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Abstract. Symplectic field theory (SFT) attempts to approach the theory of holomorphic curves
in symplectic manifolds (also called Gromov-Witten theory) in the spirit of a topological field
theory. This naturally leads to new algebraic structures which seems to have interesting appli-
cations and connections not only in symplectic geometry but also in other areas of mathematics,
e.g. topology and integrable PDE. In this talk we sketch out the formal algebraic structure of
SFT and discuss some current work towards its applications.
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1. Formal algebraic structure of SFT

The project of SFT was initiated byA. Givental, H. Hofer and the author in [15]. Since
its inception, it has branched in different directions and now involves a large number
of authors working on the foundation and the different parts of the project. SFT is
closely related to the relative Gromov–Witten theory, see e.g. [21], [30], [35], [34],
[31], as well the work of Yu. Chekanov [11] and Fukaya–Oh–Ohta–Ono project [20].

Symplectic field theory can be viewed as a functor SFT from a geometric category
GEOMSFT of framed Hamiltonian structures and framed cobordisms between them to
an algebraic category ALGSFT of certain differentialD-modules and Fourier integral
operators between them. We describe these categories in the next two sections.

1.1. The category ALGSFT. Roughly speaking, the objects in the category ALGSFT

are certainD-modules over a graded Weyl algebra with an operator H which satisfies
the “master equation” H � H = 0. Before listing the algebraic structures involved,
let us make a couple of general remarks. First, we will be dealing in this paper with
graded objects. To simplify the exposition we will usually mean by grading a Z/2-
grading, unless it is noted otherwise. Usually, with extra work it can be upgraded to
an integer grading. Second, we will systematically use C as the coefficient ring. In
some situations it has to be changed to a certain Novikov ring, see Remark 2.1 below.
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Given an integer vector d = (d1, . . . , dN) let us denote by CTd = C[T ] a Z-
graded (super-)commutative algebra with complex coefficients, generated by graded
elements of an infinite N × ∞ matrix T = (tij ), i = 1, . . . , N , j = 0, . . . ; the
Z/2-grading of tij coincides with the parity of di for each j ≥ 0 and i = 1, . . . , N .

An object in the category ALGSFT is a collection of the following structures
O1–O5, which satisfy axioms AO1 and AO2.

O1. A possibly infinite-dimensional space P with a non-degenerate symmetric
bilinear form 〈·, ·〉 and a fixed basis �. To simplify the notation we will assume
that there exists an involution γ �→ γ̄ , γ ∈ �, such that 〈γ, γ ′〉 = δγ̄ γ ′ ,
γ, γ ′ ∈ �.

O2. A Z-graded, possibly infinite-dimensional vector space V = ⊕j Vj over C,
called the phase space, with a degree 1 differential d : V→ V, such that d2 = 0
(e.g. a space of differential forms on a manifold with de Rham differential d).
For d = (d1, . . . , dN) we denote by V d the space ⊕Ni Vdi .

O3. An associative algebra W̃ over C generated by graded elements pk,γ , qk,γ ,
γ ∈ �, k ≥ 1, and an even graded element h̄, with the following commutation
relations: all elements commute (in the graded sense) except that the (graded)
commutator [pk,γ , qk,γ̄ ] equals kh̄ for any γ ∈ � and k ≥ 1.

O4. A completion W of W̃, called the Weyl algebra, which consists of formal
power series of h̄ and p-variables with coefficients which are polynomials
of q-variables.

O5. A smooth function H : Vd → 1
h̄
W⊗ CTd , which associates with any � =

(θ1, . . . , θN) ∈ V
d an odd (in fact, of degree 1 if the integer grading is used)

element H〈�〉 ∈ 1
h̄
W ⊗ CTd , called the Hamiltonian. Here smoothness is

understood in the formal sense: all coefficients of the corresponding power
expansions are smooth.

Before formulating the axioms let us introduce some notation. Given two vec-
tors d = (d1, . . . , dN) and d ′ = (d ′1, . . . , d ′N ′) we denote by d � d ′ the vec-
tor (d1, . . . , dN , d

′
1, . . . , d

′
N ′). Similarly, for � = (θ1, . . . , θN) ∈ V

d and �′ =
(θ ′1, . . . , θ ′N ′) ∈ V

d ′ we write

� ��′ = (θ1, . . . , θN , θ
′
1, . . . , θ

′
N ′) ∈ V

d�d ′ .

We will also denote by tij and t ′kl , i = 1, . . . , N , k = 1, . . . , N ′, j, l = 1 . . . , the
generators of the algebra CTd�d ′ , and by π : CTd�d ′ → CTd the projection.

The following axioms should be satisfied:

AO1.
H〈� � d�〉 �H〈� � d�〉 = ∂H〈� � d�〉, (1)
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where

∂ =
∑
i,j

tij
∂

∂t ′ij
(2)

is an odd differential on CTd�d ′ , d ′ = (d1 + 1, . . . , dN + 1).

Note that ∂2 = 0.

AO2.
H〈�〉 = π (H〈� � 0〉) , (3)

for � ∈ V
d and 0 ∈ V

d ′ .

Let us note an important corollary of the axioms. Suppose that d� = 0. Then we
have

H〈�〉 �H〈�〉 = 0. (4)

Hence, if d� = 0 then
(
W⊗ CTd ,D〈�〉) is a differential Weyl algebra with a differ-

ential
D〈�〉(x) = [H〈�〉, x], x ∈W⊗ CTd .

More generally, for any � ∈ V
d we can define a differential Weyl algebra(

W⊗ CTd�d ′,D〈� � d�〉)
with a differential

D〈� � d�〉(x) = ∂x + [H〈�〉, x], x ∈W⊗ CTd�d ′ .

Let us also consider

• a space F of formal Fourier series

∞∑
k=1

Pke
ikx +Qke

−ikx, (5)

where Pk = {pk,γ }γ∈�,Qk = {qk,γ }γ∈� , k = 1, . . . , are ordered strings of
graded variables, indexed by elements of�; the space F is canonically polarized,
i.e. split F = F+ ⊕ F−, where F+ (resp. F−) is formed by Fourier series with
only positive (resp. negative) coefficients;

• a space Fock which consists of formal series
∑
k≥0 fkh̄

k , where fk are func-
tionals on the space F− which can be expressed as polynomials of Fourier
coefficients qk,γ .

Note that the space Fock can be viewed as a D-module over 1
h̄
W. Indeed, the

quantization

pk,γ �→ kh̄
∂

∂qk,γ̄
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provides a representation of 1
h̄
W as the algebra of differential operators acting from

the left on elements of the space Fock. Given an element A ∈ 1
h̄
W we will denote by

�A� the corresponding differential operator if we need to distinguish it from A.
For each � with d� = 0 the equation (4) implies that the operator H(�) is a

differential on Fock⊗ CTd . Indeed, if we define

D� = �H〈�〉�f, f ∈ Fock⊗ CTd ,

then D2
� = 0.

Consider now two objects O+,O− ∈ ALGSFT. We will label with ± all the
structures associated with these objects. Morphisms O+ → O− are formed by the
following structures:

• A graded space V =∑j Vj over C with a differential d : V→ V, d2 = 0, and
two grading-preserving restriction homomorphisms R± : V→ V

±;

• A graded commutative algebra A+− over C which consists of formal power series
of h̄ andp+-variables whose coefficients are polynomials ofq−-variables. Note
that the Weyl algebra 1

h̄
W− acts on A+− on the left by quantizing

p−k,γ �→ kh̄

−→
∂

∂q−k,γ̄
, (6)

while the Weyl algebra W+ acts on A+− on the right by quantizing

q+k,γ �→ kh̄

←−
∂

∂p+k,γ̄
; (7)

given an element D ∈ 1
h̄
W± we will denote by �D� and �D� its quantizations

defined by formulas (6) and (7), respectively.

• A smooth function

V̂
d → 1

h̄
A+− ⊗ CTd

which associates with a string � = (θ1, . . . , θN) ∈ V̂
d an even (of degree 0 in

the situation of Z-grading) element

�〈�〉 = 1

h̄
�〈�〉(T , q−, p+, h̄) ∈ A+− ⊗ CTd ,

called the potential.

The following axioms should be satisfied:
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AM1.

�H−〈R−(� � d�)〉�e�〈��d�〉 + e�〈��d�〉�H+〈R+(� � d�)〉� = ∂e�〈�〉,
(8)

where the linear differential operator ∂ =∑i,j tij
∂
∂t ′ij

is defined above in (2).

AM2.
�〈�〉 = π (�〈� � 0〉) , (9)

where� ∈ V
d , 0 ∈ V ∈ V

d ′ , andπ is the projection A+−⊗CTd�d ′ → A+−⊗CTd .

An important partial case is when d� = 0. In this case the axioms imply

�H−〈R−(�)〉�e�〈�〉 + e�〈�〉�H+〈R+(�)〉� = 0. (10)

Note that � defines for each � a formal Fourier integral operator

	̃〈�〉 : Fock+ ⊗ CTd → Fock− ⊗ CTd

by the formula

	̃〈�〉(f )(T , q−, h̄) = (e 1
h̄
�〈�〉(T ,q−,p+,h̄)⌈

f (T , q+, h̄)
⌉)∣∣

p+=0. (11)

If d� = 0 then the equation (10) translates into the fact that

	̃〈�〉 : (Fock+ ⊗ CTd ,DR+(�)
)→ (Fock− ⊗ CTd ,DR−(�)

)
is a chain map.

Suppose now that we are given three objects O0, O1 and O2, and morphisms
�01 : O0 → O1 and �12 : O1 → O2. Then their composition �02 : O0 → O2 is
defined as follows. First, we define the phase space V02 as the fiber product

V02 = {(θ01, θ12); θ01 ∈ V01, θ12 ∈ V12, R
−
01(θ01) = R+12(θ12)}.

Given �02 = (�01,�12) ∈ V
d
02 we define an element

�02〈�02〉 = 1

h̄
	02〈�02〉(T , q2, p0, h̄) ∈ 1

h̄
A0

2

by the formula

e
1
h̄
�02〈�02〉(T ,q2,p0,h̄) = (⌊e 1

h̄
�12〈�12〉(T ,q2,p1,h̄)

⌋
e

1
h̄
�01〈�01〉(T ,q1,p0,h̄)

)∣∣
q1=0

= (e 1
h̄
�12〈�12〉(T ,q2,p1,h̄)

⌈
e

1
h̄
�01〈�01〉(T ,q1,p0,h̄)

)⌉∣∣
p1=0.

(12)

Note that the corresponding operator 	̃02(�02) is the composition:

	̃02〈�02〉 = 	̃12〈�12〉 � 	̃01〈�12〉 : Fock0 ⊗ CTd → Fock2 ⊗ CTd .
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1.2. The category GEOMSFT . The exposition in this section is essentially taken
from Section 4.1 in [17]. A Hamiltonian structure is a pair (V ,
), where V is an
oriented manifold of dimension 2n− 1 endowed with a closed 2-form 
 of maximal
rank (= 2n − 2). The tangent line field � = Ker
 is called the characteristic line
field. The field � integrates to a 1-dimensional characteristic foliation of 
. Note
that 
 defines a fiber-wise symplectic structure (and hence an orientation) on the
bundle T V/�. Thus the line bundle � is equipped with an orientation. We will call
characteristic any vector field R which generates � and respects its orientation.

Any co-orientable hypersurface V in a symplectic manifold (W, 
̃) inherits a
Hamiltonian structure 
̃|V . Conversely, any Hamiltonian structure (V ,
) embeds
as a hypersurface in a symplectic manifold (V × (−ε, ε), 
̃) where the form 
̃ can
be constructed as follows. Let λ be any 1-form which is not vanishing on �, and s
the coordinate along the second factor. Then we set 
̃ = 
 + d(sλ). Note that
by Darboux’s theorem the Hamiltonian structure (V ,
) determines its symplectic
extension to a neighborhood of the hypersurface V = V ×0 ⊂ V × (−ε, ε) uniquely
up to a diffeomorphism fixed on V . We call (a germ along V of) the symplectic
structure 
̃ on V × (−ε, ε) the symplectic extension of (V ,
).

A Hamiltonian structure H = (V ,
) is called stable (see [24]) if its symplectic
extension can be realized by a form 
̃ on V × (−ε, ε) such that the Hamiltonian
structures induced on hypersurfacesV×s, s ∈ (−ε, ε), all have the same characteristic
line field �. It is easy to check (see [17]) that

Proposition 1.1. A Hamiltonian structure H = (V ,
) is stable if and only if there
exists a 1-form λ and a characteristic vector field R such that

λ(R) = 1 and iRdλ = 0. (13)

Note that in view of Cartan’s formula we haveLRλ = d(λ(R))+ iRdλ, and hence
the second condition can be restated as invariance of λ under the flow of R.

A framing of a stable Hamiltonian structure is a pair (λ, J ) where

• λ is as in (13); the form λ automatically defines the hyperplane field ξ = {λ =
0}, called a cut of the Hamiltonian structure, and the vector field R, called its
Reeb field;

• J is an almost complex structure on ξ (also called a CR-structure on V ) com-
patible with the symplectic form 
.

Here are three major examples of stable framed Hamiltonian structures.

Example 1.2. (1) Contact forms. Let ξ be a contact structure on V , i.e. a completely
non-integrable tangent hyperplane field, and λ a contact form for ξ , i.e. ξ = {λ = 0}.
Let an almost complex structure J : ξ → ξ be compatible with dλ|ξ . Then H =
(
 = dλ, λ, J ) is a framed stable Hamiltonian structure on V with the cut ξ , and R
is the usual Reeb field of the contact form λ. We say in this case that the Hamiltonian
structure H is of contact type.
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(2) Hamiltonian functions. Let (M,ω) be a symplectic manifold andHt : M → R,
t ∈ S1 = R/Z, a 1-periodic time-dependent Hamiltonian function. Set V = M×S1,

 = −ω+Htdt and λ = dt . Let J be an almost complex structure onM compatible
with ω. Then H = (V ,
, λ, J ) is a framed stable Hamiltonian structure. Its Reeb
vector field is given by R = ∂

∂t
+ sgradHt , where sgradHt is the Hamiltonian vector

field defined by Ht . We say in this case that H is of Floer type.
(3) S1-bundles. Let (M,ω) be a symplectic manifold and p : V → M any

S1-bundle over it. Set 
 = p∗ω. Then 
 is a stable Hamiltonian structure on V .
Indeed, one can choose any S1-connection form λ as its framing. The corresponding
Reeb vector field R is the infinitesimal generator of the S1-action, and the cut of ξ
is formed by the horizontal spaces of the connection. Let JM be an almost complex
structure on M compatible with ω, and J be the pull-back of JM to ξ via the pro-
jection V → M . We say that a framed Hamiltonian structure H = (V ,
, λ, J ) is
of fibration type. Note that if the cohomology class [ω] of the symplectic form is
integral, then one could take as V the corresponding pre-quantization space , i.e. the
principal S1-bundle p : V → M with the first Chern class [ω]. In this case the lift

 = p∗ω of the symplectic form is exact and one can choose λ to be a primitive
of 
. Hence, in this case (V ,
, λ, J ) is also of contact type.

All Hamiltonian structures which we consider in this paper will be assumed stable.

Framed Hamiltonian structures are objects in the category GEOMSFT , while mor-
phisms are framed symplectic cobordisms which we describe below.

A symplectic cobordism between two Hamiltonian structures H+ = (V+, 
+)
and H− = (V−, 
−) is a symplectic manifold (W,
) such that ∂W = V+ ∪ (−V−)
and 
|V± = 
±. Note that “symplectic cobordism” is a partial order, and not an
equivalence relation, because it is not symmetric. A framed symplectic cobor-

dism between two framed Hamiltonian structures
→
H+ = (V+, 
+, λ+, J+) and

→
H− = (V−, 
−, λ−, J−) is a cobordism (W,
) between H+ and H− equipped
with an almost complex structure J which is compatible with 
, and such that

J (ξ±) = ξ±; here ξ± denotes the cut {λ± = 0} of the framed Hamiltonian
→
H±. Mor-

phisms in the category GEOMSFT are multi-storied framed symplectic cobordisms,
i.e. sequences (C0,1, C1,2, . . . , Ck−1,k) where Cj−1,j = (Wj−1,j , 
j−1,j , Jj−1,j ) is

a framed symplectic cobordism between framed Hamiltonian structures
→
Hj−1 and

→
Hj , j = 1, . . . , k. An associative operation of composition of morphisms is defined
in an obvious way as concatenation of such sequences.

1.3. 2-categories. Both categories, GEOMSFT and ALGSFT, can be upgraded to
2-categories which are respected by the functor SFT.

On the geometric side, a 2-morphism is a fixed on the boundary homotopy of
symplectic cobordisms and their framings. More precisely, a 2-morphism is a pair
(
s, Js), s ∈ [0, 1], where 
s is a family of symplectic forms on a cobordism W
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such that 
s |∂W = 
0|∂W , 
s = d�s , �s |∂W = 0, s ∈ [0, 1], and Js is a fixed
on ∂W deformation of almost complex structures compatible with 
s . The notion
of homotopy can be extended to morphisms represented by multi-storied cobordisms
via the process, called splitting or stretching the neck. We refer the reader to [15], [8]
for the precise definition.

Let us move now to the algebraic side of the story. Let �(0),�(1) : O+ → O− be
two morphisms, where for � ∈ V

d . We have

�(s)(�) = 1

h̄
	(s)〈�〉(T , q−, p+, h̄) ∈ 1

h̄
A+− ⊗ CTd , s = 0, 1.

A 2-morphism between �(0),�(1) is a function which associates with � ∈ V
d a

family

K(s)〈�〉 = 1

h̄
K(s)〈�〉(T , q−, p+, h̄) ∈ 1

h̄
A+− ⊗ CTd , s ∈ [0, 1].

When d� = 0 then K(s) generates a homotopy �(s) = 1
h̄
�(s)〈�〉(T , q−, p+, h̄),

s ∈ [0, 1], defined by the following differential equation:

d�

ds

(s)

= e−�(s)([�H−�,K(s)]e�(s) + e�(s)[�H+�,K(s)]), s ∈ [0, 1], (14)

where we identify K(s) with an operator of multiplication by K(s) acting on the algebra
A+− ⊗ CTd . More generally, for any � we define a homotopy �(s)〈� � d�〉 by the
equation

d�

ds

(s)

〈��d�〉 = e−�(s)([�H−�+∂,K(s)]e�(s)+e�(s)[�H+�+∂,K(s)]), s ∈ [0, 1],
(15)

where the differential operator ∂ = ∑i,j tij
∂
∂t ′ij

is defined in (2). Let us point out

an important corollary of (14) and (15). Suppose that H
±〈R±(�)〉 = 0. Then any

homotopy leaves �〈�〉 unchanged.
The category ALGSFT and the functor SFT can be further significantly enriched.

As we explain below, the construction of our Hamiltonian H, potential �, etc., is
based on the study of appropriate moduli spaces of holomorphic curves and their
compactifications. In fact, all these objects, as they are described above, are analogs
of the so-called descendent potential in the Gromov–Witten theory. A more systematic
use of the topology of the moduli spaces allows one to define further enrichments of
the theory (e.g. see the discussion of satellites in [15]).

1.4. Quasi-classical approximation. Let us consider the “quasi-classical” limit
(when h̄ → 0) of the structures entering the definition of the category ALGSFT.
This leads to the category ALG0

SFT which is formed by the following structures. Let
us first describe the objects.
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• The Weyl algebra W is replaced by a graded Poisson algebra P over C which
is formed by power series in p-variables with polynomial coefficients in q-
variables. All variables Poisson commute except that the {pk,γ , qk,γ̄ } = k. It
is useful, in fact, to think about P as an algebra of functions on a symplectic
(super-)space S with coordinates pk,γ and qk,γ , and the symplectic form∑

γ∈�,k≥1

1

k
dpk,γ ∧ dqk,γ̄ .

• Given � ∈ V
d , the element

H〈�〉 =
∞∑
g=0

H
(g)〈�〉h̄g−1 ∈ 1

h̄
W⊗ CTd

is replaced by h〈�〉 = H
(0)〈�〉 ∈ P⊗ CTd .

• Axiom AO1 takes the form

1

2
{h〈� � d�〉,h〈� � d�〉} = ∂h〈� � d�〉, (16)

where ∂ is defined in (2).

In particular, if d� = 0 the we have

{h〈�〉,h〈�〉} = 0. (17)

In the definition of a morphism we replace the algebra A+− by a+− formed by
formal power series inp+-variables with polynomials coefficients inq−-variables. An
element �〈�〉 =∑∞g=0 �(g)〈�〉h̄g−1 ∈ 1

h̄
A+− ⊗ CTd reduces to φ〈�〉 = �(0)〈�〉 ∈

a+− ⊗ CTd . It is convenient to think about the function φ〈�〉 = φ〈�〉(T , q−, p+) ∈
a+− ⊗ CTd as a Lagrangian submanifold

Lφ ⊂
(

S+,
∑

γ∈�+,k≥1

1

k
dq+k,γ ∧ dp+k,γ̄

)
⊕
(

S−,
∑

γ∈�−,k≥1

1

k
dp−k,γ ∧ dqk,γ̄

)
,

or rather a family of Lagrangian submanifolds parameterized by T :

Lφ =
{
p−k,γ = k

∂φ

∂q−k,γ̄
, q+k,γ = k

∂φ

∂p+k,γ̄
; γ ∈ �, k ≥ 1

}
. (18)

Axiom AM1 reduces to the following equation for φ:(
h+〈R+(� � d�)〉 + h−〈R−(� � d�)〉) ∣∣

Lφ
= ∂φ〈�〉. (19)

In particular, when d� = 0 we have:(
h+〈R+(�)〉 + h−〈R−(�)〉) ∣∣

Lφ
= 0. (20)
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Similarly, the composition rule (12) becomes the Legendre transform formula

φ02(q
(2), p(0)) =

(
φ12(q

(2), p(1))+ φ01(q
(1), p(0))−

∑
γ∈�(1),k≥1

k−1q
(1)
k,γ p

(1)
k,γ

)∣∣
L
,

(21)
where

L =

⎧⎪⎨⎪⎩
p
(1)
k,γ = k ∂φ01

∂q
(1)
k,γ̄

,

q
(1)
k,γ = k ∂φ12

∂p
(1)
k,γ̄

.

We denote here by φ01, φ12 and φ02 the coefficient of h̄−1 in the h̄-expansion of
	01,	12 and 	02, respectively.

The “chain-homotopy” equation (14) takes (assuming d� = 0) the form of a
Hamilton–Jacobi equation:

dφ

ds

(s)

= {(h+ + h−), k(s)
}∣∣
L

φ(s)
. (22)

1.5. SFT and differential equations. We explain in this section that the axioms
of ALGSFT (e.g. equations (1), (8), (14)) associate with each object an infinite sys-
tem of commuting differential operators. In the quasi-classical approximation these
operators reduce to systems of Poisson commuting integrals. On the other hand, mor-
phisms provide (formal) solutions of evolution (Schrödinger) equations corresponding
to these operators. In the quasi-classical version ALG0

SFT morphisms provide solu-
tions to Hamilton–Jacobi equations corresponding to the hierarchies of the commuting
Hamiltonian functions.

Commuting differential operators. Consider an object in ALGSFT with the Hamil-
tonian H. Take � ∈ V

d with d� = 0. Then H〈�〉 ∈ 1
h̄
W ⊗ CTd satisfies the

equation H〈�〉 � H〈�〉 = 0 for all values of the parameter T = (tij ). Let us write
H〈�〉 = G(T , h̄, q, p) and differentiate the identity G � G = 0 in T -variables. We
get [

∂G

∂tij
,G

]
= 0,[

∂G

∂tij
,
∂G

∂tkl

]
+
[
∂2G

∂tij ∂tkl
, G

]
= 0,

(23)

where the commutators are taken according to the sign rules in the graded world. The
first equation means that the elements Gij = ∂G

∂tij
∈ 1

h̄
W ⊗ CTd commute with the

Hamiltonian, while the second one says that they commute among themselves after
passing to homology of 1

h̄
W⊗CTd with the differential DA = [A,G],A ∈ 1

h̄
W⊗CTd .

Moreover, in many interesting examples we have G|T=0 = 0, and hence in this case

[Gij |T=0,Gkl|T=0] = 0 (24)
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for all i, j, k, l. Recall that elements of 1
h̄
W have a representation as differential

operators on the Fock space

Fock⊗ CTd =
{∑
k≥1

fk(T )h̄
k
}
.

Hence, we get an infinite sequence of commuting differential operators �Gij |T=0�
acting on Fock⊗ CTd .

Let us writeG =∑∞0 G(g)h̄g−1, and, respectively,Gij =∑∞0 G
(g)
ij h̄

g−1, where

G
(g)
ij ∈ 1

h̄
P ⊗ CTd . We also denote g := G(0) and gij := G(0)ij . Then in the quasi-

classical approximation we get{
gij |T=0, gkl|T=0

} = 0, (25)

provided that g|T=0 = 0. In other words, gij |T=0 ∈ P, i = 1, . . . , N , j ≥ 0, are
Poisson commuting integrals.

Hence, the sequence of commuting differential operators Gij |T=0 ∈ 1
h̄
W is the

(deformation) quantization of Poisson commuting Hamiltonians gij |T=0 ∈ P.

Morphisms in ALGSFT and evolution equations. Let us consider a morphism
between two objects, � : O+ → O−. Let V be the phase space associated with the
morphism. For � ∈ V

d , d = (d1, . . . , dN), such that R±(d�) = 0, we denote

G±(S, q±, p±, h̄) := H
±〈R±(�)〉,

	(S, T , q−, p+, h̄) := �〈� � d�〉,
where the variables S, T generate CTd�e, e = (d1 + 1, . . . , dN + 1).

Then according to (8) we have for 	 = 	(S, T , q−, p+, h̄) that∑
i,j

sij
∂

∂tij
	 = e−	 (�G−(S, q−, p−, h̄)�e	 + e	�G+(S, q+, p+, h̄)�) . (26)

By differentiating both sides of (8) in variables sij and then setting S = 0 we get

Proposition 1.3. Suppose that G±|S=0 = 0. Then 	(S, T , q−, p+, h̄) satisfies the
system of commuting evolution equations

∂	

∂tij
(S, T , q−, p+, h̄)

= e−	(S,T ,q−,p+,h̄)(�G−ij�e	(S,T ,q−,p+,h̄) + e	(S,T ,q−,p+,h̄)�G−ij�), (27)

where G±ij := ∂G±
∂sij

∣∣
S=0, i = 1, . . . , N , j ≥ 0.
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In the quasi-classical approximation the system (27) reduces to a system Hamilton–
Jacobi equations for the evolution of the corresponding Lagrangian submanifold under
the system of commuting Hamiltonian flows:

dφ

dtij
(S, T , q−, p+) = (g−ij (q−, p−)+ g+ij (q

+, p+)
)∣∣
Lφ(S,T ,q−,p+)

, (28)

i = 1, . . . , k, j ≥ 0.

2. Construction of the functor SFT

2.1. Beginning of the construction. The description of the functor SFT which we
present here is very sketchy, and only gives a very general picture of the structures
involved in the construction. It also omits many very important points. In particular,
in order to actually define the functor SFT we need to restrict the geometric cate-
gory by imposing certain genericity constraints. The actual construction of SFT is a
large project which is currently well under way (e.g. see [8], [25]), but not yet fully
completed.

Let O = (V ,
, λ, J ) be an object in GEOMSFT, i.e. a framed Hamiltonian
structure, andR the corresponding Reeb field. Let us begin building the corresponding
object SFT(O) ∈ ALGSFT.

Denote by P the space of simple periodic orbits of the Reeb field R. Generically,
periodic orbits are non-degenerate, i.e. the linearized Poincaré return map along each
orbit has no eigenvalues equal to 1. If this is the case, then the number of orbits in P
of bounded period is finite. We will assume either thatR satisfies this non-degeneracy
assumption, or the so-called Morse–Bott condition (see [5] for the precise definition)
when periodic orbits are organized in submanifolds, and the flow ofR satisfies a certain
non-degeneracy condition in the direction complementary to critical submanifolds.

Let H ∗(P ) be the (de Rham) cohomology space of P . Choose a basis of �
represented by a finite or countable system of differential forms on P , such that the
matrix of the Poincaré pairing has in this basis the form δγ,γ̄ for a certain involution
γ �→ γ̄ on �. Of course, in the non-degenerate case the space P is discrete, and
hence in this case there is a canonical basis of 0-forms, dual to individual orbits. In
this case the involution γ �→ γ̄ is the identity map.

In the non-degenerate case each γ can be identified with an orbit from P . We then
associate the variables pγ,k and qγ,k with the k-multiple cover of the orbit γ . Their
Z/2-grading is determined as follows. LetAγ,k be the linearized Poincaré return map
for this k-multiple orbit. Then the variables pγ,k and qγ,k are even or odd graded
depending on whether the Lefschetz number det(1−Aγ,k) is positive or negative. If
some extra choices are made one can define the integral grading of the variables pγ,k
and qγ,k but we will not discuss it in this paper. With the graded variables pγ,k and
qγ,k introduced, we can then define the Weyl algebra W and the space Fock.
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We will not discuss here the Morse–Bott case in full generality and only consider
its extreme case described above in Example 1.2 (3), when (V ,
, λ, J ) is of fibration
type. All orbits of R are closed in this case and the space P of simple periodic orbits
coincides with M . There exists a basis � of H ∗(M) = H ∗(P ), and an involution
γ → γ̄ such that the Poincaré pairing in this basis is given by the matrix

(γ, γ ′) = δγ,γ̄ ′ .
The Z/2-degrees of the variables pγ,k and qγ,k coincide in this case with the degree
of the corresponding cohomology classes γ ∈ H ∗(M). The phase space V associated
with SFT(O) is the space of differential forms on V with the de Rham differential.

The main part of SFT(O), the Hamiltonian H, is defined in terms of moduli spaces
of certain holomorphic curves in the cylinderV ×R with an almost complex structure,
still denoted by J , which is defined by the following conditions.

• J is invariant with respect to translations (x, t) �→ (x, t + c), (x, t) ∈ V × R;

• J ∂
∂t
= R;

• the CR-structure induced on each slice V × t coincides with the given CR-
structure J .

H. Hofer (see [27]) was the first who studied holomorphic curves in almost complex
cylindrical manifolds of this type in his work on theWeinstein conjecture. He followed
the pioneering work of M. Gromov (see [23]) who essentially created the new field of
symplectic topology by introducing the technique of (pseudo-)holomorphic curves.
Before considering the general case we sketch the construction in the very special,
but already highly non-trivial case when V = S1.

2.2. The circle. Consider Example 1.2 (3) for the special case whenM is the point.
In this case V = S1 = R/Z and R = ∂

∂s
, s ∈ R/Z. The complex structure J defined

on the cylinder C = S1 × R at the end of the previous section coincides in this case
with the standard complex structure on the cylinder C = C/{z ∼ z+ 1}.

The space P consists of only one simple orbit, and hence � is just a point. There-
fore, we have two infinite series of even variables pk , qk , k = 1, . . . , and the space F
is the space of “scalar” Fourier series u(x) =∑∞k=1 pke

ikx + q−ikxk . The spaces F+
and F− are formal analogs of spaces of holomorphic functions in the unit disc and its
complement, which are equal to 0 at the origin or∞, respectively. The Weyl alge-
bra W is generated by even elements pk, qk with k = 1, . . . , and an even element h̄,
and consists of formal power series

∞∑
n=0

∑
I

gI,n(q)h̄
npI ,
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where gI,n(q) are polynomials, the second sum is taken over all infinite multi-indices
I = (i1, i2, . . . ) with finitely many non-zero entries, and pI = p

i1
1 p

i2
2 . . . . All

variables commute except that [pk, qk] = kh̄.
By quantizing �pk� = kh̄ ∂

∂qk
we represent elements of 1

h̄
W as linear differential

operators on the space Fock formed by power series
∑
k≥0 fkh̄

k , whose coefficients
fk are functionals on the space F− (of “equal to 0 at∞ holomorphic functions u in
the complement of the unit disc”) which can be expressed as polynomials of Fourier
coefficients of u.

Next, we describe the Hamiltonian H. Let (S, j) be a closed Riemann surface of
genus g and F : S → CP 1 a meromorphic function with r+ poles (x1, . . . , xr+) and
r− zeroes (y1, . . . , yr−) of multiplicities c = (c1, . . . , cr+) and b = (b1, . . . , br−),
respectively. By identifying CP 1 \ {0,∞} with the cylinder

C = C/{z ∼ z+ 1} = S1 × R, S1 = R/Z,

we can equivalently view the function F as a map

F = (f, a) : S \ ({x1, . . . , xr+} ∪ {y1, . . . , yr−}
)→ C. (29)

With this interpretation we will callX = {x1, . . . , xr+} and Y = {y1, . . . , yr−} the sets
of positive and negative punctures, respectively. If z = e−ρ+iϕ is a local coordinate
on S near a puncture xi ∈ X where ρ ∈ (0,∞), ϕ ∈ R/2πZ, then the map F near
this puncture can be written as

s = f (ρ, ϕ),
t = a(ρ, ϕ),

where f (ρ, ϕ) −−−→
ρ→∞

ciϕ
2π and a(ρ,ϕ)

ρ
−−−→
ρ→∞ ci . In other words, at xi the map F is

asymptotic to the ci-multiple circle S1 = R/Z at +∞ of the coordinate t . Similarly,
at a puncture yj ∈ Y the map F is asymptotic to the −bj -multiple circle S1 = R/ Z

at −∞ of the coordinate t . For a fixed genus and fixed multiplicity vectors c =
(c1, . . . , cr+) and b = (b1, . . . , br−) we denote by Mg(C; c, b) the moduli space of
equivalency classes of meromorphic functions defined in (29). The integer vectors c
and b are called the positive and negative ramification data. We will also denote by
Mg,k(C; c, b) a similar moduli space with k additional marked points (disjoint from
X and Y and each other) z1, . . . , zk . The stability condition: g + 2k + r+ + r− ≥ 3,
is required to be satisfied. Notice that we do not fix a conformal structure on the
surface and the configurations of punctures and marked points. Two maps are called
equivalent if they differ by a conformal map (Sg, j)→ (Sg, j

′) which preserves all
punctures and marked points. We will also consider the quotient Mg,k(C; c, b)/R by
translations of C = S1 × R along the R-factor.

The moduli space Mg,k(C; c, b)/R can be compactified by adding stable holo-
morphic buildings, see [8]. A stable building of height 1 is a stable nodal holomorphic
curve in the sense of Kontsevich, i.e. an equivalency class of holomorphic maps defined
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on a possibly disconnected Riemann surface with certain pairs of marked points (called
special) required to be mapped to one point on C. The stability condition should be
satisfied for each connected component, and the source surface must become con-
nected after identifying points of each special pair. As above, the equivalence relation
identifies buildings which differ by translation ofC along the R-factor. A stable build-
ing F of height l > 1 is a collection of stable buildings F1, . . . , Fl of height 1, with
the condition that the positive ramification data of the building Fi, i = 1, . . . , l − 1,
coincides with the negative ramification data of Fi+1. By definition, the negative
ramification data of F1 is the negative ramification data of F , and the positive rami-
fication data of Fl is the positive ramification data of F . The genus of F is the genus
of the surface obtained by gluing for each i = 1, . . . , l − 1 the source surfaces of
buildings Fi and Fi+1 along their respective ends. The compactified moduli space
will be denoted by M/Rg,k(C; c, b).

The evaluation map at the j -th marked points zj defines a map

evj : M/Rg,k(C; c, b)→ S1 = R/Z.

To define the Hamiltonian H we need to pick a system of forms. For our case of S1

let us take � = (θ0 = 1, θ1 = ds). Then the corresponding algebra CT is generated
by elements of the matrix T = (tij ), i = 0, 1, j ≥ 0, with even variables t0j and odd
variables t1j .

As it is customary in Gromov–Witten theory, we define correlators

〈T , . . . , T 〉g,k,c,b =∫
M/Rg,k(C;c,b)

(∑
tij ev∗1(θi)c1(L1)

j )
)
∧ · · · ∧

(∑
tij ev∗k(θi)c1(Lk)

j
)
, (30)

whereLj , j = 1, . . . , k, is a tautological line bundle over M/Rg,k(C; c, b)which as-
sociates with each holomorphic curve (building) the cotangent line at the j -th marked
point zj .1

Consider now the generating function H ∈ 1
h̄
W⊗ CTd ,

H =
∑

g≥0, k≥0,b,d

〈T , . . . , T 〉g,k,c,b
k!(r−)!(r+)! h̄g−1qbpc, (31)

where qb = qb1 . . . qbr− , p
c = pc1 . . . pcr+ .

1The integration in this and other similar formulas should be understood either in the sense of the virtual cycle
theory if one works in the algebro-geometric context, or literally but after an appropriate generic perturbation,
see [23], [39]. In fact, to achieve transversality one needs sometimes to perturb in a class of objects more general
than holomorphic curves. The relevant transversality theorem was first proven by K. Fukaya and K. Ono in [19]
in the context of Floer homology theory. Following their work the transversality issues in Gromov–Witten theory
were studied by several authors. H. Hofer, jointly with K. Wysocki and E. Zehnder, has recently developed a
new functional analytic theory of polyfolds, which provides the most suitable set-up for handling transversality
problems arising in SFT, see [25], [26]. One also needs to use coherent orientations of different moduli spaces,
as it is described in [15].
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The Hamiltonian H can be quite explicitly written in this case, thanks to the results
of A. Okounkov and R. Pandharipande, see [41].

First of all, it follows from the parity arguments that H|T1=0 = 0, where we denote
Ti = (tij ), j ≥ 0, i = 0, 1. Hence,

H =
∑
j≥0

t1jHj + o(T ) (32)

Let us introduce a new variable y and define a generating function for the sequence
of operators Gj = H|T0=0:

G(y) =
∞∑
0

Gjy
j .

Take u(x) =∑∞k=1 pke
ikx+qke−ikx ∈ F and denote by φ(x) the function determined

by equations

φ′(x) = u(x), φ(0) = 0.

In other words,

φ(x) = −i
∞∑
k=1

(pk
k
eikx − qk

k
e−ikx
)
.

Let us also set h̄ = λ2. Then we have

G(y)[u] = 1

2πλ2y2 s(λy)

2π∫
0

dx

(
e
i
λ

(
φ
(
x− iλy2

)
−φ
(
x+ iλy2

))
− 1

)
, (33)

where

s(u) = 2 sinh u
2

u
.

Let us write explicitly a few first terms Gk:

G0 = 1

2πh̄

2π∫
0

u2

2
dx ;

G1 = 1

2πh̄

2π∫
0

u3

6
dx ;

G2 = 1

2π

2π∫
0

(
h̄−1 u

4

24
+ u

2

12
− uu

′′

6

)
dx.

(34)
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It is interesting to note that the genus 0 term of Gk , k ≥ 0, i.e. the coefficient of h̄−1,
is equal to

G
(0)
k =

1

2π

2π∫
0

uk+2

(k + 2)! dx.

These are commuting integrals of the dispersionless KdV, or Burgers integrable hi-
erarchy, and hence the operators �Gk� acting on Fock, provides the deformation
quantization of this hierarchy.

2.3. Case of a general Hamiltonian structure. In order to define H for a general
Hamiltonian structure (V ,
, λ, J ) we consider moduli spaces of J -holomorphic
curves in the cylindrical almost complex manifold (W = V × R, J ).

Notice that for our choice of J the cylinder γ ×R ⊂ W over a trajectory γ of the
Reeb field R is always a J -holomorphic curve. Given a J -holomorphic map F of a
punctured disk D2 \ 0 → W with the coordinate z = e−ρ+iϕ , we say that the map
F = (f, a) is asymptotically cylindrical over a periodic orbit γ of the Reeb field R
at +∞ (resp. at −∞) if limρ→∞ a(z) = +∞ (resp. = −∞), and limρ→∞ f (z) =
f̄
( ± T ϕ

2π

)
, where the map f̄ : [0, T ] → V parameterizes the trajectory γ in such a

way that R is its velocity vector, and T is the period of γ .
Let S = Sg be a compact Riemann surface of genus gwith a conformal structure j ,

with r+ punctures x = {x1, . . . , xr+}, called positive, r− punctures y = {y1, . . . , yr−},
called negative, and also k marked points z1, . . . , zk , disjoint from each other and the
punctures.

Given two vectors c = (c1, . . . , cr+) and b = (b1, . . . , br−) of positive integers
we consider moduli spaces Mg,k(W, J ; c, b) of (j, J )-holomorphic curves

(Sg \ (x ∪ y), j)→ (W, J )

with k marked points z1, . . . , zk , which are asymptotically cylindrical over a ci-
multiply covered periodic orbit from P at the positive end at the puncture xi , and
asymptotically cylindrical over a (−bj )-multiply covered periodic orbit at the negative
end at the puncture yj . We will also consider the quotient M(W, J ; c, b)/R of the
space Mg,k(W, J ; c, b) by translations along the R-factor.

For our distinguished structure J , the holomorphic curve equation takes the form

π � df � j = J � π � df
da = (f ∗λ) � j. (35)

Notice that the second equation just means that the form f ∗λ�j is exact on S and that
the function a is a primitive of the 1-form f ∗λ�j . Thus the holomorphicity condition
for F = (f, a) is essentially just a condition on its V -component f . If f satisfies the
first of the equations (35) and the form (f ∗λ) � j is exact then the coordinate a can
be reconstructed uniquely up to an additive constant on each connected component
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of S. Therefore, an element F ∈ Mg,k(W, J ; c, b) is uniquely determined by its
V -component f , which is a surface bounded by multiply covered orbits from P .

Given α ≥ 0, let us denote by Mα
g,k(W, J, c, b) the subspace

Mg,k(W, J, c, b) ∩
{∫
Sg

F ∗ω ≤ α
}
.

The quotient space Mα
g,k(W, J, c, b) has a compactification M/R

α

g,k(W, J, c, b) by

holomorphic buildings2 (see [8]), similar to the one considered above for the case
V = S1. We denote

M/Rg,k(W, J, c, b) =
⋃
α≥0

M/R
α

g,k(W, J, c, b)

and
M/Rg,m(W, J ) =

⋃
k,c,b

k+r++r−=m

M/Rg,k(W, J, c, b)

The space M/Rg,m(W, J ) may consists of different components,

M/Rg,m(W, J ) =
⋃
Ci.

Given F ∈ Ci , we denote by μi its symplectic area
∫
Sg
F ∗ω, which depends only on

the component Ci .
By using the notation M/Rg,m(W, J )we put the punctures and the marked points

on the equal footing. Keeping up with this point of view, let us consider the disjoint
union

X =
∞∐
−∞

Pj ,

where

Pj =
{

P if j �= 0,

V if j = 0,

and supply each Pj , j �= 0, with an identical copy �(j) of the basis � of H ∗(P ).
Consider an evaluation map

ev = (ev1, . . . , evm) : M/Rg,m(W, J )→ X × · · · ×X︸ ︷︷ ︸
m

which associates
2In the Morse–Bott case one also needs to add to the compactification the so-called generalized holomorphic

buildings, see [5] and [8].
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– with each marked point zi its value f (zi) ∈ V = P0,

– with each positive puncture xi the corresponding periodic orbit in the Pk-copy
of P , where k = ci is its multiplicity,

– with each negative puncture yi the corresponding periodic orbit in the P−k-copy
of P , where k = bi is its multiplicity.

Choose a system of closed forms � = (θ1, . . . , θN) and associate with it a matrix
T = (tij ) of graded variables. Consider the following formal expression (“general
cohomology class of X with descendents”)

Z =
n∑
i=1

∞∑
j=0

tij θic
j +

∞∑
k=1

∑
γ∈�

pγ,kγ
(k) + qγ,kγ (−k),

where γ (j) denotes the copy of γ ∈ � in �(j), j �= 0, and set

ev∗l Z =
n∑
i=1

∞∑
j=0

tij ev∗l θi (c1(Ll))
j +

∞∑
k=1

∑
γ∈�

pγ,k ev∗l γ (k) + qγ,k ev∗l γ (−k),

where the line bundles Ll over M/Rg,m(W, J ) have the same meaning as in Sec-
tion 2.2 above. Define the correlator

〈Z, . . . , Z︸ ︷︷ ︸
m

〉g =
∞∑
j=1

zμj
∫
Cj

ev∗(Z ⊗ · · · ⊗ Z︸ ︷︷ ︸
m

), (36)

where the sum is taken over all components of M/Rg,m(W, J ).

Remark 2.1. Note that by introducing exponents zμj in the definition of the correlators
we effectively extended the coefficient ring from C to a certain Novikov ring (of
Puiseux power series

∑
j aj z

μj ). This was done to avoid infinities in (36). However,
it is not absolutely necessary to do that, and one can ignore these weights by setting
z = 1 in most of the cases. For instance, for Hamiltonian structures of contact type
there are always only finitely many terms in the sum which contribute in (36) to the
coefficient of a fixed monomial of q, p and h̄ variables. But even in the most general
situation one can alternatively deal with this problem by requiring the string of forms
� to contain closed 2-forms which form a basis of H 2(V ) (this approach is similar
to the divisor equation in the Gromov–Witten theory).

Finally, we define the Hamiltonian

H(�) =
∞∑
g=0

∞∑
m=0

1

m! 〈Z, . . . , Z︸ ︷︷ ︸
m

〉gh̄g−1. (37)



236 Yakov Eliashberg

Note that all terms of H have the same odd degree (and, in fact, degree 1 if the
grading is upgraded to Z from Z/2), because we integrate over the moduli spaces
quotiented by the R-action.

The “master equations” (1) and (16) follow from Stokes’ formula combined with
the description of the boundary of the corresponding moduli spaces.

All the other necessary constructions to build the functor SFT are done in the
same spirit. Consider, for instance, a framed cobordism (W,
, J ) which realizes a
morphism � : O+ → O− between two framed Hamiltonian structures

O± = (V ±, 
±, λ±, J±).
The phase space V associated with this cobordism is the space of differential forms
on W , and R± are the restriction homomorphisms to V ±.

Take � ∈ V̂
d and associate with it the corresponding graded algebra CTd . To

define the potential 	 ∈ 1
h̄

A+− ⊗ CTd we attach to the cobordism cylindrical ends
corresponding to framed Hamiltonian structures O±,

Ŵ = (V − × (−∞, 0]) ∪W ∪ (V + × [0,∞)) ,
and consider the compactified moduli space of holomorphic curves in Ŵ asymptot-
ically cylindrical to periodic orbits of the Reeb field R+ at the positive end, and the
orbits of R− at the negative one. Then the correlators and the potential are defined
by the formulas similar to (36) and (37) with one very important difference: in this
situation there is no R-action on the moduli space, and hence the integrals should
be evaluated on the moduli space itself, rather than its quotient by the R-action, as
was done for the Hamiltonian. The implication of this is that the potential, unlike
the Hamiltonian, has an even degree (in fact, degree 0 if the grading is upgraded to Z

from Z/2). As in the case of the Hamiltonian, the structural equation (8) is a conse-
quence of Stokes’ formula and the description of the boundary of the corresponding
moduli space.

Note that if the symplectic manifold W is closed, i.e. it is a cobordism between
empty Hamiltonian structures, then the corresponding SFT-potential �(�) ∈ CTd is
just the descendent potential of the Gromov–Witten theory.

2.4. The 3-sphere. Let us consider here an example when V = S3, λ is the standard
contact form whose Reeb field generates the Hopf fibration, J is the CR-structure
induced from C

2 on the round sphere. This is a pre-quantization space, so it fits into
both, the contact and the fibration cases in the sense of Example 1.2.

The manifold (W, J ) can be equivalently described here either as C
2 \ 0, or the

total space of the canonical degree 1 complex line bundle L over CP 1 minus the
0-section. In the second interpretation a holomorphic curve from M(W, J, c, b) can
be viewed as a pair (h, ψ), where h : Sg → CP 1 is a holomorphic curve, and ψ is a
meromorphic section of the induced complex line bundle h∗L over Sg . The punctures
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from x and y correspond to zeroes and poles of this section, respectively, while the
vectors c and b appear as the multiplicities of zeroes and poles.

Take a basis ofH ∗(CP 1)which consists of γ0 = 1 and the harmonic form γ2 with∫
CP 1 γ2 = 1. The Poincaré duality involution acts as γ̄0 = γ2. Thus the Weyl algebra

W is generated by even graded variables p0k = pγ0,k , p2k = pγ2,k , q0k = qγ0,k , and
q2k = qγ2,k , k ≥ 1. We organize them into formal Fourier series

u0(x) =
∞∑
1

p0ke
ikx + q0ke

−ikx, u2(x) =
∞∑
1

p2ke
ikx + q2ke

−ikx, u = (u0, u2).

Let us choose a basis (θ0 = 1, θ3) ofH ∗(S3), where θ3 is a harmonic 3-form with∫
S3 θ3 = 1, as the required string � of differential forms. The algebra CTd in this

case is generated by T = (T0, T3), where Ti = (tij ), i = 0, 3; j ≥ 0. The variables
t0j are even, while t3j are odd.

As was shown in [15], the genus 0 part H
(0) of the Hamiltonian H can be explicitly

reconstructed in terms of the genus 0 descendent Gromov–Witten potential of CP 1

(in fact, this is a general phenomenon for all Hamiltonian structures of fibration type).
In particular, we get

G0 = 1

2π

2π∫
0

(
(t0 + u0(x))

2

2
+ eu2(x)−ix

)
dx, (38)

and the Hamiltonian equations for the Hamiltonian G0 can be written as

u̇0(x) = −i d
dx

(
eu2(x)−ix),

u̇2(x) = −i du0

dx
(x),

(39)

or ü2 = − d2

dx2 (e
u2−ix), where the dot denotes the time derivative.

As was pointed out to me by B. Dubrovin, this is the continuous limit of the Toda
lattice. The other Gi are Poisson commuting integrals of this integrable hierarchy.
Hence, if one were to explicitly write for this example the terms of the expansion of
the full Hamiltonian H (and not only of its genus 0 term H

(0)) then this would provide
the quantum commuting integrals for the quantization of the Toda system (39).3

Let us now use the Hamilton–Jacobi equation (28) to compute the genus 0 potential
of the round 4-ball B ⊂ C

2. Take a 4-form θ supported in IntB4 with
∫
B4 θ = 1

and set � = {θ}. Let T = (tj ), j ≥ 0 be the corresponding string of even graded
variables. Take the genus 0 potential �(0)(�) = 	(0)(T , p) ∈ P ⊗ C[T ], and
consider its restriction φ(t, p) to the subspace T = {(t, 0, 0, . . . )}. Note that φ(t, p)

3One can extract from the work [38] an explicit, though quite complicated recurrent procedure for writing
down the expansion of the full Hamiltonian H in terms of the descendent Gromov–Witten potential of CP 1.
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is, in fact, a certain relative genus 0 Gromov–Witten invariant. Coefficients in its
expansion in t and p variables count the numbers of rational curves in CP 2 which
pass through a given number of fixed points and have a prescribed tangency pattern
to a fixed complex line C ⊂ CP 2. According to (28) φ(t, p) can be computed as a
solution of a Hamilton–Jacobi equation associated with the Hamiltonian flow (39).
Let Et : F → F be the (formal, i.e. understood in terms of formal power series)
Hamiltonian flow defined by the equation (39). Take the Lagrangian subspace F+ =
{(u+, 0)} = {q = 0} ⊂ F and denote by Lt its image Et(F+) under the flow Et .
Then φ(t, p) is the generating function for L(t) in the sense of (18), i.e.

L(t) = Lφ =
{
qk,0 = k ∂φ

∂pk,2
, qk,2 = k ∂φ

∂pk,0
, k ≥ 1

}
.

Let us switch to the (u−, u+)-notation, i.e. write u− for q and u+ for p, and apply
a standard symplectic-geometric procedure for computing the generating function in
terms of the Lagrangian submanifold which it defines. Let us define Lt by an explicit
equation u− = f t (u+) (i.e. exclude v from the parametric equations (u+, u−) =
Et(v, 0), v ∈ F+). Then we have

φ(t, u+) = − i

2π

1∫
0

2π∫
0

〈
f t (su+(x)),

du+(x)
dx

〉
dxds, (40)

where 〈 ·, ·〉 is a bilinear form on C
2 with the matrix

(
0 1
1 0

)
.

It is interesting to note that the value of the functional φ(t, u+) at the point u+ =
(zeix, 0), i.e. the function

g(t, z) = φ(t, u+) = z
1∫

0

f t(2,1)(sze
ix) ds, (41)

where we write

f t = (f t0 , f t2 ) =
( ∞∑

1

f t0,ke
−ikx,

∞∑
1

f t2,ke
−ikx),

is the generating function

g(t, z) =
∞∑
d=1

∞∑
m=1

Nd,kt
mzd

for the numbers Nd,k of rational curves of degree d which pass through m points in
general position in the complex projective plane.4 In order to get (41) from (40) one
needs to split CP 2 along a boundary of a tubular neighborhood of CP 1 ⊂ CP 2 and
apply the gluing formula (21), see [15].

4As it is well known, the coefficientsNd,k vanish unless k = 3d−1, and we haveN1,2 = 1, N2,5 = 1, N3,8 =
12, N4,11 = 620, . . . . Several recursion relations, beginning from the one discovered by M. Kontsevich in [32],
are known for computing the coefficients Nd,k .
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3. Invariants of contact manifolds and other applications of SFT

3.1. Invariants of contact manifolds. Defining invariants of contact manifolds was
one of the primary motivations for the SFT project.

Let (V , λ, J ) be a framed Hamiltonian structure of contact type. Choose a system
of closed forms� = (θ1, . . . , θN)which represents a basis of the cohomologyH ∗(V )
and consider the corresponding Hamiltonian

H〈�〉 =
∞∑
g=0

H(g)(T , q, p)h̄g−1.

Consider the following SFT objects which can be associated with (V , λ, J ):

1. The Weyl differential algebra (W⊗ CTd ,D), where

DA = [A,H〈�〉], H〈�〉 ∈ 1

h̄
W⊗ CTd .

2. The space Fock⊗ CTd with the differential5

Df = �H〈�〉�f, f ∈ Fock⊗ CTd .

3. The Poisson differential algebra (P⊗ CTd , d) with the differential

dA = {A,H(0)〈�〉}, A ∈ P⊗ CTd .

4. The differential algebra (fock ⊗ CTd , d) where Fock = fock[[h̄]] and the dif-
ferential d is defined as follows. Consider the expansion

H
(0)〈�〉 =

∑
γ∈�,k≥1

hk,γ (q, T )pk,γ + o(p). (42)

Then we define dqk,γ = khk,γ̄ (q, T ) and extend d to the whole algebra using
the Leibnitz rule.

In all the above cases the corresponding homology, together with all the inherited al-
gebraic structures, is an invariant of the contact manifold (V , ξ = {λ = 0}) (see [15]),
and thus independent of the choice of J , the contact form λ, and the representatives θj
of the corresponding cohomology classes of H ∗(V ). Moreover, the homotopy types
of the corresponding differential algebras are also invariants of (V , ξ).

However, sometimes it is possible to define a simpler, easier computable contact
invariant. Let us restrict the discussion to the case when the set of forms � is empty
or, equivalently, set T = 0. The differential d in Case 4 can be viewed as a vector
field

d(q) =
∑
k,γ

khk,γ̄ (q)
∂

∂qk,γ

5The algebraic structure of (Fock⊗ CTd ,D) can be described in terms of the BV∞-formalism, see [9].
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on the space with coordinates qk,γ . Suppose there are constants ak,γ ∈ C such that
d(a) = 0, where a = {ak,γ }. Then one can define the linearized homology of the
algebra (fock, d) at the point a. More precisely, following Yu. Chekanov [11] we
define an augmentation of the algebra (fock, d) as a graded chain homomorphism
ε : (fock, d)→ (C, 0). In other words, this means that d(a) = 0 where a = {ak,γ =
h(qγ,k)} and ak,γ = 0 unless ak,γ has grading 0. The linearized complex is defined
as (

fockd≥1/fockd≥2, dε = φε � d � φ−1
ε

)
, (43)

where fockd≥m denotes the ideal in fock generated by monomials of degree ≥ m,
and the algebra homomorphism φε : fock → fock is defined on the generators qk,γ
as the shift qk,γ �→ qk,γ + ak,γ . It turns out that if the algebra (fock, d) admits a
unique augmentation for a certain choice of λ and J , then for any other choice the
corresponding algebra admits an augmentation ε, and the homology of the complex
(43) is independent of choices of λ, J and ε, and hence it is an invariant of the contact
structure ξ , see [11] and [7]. This homology, denoted CH∗(V , ξ) is usually called
cylindrical contact homology because in all known cases when this homology is de-
fined, there exists a class of forms for which d(0) = 0, and hence the differential of the
linearized complex (43) is determined by holomorphic cylinders. If the cylindrical
contact homology is defined then all the other algebraic structures described in ex-
amples 1–4 can be interpreted as certain (co-)homological operations on CH∗(V , ξ).
Here are some examples when cylindrical contact homology is well defined and can
be computed:

a) Subcritical Stein-fillable contact manifolds. (V , ξ) is called Stein fillable if
it appears as a strictly pseudo-convex boundary of a Stein domain W . The
subcriticality means thatW has a homotopy type of a CW-complex of dimension
< dimCW . Under an additional assumption c1(ξ) = 0, M.-L. Yau (see [50])
proved that the cylindrical contact homology is well defined. She also computed
it in terms of H∗(W). It seems likely that the condition c1(ξ) = 0 can be
removed.

b) Prequantization spaces. Cylindrical contact homology of a prequantization
space (V , ξ) of a symplectic manifold (M,ω) is well defined and can be ex-
pressed through the homologyH∗(M), see [15] and [5]. Note that by juxtaposing
the computations in a) and b) one gets non-trivial restrictions on the topology of
symplectic manifolds with subcritical polarizations in the sense of [4] (e.g. com-
plex projective manifolds admitting a hyperplane section whose complement is
a subcritical Stein manifold).

c) Spaces of co-oriented contact manifolds. Given an oriented n-dimensional
closed M , the cylindrical contact homology of its unit cotangent bundle ST ∗M
is always well defined, and we have CH∗(ST ∗M) = HS1

∗ (�(M),M) where

HS1

∗ (�(M),M) is the equivariant homology of the free loop space modulo con-
stant loops. See [49], [43], [1], [9] for related results.
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d) Brieskorn varieties. I. Ustilovsky (see [48]) computed contact homology of
certain Brieskorn spheres. His computation implied existence of infinitely many
non-isomorphic contact structures on spheres of dimension 4k+1. F. Bourgeois
([5]) and O. van Koert ([33]) extended Ustilovsky’s computations to a large class
of other Brieskorn varieties.

e) Toroidal 3-manifolds. It was shown in [15] and [5] that cylindrical contact
homology distinguish all the contact structures on T 3 (there are infinitely many
of them according to E. Giroux, see [22]). F. Bourgeois and V. Colin, see [6],
generalized this computation to toroidal (i.e. containing an incompressible torus)
irreducible 3-manifolds and as a consequence showed that such manifolds have
infinitely many non-isotopic (universally) tight contact structures. This result
should be contrasted with a theorem of V. Colin, E. Giroux and Ko Honda, see
[12], which states that atoroidal irreducible 3-manifolds may admit only finitely
many non-isotopic tight contact structures.

f) Exact triangle for Legendrian surgery. In [7] F. Bourgeois, T. Ekholm and
the author found an exact triangle which relates cylindrical contact homology
before and after surgery along a Legendrian sphere, and a certain cyclic complex
associated to the differential algebra of the Legendrian sphere, see discussion
of relative SFT in Section 3.3 below. This exact triangle is tightly related to
Seidel’s exact triangle describing an effect of a symplectic Dehn twist on Floer
homology, see [44] and [45].

F. Bourgeois computed in his dissertation [5] cylindrical contact homology for a
number of other interesting examples (e.g. for T k-invariant contact structures con-
structed by R. Lutz in [37] on some (2k + 1)-manifolds). Most recently, V. Colin
and K. Honda, see [28], announced a result that the cylindrical contact homology is
defined and not trivial for a large class of tight contact 3-manifolds. This theorem
implies the Weinstein conjecture (i.e. existence of periodic orbits of the Reeb flow) for
this class of contact 3-manifolds. It seems likely that cylindrical contact homology
is well defined at least for all Stein fillable, or maybe even more generally, symplec-
tically fillable contact manifolds. Note that the algebra (fock, d) for symplectically
fillable contact manifolds always admits an augmentation (see [7]), which is unique
in all known cases for an appropriate choice of λ and J .

3.2. Topological invariants via SFT. There are several canonical constructions
which associate with smooth manifolds and their submanifolds symplectic and con-
tact manifolds and their Lagrangian and Legendrian submanifolds. Here are a few
examples:

(1) Given a smooth closed n-manifold, one can associate with it its cotangent
bundle T ∗M with its canonical symplectic form ω = dp ∧ dq, or its unit
cotangent bundle (the space of co-oriented contact elements) ST ∗M with its
canonical contact structure ξ given by the contact form pdq|ST ∗M .
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(2) Given a submanifoldK ⊂ M one can associate withK its Lagrangian conormal
bundle LK ⊂ T ∗M , or its Legendrian lift�K ⊂ T ∗M , formed by co-oriented
hyperplanes tangent to K .

(3) Here is another interesting variant of this construction. Let M be a compact
manifold with boundaryN . Choose a metric onM and take a smooth function
ρ : M → R+ which is positive on the interior of M and such that ρ(q) =
dist(q,N) for q ∈ M close to the boundary N = ∂M . Let U ⊂ T ∗M be a
neighborhood of M in T ∗M defined by

U = {(q, p) ∈ T ∗M; ‖p‖2 ≤ ρ(q)}.
Take the function H(q, p) = p(∇ρ(q)). Then d(pdq − dH) = ω, and it
is straightforward to check that the form λ = (pdq − dH)|∂U is a contact
form. In other words, V = ∂U is a contact type hypersurface and the contact
manifold (V , ζ = {λ = 0}) depends only on the smooth manifold M , up to
an isotopic to the identity contactomorphism. Then N ⊂ V is a Legendrian
submanifold in V whose Legendrian isotopy class is another smooth invariant
of M .

(4) Moreover, note that the involution inv(p) = −p interacts well with all the
above structures. For instance, it induces an anti-symplectic involution of
T ∗M , a contact, co-orientation reversing involution of the space of co-oriented
contact elements ST ∗M and of the contact manifold V in (3). In that example
the Legendrian manifold N is the fixed point set of inv, while inv induces an
involution of the Lagrangian LK and Legendrian �K in (2).

The author believes that all the above canonical symplectic and contact construc-
tions retain a lot of information about the differential topology of the manifoldM , or
the pair (M,K). For instance, let � be a homotopy n-sphere with an exotic smooth
structure.

Are the cotangent bundles T ∗� and T ∗Sn symplectomorphic?6

Are the spaces of contact elements ST ∗� and ST ∗Sn contactomorphic?
Can any gauge-theoretic invariants of a 4-manifoldM (and maybe even its smooth

type) be recovered from the symplectic and contact information about T ∗M and
ST ∗M?

Note that as smooth manifolds, T ∗M and ST ∗M depend only on the (tangential)
homotopy type of M , and hence all the subtle differential-topological information
gets lost this way.

Recently M. Abouzaid and P. Seidel [2] developed a program for proving that
certain homotopy spheres do not admit Lagrangian embeddings into T ∗Sn. This
would answer negatively to the first question for this class of homotopy spheres. In
the Legendrian version of example (2) one can try to use the differential algebra of

6This question I first heard 18 years ago from G. Mess.
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the Legendrian submanifold �K as a tool to detect topological invariants of the knot
K ⊂ M . L. Ng successfully used this construction for knots in R

3 and recovered
this way a wealth of invariants. For instance, he proved (see [40]) that even the
simplest linearized version of this algebra homology already encodes the Alexander
polynomial, and also, essentially, the so-called A-polynomial. In particular, this
linearized homology distinguishes the unknot – any knot which has the same Ng
invariant as the unknot is actually the unknot.

It is interesting to apply construction (4) to a 3- or 4-manifold whose boundaryN
is a sphere, and then compute the equivariant homology of the differential algebra of
the Legendrian submanifold N ⊂ V . It seems plausible (and this is a current joint
project of T. Ekholm and the author) that the Z/2-equivariant homology of this algebra
carries non-trivial information about the differential topology of the manifold M .

3.3. Other SFT-related development. We briefly mention in this section some re-
cent development relating SFT with hot topics in topology.

Embedded contact homology. As it was already pointed out by M. Gromov in his
pioneering paper [23], the holomorphic curve technique is especially powerful in
4-dimensional symplectic topology, because the adjunction formula allows one to
control singularities and intersections of holomorphic curves by topological means.
The work of C. Taubes [46] emphasized further a special role played by holomorphic
curves in 4-dimensional topology. A current project of M. Hutchings, M. Sullivan
and C. Taubes attempts to define a contact homology theory in the spirit of SFT,
but based on embedded holomorphic curves, see [29] and [47] for partial results
in this direction. When fully completed, this theory is expected to provide a unified
approach to Ozsváth–Szabó homology theory for 3-manifolds ([42] and also [36]), and
to a (yet to be developed) theory of holomorphic curves in near-symplectic manifolds
(see [46]).

SFT and string topology. The relation between the topology of the loop space of a
manifold M and the Floer homology theory of its cotangent bundle T ∗M was first
revealed by C. Viterbo [49], and then further developed by D. Salamon and J. Weber
[43]. A. Abbondandolo and M. Schwartz [1]) related string topological operations
introduced by M. Chas and D. Sullivan [10] with cohomological operations in the
Floer homology of T ∗M . Based on the fundamental study of Lagrangian intersection
Floer homology theory in [20], K. Fukaya [18] observed that the relation between
Chas–Sullivan string operations and the theory of holomorphic curves can be used to
obtain new restrictions on the topology of Lagrangian submanifolds. In an ongoing
project K. Cieliebak and J. Latchev [9] have further developed these ideas, and related
the BV∞-version of contact homology of ST ∗M , discussed above in Example 2 of
Section 3.1, with Chas–Sullivan string operations in the manifold M .

Relative SFT. Conjecturally, relative SFT is a functor defined on the geometric cate-
gory of pairs (V ,�), where V is a contact manifold and � its Legendrian submani-
fold, with morphisms realized by pairs (W,L) of symplectic cobordismsW between
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contact manifolds and Lagrangian cobordisms L between Legendrian submanifolds.
The target algebraic category should consist of non-commutative analogs of struc-
tures considered in Section 1.1. However, in this full form the relative SFT-functor
has not yet been constructed. Yu. Chekanov (see also [16]) defined in [11] an as-
sociative differential algebra of a Legendrian link in the standard contact R

3. This
algebra (already mentioned above in Section 3.2) is a relative analog of the differential
contact homology algebra in Example 4 of Section 3.1. Following a sketch in [16]
and [15], T. Ekholm, J. Etnyre and M. Sullivan (see [14]) constructed an analogue of
Chekanov’s algebra in a context of high-dimensional Legendrian submanifolds. Cur-
rently there are two promising approaches which may lead to the construction of the
full relative version of SFT. One is based on O. Cornea and F. Lalonde [13] theory of
cluster Floer homology, and the other one tries to exploit the discussed above relation
with string topology along the lines of [18], [20] and [9].

The author benefited a lot discussing the subject of this paper with many people.
He is very grateful to all his teachers, collaborators and critical listeners.
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