn, yn+1, · · · of y(t) on discrete
node is obtained. Then, the recurrence formula of the approximate value yn of y(tn) is
established to obtain the approximate value of y(t) at each node. The spacing between
two adjacent nodes is called step h = tn+1 − tn, assuming that h is constant, then node
tn = t0 + nh, n = 0, 1, 2, · · · , n. Then, defined by the derivative, Euler discretization of the
equation, have

y(tn+1)− y(tn)

h
=

dy(tn)

dt
= f (tn, y(tn)) (14)

Through it, we can re describe as

yn+1 = yn + h f (tn, yn) (15)

According to a memristor circuit based on its van der Pol oscillator without external
excitation, the Equation (6) is discretized and obtained{

xn+1 = xn + h f1(tn, xn, yn)
yn+1 = yn + h f2(tn, xn, yn)

(16)

where, f1(t, x, y) = ẋ = dx
dt , f2(t, x, y) = ẏ = dy

dt . Hence, the iteration format is{
xn+1 = xn + hyn
yn+1 = yn + h

(
ξ(1− ∆1x2

n − ∆2xn)yn −ω2
0xn
) (17)

3.3.2. Symplectic Euler Scheme

The algebraic relation obtained by Euler method does not depend on initial and
boundary conditions. However, no matter how small the step size is, the vibration will
be unbounded, and with the evolution of time, the vibration amplitude will tend to
infinity, destroying the periodicity of the system. Therefore, the symplectic Euler scheme
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is constructed to improve the structure-preserving performance of the traditional Euler
scheme, and the symplectic Euler discrete scheme is

yn+1 = yn + h f (tn+1, yn) (18)

According to memristor circuit based on its van der Pol oscillator without external
excitation, the Equation (6) is discretized and obtained{

xn+1 = xn + h f1(tn, xn+1, yn)
yn+1 = yn + h f2(tn, xn+1, yn)

(19)

Hence, the iteration format of memristor circuit based on its van der Pol oscillator
without external excitation is{

xn+1 = xn + hyn
yn+1 = yn + h

(
ξ(1− ∆1x2

n+1 − ∆2xn+1)yn −ω2
0xn+1

) (20)

It is easy to obtain that the Jacobian matrix of Equation (20) is symplectic.

3.3.3. Four-Order Runge–Kutta Scheme

The four-order Runge–Kutta method is more widely used than Euler method in
practical applications, Runge–Kutta method is a favorable tool for numerical solution of
ordinary differential nonlinear equations, with high calculation accuracy. By shortening the
step distance and increasing the order, the error range can be further controlled, and better
results can be obtained in the case of calculation convergence. The classical method is
as follows: 

yn+1 = yn +
h
6 (K1 + 2K2 + 2K3 + K4)

K1 = f (xn, yn)

K2 = f (xn +
h
2 , yn +

h
2 K1)

K3 = f (xn +
h
2 , yn +

h
2 K2)

K4 = f (xn + h, yn + hK3)

(21)

where, h is step, and let yn = y(tn), then the expression of yn+1 is exactly identical to
the first four terms of Taylor expansion of y(xn+1) at xn+1, and the local truncation error
is O

(
h4).

3.3.4. Four-Order Symplectic Runge–Kutta–Nyström Scheme

For the solution of system (8), there is the following four-order symplectic Runge–
Kutta–Nyström scheme as

gi = xn + cihyn + h2
s
∑

j=1
aij f
(

gj
)
,i ∈ (1,s)

xn+1 = xn + hyn + h2
s
∑

j=1
dj f
(

gj
)

yn+1 = yn + h
s
∑

j=1
bj f
(

gj
) (22)

where, bj = dj
(
1− cj

)
, 1 6 j 6 s and didj

(
cj − ci

)
= djaji, 1 6 i < j 6 s, and this scheme

is symplectic.
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The coefficient of Equation (22) are

A =


a11 a12
a21 a22

a13 a14
a23 a24

a31 a32
a41 a42

a33 a34
a43 a44

 =


0 0 0 0

5
12 −

α
2 0 0 0

0 − 1
2 + α 0 0

0 − 1
2 + α 0 0

,

B =
(

b1 b2 b3 b4
)
=
( 3

4 − α 1
2 − 1

4 + α− b4 b4
)
,

C =
(

c1 c2 c3 c4
)
=
(

α 1− α α α
)
,

D =
(

d1 d2 d3 d4
)

=
( 7−9α

12
α
2 (1− α)(α− 1

4 − b4) (1− α)b4
)
.

where, b4 is arbitrary parameter and 6α2 − 6α + 1 = 0.

3.4. Numerical Simulation
3.4.1. Euler Method and Symplectic Euler Method

a. ξ = 0.1
Here, according to Section 3.2.2, also set the starting point to (0, 5), given ξ = 0.1,

∆1 = 16, ∆2 = 8, ω0 = 10, and set the step h = 0.001, the number of iterations is n = 10,000.
Then, the comparison of Euler and symplectic Euler phase trajectories and displacement
component changes of time series were obtained in Figure 5.

From Figure 5, it can be found that the non-symplectic method leads to divergence
of phase trajectory and time displacement components, it does not preserve the structure,
while the symplectic method has a good effect of symmetry and structure preserving.
Additionally, the comparison diagram of the exact solution and symplectic Euler method
as shown in Figure 6.

−
−

−

−

−

1086420

−0.5

0

0.5

1086420

−5

0

5

(a) (b)

Figure 5. Comparison diagram of Euler and symplectic Euler method of ξ = 0.1, h = 0.001. (a) Phase
diagram. (b) Time series.
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Figure 6. Comparison diagram of exact solution and symplectic Euler method.

Through the comparison, the symplectic method is shown to have a higher coincidence
with the exact solution and the structure is preserved.

According to Section 3.2.2, we know when ξ = 0, the Hamiltonian of the system (6) is
H(x, y) = 12.5. Then, we calculate the Hamiltonian under the symplectic method and the
non-symplectic method when ξ is small enough, as shown in Table 2.

Table 2. Exact solution, symplectic and non-symplectic Hamiltonian of ξ = 0.1.

Iterations Euler Symplectic Euler

1 12.5000 12.5000

2 12.5038 12.5011

3 12.5074 12.5022

...
...

...

9999 22.1613 12.5596

10,000 22.1693 12.5627

Therefore, a comparison diagram of error trends of different methods is presented,
as shown in Figure 7.

0 2000 4000 6000 8000 10,000

2

0

2

4

6

8

10

Figure 7. Error trends under classic Euler method and symplectic Euler method.

When ξ is sufficiently small, the Hamiltonian of the system (6) remains around
H(x, y) = 12.5 by symplectic Euler method, however, the classic Euler method diverges
and does not preserve the symmetry and structure.

b. ξ = 20
In order to further illustrate the superiority of the symplectic method, we set ξ = 20

and adjust the step h based on this, which is described in two cases.
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Case 1: h = 0.001.
When the value of ξ is very large, given ξ = 20, likewise ∆1 = 16, ∆2 = 8, ω0 = 10,

the number of iterations n = 10,000, set the step h = 0.001, Figure 8 shows the phase plane
and time traces between the Euler method and the symplectic Euler method.
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Figure 8. Comparison diagram of Euler and symplectic Euler method of ξ = 20, h = 0.001. (a) Phase
diagram. (b) Time series.

Obviously, from Figure 8, symplectic method is more reliable in structure preserving
performance and convergent faster than non-symplectic method.

Case 2: h = 0.01.
As in case 1, we only increase the step h, and let h = 0.01, other conditions remain

unchanged, resulting in Figure 9.
According to Figure 9, when the step increased, the trajectory trend obtained by

Euler method will be quickly decoupled from the periodic one and instantaneous col-
lapsed, but the stability properties of the periodic orbit are preserved. by the symplectic
Euler method.
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Figure 9. Comparison diagram of Euler and symplectic Euler method of ξ = 20, large step h = 0.01.
(a) Phase diagram. (b) Time series.

3.4.2. Runge–Kutta Method and Symplectic Runge–Kutta–Nyström Method

a. ξ = 0.1
As in Section 3.3.2, when ξ = 0.1, we analyzed the classic four-order Runge–Kutta

method and four-order symplectic Runge–Kutta–Nyström method.
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Case 1: h = 0.01.
Here, set the starting point to (0, 5), given ξ = 0.1, ∆1 = 16, ∆2 = 8, ω0 = 10, and set

the step h = 0.01, the number of iterations is n = 10,000. Then, the comparison of classic
four-order Runge–Kutta method and four-order symplectic Runge–Kutta–Nyström phase
trajectories and displacement component changes of time series were obtained in Figure 10.
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Figure 10. Comparison diagram of classic four-order Runge–Kutta method and four-order symplectic
Runge–Kutta–Nyström method of ξ = 0.1, h = 0.01. (a) Phase diagram. (b) Time series.

From Figure 10, it can be found that both methods preserved the structure and sym-
metry of system well, but the computation time of symplectic method is faster than that of
non-symplectic method. For further analysis, we increased the step.

Case 2: h = 0.09.
As in case 1, we only increase the step h, let h = 0.09, the number of iterations is

n = 10,000, and other conditions remain unchanged, resulting in Figure 11.

0.60.40.20−0.2−0.4

−2

−4

0

2

4

6

0 5 10 15 20 25 30 35 40 45 50

−0.5

0

0.5

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

(a) (b)

Figure 11. Comparison diagram of classic four-order Runge–Kutta method and four-order symplectic
Runge–Kutta–Nyström method of ξ = 0.1, h = 0.09. (a) Phase diagram. (b) Time series.

According to Figure 11, when the step increased, the trajectory trend obtained by
Runge–Kutta method will be quickly decoupled from the periodic one and instantaneously
collapse, and the structure cannot be preserved. However, the stability properties of
the periodic orbit and symmetry are preserved by the symplectic Runge–Kutta–Nyström
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method. Then, we calculate the Hamiltonian under classic four-order Runge–Kutta method
and four-order symplectic Runge–Kutta–Nyström method when ξ is small enough, as
shown in Table 3.

Table 3. Exact solution, symplectic and non-symplectic Hamiltonian of ξ = 0.1 and h = 0.09.

Iterations RK4 SRKN4

1 12.5000 12.5000

2 12.2044 12.3024

3 12.0098 12.1816

...
...

...

9999 3.3516 12.5290

10,000 3.3554 12.7716

Therefore, a comparison diagram of error trends of different methods is presented,
as shown in Figure 12.

0 200 400 600 800 1000

−10
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−6

−4

−2

0

2

Figure 12. Error trends under classic four-order Runge–Kutta method and four-order symplectic
Runge–Kutta–Nyström method.

When ξ is sufficiently small, the Hamiltonian of symplectic Runge–Kutta method still
remain within a certain range, however, the classic Runge–Kutta method diverges and does
not preserve the structure. Through the comparison, the symplectic method is shown to
have a higher coincidence with the exact solution and the structure is preserved.

b. ξ = 20
In order to further illustrate the superiority of the symplectic method, we set ξ = 20

and adjust the step h based on this, also consider the description of two cases.
Case 1: h = 0.001.
When the value of ξ is very large, given ξ = 20, likewise ∆1 = 16, ∆2 = 8, ω0 = 10,

the number of iterations n = 10,000, set the step h = 0.001, Figure 13 shows the phase
plane and time traces between the classic four-order Runge–Kutta method and four-order
symplectic Runge–Kutta–Nyström method.
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Figure 13. Comparison diagram of classic four-order Runge–Kutta method and four-order symplectic
Runge–Kutta–Nyström method of of ξ = 20, h = 0.001. (a) Phase diagram. (b) Time series.

Obviously, from Figure 13, symplectic method is more reliable in structure preserving
performance and convergent faster than non-symplectic method.

Case 2: h = 0.02.
As in case 1, we only increase the step h, and let h = 0.02, other conditions remain

unchanged, resulting in Figure 14.
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Figure 14. Comparison diagram of classic four-order Runge–Kutta method and four-order symplectic
Runge–Kutta–Nyström method of ξ = 20, large step h = 0.02. (a) Phase diagram. (b) Time series.

According to Figure 14, when the step increased, the trajectory trend obtained by clas-
sic Runge–Kutta method will be quickly decoupled from the periodic one and instantaneous
collapsed.

Through case 1 and case 2 of Section 3.4.1 and 3.4.2, under ξ = 0.1 and ξ = 20,
in the case of long-time and large step numerical integration, symplectic method can still
better maintain the characteristics of the system than non-symplectic method. That is,
the symplectic method can preserve the structure well. In particular, when the perturbation
term is small, the system tends to be a Hamiltonian system, and the symplectic method can
maintain the symmetry of the system.
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3.4.3. Symplectic Euler Method and Four-Order Runge–Kutta Method

In the previous sections, we compare the symplectic and classical methods of Euler
method and Runge–Kutta method, respectively. In this section, we consider comparing the
symplectic Euler method with the classical four-order Runge–Kutta method.

a. ξ = 0.1
As in Section 3.3.2, when ξ = 0.1, we analyzed the classic four-order Runge–Kutta

method and symplectic Euler method.
Case 1: h = 0.001.
Set the starting point to (0, 5), given ξ = 0.1, ∆1 = 16, ∆2 = 8, ω0 = 10, and set the

step h = 0.001, the number of iterations is n = 10,000. Then, the comparison of classic
four-order Runge–Kutta method and symplectic Euler phase trajectories and displacement
component changes of time series were obtained in Figure 15.
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Figure 15. Comparison diagram of classic four-order Runge–Kutta method and symplectic Euler
method of ξ = 0.1, h = 0.001. (a) Phase diagram. (b) Time series.

From Figure 15, it can be found that both methods preserved the structure and sym-
metry of the system well, but the computation time of symplectic Euler method is faster
than that of classic Runge–Kutta method. For further analysis, we increased the step.

Case 2: h = 0.1.
As in case 1, we only increase the step h, let h = 0.1, the number of iterations is

n = 10,000 and other conditions remain unchanged, resulting in Figure 16.
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Figure 16. Comparison diagram of classic four-order Runge–Kutta method and symplectic Euler
method of ξ = 0.1, h = 0.1. (a) Phase diagram. (b) Time series.
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According to Figure 16, when the step increases, the trajectory trend obtained by
the classical Runge–Kutta method will be decoupled from the periodic trend, resulting in
instantaneous collapse and the structure cannot be preserved. Meanwhile, the symplectic
Euler method did not structure preserved well in the end, but it did not collapse, nor did it
collapse in time. Then, we calculate the Hamiltonian under classic four-order Runge–Kutta
method and symplectic Euler method when ξ is small enough, as shown in Table 4.

Table 4. Exact solution, symplectic and non-symplectic Hamiltonian of ξ = 0.1 and h = 0.1.

Iterations RK4 Symplectic Euler

1 12.5000 12.5000

2 12.0852 12.5613

3 11.8489 23.2033

...
...

...

9999 5.7256× 10−11 8.1131

10,000 5.6771× 10−11 18.6570

Then, comparison diagram of error trends of different methods is presented, resulting
in Figure 17.

1 
 

 

Figure 17. Error trends under classic four-order Runge–Kutta method and symplectic Euler method.

The ξ is sufficiently small, the Hamiltonian of the classic Runge–Kutta method di-
verges and does not preserve the structure, and the errors produced by symplectic Euler
method are also larger, but compared with Runge–Kutta method, it is still remain within a
certain range.

b. ξ = 20, h = 0.001
In order to further illustrate the contrast between symplectic Euler and classical Runge–

Kutta method. When the value of ξ is very large, given ξ = 20, likewise ∆1 = 16, ∆2 = 8,
ω0 = 10, the number of iterations n = 10,000, set the step h = 0.001, Figure 18 shows
the phase plane and time traces between the classic four-order Runge–Kutta method and
symplectic Euler method.
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Figure 18. Comparison diagram of classic four-order Runge–Kutta method and symplectic Euler
method of ξ = 20, h = 0.001. (a) Phase diagram. (b) Time series.

From Figure 18, symplectic Euler method is more reliable in structure preserving
performance and convergent faster than classic four-order Runge–Kutta method. Further-
more, In this case, we did not compare the methods when the steps increased, so it was
unnecessary to preserve the structure of the system. Moreover, the above method has
obvious advantages in speed and has also achieved victory in structure preserving.

3.4.4. Symplectic Euler Method and Symplectic Runge–Kutta–Nyström Method

a. ξ = 0.1
When ξ = 0.1, we analyzed the symplectic Euler method and four-order symplectic

Runge–Kutta–Nyström method.
Case 1: h = 0.01.
Similarly, set the starting point to (0, 5), given ξ = 0.1, ∆1 = 16, ∆2 = 8, ω0 = 10,

and set the step h = 0.01, the number of iterations is n = 10,000. Then, the comparison of
the symplectic Euler and four-order symplectic Runge–Kutta–Nyström phase trajectories
and displacement component changes of time series were obtained in Figure 19.
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Figure 19. Comparison diagram of symplectic Euler method and four-order symplectic Runge–Kutta–
Nyström method of ξ = 0.1, h = 0.01. (a) Phase diagram. (b) Time series.

From Figure 19, it can be found that both methods preserved the structure and symme-
try of system well, but the computation time of symplectic Euler method is faster than that
of symplectic Runge–Kutta–Nyström method. For further analysis, we increased the step.

Case 2: h = 0.1.
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As in case 1, we only increase the step h, let h = 0.1, the number of iterations is
n = 10,000, and other conditions remain unchanged, resulting in Figure 20.
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Figure 20. Comparison diagram of symplectic Euler method and four-order symplectic Runge–Kutta–
Nyström method of ξ = 0.1, h = 0.1. (a) Phase diagram. (b) Time series.

According to Figure 20, when the step increases, the trajectory trend of the symplectic
Euler method is decoupled from the periodic one, and the structure cannot be preserved.
However, symplectic Runge–Kutta–Nyström preserves symmetry and structure, while
the symplectic Euler method has an advantage in calculating speed. Then, we calculate
the Hamiltonian under symplectic Euler method and four-order symplectic Runge–Kutta–
Nyström method when ξ is small enough, as shown in Table 5.

Table 5. Symplectic Euler and four-order symplectic Runge–Kutta–Nyström methods’ Hamiltonian
of ξ = 0.1 and h = 0.1.

Iterations Symplectic Euler SRKN4

1 12.5000 12.5000

2 12.5613 12.2914

3 23.2033 12.2471

...
...

...

9999 8.1131 12.7378

10,000 18.6570 12.5994

Therefore, a comparison diagram of error trends of different methods is presented,
as shown in Figure 21.
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Figure 21. Error trends under symplectic Euler method and four-order symplectic Runge–Kutta–
Nyström method.
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From above, when ξ is sufficiently small and step increases, the symplectic Runge–
Kutta–Nyström method’s Hamiltonian remains within a certain range, while the symplectic
Euler method diverges, but remains within a certain range (albeit a large one). By com-
parison, the symmetry and structure of the symplectic Runge–Kutta–Nyström method are
better under the condition of small perturbation and large step.

b. ξ = 20
To further illustrate the conditions of symplectic method and the characteristics of each

methods, we set ξ = 20 and adjust the step h based on this, also consider the description of
two cases.

Case 1: h = 0.001.
When the value of ξ is large, given ξ = 20, likewise ∆1 = 16, ∆2 = 8, ω0 = 10,

the number of iterations n = 10,000, set the step h = 0.001, Figure 22 shows the phase
plane and time traces between the symplectic Euler method and four-order symplectic
Runge–Kutta–Nyström method.
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Figure 22. Comparison diagram of the symplectic Euler method and four-order symplectic Runge–
Kutta–Nyström method of ξ = 20, h = 0.001. (a) Phase diagram. (b) Time series.

From Figure 22, the symplectic Euler method and symplectic Runge–Kutta–Nyström
method both preserve the structure of the system well, but the symplectic Euler method is
superior in computing speed by comparison.

Case 2: Large step.
As in case 1, we only increase the step h, and make the step change constantly, other

conditions remain unchanged, resulting in Figure 23.
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Figure 23. Comparison diagram of the symplectic Euler method and four-order symplectic Runge–
Kutta–Nyström method of ξ = 20 and different large step. (a) h = 0.01. (b) h = 0.0159.
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According to Figure 23, it can be seen from the figure that when the step increases,
h = 0.01, the symplectic Euler method and the four-order symplectic Runge–Kutta–
Nyström method do not well preserve the system structure. When the step continues
to increase and h = 0.0159, the trajectory trend obtained by the symplectic Euler method is
decoupled from the periodic trend first, and the system structure is no longer preserved.
Meanwhile, if the step size continues to increase, both methods can no longer preserve the
system structure.

Through the discussion of various cases in Section 3.4, we conclude that the symplectic
method maintains the characteristics of the system better than the non-symplectic method
in the case of large and long numerical integrals over long time. In particular, when the
perturbation is very small, the system tends to be Hamiltonian, and symplectic methods
can preserve the symmetry and structure of the system better than classic methods. Mean-
while, when the method is not confined to the comparison of the two symplectic methods,
the perturbation is very small, the symplectic methods do not differ much. When the per-
turbation becomes larger, the step becomes the key to influence the numerical integration,
that is, when the step is larger, the symplectic Runge–Kutta–Nyström method wins, but the
computational speed of the symplectic Euler method is better than that of the symplectic
Runge–Kutta–Nyström method.

4. Primary and Subharmonic Simultaneous Resonance of Forced van der Pol Oscillator

Due to the interaction between self-excited oscillation and forced oscillation, complex
dynamic phenomena appear in the van der Pol non-autonomous system with a sinusoidal
forcing term. Many resonance phenomena occur in non-autonomous dynamical systems
under forced excitation, especially under multi-frequency excitation. In this section, the pri-
mary and subharmonic simultaneous resonances of van der Pol oscillators are studied.

4.1. First-Order Approximate Solution of Primary and Subharmonic Simultaneous Resonance

A memristor circuit based on forced van der Pol oscillator system excited by multi-
ple frequencies can be described as system (4). The parameters are specified as follows:
ω1 = ω0 + ξψ1, ω2 = 3ω0 + ξψ2, A1 = ξ f , f = O(1), ψ1 = O(1), ψ2 = O(1), the system (4)
changes into

ẍ + ω2
0x = ξ

(
(1− ∆1x2 − ∆2x)ẋ + f cos ω1t

)
+ A2 cos ω2t (23)

where, ω0 is the natural frequency of the linearized system (2). A multi-scale method [59]
is applied to study the first-order approximate solution of the system. Suppose that the
solution form of the system (23) is as follows:

x(t) = x0(T0, T1) + ξx1(T0, T1) (24)

where, time scales are T0 = t, T1 = ξt, and substituting Equation (24) into Equation (23), by
comparing the same power of, a system of partial differential equations is obtained:

D2
0x0 + ω2

0x0 = A2 cos(3ω0T0 + ψ2T1) (25)

D2
0x1 + ω2

0x1 = −2D0D1x0 + f cos(ω0T0 + ψ1T1) + 2D0(1− ∆1x2
0 − ∆2x0)x0 (26)

Then, the general solution of Equation (25) is x0(T0, T1) = a(T1) cos(ω0T0 + b(T1)) +
A2

ω2
0−ω2

1
cos(3ω0T0 + ψ2T1) and it can also be written as plural form:

x0(T0, T1) = K(T1)ejω0T0 + Pej(3ω0T0+ψ2T1) + c (27)

where, K(T1) = a(T1)ejb(T1)

2 , P = A2
2(ω2

0−ω2
1)

, c is the conjugate of all the preceding terms.

a(T1), b(T1) are slowly varying amplitude and phase, respectively. Substitute Equation (27)
into Equation (26), eliminate the secular term and separating real and imaginary parts.
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The differential equations satisfied by slowly varying amplitude a(T1) and phase b(T1)
are obtained D1a = ξψ1a2B

24ω0
sin(3b− ψ2T1)− f

2ω0
sin(b− ψ1T1)− ξψ1a

6

aD1b = ξa
6ω0

+ ξ∆1aP2

12ω0
+ ξ∆1a2P

6ω0
cos(3b− ψ2T1)− f

2ω0
cos(b− ψ1T1) +

ξ∆1a3

6ω0

(28)

Consequently, the first-order approximate solution of system (23) can be expressed as

x0(t) = 2P cos(ω2t) + a cos(ω0t + b) (29)

where, a and b determined by the Equation (28).

4.2. Steady Solution and Its Stability Conditions

From above, the necessary conditions for the existence of steady solutions are b− ψ1T1
and 3b−ψ2T1 are constants from Equation (27), where ψ2 = 3ψ1, ω2 = 3ω1. In other words,
the steady solution of primary and subharmonic simultaneous resonance can be obtained
only when the two excitation frequencies are sufficient to a specific multiple relationship.
Let 3ψ = 3ψ1 = ψ2, b − ψ1T1 = γ, then Equation (28) can be written as autonomous
differential equations: D1a = ξψ1a2P

24ω0
sin(3γ)− f

2ω0
sin(γ)− ξψ1a

6

aD1b = ξa
6ω0

+ ξ∆1aP2

12ω0
+ ξ∆1a2P

6ω0
cos(3γ)− f

2ω0
cos(γ) + ξ∆1a3

6ω0

(30)

The corresponding first-order approximate solution becomes

x(t) = a cos(ω1t + γ) + 2P cos(ω2t) (31)

where, ω2 = 3ω1. To verify the accuracy of the first-order approximate solution of Equa-
tion (31). The Runge–Kutta method with variable step length is used to calculate the
system (4), and it is compared with the first-order approximate solution of Equation (31).
According to the above section, let ξ = 0.1, ∆1 = 16, ∆2 = 8, ω0 = 2.5, ω2 = 3ω1 = 7.5,
A1 = 0.2, A2 = 2 and the simulation duration t = 50. The transient response is called when
the initial time t ∈ (0, 20). Figure 24 shows the transient responses times.

20151050

−0.5

0

0.5

1

Figure 24. Transient-responses times of system (4).

Then, let the last time t ∈ (20, 50), and the response amplitude as the steady-state
amplitude, take the initial value (a0, γ0) = (0.72,−1.51), the steady-state response is shown
in Figure 25.
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Figure 25. Steady-state responses times of system (4).

As can be seen from Figures 24 and 25, when ω2 = 3ω1, the approximation between
numerical solution and analytical solution is better, and the multiple solutions and unsta-
bility phenomena of the system are mainly dominated by a cos(ω1t + γ) of system (31).
Therefore, in the subsequent study of the dynamical behaviors of system (4), only ω1 in the
external excitation needs to be studied.

4.3. Analysis of Chaotic Dynamics

In the resonance analysis in Sections 4.1 and 4.2, we get ω2 = 3ω1, then the system (4)
becomes {

ẋ = y
ẏ = ξ(1− ∆1x2 − ∆2x)y−ω2

0x + A1 cos(ω1t) + A2 cos(3ω1t)
(32)

Then, the system (32) will have different and complex dynamical behaviors when
changing ξ, and we will analyze these dynamical behaviors under different ξ.

4.3.1. Dynamical Behaviors of ξ = 0.1

The 2D nonlinear non-autonomous systems can produce chaotic behaviors, and chaos
will occur when the nonlinearity of a memristor circuit based on its van der Pol oscillators
is strong. When ξ = 0.1, with ∆1 = 16, ∆2 = 8, ω0 = 10, A1 = 12, A2 = 8 and ω1 = 7.1,
the initial value (x, y) = (0, 0.5) is selected. The chaotic attractor and time series are shown
in Figure 26.
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Figure 26. Chaotic attractors and time series of system (32) with ξ = 0.1. (a) Phase diagram.
(b) Time series.

Under the same parameters, when control parameters ω1 ∈ (6, 14), the bifurcation
diagram of the system (32) is shown in Figure 27.
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−0.2

Figure 27. Bifurcation diagram of system (31) with ξ = 0.1.

Figure 27 shows a bifurcation diagram of x as a function of ω1, and the system
undergoes a variety of dynamical behaviors. In addition, to further verify the existence of
chaos, we give the Lyapunov exponential spectrum and the largest Lyapunov exponential
trend diagram in Figure 28.
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Figure 28. Lyapunov exponents spectrum and Largest Lyapunov exponent of system (32) with
ξ = 0.1.

The Lyapunov exponential spectrum in Figure 28 shows rich dynamical behaviors and
shows that the largest Lyapunov exponential is positive. The largest Lyapunov exponential
diagram has the same results as the bifurcation diagram. These results also agree with the
analysis of van der Pol oscillators.

4.3.2. Dynamical Behaviors of ξ = 5

Similarly, when ξ = 5, with ∆1 = 16, ∆2 = 8, ω0 = 10, A1 = 10, A2 = 5 and ω1 = 3.7,
the initial value (x, y) = (0, 0.5) is selected. The chaotic attractor and zoom in on Poincaré
section are shown in Figure 29.
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Figure 29. Chaotic attractors and zoom in on Poincaré section of system (32) with ξ = 5. (a) Phase
diagram. (b) Poincaré section.

From Figure 29, the chaotic attractor generates a type relaxation oscillator configu-
ration, and the continuously dense point shows chaotic behavior. Then, we change the
value of ω1 to get the phase diagram and Poincaré section with different parameters and
the states of periodic 1, periodic 2 and periodic3 can be obtained, as shown in Figure 30.
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Figure 30. Phase diagram and Poincaré section of system (32) with ξ = 5 at different ω1. (a) Phase
diagram of ω1 = 8.1, ω1 = 4.3 and ω1 = 3, respectively. (b) Poincaré section of ω1 = 8.1, ω1 = 4.3
and ω1 = 3, respectively.

When control parameters ω1 ∈ (0, 9), the bifurcation diagram of the system (32) is
shown in Figure 31.
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�0.1

Figure 31. Bifurcation diagram of system (32) with ξ = 5.

From above, it can be seen that many narrow periodic windows are embedded in
chaotic regions, and it contains rich dynamical behaviors. Thus, the forced parameter ξ and
ω1 can be used to tune the memristor circuit to different chaotic or periodic oscillations.

5. Conclusions

A memristor circuit based on its van der Pol oscillator is introduced, and the stability
and dynamic characteristics of memristor circuit are studied. Meanwhile, the differences
of the van der Pol oscillation model of memristor between the Euler method and sym-
plectic Euler method, four-order Runge–Kutta method and four-order symplectic Runge–
Kutta–Nyström method, symplectic Euler method and four-order Runge–Kutta method,
symplectic Euler method and four-order symplectic Runge–Kutta–Nyström method in
preserving symmetry and structure are compared from theoretical and numerical simu-
lation: The symplectic scheme can better simulate the oscillate process of the oscillator
and keep the conservation of the harmonic oscillator accurately in the time domain for
a long time. Secondly, the analytic solution of the primary and subharmonic (1/3 order)
simultaneous resonance of the van der Pol oscillation system is obtained by using the
multi-scale method, and the stability condition of the steady solution is obtained by using
Lyapunov stability theory. Finally, the dynamical behaviors of the system is studied from
the resonance relationship, which is helpful to understand the oscillation characteristics of
other nonlinear oscillation problems in the form of van der Pol equation later. In the future,
we will consider comparing more structure preserving symplectic methods with classical
integral methods to demonstrate the advantages of symplectic methods, and which will
be used in aerospace, nanomaterials and other applications. Meanwhile, we will further
study the memristor system on the electronic circuit, and the global dynamics and infinite
behaviors of the system are considered.

Author Contributions: Conceptualization, Z.W. and B.Y.; methodology, Z.W. and B.Y.; software, H.T.
and J.L.; validation, Z.W., B.Y., H.T. and J.L.; formal analysis, B.Y., H.T. and J.L.; writing—original
draft preparation, B.Y. and H.T.; writing—review and editing, Z.W., B.Y., H.T. and J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Basic Research Program of Shaanxi
(2021JM-533, 2021JQ-880, 2020JM-646), the Innovation Capability Support Program of Shaanxi
(2018GHJD-21), the Science and Technology Program of Xi’an (2019218414GXRC020CG021-
GXYD20.3), the Support Plan for Sanqin Scholars Innovation Team in Shaanxi Province of China,
the Scientific Research Program Funded by Shaanxi Provincial Education Department (21JK0960),
the Youth Innovation Team of Shaanxi Universities and the Scientific Research Foundation of Xijing
University (XJ21B01), the Scientific Research Foundation of Xijing University (XJ210203).



Symmetry 2022, 14, 1251 26 of 27

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the referees and the editor for carefully reading this
paper and giving many helpful comments. The authors also express their gratitude to the reviewers
for their insightful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Der Pol, B. VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode). Lond. Edinb.

Dublin Philos. Mag. J. Sci. 1927, 3, 65–80. [CrossRef]
2. Kpomahou, Y.J.F.; Miwadinou, C.H.; Agbokpanzo, R.G.; Hinvi, L.A. Nonlinear dynamics of a RLC series circuit modeled by a

generalized van der Pol oscillator. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 479–494. [CrossRef]
3. Semenov, A.; Semenova, O.; Osadchuk, O.; Osadchuk, I.; Baraban, S.; Rudyk, A.; Safonyk, A.; Voznyak, O. Van der Pol Oscillators

Based on Transistor Structures with Negative Differential Resistance for Infocommunication System Facilities; Springer: Berlin/Heidelberg,
Germany, 2021.

4. Liang, H.; Wang, Z.; Yue, Z.; Lu, R. Generalized synchronization and control for incommensurate fractional unified chaotic
system and applications in secure communication. Kybernetika 2012, 48, 190–205.

5. Raja, M.A.Z.; Shah, F.H.; Syam, M.I. Intelligent computing approach to solve the nonlinear van der Pol system for heartbeat
model. Neural Comput. Appl. 2018, 30, 3651–3675. [CrossRef]

6. Zhang, S.; Zhang, C.; Wang, Z.; Kong, W. Combining sparse representation and singular value decomposition for plant recognition.
Appl. Soft Comput. 2018, 67, 164–171. [CrossRef]

7. He, L.; Yi, L.; Tang, P. Numerical scheme and dynamic analysis for variable-order fractional van der Pol model of nonlinear
economic cycle. Adv. Differ. Equ. 2016, 2016, 195. [CrossRef]

8. Chua, L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
9. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]
10. Kim, H.; Sah, M.P.; Yang, C.; Cho, S.; Chua, L.O. Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst.

I Regul. Pap. 2012, 59, 2422–2431.
11. Li, C.; Yang, Y.; Du, J.; Chen, Z. A simple chaotic circuit with magnetic flux-controlled memristor. Eur. Phys. J. Spec. Top. 2021,

230, 1723–1736. [CrossRef]
12. Madan, R.N. Chua’s Circuit: A Paradigm for Chaos; World Scientific: Singapore, 1993.
13. Itoh, M.; Chua, L.O. Dynamics of memristor circuits. Int. J. Bifurc. Chaos 2014, 24, 1430015. [CrossRef]
14. Jang, Y.H.; Kim, W.; Kim, J.; Woo, K.S.; Lee, H.J.; Jeon, J.W.; Shim, S.K.; Han, J.; Hwang, C.S. Time-varying data processing with

nonvolatile memristor-based temporal kernel. Nat. Commun. 2021, 12, 5727. [CrossRef]
15. Talukdar, A.; Radwan, A.G.; Salama, K.N. Nonlinear dynamics of memristor based 3rd order oscillatory system. Microelectron. J.

2012, 43, 169–175. [CrossRef]
16. Corinto, F.; Forti, M. Complex dynamics in arrays of memristor oscillators via the flux–charge method. IEEE Trans. Circuits Syst. I

Regul. Pap. 2017, 65, 1040–1050. [CrossRef]
17. Ishaq Ahamed, A.; Lakshmanan, M. Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive

Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 2013, 23, 1350098. [CrossRef]
18. Varshney, V.; Sabarathinam, S.; Prasad, A.; Thamilmaran, K. Infinite number of hidden attractors in memristor-based autonomous

duffing oscillator. Int. J. Bifurc. Chaos 2018, 28, 1850013. [CrossRef]
19. Sun, J.; Zhao, X.; Fang, J.; Wang, Y. Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization.

Nonlinear Dyn. 2018, 94, 2879–2887. [CrossRef]
20. Wang, Z.; Parastesh, F.; Rajagopal, K.; Hamarash, I.I.; Hussain, I. Delay-induced synchronization in two coupled chaotic

memristive Hopfield neural networks. Chaos Solitons Fractals 2020, 134, 109702. [CrossRef]
21. Hairer, E.; Hochbruck, M.; Iserles, A.; Lubich, C. Geometric numerical integration. Oberwolfach Rep. 2006, 3, 805–882. [CrossRef]
22. McLachlan, R.I.; Quispel, G.R.W. Geometric integrators for ODEs. J. Phys. A Math. Gen. 2006, 39, 5251. [CrossRef]
23. De Vogelaere, R. Methods of Integration Which Preserve the Contact Transformation Property of the Hamilton Equations; Technical

Report; University of Notre Dame: Notre Dame, IN, USA, 1956.
24. Feng, K.; Qin, M. The Symplectic Methods for the Computation of Hamiltonian Equations; Springer: Berlin/Heidelberg, Germany, 1987.
25. Channell, P.J.; Scovel, C. Symplectic integration of Hamiltonian systems. Nonlinearity 1990, 3, 231. [CrossRef]
26. Sanz-Serna, J.M. Runge-Kutta schemes for Hamiltonian systems. BIT Numer. Math. 1988, 28, 877–883. [CrossRef]
27. Lasagni, F. Canonical runge-kutta methods. Z. Angew. Math. Phys. 1988, 39, 952–953. [CrossRef]
28. Ruth, R.D. A canonical integration technique. IEEE Trans. Nucl. Sci. 1983, 30, 2669–2671. [CrossRef]
29. Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262–268. [CrossRef]

http://doi.org/10.1080/14786440108564176
http://dx.doi.org/10.1515/ijnsns-2019-0031
http://dx.doi.org/10.1007/s00521-017-2949-0
http://dx.doi.org/10.1016/j.asoc.2018.02.052
http://dx.doi.org/10.1186/s13662-016-0920-5
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1140/epjs/s11734-021-00181-2
http://dx.doi.org/10.1142/S0218127414300158
http://dx.doi.org/10.1038/s41467-021-25925-5
http://dx.doi.org/10.1016/j.mejo.2011.12.012
http://dx.doi.org/10.1109/TCSI.2017.2759182
http://dx.doi.org/10.1142/S0218127413500983
http://dx.doi.org/10.1142/S021812741850013X
http://dx.doi.org/10.1007/s11071-018-4531-4
http://dx.doi.org/10.1016/j.chaos.2020.109702
http://dx.doi.org/10.4171/OWR/2006/14
http://dx.doi.org/10.1088/0305-4470/39/19/S01
http://dx.doi.org/10.1088/0951-7715/3/2/001
http://dx.doi.org/10.1007/BF01954907
http://dx.doi.org/10.1007/BF00945133
http://dx.doi.org/10.1109/TNS.1983.4332919
http://dx.doi.org/10.1016/0375-9601(90)90092-3


Symmetry 2022, 14, 1251 27 of 27

30. Qin, M.; Meiqing, Z. Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations. Comput. Math.
Appl. 1990, 19, 51–62.

31. Berg, J.; Warnock, R.; Ruth, R.; Forest, E. Construction of symplectic maps for nonlinear motion of particles in accelerators. Phys.
Rev. E 1994, 49, 722. [CrossRef]

32. Yoshida, H. Non-existence of the modified first integral by symplectic integration methods. Phys. Lett. A 2001, 282, 276–283.
[CrossRef]
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