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SYMPLECTIC FILLINGS OF SEIFERT FIBERED SPACES

LAURA STARKSTON

Abstract. We give finiteness results and some classifications up to diffeomor-
phism of minimal strong symplectic fillings of Seifert fibered spaces over S2

satisfying certain conditions, with a fixed natural contact structure. In some
cases we can prove that all symplectic fillings are obtained by rational blow-
downs of a plumbing of spheres. In other cases, we produce new manifolds with
convex symplectic boundary, thus yielding new cut-and-paste operations on
symplectic manifolds containing certain configurations of symplectic spheres.

1. Introduction

There are now a number of constructions of symplectic 4-manifolds coming from
cutting out a neighborhood of a nice configuration of symplectic curves and replac-
ing that neighborhood with a new piece. In the case that this piece is a rational
homology ball, this technique is called a rational blow-down. The fact that some
rational blow-downs can be done symplectically was first shown by Symington [31],
[32]. This is interesting both from the perspective of understanding the geogra-
phy of symplectic 4-manifolds, and because of the information this yields about the
Seiberg Witten invariants of the underlying smooth 4-manifold. A number of recent
papers have explored when it is possible to replace a neighborhood of more gen-
eral configurations of symplectic curves with Milnor fibers and symplectic rational
homology balls (see [6], [10], [11], [30]).

The goal here is to understand not only when a neighborhood of a configuration
of curves can be replaced by a specific symplectic or complex manifold, but what
are all possible symplectic fillings that can replace such a neighborhood of curves.
Following a method of argument used by Lisca [17] and Bhupal and Stipsicz [6],
we can produce a finite list of all possible diffeomorphism types that may replace
a convex neighborhood of certain configurations of symplectic spheres, while pre-
serving the existence of a symplectic structure. Namely, this is a classification of
convex symplectic fillings of the contact boundary of a convex neighborhood of
these spheres.

Similar classifications have been made for lens spaces with their standard
tight contact structures (Lisca [17]), other tight contact structures on L(p, 1)
(Plamenevskaya and Van Horn-Morris [27]), and some links of simple singulari-
ties (Ohta and Ono [21]). By contrast, there are now many results which show
that there are contact manifolds with infinitely many non-diffeomorphic Stein or
strong symplectic fillings satisfying various properties (see [29], [24], [22], [4], [1],
[3], [5]). We obtain some finiteness results in this paper, but it remains an open
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Figure 1. Handlebody diagram for a neighborhood of spheres,
which can also be seen as a surgery diagram for the boundary of
such a neighborhood which is a Seifert fibered space over S2.

question of how to characterize contact three manifolds which have finitely many
versus infinitely many non-diffeomorphic Stein or strong symplectic fillings.

The proof technique limits the configurations of curves for which we are able to
solve this problem. The most obvious conditions necessary for these arguments are
the following:

(1) The curves are symplectic spheres that intersect each other ω-orthogonally.
(Note that it suffices to assume the spheres intersect positively and trans-
versely since then they can be isotoped through symplectic spheres to be
ω-orthogonal [12].)

(2) The spheres are configured in a star-shaped graph (there is a unique vertex
of valence > 2) with k arms.

(3) The decoration representing the self-intersection number on the central ver-
tex is at most −k − 1, and the decorations on the vertices in the arms are
at most −2.

Because these conditions ensure that the dual graph (in the sense of Stipsicz,
Szabó, and Wahl [30]) is a star-shaped graph whose central vertex has positive
decoration (see section 2.1), we will say configurations satisfying these conditions
are dually positive.

A neighborhoood of such spheres has a handlebody diagram given in Figure 1a
where e0 ≤ −k − 1 and bji ≤ −2. Note that the boundary of such a neighborhood
of spheres is a Seifert fibered 3-manifold over S2, with surgery diagram given by
Figure 1a. This surgery diagram is equivalent to that in Figure 1b when

ri = bi1 −
1

bi2 − 1

. . .− 1

bini

.

In general, a choice of e0 ∈ Z and r1, · · · , rk ∈ Q such that ri < −1 for all i
uniquely determines a Seifert fibered space by surgery as in Figure 1b. We denote
the manifold described by the surgery diagram by Y (e0; r1, · · · , rk).

We will say a Seifert fibered space is dually positive if it arises as the boundary
of a dually positive plumbing of spheres. Any neighborhood of a dually positive
configuration of symplectic spheres contains a symplectically convex neighborhood
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of the spheres (by [11] or [9]; see section 2.2) whose boundary inherits a fixed
contact structure. As this contact structure arises as the boundary of a symplectic
plumbing of spheres, we will refer to this contact structure as ξpl (we suppress
the Seifert invariants for simplicity). Therefore the results here provide a method
for the classification of convex symplectic fillings of dually positive Seifert fibered
spaces, with the contact structures ξpl.

In the case of dually positive Seifert fibered spaces, the result of Mark and Gay
will show that these contact structures which are induced on the convex boundary
are supported by planar open books. These open book decompositions make it
clear that the contact structures ξpl coincide with those studied much earlier by
Schönenberger [28] and Etgü and Ozbagci [8] and are shown to be horizontal contact
structures in [23]. By a result of Park and Stipsicz in [25], the contact structure ξpl
is contactomorphic to the contact structure induced by the complex tangencies on
the link of a complex singularity. This contact structure is sometimes referred to
as the canonical contact structure in the literature.

In specific cases, we are able to state explicit classifications of the diffeomorphism
types of possible symplectic fillings. Under less specific assumptions, we can find
some loose upper bounds to obtain the following finiteness result.

Theorem 1.1. If Y is a dually positive Seifert fibered space with k singular fibers
and either k ∈ {3, 4, 5} or e0 ≤ −k − 3, then (Y, ξpl) has finitely many minimal
strong symplectic fillings up to diffeomorphism. If Y is any dually positive Seifert
fibered space, then the minimal strong symplectic fillings of (Y, ξpl) realize only
finitely many values of Euler characteristic and signature. Loose upper bounds in
both cases can be determined from the Seifert invariants.

Note that the fact that the minimal symplectic fillings realize finitely many val-
ues of Euler characteristic and signature follows from the fact that these contact
structures are supported by planar open book decompositions by a result of Kaloti
[16]. It is frequently possible to obtain tight upper bounds on the number of diffeo-
morphism types of minimal symplectic fillings or their values of Euler characteristic
and signature in specific examples, by analyzing the dual graph associated to the
Seifert fibered space as will be described in section 2.

In some simple families of examples, we explicitly work out the possible diffeo-
morphism types of the minimal symplectic fillings. In some cases, all fillings are
related to the original plumbing of spheres by a rational blow-down of a subgraph
of the original configuration.

Theorem 1.2. If (Y, ξpl) is the boundary of a dually positive plumbing of spheres,
where the star-shaped graph has exactly three arms, the central vertex has self-
intersection coefficient −4, and

(1) each arm has arbitrary length, but each sphere in any arm has self-
intersection coefficient −2
OR

(2) each arm has length one, and each sphere in each arm has self-intersection
coefficient strictly less than −4,

then (Y, ξpl) has exactly two minimal strong symplectic fillings up to diffeomorphism,
given by the original symplectic plumbing and the manifold obtained by rationally
blowing down the central −4 sphere.
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Figure 2. Graph referred to in Theorem 1.4.

In the previous cases the central vertex had the largest possible coefficient to
satisfy the dually positive condition. When the coefficient on the central vertex
e0 ≤ −k − 3 where k is the number of arms in the graph, we can prove a similar
theorem for any value of k ≥ 3.

Theorem 1.3. If (Y, ξpl) is the boundary of a dually positive plumbing of spheres
with k arms, where the coefficient on the central vertex is e0 ≤ −k − 3, and the
coefficients on the spheres in the arms are all −2, then all diffeomorphism types of
minimal strong symplectic fillings are obtained from the original plumbing of spheres
by a rational blow-down of the central vertex sphere together with −e0 − 4 spheres
of square −2 in one of the arms.

In special cases, as determined in [30], the entire star-shaped graph can be ra-
tionally blown down. The simplest example which is dually positive is shown in
Figure 2. We can show that the expected rational blow-downs provide a complete
classification for this graph.

Theorem 1.4. If (Y, ξpl) is the boundary of a dually positive plumbing of spheres
in the configuration of Figure 2, there are exactly three diffeomorphism types of
minimal strong symplectic fillings of (Y, ξpl): the original plumbing of spheres, the
rational blow-down of the central −4 sphere, and the rational blow-down of the
entire configuration.

The configuration in the previous theorem generalizes to the family Wp,q,r stud-
ied in [30]. We classify the symplectic fillings corresponding to this family of graphs
in section 4. In this case, all convex fillings are obtained by a rational blow-down
of a subgraph or the entire graph.

The method used to obtain these classification results (proven to work in section
2 and demonstrated in a simple example in section 3) applies to some extent to any
dually positive plumbing of spheres. The method produces a list of handlebody
diagrams representing 4-manifolds that are likely to support convex symplectic
structures inducing ξpl on the boundary. In many cases, all of these handlebody
diagrams can be shown to correspond to actual convex symplectic fillings, which
completes the classification. In the previous theorems, all of these convex fillings are
obtained from the original plumbing by rationally blowing down a subset of the core
spheres in the plumbing. However, there are new manifolds arising as handlebody
diagrams obtained by this method, as possible fillings that are not obtained by a
rational blow-down of a subgraph. Note that these replacements still have smaller
Euler characteristic than the original plumbing.

Theorem 1.5. If (Y, ξpl) is the boundary of a dually positive plumbing of spheres,
with k = 4 or k = 5 arms, whose central vertex has coefficient −k − 1, and all the
vertices in the arms have coefficient −2 and each arm has length at least k−3, then
all possible diffeomorphism types of symplectic fillings determined by this process
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(listed as handlebody diagrams in section 5) are realized as strong symplectic fillings
of (Y, ξpl).

Some of these diffeomorphism types cannot be obtained by a rational blow-down,
or by replacing a neighborhood of a linear plumbing of spheres with a different
symplectic filling of its lens space boundary. Namely, these are genuinely new
diffeomorphism types that may be convex symplectic fillings. Note that if the arms
have length less than k − 3, some of the diffeomorphism types cannot be realized,
but the classification can still be made.

The main argument that provides the set-up for all these results will be given in
section 2, with the proof of Theorem 1.1 at the end of that section. For concreteness,
we follow this in section 3 by a detailed proof of the classification of fillings of a
simple family of examples, proving part (1) of Theorem 1.2. We follow this by
classification results that can be stated in terms of rational blow-downs in section 4,
proving Theorem 1.3, part (2) of Theorem 1.2, Theorem 1.4, and its generalization
to the family Wp,q,r. In section 5, we give explicit descriptions of the new 4-
manifolds which strongly symplectically fill the dually positive Seifert fibered spaces
in Theorem 1.5. Section 6 contains some further observations and questions.

2. Upper bounds on diffeomorphism types

of strong symplectic fillings

The main argument here gives upper bounds (in terms of explicit diffeomor-
phism types) of strong symplectic fillings of dually positive Seifert fibered spaces
with the contact structure ξpl. First, using a construction of Stipsicz, Szabó and
Wahl [30], we will build the symplectic plumbing of spheres inside a closed symplec-
tic manifold, such that the complement is also a symplectic plumbing of spheres,
now with concave boundary. The dually positive condition will allow us to en-
sure that the concave piece contains a sphere of self-intersection number +1. Then
we cut out the original plumbing of spheres and glue in an arbitrary convex sym-
plectic filling to form a closed symplectic manifold which still contains a sphere
of self-intersection number +1 (analogous to Lisca’s method to classify symplectic
fillings of (L(p, q), ξstd)). A theorem of McDuff implies that this closed manifold
is a symplectic blow-up of CP 2 with its standard Kahler structure. To identify
the topology of the unknown convex symplectic filling, it suffices to understand
how the concave cap can symplectically embed into the blow-up of CP 2, since the
convex filling must be its complement. Using arguments of Lisca [17], we obtain
homological restrictions coming from the adjunction formula and intersection infor-
mation of the spheres. Under certain conditions, we can show that the homology
classes these spheres represent uniquely determine a symplectic embedding of their
neighborhood into a blow-up of CP 2. By deleting the possible embeddings of the
concave cap from blow-ups of CP 2, we obtain the diffeomorphism types of all possi-
ble convex symplectic fillings of the given dually positive Seifert fibered space with
contact structure ξpl.

2.1. The dual graph construction. First we describe the dual graph construc-
tion of Stipsicz, Szabó, and Wahl [30], which provides a symplectic embedding of the
neighborhood of dually positive spheres into a blow-up of CP 2 whose complement
is the concave cap we need.
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Figure 3. A handlebody diagram for the sphere bundle Bn. The
relevant spheres (the zero section, infinity section, and d fibers)
are represented by the cores of the 2-handles together with the
pushed-in Seifert surfaces for the attaching circles.

The construction of the dual graph begins by looking at a sphere bundle over
a sphere, which has a standard symplectic structure. Each fiber will have self-
intersection number 0, and will intersect each section of the bundle in a single
point. The zero and infinity sections have self-intersection numbers n and −n
respectively. It is convenient to have a handlebody diagram for the sphere bundle
Bn, in which the 0-section, d distinct fibers, and the ∞-section are all visible. Such
a diagram is given by Figure 3.

To obtain the dual plumbing, we build the original plumbing inside a symplectic
blow-up of Bn. We will allow blow-ups to be performed along the intersections
of the various spheres in the picture. The proper transforms of these spheres will
remain symplectic, and new exceptional spheres are symplectic submanifolds as
well. At the beginning the spheres we keep track of are just the 0-section, the
∞-section, and the d fibers. As we blow up, we include the new exceptional spheres
in the picture. Figure 4 shows an example, keeping track of both the standard
short-hand notation to keep track of these blow-ups, as well as the corresponding
handlebody diagrams. Note that each exceptional fiber will contain at least one
sphere of self-intersection −1, which is the exceptional sphere from the most recent
blow-up of that fiber. We perform the blow-ups so that if we remove the vertices
corresponding to these spheres in the resulting plumbing graph, we will get a two
component graph, one of which is Γ and the other is the dual graph Γ′.

To see that the plumbings coming from Γ and Γ′ glue together to give the blow-
up of our original sphere bundle, imagine cutting the blown-up sphere bundle as
shown above, along an equator of each regular fiber, and along the equator of the
last exceptional sphere in each exceptional fiber, so that these equators all match
up smoothly to form a 3-manifold. Note that each sphere in either graph is a
symplectic submanifold since it is either one of the distinguished sections, a fiber,
an exceptional sphere, or the proper transform of one of these objects.

2.1.1. Dually positive graphs. The condition that a configuration of spheres is dually
positive, ensures that one can build a dual configuration which is a star-shaped
graph whose central vertex has self-intersection number +1. To see this, suppose
the central vertex of the dually positive configuration has square e0 ≤ −k−1, where
k is the number of arms in the original graph. Start with a sphere bundle with
zero section of self-intersection number −1, and infinity section of self-intersection
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Figure 4. A sequence of blow-ups, keeping track of the spheres
whose neighborhoods are plumbings. In the last stage we can see
the star-shaped plumbing with 4 vertices, where the central vertex
is labeled with −4 and the three arms are labelled with −2, and
its dual plumbing which is also star-shaped with 4 vertices, but
where the central vertex is labeled with +1 and the three arms
are labeled with −2. The two plumbings are glued together along
equators of the regular fibers and equators of the −1 spheres on
the exceptional fibers.

number +1, and keep track of d = −e0 − 1 fibers (of self-intersection number
0). Blow up once at the intersections of each of the −1 − e0 fibers with the zero
section. The proper transform of the zero section now has self-intersection number
e0, the exceptional spheres and proper transforms of the fibers have self-intersection
number −1, and the infinity section is unchanged so it still has self-intersection
number +1. Next, in k of these singular fibers, blow up at the intersection of
the new exceptional sphere with the proper transforms of the original fiber. By
continuing to blow up at points where an exceptional sphere of square −1 intersects
an adjacent sphere, it is possible to build the dually positive graph emanating from
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the zero section and ending just before the most recent exceptional −1 spheres in
each fiber, without ever blowing up at a point on the infinity section. Therefore the
dual graph has central vertex with coefficient +1, and −1−e0 arms, whose vertices
have all negative coefficients.

Note that when e0 < −k − 1, the dual graph contains d = −e0 − 1 > k arms,
but only k of them are used to construct the singular fibers. Each of the remaining
−e0 − 1− k arms shows up in the dual graphs construction as two −1 spheres, one
of which is adjacent to the proper transform of the zero section and will be cut in
half to split the graph from the dual graph. The remaining −1 sphere (the proper
transform of a regular fiber after one blow-up at its intersection with the 0-section)
persists in the dual graph as a short arm.

2.2. Cut and paste for symplectic manifolds. The easiest way to ensure one
can glue together two symplectic manifolds with orientation reversing diffeomorphic
boundary is by showing that one piece has convex boundary and the other has
concave boundary. A concave or convex boundary inherits a contact structure,
and a concave boundary will glue to a contactomorphic convex boundary to give
a closed symplectic manifold (after possibly rescaling the symplectic form on one
piece). Therefore we would like to show that a neighborhood of our dually positive
configuration of spheres has convex boundary. In some cases, we will need to
recognize the contact structure induced on the boundary in terms of an open book
decomposition. For these results we use a theorem of Gay and Mark.

Their set-up starts with a configuration of symplectic surfaces C = C1 ∪ · · · ∪Cn

intersecting ω-orthogonally according to a negative definite graph Γ with no edges
from a vertex to itself. For each vertex vj , let sj be the sum of the valence of that
vertex with the self-intersection number of the corresponding symplectic surface.
Assume sj ≤ 0 for all vertices vj (a.k.a. no bad vertices). Let Σ be the surface
obtained from connect summing |sj | copies of D2 to each Cj and then connect
summing these surfaces together according to the graph. Let {c1, · · · , ck} be simple
closed curves, with one around each connected sum neck, and τ the product of right
handed Dehn twists around c1, · · · , ck.

Theorem 2.1 (Gay and Mark [9, Theorem 1.1]). Any neighborhood of C con-
tains a neighborhood (Z, η) of C with strongly convex boundary, that admits a Lef-
schetz fibration π : Z → D2 having regular fiber Σ and exactly one singular fiber
Σ0 = π−1(0). The vanishing cycles are c1, · · · , ck, and C is the union of the closed
components of Σ0. The induced contact structure ξ on ∂Z is supported by the
induced open book (Σ, τ ).

For dually positive configurations of spheres, the hypothesis that sj ≤ 0 is sat-
isfied and Σ is a disk with holes.

Note that the fact that such neighborhoods of symplectic surfaces have convex
neighborhoods was proven (under the weaker assumption that the plumbing graph
be negative definite instead of the condition on the sj) by Gay and Stipsicz in [11].
While this result is sufficient to allow us to make a gluing argument, we need the
information about the open book decomposition to identify the contact structure
in some of the more difficult cases (see section 5).

Now we may choose an arbitrarily small convex neighborhood of the dually
positive configuration of spheres to cut out, and then (after possibly rescaling the
symplectic form) glue in any strong symplectic filling of the contact boundary,
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which has the canonical contact structure ξpl, to obtain a closed symplectic manifold
containing a symplectic embedding of the concave cap.

2.3. McDuff’s classification for closed symplectic manifolds. As explained
in section 2.1.1, our condition that the configuration of spheres be dually positive
ensures that the concave cap coming from the dual graph construction contains a
sphere of self-intersection number +1. This condition is useful due to the following
classification theorem.

Theorem 2.2 (McDuff [20]). If (V 4, C2, ω) is a minimal symplectic pair (namely
V \ C contains no exceptional curves), where C is a rational curve with self-
intersection C · C = p ≥ 0, then (V, ω) is symplectomorphic either to CP 2 with
its usual Kahler form or to a symplectic S2 bundle over a compact surface M . Fur-
ther, this symplectomorphism may be chosen so that it takes C either to a complex
line or quadric in CP 2, or to a fiber of the S2 bundle, or (if M = S2) to a section
of this bundle.

In our case, this classification simplifies to a single manifold up to blowing up
symplectically.

Corollary 2.3. If (V 4, C2, ω) is a minimal symplectic pair where C is a 2-sphere of
self-intersection number +1, then (V,C, ω) is symplectomorphic to (CP 2,CP 1, ωstd).

By gluing any strong symplectic filling of a dually positive Seifert fibered space
with contact structure ξpl to a neighborhood of its dual configuration, we obtain a
symplectic pair (V,C, ω) satisfying all hypotheses of the theorem except minimal-
ity. After blowing down exceptional spheres in V \C, it follows that such a convex
filling embeds symplectically (up to rescaling the symplectic form) in a blow-up of
(CP 2, ωstd) where the blow-ups are disjoint from the standard CP 1 ⊆ CP 2. The
complement of the embedded convex filling is symplectomorphic to the correspond-
ing plumbing of spheres described by the dual graph, and +1 sphere corresponding
to the central vertex of the dual graph is identified with CP 1.

2.4. Homological restrictions on embeddings of the cap. Denote by
(XM , ωM ) the closed symplectic manifold CP 2#MCP 2 with symplectic form ωM

given by some symplectic blow-up of the standard Kahler form on CP 2. We would
like to determine all possible symplectic embeddings of the positive dual graph
plumbings corresponding to the concave cap. To understand possible embeddings,
we use some homological restrictions.

First fix a standard orthogonal basis (�, e1, · · · , eM ) for H2(XM ;Z) where � is
represented by the complex projective line so �2 = +1, and the ei are represented by
the exceptional spheres created in the blow-ups, so e2i = −1, and � · ei = ei · ej = 0
for i 	= j. Because these are represented by symplectic surfaces, we can determine
how the first Chern class of XM evaluates on each of these homology classes via
the adjunction formula:

〈c1(XM ), �〉 = �2 + 2 = 3,

〈c1(XM ), ei〉 = e2i + 2 = 1.

Now we would like to analyze what the spheres in the plumbing for the cap
could represent in H2(XM ;Z) in terms of this basis. We will refer to the embedded
sphere representing the central vertex as C0, the symplectic spheres representing
the vertices adjacent to the central vertex as C1, · · · , Cd, and the symplectic spheres
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representing the other vertices in the dual graph by Cd+1, · · · , Cm. We know that
these spheres are also symplectic, so they must also satisfy the adjuction formula:

〈c1(XM ), [Cj ]〉 = [Cj ]
2 + 2.

Furthermore, we know that the sphere C0 which has self-intersection number +1 is
sent to the complex projective line so [C0] = �. The intersection data implies that
spheres whose vertices are joined by an edge have homological intersection number
+1, other distinct spheres have homological intersection number 0, and the square
of the homology class represented by each sphere is given by the decoration on the
graph (which is negative for all but C0).

Now suppose that for j ∈ {1, · · · ,m}

[Cj ] = aj0� +

M∑
i=1

ajiei.

For j ∈ {1, · · · , d} we have 1 = [Cj ] · [C0] = [Cj ] · �, so aj0 = 1. Using the adjunction
formula, and our knowledge of how c1(XM ) evaluates on the standard basis, we get

the following formula for the coefficients aji :

3 +
M∑
i=1

aji = 1 −
M∑
i=1

(aji )
2 + 2,

so
M∑
i=1

(aji )
2 + aji = 0.

Note that since aji are integers, we have (aji )
2 + aji ≥ 0 with equality if and only

if aji ∈ {0,−1}. Therefore aji ∈ {0,−1} for all i ∈ {1, · · · ,M}, j ∈ {1, · · · , d}.
Furthermore, since −nj = [Cj ]

2 = 1 −
∑M

i=1(a
j
i )

2, there are precisely nj + 1 values

of i for which aji is −1. Thus we can write for j ∈ {1, · · · , d}:
[Cj ] = �− eij1

− · · · − eijnj+1
.

We have further data given by the fact that [Cj ]·[Cj′ ] = 0 when j 	= j′ ∈ {1, · · · , d}:
0 = (�− eij1

− · · · − eijnj+1
) · (�− e

ij
′

1

− · · · − e
ij

′
n
j′+1

)

= 1 − |{ij1, · · · , i
j
nj+1} ∩ {ij

′

1 , · · · , i
j′

nj′+1}|.

We conclude that

Lemma 2.4. If Cj and C ′
j are distinct symplectic spheres in the dual graph con-

figuration which are adjacent to the central vertex sphere, then [Cj ] and [Cj′ ] share
exactly one common basis element ei with coefficient −1.

If the graph we are considering has k arms, corresponding to the k singular fibers
in the Seifert fibered space, then the coefficient on the central vertex of the graph,
e0, determines the relationship between k and d. As discussed in section 2.1.1, the
number of arms in the dual graph is d = −e0−1, and the dually positive assumption
implies k ≤ −e0 − 1. When d = −e0 − 1 is strictly larger than k, there are d − k
additional short arms each made up of a single symplectic sphere of self-intersection
number −1. Therefore [Cj ] = �− eij1

− eij2
for j ∈ {k + 1, · · · , d}.
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Lemma 2.5. If d = −e0 − 1 > k + 1, then the symplectic spheres C0, C1, · · · , Cd

represent one of the following sets of homology classes in terms of the standard
basis for H2(CP

2#MCP 2) (up to relabelling):

[C0] = � [C0] = �
[C1] = �− e1 − e· − · · · − e· [C1] = �− e2 − · · · − ek − ek+1

− · · · − ed − e· − · · · − e·
[C2] = �− e1 − e· − · · · − e· [C2] = �− e1 − e2 − e· − · · · − e·

...
...

[Ck] = �− e1 − e· − · · · − e· [Ck] = �− e1 − ek − e· − · · · − e·
[Ck+1] = �− e1 − ek+1 [Ck+1] = �− e1 − ek+1

...
...

[Cd] = �− e1 − ed [Cd] = �− e1 − ed.

Here e· indicates that there can be additional distinct ei’s with coefficient −1 in
these homology classes if the corresponding square is sufficiently negative. They
should all be distinct from each other and distinct from all labelled ei’s.

Furthermore, if d = k + 1 we have the above cases together with additional
possibilities given as follows where 1 < j < k (by a symmetry we may actually
assume j ≤ k/2):

[C0] = �
[C1] = �− e1 − ei(1,j+1) − ei(1,j+2) · · · − ei(1,k) − e· − · · · − e·

...
[Cj ] = �− e1 − ei(j,j+1) − ei(j,j+2) · · · − ei(j,k) − e· − · · · − e·

[Cj+1] = �− e2 − ei(1,j+1) − ei(2,j+1) − · · · − ei(j,j+1) − e· − · · · − e·
...

[Ck] = �− e2 − ei(1,k) − ei(2,k) − · · · − ei(j,k) − e· − · · · − e·
[Ck+1] = �− e1 − e2.

Here i(a, b) are distinct for distinct pairs (a, b), and are distinct from 1, 2.

Proof. First notice that there must be a common element ei with coefficient −1
in all the classes [Ck+1], · · · , [Cd]. This is trivial in the case that k + 1 = d, and
follows immediately from Lemma 2.4 when k + 2 = d. When d > k + 2, Lemma
2.4 implies that [Ck+1] and [Ck+2] share a unique element with coefficient −1, so
without loss of generality [Ck+1] = �− e1 − e2 and [Ck+2] = �− e1 − e3. If [Ck+3]
does not have −1 coefficient for e1, then Lemma 2.4 implies [Ck+3] = � − e2 − e3,
but then there is no way that [C1] can have ei’s with −1 coefficient for exactly one
of {1, 2}, exactly one of {1, 3}, and exactly one of {2, 3}, which is a contradiction.
Since [Cj ] and [Cj′ ] share only one element ei with coefficient −1, we find that
[Ck+1] = �− e1 − ek+1, · · · , [Cd] = �− e1 − ed for ek+1, · · · , ed all distinct.

Now consider the homology classes [C1], · · · , [Ck]. Each such class must either
have −1 coefficient for e1 or −1 coefficient for all of the classes ek+1, · · · , ed (not
both). If d > k+1, then there can be at most one of the spheres C1, · · · , Ck, whose
homology class has coefficient −1 for all the classes ek+1, · · · , ed, since no two [Cj ]
can share more than one ei with coefficient −1. This proves the first part of the
lemma.
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When d = k+1 and [Ck+1] = �− e1− e2, some of the classes [C1], · · · , [Ck] must
have coefficient −1 for e1 and the rest must have coefficient −1 for e2. Without loss
of generality we assume the first j have −1 coefficient for e1, and the rest have −1
coefficient for e2. Then for each pair (a, b) ∈ {1, · · · , j}×{j+1, · · · , k} we must add
another ei(a,b) which occurs with −1 coefficient in [Ca] and [Cb]. If i(a, b) = i(a′, b′)
for (a, b) 	= (a′, b′), then either a 	= a′ so [Ca] and [Ca′ ] both have coefficient −1 for
both e1 and ei(a,b) or b 	= b′ so [Cb] and [Cb′ ] both have coefficient −1 for e2 and
ei(a,b), but homology classes of distinct pairs of spheres can only share one common
element with coefficient −1. �

For j ∈ {d+ 1, · · · ,m}, we know that 0 = [Cj ] · [C0] = [Cj ] · �. Therefore aj0 = 0
for all j ∈ {d + 1, · · · ,m}. In this case the adjuction formula yields the following
formula:

M∑
i=1

aji = −
M∑
i=1

(aji )
2 + 2,

so
M∑
i=1

(aji )
2 + aji = 2.

Thus, all but one of the aji ’s is either 0 or 1, and exactly one aji is either 1 or −2 for
for each j ∈ {d + 1, · · · ,m}. An inductive argument of Lisca [17, Proposition 4.4]

implies that aji can never be equal to −2, so there is always a unique aji equal to 1.
Note that Lisca’s statement refers to linear graphs of symplectic spheres embedded
in a blow-up of CP 2, but each arm of the star-shaped graph (starting at the central
vertex) is a linear graph satisfying the necessary hypotheses.

In conclusion the symplectic spheres in the dual graph represent homology classes
of the following form:

[C0] = �

[C1] = �− ei11 − · · · − ei1n1+1

...

[Ck] = �− eik1 − · · · − eiknk+1

[Ck+1] = �− eik+1
1

− eik+1
2

...

[Cd] = �− eid1 − eid2
[Cd+1] = eik+1

0
− eik+1

1
− · · · − eik+1

nk+1−1

...

[Cm] = eim0 − eim1 − · · · − eimnm−1
.

Here ijh 	= ijh′ when h 	= h′, and the values nj are determined by the square of

[Cj ]. Up to relabeling the ei, the only remaining question is when ijh can coincide

with ij
′

h′ for j 	= j′. Additional restrictions on [C1], · · · , [Cd] are given by Lemmas
2.4 and 2.5. Other intersection restrictions imply other relations between the sets
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{ij0, · · · , ijnj
} for different values of j ∈ {1, · · · ,m}, which can be exploited in specific

examples.

2.5. Translating homological restrictions into embeddings. Given a finite
list of homology classes that a symplectic embedding of the spheres of the dual
graph into CP 2#MCP 2 can represent, we would like to say that there are finitely
many symplectic embeddings of the dual graph up to isotopy. There are two main
steps to this process. The first is to follow the arguments of Lisca [17] to carefully
blow-down to CP 2, while keeping track of how this affects the embedded spheres of
the dual graph. The second step is to analyze this blown-down embedding, and to
try to understand the isotopy classes of a regular neighborhood of the blown-down
dual graph in CP 2.

2.5.1. Blowing down (CP 2#MCP 2, dual graph). The following theorem was used
by Lisca to solve this part of the problem when classifying symplectic fillings of lens
spaces. In that case, the plumbing of spheres providing the concave cap is linear.

Theorem 2.6 (Lisca [17, Theorem 4.2]). Let ωM be a symplectic form on

CP 2#MCP 2 obtained from the standard Kahler form by symplectic blow-ups. Let
Γ = C0∪ · · ·∪Cj be a union of ωM -orthogonal symplectic spheres, in the configura-
tion of a linear graph, with self-intersection numbers (1, 1− b1,−b2, · · · ,−bj), such
that C0 is a complex line. Then there is a sequence of symplectic blow-downs,

(CP 2#MCP 2, ωM ) → (CP 2#(M − 1)CP 2, ωM−1) → · · · → (CP 2, ω0),

with ω0 diffeomorphic to the standard Kahler form and such that Γ descends to two
ωM orthogonal symplectic spheres, each of self-intersection number 1.

In our situation, the dual graph is star-shaped instead of linear. However, a
star-shaped graph is simply the union of its k arms, each of which is a linear graph
emanating from the central vertex. Therefore Lisca’s theorem applies to each of
the arms of the star-shaped dual configuration. We would like to keep track of all
of these arms at once as we blow-down the manifold. Though we do not need a
new argument here, a summary of Lisca’s proof is included here to make it clear
how it applies in the star-shaped case.

In our case, the dual configuration of spheres Γ = C0 ∪ · · · ∪Cm (in the shape of

a star-shaped graph) is assumed to be symplectically embedded in (CP 2#MCP 2,
ωM ). Here C0 is identified with the complex projective line (by McDuff’s the-
orem). First, choose an almost complex structure tamed by ωM , for which the
spheres C0, · · · , Cm are all J-holomorphic. This allows us to have more control
over intersections of spheres with any J-holomorphic sphere we blow down.

Relying on analysis of J-holomorphic curves by McDuff, Lisca proves a lemma
(Lemma 4.5 in [17]) which says that as long as M > 0, there exists a J-holomorphic
sphere Σ such that [Σ] · [C0] = 0 and [Σ]2 = −1. Furthermore, we can find Σ
disjoint from Γ if and only if there is a symplectic sphere S of square −1 such
that [S] · [Cj ] = 0 for j = 0, 1, · · · ,m. Note that Lisca stated this in the case
that Γ is a linear plumbing, but the proof is unchanged for any configuration of
symplectic spheres intersecting ω-orthogonally. Therefore, it is possible to blow
down J-holomorphic spheres Σ until XM is blown down to CP 2. Using the lemma,
we can first blow down any Σ’s disjoint from Γ, until there exists Σ for which [Σ] ·
[Cj ] 	= 0 for some j. Because C0, · · · , Cm are J-holomorphic, Σ must intersect them
non-negatively. In our standard basis for H2(XM ;Z) as in the previous section, the
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fact that [Σ] · [C0] = 0 and [Σ]2 = −1 implies [Σ] = ±ei. Given the analysis in
the previous section of how to write [Cj ] in terms of this standard basis, we find
that [Σ] · [Cj ] ∈ {−1, 0, 1} for every j = 0, · · · ,m. Since Σ and Cj must intersect
positively, either Σ = Cj for some j, or [Σ] · [Cj ] ∈ {0, 1} for all j = 0, · · · ,m.
Lisca analyzes the relations between the ei’s showing up with non-zero coefficients
in different [Cj ]’s within a linear plumbing, and proves that blowing down Σ either
reduces the length of the linear plumbing or reduces the absolute value of one of the
self-intersection numbers of a Cj (j > 0), but the linear plumbing remains linear.
This implies the conclusion of Lisca’s theorem by induction.

In our case, we blow down a J-holomorphic sphere Σ, which may intersect any
number of arms in the star-shaped graph. After blowing down, at least one arm
is reduced in complexity, and each linear chain of symplectic spheres (originally
these are the k arms) remains linear. It is possible that two of these linear chains
intersect after a blow-down, so the graph would no longer be star-shaped. Because
of the existence of a J-holomorphic sphere to blow down and that the homological
properties of the Cj do not depend on any assumptions about the non-intersection
of the various arms, this does not prevent us from applying induction as in the
linear case. We simply need to keep track of each linear chain separately, even as
the chains intersect each other.

The conclusion is that each arm eventually descends to two symplectic spheres
each of self-intersection number 1, one of which is the original C0 (since all blow-
downs were done disjointly from C0). Therefore in total we have d + 1 symplectic
spheres of self-intersection number 1 inside (CP 2, ω0). Depending on choices of
symplectic blow-ups determining ωM , the resulting symplectic form ω0 may no
longer be the same as the standard Kahler form on CP 2. However, if we only
want to classify these symplectic fillings up to diffeomorphism, we may assume
that ω0 = ωstd.

2.5.2. Uniqueness of the pair after blowing down. We need to analyze possible
smooth isotopy classes of a regular neighborhood of d + 1 symplectic spheres in
(CP 2, ωstd), each homologous to CP 1 ⊂ CP 2. We also have that our original J
descends to an almost-complex structure J0 on CP 2, which is tamed by ω0(= ωstd),
and the remaining d + 1 spheres in the reduction of the dual graph are J0 holo-
morphic. We cannot assume that J0 is the standard almost complex structure on
CP 2 since we had to choose J originally so that each of the curves C0 · · ·Cm were
J-holomorphic. However, because J0 is tamed by ωstd, it is homotopic through
almost complex structures tamed by ωstd to the standard almost complex structure
Jstd. This homotopy will allow us to isotope our symplectic spheres to complex
projective lines in the following lemma.

Working with curves which are J-holomorphic for some J ensures that we need
not worry about algebraically cancelling intersection points between curves since all
intersections are positive. We want to control the way these d+1 spheres intersect,
because a smooth isotopy of each of the d + 1 spheres will extend to a smooth
isotopy of a regular neighborhood of their union only when the way these spheres
intersect is preserved. Because all of these spheres must represent the homology
class � and they are all J0-holomorphic, each pair of spheres must intersect at a
single point. Because the blow-downs were disjoint from C0 and each of the other d
spheres intersected C0 in a different point initially, this remains true after blowing
down. The other d spheres may intersect each other at multi-points if before blowing
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down, a group of them intersected a common exceptional sphere. We will use the
notation Id

j to refer to a particular intersection configuration of d + 1 spheres for

which each pair intersects uniquely and positively. The intersection configuration Id
j

is specified by a diagram depicting d+1 (real) lines in the plane (each representing
a sphere in CP 2) as in Figure 5, where the multi-points of intersection are the
relevant information.

First we would like to smoothly isotope our J0 holomorphic spheres to complex
projective lines, while keeping the intersection configuration fixed. A theorem of
Gromov allows us to isotope each of the spheres through J-holomorphic curves to
complex projective lines, but unfortunately we cannot always preserve the intersec-
tion configuration in sufficiently complicated configurations. However, we are able
to control this for the configurations given by Figure 5. These configurations will
cover all of those we will obtain by blowing down dual graphs for dually positive
Seifert fibered spaces with 3, 4 or 5 singular fibers or with k singular fibers and
e0 ≤ −k − 3 (the more complicated configurations can arise when e0 = −k − 1 or
−k − 2 and k is large).

The reason we have control over the configurations when e0 ≤ −k − 3 comes
from the formula for the homology classes in Lemma 2.5. After blowing down the
exceptional spheres, the proper transforms of a subset of the spheres C0, C1, · · · , Cd

will have a common intersection if they previously intersected the same exceptional
sphere. Such intersections are determined by the homology classes (due to J-
holomorphicity). If we also take into account the fact that C0 intersects each of
the other spheres in a distinct double point, then the only possible configurations
to consider are Id

1 and Id
2 (Figures 5a and 5b) containing d + 1 ≥ 4 spheres.

However, throughout our proof that we can isotope J0 holomorphic spheres in such
a configuration to complex projective lines in this configuration, we will also need
to consider the intersection configuration Id

3 in Figure 5c.
We can also manage all the possible configurations of a small number of lines,

which allows us to classify fillings of dually positive Seifert fibered spaces with k =
3, 4 or 5 singular fibers. The possible intersection relations which can arise (keeping
in mind that C0 intersects each of the other spheres in a different point) are given by
Id
1 , Id

2 , I4
4 , I5

5 , I5
6 , and Id

7 . We will additionally use Id
3 , Id

8 , and Id
9 throughout the

proof, though they will not arise as initial intersection configurations. See Figure
5.

Lemma 2.7. Let J0 be an almost complex structure on CP 2 tamed by ωstd. Sup-
pose C0, C1, · · ·Cd are J0-holomorphic spheres homologous to CP 1 ⊂ CP 2 such
that C0, C1, · · · , Cd intersect according to one of the configurations given by one
of Id

1 , Id
2 , I4

4 , I5
5 , I5

6 , or Id
7 as given by Figure 5. Then a regular neighborhood of⋃d

i=0 Ci is isotopic to a regular neighborhood of complex projective lines in the same
intersection configuration.

Proof. Because J0 and Jstd are both tamed by ωstd, there exists a family of almost
complex structures {Jt} on CP 2 starting at J0 and ending at J1 = Jstd. A theorem
of Gromov [15] states that for any J tamed by the standard symplectic structure
on CP 2, any two points v1 	= v2 ∈ CP 2 lie on a unique non-singular rational (i.e.
diffeomorphic to S2) J-holomorphic curve homologous to CP 1 ⊂ CP 2. Therefore
for each Jt in our homotopy, we can find a unique Jt-holomorphic sphere through
two given points.
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(a) Id
1 (b) Id

2 (c) Id
3

(d) I4
4 (e) I5

5 (f) I5
6

(g) Id
7 (h) Id

8 (i) Id
9

Figure 5. Each configuration Id
j represents a union of d + 1

spheres C0, C1, · · · , Cd for which each pair intersects at a single
point. In our cases, C0 will always intersect each of the other lines
in a distinct double point. The diagrams represent how some of
the other intersections can coincide at multi-points in the configu-
rations we need to consider. We assume d ≥ 3 for Id

1 , Id
2 , and Id

3

and that d ≥ 5 for Id
7 , Id

8 , and Id
9 . (Color available online.)

This provides an isotopy of each sphere C0, C1, · · · , Cd to a complex projective
line (since these are the unique Jstd-holomorphic spheres homologous to CP 1).
During this isotopy we can fix exactly two points on each sphere. This allows us
to control the changes in the intersection configurations. At all times during this
isotopy, each pair Ci, Cj intersect positively at a unique point (since they will both
be Jt-holomorphic). We will first analyze precisely what changes can can occur in
the intersection configuration throughout this isotopy.

For the configuration Id
1 , there are precisely two intersection points on each of

C1, · · · , Cd, so for i = 1, · · · , d, we will choose the corresponding sphere Ct
i to be

the unique Jt-holomorphic sphere homologous to CP 1 through those fixed points.
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Table 1. Possible degenerations of each configuration that can
occur during an isotopy through Jt holomorphic spheres fixing the
intersection points corresponding red dots in Figure 5.

Original configuration Id
1 Id

2 Id
3 I4

4

Possible degenerations none Id
3 none I4

2 , I4
3

Original configuration I5
5 I5

6 Id
7 Id

8 Id
9

Possible degenerations I5
2 , I5

3 , I5
7 , I5

8 , I5
9 I5

5 , I5
7 , I5

8 , I5
9 Id

8 , Id
9 Id

9 none

Let Ct
0 be the unique Jt holomorphic sphere homologous to CP 1 through the points

where C0
0 = C0 intersects C0

1 = C1 and where it intersects C0
2 = C2. Then for all

0 ≤ t ≤ 1, Ct
1, · · · , Ct

d must continue to pass through a common point, and cannot
intersect anywhere else. The intersections of Ct

0 with Ct
1 and Ct

2 are similarly fixed.
While the intersections of Ct

0 with Ct
i for i ≥ 3 are not fixed points, these pairs

must continue to intersect at double points since no two Ct
i for i = 1, · · · , d can

intersect at any point away from their common d-fold intersection point, and C0

cannot pass through this d-fold intersection because it intersects C1 uniquely at a
different point.

In general, if at a given intersection point, we choose to fix that point throughout
the isotopy on every sphere Ct

i for which C0
i passes through that point, then that

intersection is preserved (though potentially other spheres may pass through that
point during the isotopy if they are not otherwise constrained). In Figure 5 we
indicate such points by a red dot. We are allowed to fix these points as long as
there are no more than two red dots on each sphere. Each of the configurations we
are considering have the key property that no sphere passes through more than two
multi-points, so we can place red dots on all the multi-points. This means that if

the intersection configuration changes during the isotopy {
⋃d

i=0 C
t
i}t∈[0,1], at worst

it becomes a less generic intersection configuration.
We may analyze how double point intersections which are not fixed can move

through the isotopy onto a third sphere, as in the argument above showing that
the intersection configuration Id

1 is fixed under the isotopy through Jt-holomorphic
spheres. The constraints we have are that each pair of spheres intersects at a unique
point, and each sphere must pass through its two points we choose to keep fixed.
These points include those indicated by a red dot in Figure 5, and the other fixed
points do not provide particularly useful information except to provide the isotopy
via Gromov’s theorem. Analyzing this information, we obtain the information given
by Table 1.

Now suppose we have any of these starting intersection configurations and we
have chosen two points on each sphere such that any sphere passing through a
point corresponding to a red dot in Figure 5 has that point chosen. These points
together with the homotopy {Jt} define an isotopy of the d+ 1 spheres which may
change the intersection configuration as allowed by Table 1. If at some point in the
isotopy the intersection configuration changes, redefine the isotopy from the time
that the first degeneration occurs onwards by changing the choice of two points on
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each sphere so that they include the points corresponding to red dots in the new
(more degenerate) configuration. Then repeat this again at a later time value if the
intersection configuration changes again. Notice that after finitely many steps (at
most three in these cases), the intersection configuration must remain fixed under
the isotopy. Therefore we obtain an isotopy from our original configuration of d+1
J0-holomorphic spheres to d + 1 complex projective lines where the intersection
configuration changes at most by finitely many degenerations.

Now we will show that we can modify an isotopy that degenerates once to
an isotopy that preserves the intersection configuration and passes through Jt-
holomorphic spheres for all but a small interval near the time where the degenera-
tion originally occured.

Each of these possible degenerations occurs when a sphere Ct
i0

which originally

intersected other spheres Ct
i1
, · · · , Ct

i�
generically in double points for t < t0 is

isotoped so that it intersects Ct
i1
, · · · , Ct

i�
at their common intersection point (� ≥ 2)

for t ≥ t0, or when this occurs in finitely many different places at the same time t0.
Because the intersection points corresponding to red dots are fixed and distinct,

Ci0 ∩ Cij for j = 1, · · · , � cannot be points marked by a red dot. However, the
intersection Ci1 ∩ · · · ∩ Ci� can be (and usually will be) marked by a red dot, as
the sphere Ct

i0
approaches that fixed intersection point. Notice that in the intersec-

tion configurations we are considering, no sphere has more than three intersection
points that are not marked by a red dot, except in Id

1 , Id
2 , Id

3 , Id
7 , Id

8 and Id
9 . The

configurations Id
1 , Id

3 , and Id
9 cannot degenerate at all, the configurations Id

2 and
Id
8 can only degenerate at one place, and none of the spheres in Id

7 containing four
intersection points not marked by a red dot can degenerate in a way that brings two
pairs of these four points together. Therefore, if degenerations occur in multiple
places at once in any of the configurations, the corresponding Ci0 ’s will be distinct.
Therefore we can perform all our modifications to the isotopy near degenerations
in distinct places independently.

After a degeneration at t = t0, the isotopy is defined by fixing pairs of points
on each sphere including all the red dots on the more degenerate intersection con-
figuration. Therefore one of the two fixed points on Ct

i0
is at its intersection with

Ct
i1
∩ · · · ∩ Ct

i�
for all t ≥ t0.

Choose an injective parametrization of the spheres
⋃d

i=0 C
t
i ,

F :
d⊔

i=0

S2
i × I → CP 2,

so that F (S2
i , t) = Ct

i . Let p ∈ S2
i1

be the unique preimage in S2
i1

of v1 = Ct
i0
∩

Ct
i1
∩ · · · ∩ Ct

i�
∈ CP 2 for t ≥ t0 (note that one can choose the parameterization F

so that p is the same for all t ≥ t0 since its image is fixed as t ≥ t0 varies). Let
v0 ∈ CP 2 be the other point on Ct0

i0
which is fixed during the isotopy as t ≥ t0

varies. Choose a sufficiently small injective parametrized path γ : I → S2
i1

with
coordinate s ∈ I, such that γ(0) = p. We will extend our isotopy F to a two
parameter isotopy G depending on s and t for all t ≥ t0 as follows. For t ≥ t0 and

s ∈ I, let G(Si0 , t, s) = C
(t,s)
i0

be the unique Jt-holomorphic sphere homologous to

CP 1 that passes through v0 and let F (γ(s), t) ∈ Ci1 . Let G(x, t, s) = F (x, t) for

x ∈ S2
i where i 	= i0. Then for s = 0 and t ≥ t0, C

(t,0)
i0

= Ct
i0

. We claim that for
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t

t0

s

Figure 6. A schematic for the isotopies F and G. The blue indi-
cates where F and G map into the original less degenerate config-
uration, and the red indicates where F and G map into the more
degenerate configuration. (Color available online.)

s > 0 and t ≥ t0, C
(t,s)
i0

intersects each C
(t,s)
ij

for j = 1, · · · , � in a distinct double

point so the degeneration is undone. This is because C
(t,s)
i0

necessarily intersects

C
(t,s)
i1

at F (γ(s), t) 	= F (p, t) = C
(t,s)
i1

∩· · ·∩C(t,s)
i�

, so C
(t,s)
i0

cannot intersect C
(t,s)
ij

at

its intersection with C
(t,s)
ij′

for j, j′ ∈ {1, · · · , �}. By choosing γ to be a sufficiently

small path, the intersections of Ci0 with other Ci will be preserved (as generic

double points except possibly at v0 which is fixed). Additionally, note that C
(t,s)
i0

is distinct from C
(t,s′)
i0

for s 	= s′ since their intersections with C
(t,s)
i1

are different
by injectivity of γ.

Now we can define an isotopy of the d + 1 spheres which preserves the original
intersection configuration except at a single point during the isotopy where it de-
generates by following the original isotopy until time t0, then following the isotopy

through
⋃
C

(t,s)
i for t = t0, s ∈ [0, 1], and then through s = 1, t ∈ [t0, 1]. (See

Figure 6 for a schematic.) We can modify this isotopy in a small neighborhood of
the single degeneration point, by briefly moving out of the space of Jt-holomorphic
curves. Consider the space of all smooth immersions of d+1 spheres, each homolo-
gous to CP 1 with given intersection data. This space includes all the J-holomorphic
configurations we have considered as a subspace. The main problem with working
with smooth but not J-holomorphic spheres, is that a generic isotopy through d+1
smooth embeddings of such spheres passes through points where the number of
geometric intersections between any two spheres can increase by adding an alge-
braically cancelling pair. However, if we stay sufficiently close to J-holomorphic
configurations we can avoid this, since algebraically cancelling pairs are introduced
after a tangency between two spheres which is a closed condition. By construction
we have two paths from the degenerate point in our isotopy out into the space of
d+1 spheres intersecting in the configuration I that we are interested in. Choosing
a sufficiently small ε, we will find a path through embeddings of d+1 spheres homol-

ogous to CP 1 intersecting according to I, from F (
⊔d

i=0 S
2
i , t0− ε) =

⋃d
i=0 C

(t0−ε,0)
i

to G(
⊔d

i=0 S
2
i , t0, ε) =

⋃d
i=0 C

(t0,ε)
i . Let N1, N2 be small connected neighborhoods

in S2
i0

so that N1 ⊂ N2 and the images F (Nq, t) ⊂ Ct
i0

for t ∈ [t0 − ε, t0], q = 1, 2

contain the intersections of Ct
i0

with Ct
ij

for j = 1, · · · , � but no other intersections,

and similarly G(Nq, t0, s) ⊂ C
(t,s)
i0

contains the intersections of C
(t0,s)
i0

with C
(t0,s)
ij

for j = 1 · · · , �, s ∈ [0, ε] and no other intersections. We construct the isotopy
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I :
⊔n

i=0 S
2
i × I → CP 2 as follows:

I(x, r) =

⎧⎪⎨⎪⎩
F (x, t0 − ε + 2rε) for x /∈ N1, r ∈ [0, 1

2 ],

G(x, t0, 2ε(r − 1
2 )) for x /∈ N1, r ∈ [ 12 , 1],

H(x, r) for x ∈ N2.

Here H : N2 × I → CP 2 is a generic isotopy everywhere close to, and for r = 0, 1

or x ∈ N2 \N1 agreeing with, the isotopy Ĥ : N2 × I → CP 2 defined by

Ĥ(x, r) =

{
F (x, t0 − ε + 2rε) for r ∈ [0, 1

2 ],

G(x, t0, 2ε(r − 1
2 )) for r ∈ [ 12 , 1].

Note that a generic (1-parameter) isotopy mapping N2 (which is 2-dimensional)
into CP 2 (which is 4-dimensional) will avoid the (0-dimensional) point v1 ∈ CP 2

where C
(t,s)
i1

intersects C
(t,s)
i2

, · · · , C(t,s)
i�

for all (t, s) (identifying Ct
i with C

(t,0)
i for

t < t0). By taking H generic and close to Ĥ we can ensure that N2 maps into a
small neighborhood of v1 (thus avoiding introducing new intersections with other
spheres) for each r and H(N2, r) uniquely intersects each H(S2

ij
, r) in a distinct

double point.
Therefore I provides an isotopy we can append between F (·, t) for t ∈ [0, t0 − ε]

and G(·, t0, s) for s ∈ [ε, 1] followed by G(·, t, 1) for t ∈ [t0, 1]. Putting these all to-
gether we find an isotopy of the spheres C0, · · · , Cd which preserves the intersection
configuration.

We conclude our argument by dealing with the possibility that multiple degener-
ations occur as we go through the homotopy {Jt}. If the intersection configuration
changes at times t0, t1, · · · , tn during the isotopy defined by {Jt}, then repeat the
process above starting at the most degenerate configuration (t ∈ [tn, 1]). Use the
process above to create an isotopy for t ∈ [tn−1, 1] that preserves the intersection
configuration of the spheres that occurs at time tn−1. Then repeat the process to
obtain an isotopy over successively larger time intervals [tn−1, 1] ⊃ [tn−1, 1] ⊃ · · · ⊃
[t0, 1] ⊃ [0, 1], which fix the intersection configuration that occurs at the initial
point of the interval. �

This tells us that, up to isotopy of a regular neighborhood, we may assume that
the blow-down of our dual graph is a set of complex projective lines in CP 2. We
would like to know that the intersection information of the complex projective lines
determines the isotopy type of a regular neighborhood of their union. It suffices to
show that we can get from any collection of complex projective lines to any other
of the same intersection configuration through such collections of lines.

Lemma 2.8. The space of d+ 1 lines of intersection with configuration Id
1 , Id

2 , I4
4 ,

I5
5 , I5

6 , or Id
7 is connected and non-empty.

Proof. Fix (a, d) ∈ {(1, d), (2, d), (4, 4), (5, 5), (5, 6), (d, 7)}. Order the lines in the
configuration C0, C1, · · · , Cd where C0 intersects all other lines in double points.
For 1 ≤ n ≤ d, let Sn(Id

a) denote the intersection configuration formed by the
subset of lines C0 ∪ · · · ∪Cn. Note that Sd(Id

a) = Id
a , and increasing n corresponds

to placing additional lines in the configuration as a subset of Id
a . Let Mn denote the

moduli space of complex projective lines intersecting according to the configuration
Sn(Id

a).
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Any complex projective line is determined by choosing two distinct points in
CP 2. Through a diffeomorphism given by an element in PGL(2,C) we may assume
that two of the lines are standardly given as C0 = {[0 : z1 : z2]} and C1 = {[z0 : 0 :
z2]}. Therefore, when n = 1, Mn is a point after we mod out by the PGL(2,C)
action on CP 2.

Any other line intersects each of C0 and C1 in a single point. Because C0

intersects each line in a distinct point, there are no other Ci passing through C0∩C1.
Therefore C2 intersects C0 and C1 each away from C0 ∩ C1, therefore (regardless
of our choice of (a, d)) M2 is parametrized by [C0 \ (C0 ∩ C1)] × [C1 \ (C0 ∩ C1)].

Now, we proceed by induction on 1 ≤ n ≤ d. Here it will be important that
(a, d) is one of the choices specified in the statement. In particular, no line in
the configuration contains more than two multi-points of intersection (where multi-
point means a point where at least three lines pass through the same point).

Inductively assume that the moduli space Mn−1 of configurations of projective
lines C0, C1, · · · , Cn−1 is a non-empty connected subset of [C0 \ (C0 ∩ C1)]

an−1 ×
[C1 \ (C0 ∩ C1)]

bn−1 . There are three cases for how Cn is determined. The first
is that Cn meets Cj in a double point for all 0 ≤ j ≤ n − 1. The second is
that Cn passes through the common intersection of Cj1 ∩ · · · ∩ Cj� for � ≥ 2,
1 ≤ j1 < j2 < · · · < j� ≤ n−1, and Cn meets Cj at a double point for j 	= j1, · · · , j�.
The third is that Cn passes through Cj1 ∩ · · · ∩ Cj� and Cj�+1

∩ · · · ∩ Cj�+�′ for

�, �′ ≥ 2, 1 ≤ ji ≤ n− 1, and ji distinct, but Cn intersects Cj at a double point for
j ∈ {1, · · · , n− 1} \ {j1, · · · , j�′}. Note that these are all the possibilities we must
consider, because in all of the configurations listed in the statement of the theorem,
each line contains no more than two multi-intersection points.

In the first case, Cn is determined by choosing its intersection points on
C0 \ (C0 ∩ C1) and C1 \ (C0 ∩ C1), but some pairs (v1, v2) ∈ [C0 \ (C0 ∩ C1)] ×
[C1 \ (C0 ∩ C1)] will determine a line that passes through some intersection point
Cj ∩ Cj′ for 0 ≤ j, j′ < n. However, this is a real codimension 4 phenomenon
because there is a real 2-parameter family of projective lines that pass through
points on Cj in a neighborhood of Cj ∩ Cj′ . Therefore the subset of {(x, v1, v2) ∈
Mn−1 × [C0 \ (C0 ∩C1)]× [C1 \ (C0 ∩C1)]} corresponding to configurations where
Cn does not intersect each Cj for j < n in a double point is a codimension 2 subset,
so its complement, Mn, is connected and satisfies the inductive hypothesis.

In the second case, Cn is required to pass through Cj1 ∩· · ·∩Cj� and must avoid
other intersections of the Cj , for j < n. The point Cj1 ∩ · · · ∩ Cj� together with a
point on C0\(C0∩C1) determines a unique line, and the configuration space of lines
C0, · · · , Cn−1 together with this line is parameterized by Mn−1 × [C0 \ (C0 ∩C1)],
which is connected by the inductive assumption. Again, we must remove points
from this space for which the last line passes through intersections of the Cj , j < n,
other than Cj1 ∩ · · · ∩ Cj� , but this is a real codimension 2 phenomenon, so the
complement, Mn is connected and satisfies the inductive hypothesis.

In the third case, Cn is required to pass through two points, Cj1 ∩ · · · ∩ Cj�

and Cj�+1
∩ · · · ∩ Cj�+�′ , which are completely determined by the point in Mn−1.

Because this case only occurs when a line in the final configuration, Id
a , passes

through two multi-intersection points, this case only arises when Id
a = Id

7 . Since a
line is determined by two points, we gain no additional parameters. However, to get
Mn, we may need to cut out a subspace of Mn−1 for which the intersection points
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Cj1 ∩ · · · ∩Cj� and Cj�+1
∩ · · · ∩Cj�+�′ are collinear with an additional intersection

point Cj ∩ Cj′ for (j, j′) /∈ {j1, · · · , j�}2 ∪ {j�+1, · · · , j�+�′}2.
In Id

7 there are exactly two intersection points of multiplicity > 2, and there is one
Cn passing through both of these multi-intersection points. Therefore, case 3 occurs
only at the induction at stage n, if the ordering is chosen such that these multi-
intersection points are determined by points of intersection xi and xj of the lines
C0, C1, · · · , Cn−1. Notice that C0 is the only line in the intersection configuration
which does not pass through these multi-intersection points (C0 is necessarily a line
which only has double point intersections in our chosen ordering). Therefore any
point xm which is an intersection point of {C0, C1, · · · , Cn−1} must lie on at least
one of the lines C1, · · · , Cn−1. Since each of C1, · · · , Cn−1 either passes through xi

but not xj or passes through xj but not xi, xm cannot be collinear with xi and xj .
Therefore, in this case Mn

∼= Mn−1.
Inductively this proves that Md is parameterized by a non-empty, connected

subspace of [C0 \ (C0 ∩ C1)]
ad × [C1 \ (C0 ∩ C1)]

bd . �

Remark. In contrast, if we considered a configuration where some of the lines passed
through three or more multi-points, the fact that such a line exists puts a constraint
on the variables determining the earlier lines. These yield polynomial relations on
the homogeneous coordinates of the points determining the lines. With sufficiently
many lines, one can construct intersection configurations for which the space of
complex projective lines in that configuration is disconnected or empty.

We conclude that for the listed configurations, the homology representation of
the dual graph determines a unique embedding of a regular neighborhood of the dual
graph. This is because the regular neighborhood of the dual graph can be obtained
by blowing up one of the above-discussed configurations at points specified by the
homology representation.

Note that although this provides an embedding of this dual configuration of
spheres into a symplectic manifold, it does not ensure that there is a concave
neighborhood of this configuration (it is not known whether this always exists).
Therefore we only obtain upper bounds on the number of symplectic fillings, and
will find lower bounds through other means in our examples.

2.6. Proof of Theorem 1.1. We can now obtain the finiteness results of Theorem
1.1 as a corollary.

Proof. Given any symplectic filling, it can be glued to the concave neighborhood
of the dual configuration to give (CP 2#MCP 2, ωM ) by sections 2.1, 2.2, and
2.3. The homology classes the spheres in the dual configuration can represent
in H2(CP

2#MCP 2) are restricted as discussed in section 2.4. If the number of
singular fibers is k = 3, 4 or 5 and e0 = −k − 1, the number of arms in the dual
graph d is sufficiently small so the only possible intersection configurations of the
image of the spheres in the dual graph after blowing down are I3

1 , I3
2 , I4

1 , I4
2 , I4

4 ,
I5
1 , I5

2 , I5
5 , I5

6 , or I5
7 . When e0 = −k − 2 and k = 3, 4, 5, the results of Lemma

2.5 imply that the only possible intersection configurations are I4
1 , I4

2 , I5
1 ,I5

2 , I5
7 ,

I6
1 , I6

2 , and I6
7 . When e0 ≤ −k − 3, Lemma 2.5 implies that the only possible

intersection configurations are Id
1 and Id

2 where d = −e0 − 1. Therefore, Lemmas
2.7 and 2.8 imply that a regular neighborhood of the image of the spheres in the
dual graph after blowing down embeds uniquely up to isotopy into CP 2. Therefore
the embedding of a regular neighborhood of the dual graph is uniquely determined
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up to isotopy by blowing up at the points dictated by the homology classes each
sphere in the dual graph represents in H2(CP

2#MCP 2). The number of possible

embeddings of a neighborhood of the dual graph into CP 2#MCP 2 provides an up-
per bound on the number of convex symplectic fillings of the corresponding Seifert
fibered space with contact structure ξpl.

By section 2.4, in terms of a standard basis (�, e1, · · · , eM ) for H2(CP
2#MCP 2),

the homology classes [C0], · · · , [Cm] must have the form

[C0] = �

[C1] = �− ei11 − · · · − ei1n1+1

...

[Ck] = �− eik1 − · · · − eiknk+1

[Ck+1] = �− eik+1
1

− eik+1
2

...

[Cd] = �− eid1 − eid2
[Cd+1] = eik+1

0
− eik+1

1
− · · · − eik+1

nk+1−1

...

[Cm] = eim0 − eim1 − · · · − eimnm−1
,

so up to symmetry of relabelling the ei, the only possible differences are determined

by the pairs (j, p), (j′, p′) for which ijp = ij
′

p′ . There are significant restrictions
determined by the intersection data of the spheres, but we can easily get a very
loose upper bound on the number of possibilities. If N =

∑m
j=1(nj + 1), then

there are less than N different ei which have non-zero coefficient in any [Cj ]. Thus
there are at less than NN arrangements of these ei into the slots above. We also
may assume that a minimal symplectic filling is the complement of one of these
embeddings in CP 2#MCP 2 where M ≤ N , because N is the largest number
of exceptional spheres which intersect the dual configuration of spheres. Therefore
there are certainly no more than NN+1 diffeomorphism types of minimal symplectic
fillings of a given Seifert fibered space satisfying the hypotheses of the theorem with
the contact structure ξpl.

For a general dually positive Seifert fibered space (no restrictions on k or e0
other than e0 ≤ −k− 1), the results discussed in sections 2.1, 2.2, 2.3, and 2.4 still
hold, though we no longer have a proof that the dual graph has a unique embedding
into CP 2#MCP 2 for each homology representation. However, we still have that
any strong symplectic filling glues to the dual graph to give CP 2#MCP 2, so the
homology of the filling fits into the following long exact sequence by the Mayer-
Vietoris theorem:

0 → H4(CP
2#CP 2) → H3(Y ) → H3(dual graph) ⊕H3(filling)→H3(CP

2#CP 2).

This immediately implies H3(filling) = 0 after noting which terms are closed mani-
folds of the correct dimension. The rest of the Mayer-Vietoris sequence over rational
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coefficients is as follows:

H3(CP
2#MCP 2;Q) → H2(Y ;Q) → H2(dual graph;Q) ⊕H2(filling;Q)

→ H2(CP
2#MCP 2;Q) → H1(Y ;Q)

→ H1(dual graph;Q) ⊕H1(filling;Q) → H1(CP
2#MCP 2).

Since Y is a 3-manifold, Poincaré duality implies H2(Y ;Q) ∼= H1(Y ;Q) ∼= Qb1(Y ).
Note that the homology of the dual graph is generated by the m + 1 spheres that
are plumbed together. Filling in known terms of the sequence gives

0 → Qb1(Y ) → Qm+1 ⊕H2(filling;Q) → QM+1 → Qb1(Y ) → H1(filling;Q) → 0.

Exactness at the end of the sequence implies b1(filling) ≤ b1(Y ). Chasing through
the rest of the sequence gives the following equation:

b1(filling) + M + 1 = m + 1 + b2(filling).

Therefore the Euler characteristic and signature satisfy

χ(filling) = M −m + 1

and

|σ(filling)| ≤ b2(filling) ≤ M −m + b1(Y ).

If the symplectic filling is minimal, then every exceptional sphere in CP 2#MCP 2

must intersect the dual graph. Since there is some almost complex structure J
for which the spheres in the dual graph are J-holomorphic and we can find J-
holomorphic representatives of the exceptional spheres (as argued in section 2.5.1),
the algebraic and geometric intersection numbers of these spheres coincide. In
particular, every basis element ei ∈ H2(CP

2#MCP 2) of square −1 must appear
with non-zero coefficient in the homology class [Cj ] of some sphere in the dual graph.
As mentioned for the first half of the theorem, if [Cj ]

2 = −nj for j = 1, · · · ,m,
the number of ei showing up with non-zero coefficient in the homology of the dual
graph is bounded above by N =

∑m
j=1(nj + 1). Therefore

χ(filling) ≤ M −m + 1 ≤ N

and

|σ(filling)| ≤ M −m + b1(Y ) ≤ N + b1(Y ).

Note that N is determined by the dual graph, which can be generated given the
Seifert invariants of Y . �

Of course, the bound given here is far from sharp. Note that one can obtain
tighter bounds in specific cases when the possible homology representations of
the dual graph are known. Homology representations which are “more efficient”
(namely they can be written using few distinct ei) will yield fillings with stricter
bounds on χ, σ. We will see in examples that the homology representations yielding
the filling given by the original plumbing are the least efficient with the ei’s, so it
is not surprising that our examples will give alternate fillings with smaller Euler
characteristic than the original plumbing.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMPLECTIC FILLINGS OF SEIFERT FIBERED SPACES 5995

−2 −2 −2 −2

−2

−2

−4

n1 − 1

n2 − 1

n3 − 1

(a) Graphs

+1
−n1

−n2

−n3

(b) Dual Graphs

Figure 7. The graphs and dual graphs representing a simple fam-
ily of plumbings.

3. Simplest examples

In order to see how this argument produces a list of diffeomorphism types of
possible symplectic fillings of a given dually positive (Y, ξpl), it is useful to look
at concrete examples. Because the number of symplectic fillings is determined by
possible ways of writing the homology classes of the spheres in the dual graph,
one can obtain a simple family of examples by insisting that the dual graph is star-
shaped with three arms, and each arm has length one as in Figure 7b. These graphs
arise as the dual graphs of three-armed graphs with central vertex decorated by −4
and all other vertices decorated by −2. These graphs depend on three positive
integer parameters n1, n2, and n3 which determine the lengths of the arms as in
Figure 7a, and are the negations on the coefficients of the spheres in the arms of the
dual graph. We work through the classification of convex fillings for this example
in full detail to make it clear how to obtain the possible diffeomorphism types of
symplectic fillings from the homological restrictions.

Now we need to determine the possible ways to write [C0], [C1], [C2], [C3] in terms
of the standard basis (�, e1, · · · , eM ) for H2(XM ;Z). By section 2.4, we know that
they must have the form

[C0] = �

[C1] = �− ei11 − · · · − ei1n1+1

[C2] = �− ei21 − · · · − ei2n2+1

[C3] = �− ei31 − · · · − ei3n3+1
,

and by Lemma 2.4, |{ij1, · · · , i
j
nj+1} ∩ {ij

′

1 , · · · , ij
′

nj′+1
}| = 1 for j 	= j′ ∈ {1, 2, 3}.

There are exactly two different ways three sets can have each pairwise intersection
be a unique element. The first is that they all share a single element in common,
and the second is that each of the three pairs has a different common element. Up
to relabeling, the two possibilities are as follows:

Case A Case B
[C0] = � [C0] = �
[C1] = �− e1 − e11 − · · · − e1n1

[C1] = �− e1 − e2 − e11 − · · · − e1n1−1

[C2] = �− e1 − e21 − · · · − e2n2
[C2] = �− e1 − e3 − e21 − · · · − e2n2−1

[C3] = �− e1 − e31 − · · · − e3n3
[C3] = �− e2 − e3 − e31 − · · · − e3n3−1
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Note here all of the eji are all distinct from each other and from the em’s.
Now we can see how each of these translates into an embedding of the dual

configuration. After blowing down all exceptional spheres, the proper transform of
the image of the dual graph spheres under the embedding will be four symplectic
spheres homologous to CP 1, and by section 2.5.2 we may assume that they are four
complex projective lines. In Case A, e1 appears in [C1], [C2] and [C3] with non-zero
coefficient, so when we blow up the sphere representing e1, it will be at a point of
intersection of three of the original +1 spheres (the complex projective lines after
blowing down must therefore be in configuration I3

1 ). The remaining blow-ups are
done on a point of a single one of these three spheres, so that the resulting proper
transforms have sufficiently negative self-intersection numbers.

In a Kirby diagram, the original four complex projective lines are represented
by four +1 framed unknots with a single positive twist as in Figure 8a. In order
to ensure this is a diagram for CP 2, we cancel the extra three 2-handles with three
3-handles, and close off the manifold with a 4-handle. The first blow-up in Case
A introduces a new −1 framed unknot which links three of the four original link
components, untwists these three components, and reduces the framing coefficients
on each by 1. The remaining blow-ups in Case A introduce more −1 framed unknots
which link once with one of the three untwisted original link components and reduce
the corresponding framing coefficient by 1. The resulting diagram is shown in Figure
8b.

Similarly in Case B, the blow-ups corresponding to e1, e2, e3 are done at inter-
sections of the three pairs of the three original spheres that are not C0, and the
other blow-ups are done at points on only one of their proper transforms. In the
Kirby diagram, these are visible in Figure 8c.

The symplectic dual configuration is visible in each of the previous diagrams
for XM as the union of the cores of four 2-handles together with their Seifert
surfaces pushed into the 0-handle. We wish to find the diffeomorphism types of the
complements of these embeddings, since these are the potential symplectic fillings.

Because the union of the Seifert surfaces of the four attaching circles for C0, C1,
C2, C3 is connected, their complement in the 0-handle retracts to a subset of
the boundary of the 0-handle. Therefore the complement of the dual configura-
tion is given by deleting the 0-handle and the four 2-handles corresponding to
C0, C1, C2, C3. It is easier to understand the diffeomorphism type of the resulting
manifold with boundary by turning the manifold upside down so the boundary ap-
pears on the top instead of on the bottom. Since both possible diagrams (Figures
8b and 8c) have three 3-handles, the resulting upside down handlebody in the com-
plement of the dual configuration will have three 1-handles, together with 2-handles
corresponding to all the extra 2-handles in the diagram which are not part of the
dual configuration. The boundary of the 0-handle and 1-handles is #3S

2×S1. This
appears as a surgery diagram given by the mirror image of the original diagram
with surgery coefficients the negations of the framings. Surgery coefficients are put
in brackets, 〈·〉. An attaching circle of an upside down 2-handle will be a 0 framed
meridian of the surgery circle corresponding to the attaching circle of the original
2-handle (see [14] for more details on turning handlebodies upside down). In order
to get the diagram into a more standard form, we perform diffeomorphisms on the
boundary between the 1-handlebody and the 2-handles until the boundary looks
standard (like 0-surgery on the three component unlink). Once the boundary of the
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3 3-handles, 1 4-handle

1 1 1 1

(a) Diagram for CP 2 with four +1
spheres.

3 3-h, 1 4-h

−1

1

−1 −1 −1

−1

−1

−1

−n1

n1
n3n2

−n2

−n3

(b) Blow-up in Case A.

3 3-h, 1 4-h

−n1

n1 − 1
n3 − 1

− n3

− n2

n2 − 1 − 1

 − 1

 − 1

 − 1

 − 1

 − 1

 − 1

 − 1 − 1

 1

(c) Blow-up in Case B.

Figure 8. (Color available online.)

1-handlebody looks standard, we can replace each zero surgered unlink component
with a dotted circle representing a 1-handle. The corresponding diagrams are in
Figures 9a and 9b. Further handleslides and 1-2 handle cancellations yield Figure
9c.

Notice that the diagram in Figure 9c is the original plumbing of spheres, which
we know has a standard symplectic structure with convex boundary inducing ξpl
by Theorem 2.1.

In the embedding in Figure 8c determined by Case B, we find a different possible
diffeomorphism type for a symplectic filling. The complement of the dual configu-
ration turned upside down is given by Figure 10a. Figures 10b, 10c, and 10d are
obtained by surgery and handle moves.

Note that the resulting manifold in Figure 10d for Case B can be obtained from
the resulting manifold in Figure 9c by a rational blow-down of the −4 framed sphere
(the 1-handle and the black 2-handle form a rational homology ball). Because the
symplectic structure on the manifold in Figure 9c has the −4 framed sphere as a
symplectic submanifold, by an observation of Gompf [12] we can cut out this −4
framed sphere and replace it with the rational homology ball as in Figure 10d such
that the symplectic structure extends over the rational homology ball. Note that
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n1
n3

〈n1〉
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〈1〉

〈−1〉

〈1〉

〈1〉
0

0 0

0

0

0

〈n2〉

〈n3〉

(a) Upside down complement of dual configu-
ration in Case A

n2

n1
n3

−1

−1

−1

−1
−1

−1

−1 −1

−1

−1

(b) Dotted circle notation

n1−1

n2−1

n3−1

−4

−2

−2

−2
−2 −2

−2

(c) Handleslides and cancellations

Figure 9. The diffeomorphism type of the possible symplectic
filling from Case A. (Color available online.)

this does not change the symplectic structure in a neighborhood of the boundary of
the plumbing of spheres in Figure 9c, so the boundary remains convex and induces
the same contact structure ξpl.

Alternatively we can arrange this diagram to be a Stein handlebody. If we ar-
range that the Kirby diagram is in a standard form such that all the 2-handles are
contained in a rectangular box, the two attaching balls for each of the 1-handles
are aligned on opposite sides of the box, and the 2-handles are attached along Leg-
endrian tangles inside the box such that the framing coefficient is given by 1 less
than the Thurston-Bennequin number of the attaching circle, then there exists a
Stein structure on this 4-manifold (by [7], [13]). Replacing the dotted circle in
Figure 10d with two attaching balls, and keeping track of framings carefully, after
isotopies we can achieve a diagram where the 2-handles are attached along Legen-
drian knots with framing coefficients given by tb − 1 in Figure 11. To verify that
the contact structure is correct, we look at the classification of contact structures
on these Seifert fibered spaces. In these cases, there are three distinct contact
structures which are distinguished from each other by their Euler class. We can
compute the Euler class of the induced contact structure on the boundary of a Stein
manifold in a standard way involving rotation numbers of the attaching circles (see
[13]). To check this matches the Euler class of the contact manifold we started
with, track PD(e(ξ)) through a diffeomorphism taking this diagram representing
the 3-manifold to the standard one as the boundary of a star-shaped plumbing of
spheres.
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1 0-h, 3 1-h
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 〈1〉

 〈1〉
 0

 0

 0

 0  0

 0

 0

 0

 0
 〈1〉

(a) Upside down complement of dual configu-
ration in Case B

1 0-h, 3 1-h

n1 − 1

n2 − 1

−1

−1 −1

−1 −1

−1

−1

−1

−1

n3 − 1

 〈−1〉

 〈0〉  〈0〉
 〈0〉

(b) Moves on surgery diagram

n1 − 1
n2 − 1

n3 − 1

 −1  −1

 −1

 −1  −1

 −1

 −1
 −1

 −1

(c) Dotted circle notation

n1 − 1
n2 − 1

n3 − 1

 −3

 −2

 −2

 −2

 −2
 −2

 −2

 −1

(d) Handle cancellation

Figure 10. The diffeomorphism type of the possible symplectic
filling from Case B. (Color available online.)

Figure 11. Stein handlebody for Figure 10d. Framings on 2-
handles are given by 1 less than the Thurston-Bennequin number
of the attaching circle. (Color available online.)

A third way to see the convex symplectic structure on this manifold is to view it
as a Lefschetz fibration over a disk. An isotopy of the diagram in Figure 10b gives
Figure 13a. We claim this diagram represents Lefschetz fibrations which induce
an open book decomposition on its boundary that support the contact structure
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Figure 12. A page of the open book decomposition supporting
ξpl given by [9]. A product of Dehn twists about the blue curves
gives the monodromy. (Color available online.)

ξpl. The Lefschetz fibration will have base D2 and regular fibers 3-hold disks,
D3 = D2 \ {N(p1), N(p2), N(p3)}, where {N(pi)} are disjoint neighborhoods of
points contained in the interior of D2. We obtain a handlebody diagram for D2×D3

from the 3 disjoint parallel dotted circles, because one can think of a dotted circle
as the removal of a 2-handle from the interior of the 0-handle. If we view the 0-
handle as D2 ×D2, we can view the dotted circles as removing a neighborhood of
D2×{pi}. Then we attach the −1 framed 2-handles along the boundary of D2×D3.
We can see a trivial open book decomposition with pages D3 on ∂(D2 × D3) =
S1 ×D3 ∪D2 × [∂D2 � ∂N(p1)�N(p2)� ∂N(p3)]. Note that each attaching circle
of a 2-handle lies in a page of this trivial open book and the Seifert framing in
the handlebody diagram agrees with the page framing coming from this open book
decomposition. Therefore the framing on the 2-handles is −1 relative to the page
framing, so the attaching circles are vanishing cycles in a Lefschetz fibration.

It is useful to understand the open book decomposition supporting ξpl given to
us by Theorem 2.1. The construction of Gay and Mark tells us that the pages of the
open book are given by the surface obtained by connect summing |sj | copies of D2

to each sphere Cj in our graph, and then connect summing these surfaces according
to the plumbing graph. In our case, the central sphere C0 has s0 = −4 + 3 = −1,
the spheres in the arms but not on the ends have sj = −2 + 2 = 0, and the spheres
on the ends have sj = −2 + 1 = −1. Therefore the pages are surfaces as in Figure
12. The monodromy is given by a product of positive Dehn twists about the simple
closed curves around each connect sum neck, shown as the blue curves in Figure
12. Note that the order of these Dehn twists does not matter, because the curves
are all disjoint from each other so that the corresponding Dehn twists commute in
the mapping class group.

On the other hand, our Lefschetz fibration induces an open book decomposition
on its boundary whose pages are disks with three holes and whose monodromy
is a product of positive Dehn twists about the vanishing cycles ordered starting
at the bottom of the picture to the top, as in Figure 13b. This monodromy is
equivalent by a lantern relation to positive Dehn twists about the curves in Figure
13c, which is equivalent to the open book decomposition determined by Figure 12
which we know supports ξpl. Therefore our filling has the structure of a Lefschetz
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n1 − 1

n2 − 1 n3 − 1

 −1

 −1

 −1
 −1

 −1

 −1

 −1

 −1

 −1

(a) Lefschetz fibration (b) Open book decompo-
sition

(c) Equivalent open book

Figure 13. The Lefschetz fibration is visible in this handlebody
description of the second symplectic filling, and the open book
decomposition induced on the boundary has monodromy given by
a product of positive Dehn twists about the curves pictured here.
(Color available online.)

fibration which induces an open book decomposition on its boundary that supports
the contact structure ξpl we are interested in.

A Lefschetz fibration is allowable if the vanishing cycles are non-zero in the
homology of the page. It was shown in [2] and [18] that an allowable Lefschetz
fibration admits a Stein structure, and verified in [26] that the contact structure
induced on the boundary is supported by an open book decomposition whose pages
are diffeomorphic to the regular fibers of the Lefschetz fibration and whose mon-
odromy is a product of Dehn twists about the vanishing cycles. Since the vanishing
cycles in this Lefschetz fibration are homologically essential, this 4-manifold sup-
ports a Stein structure, inducing ξpl on the boundary. The Stein structure induces
a convex symplectic structure on this filling.

This proves (in multiple ways) part (1) of Theorem 1.2.

4. Classifications given by rational blow-downs

4.1. A simple family with e0 ≤ −k − 3. We can provide a complete classifica-
tion for a similar family to our simplest family in the case where e0 is sufficiently
negative.

Proof of Theorem 1.3. When the central vertex on our graph is labeled by e0 ≤
−k − 3 where k is the number of arms in our graph, the dual graph will have
d = −e0 − 1 arms, where d − k of these arms are made up of a single symplectic
sphere of square −1. If we assume all the arms of the dual graph have length one,
the possible homology classes each dual graph sphere can represent is completely
determined by Lemma 2.5. The graphs that these correspond to have central vertex
with coefficient e0 and k arms, each made up of some number of spheres of square
−2 as in Figure 14.

When max{n1 + 1, · · · , nk + 1} < d − 1 = −e0 − 2, only one of the homol-
ogy representations in Lemma 2.5 is possible, and this corresponds to the dif-
feomorphism type of the original plumbing of disk bundles over spheres. When
max{n1 + 1, · · · , nk + 1} ≥ d − 1 = −e0 − 2, we have other diffeomorphism types
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n1 − 1

n2 − 1

nk − 1−2

−2 −2−2−2

−2

e0

(a) Graphs

−n1

−n2

−nk

−1

−1

+1

(b) Dual graphs

Figure 14. A simple family of graphs and their dual graphs (e0 ≤
−k − 3 and n1, n2, · · · , nk ≥ 2).

−n1

−n2

−n3
−4

(a) Graphs

n1 − 1

n2 − 1

n3 − 1

−2 −2 −2

−2

−2

−2 +1

(b) Dual graphs

Figure 15. Another simple family of graphs and their dual graphs
(n1, n2, n3 ≥ 1).

obtained from the original plumbing of disk bundles over spheres by a rational blow-
down of a linear subgraph consisting of the central vertex and the next −e0 − 4
spheres of square −2 in one of the arms. Such rational blow-downs were shown to be
symplectic operations by Symington in [31]. Since we can perform this operation on
the interior of the filling, this will not change the convex symplectic structure near
the boundary. Therefore we can realize all these diffeomorphism types as convex
symplectic fillings. �

4.2. A simple family whose dual graphs have long arms. In the first ex-
ample, there were only four spheres in the dual graph to keep track of, which
restricted the number of different ways of writing their homology classes. An-
other restrictive condition on the possibilities for homology of the dual graph is to
require that the spheres have small self-intersection numbers. If we look at three-
armed dual graphs where every sphere except the central vertex has self-intersection
number −2 as in Figure 15b, we can understand fillings of Seifert fibered spaces
Y (−4;−n1,−n2,−n3) that bound plumbings according to the graphs in Figure 15a.
Note that when n1 = n2 = n3 = 2, we are back in example 1. Therefore we can
assume at least one of the arms in the dual graph has length at least 2.

Proof of Theorem 1.2, part (2). We consider what each sphere in the dual graph
can represent in H2(XM ;Z). The central vertex and its adjacent vertices must
represent one of two possible homology choices, as in the previous example. Let C0
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represent the central vertex, and C1, C2, and C3 represent the adjacent vertices.

Case A Case B
[C0] = � [C0] = �
[C1] = �− e1 − e2 − e3 [C1] = �− e1 − e2 − e4
[C2] = �− e1 − e4 − e5 [C2] = �− e1 − e3 − e5
[C3] = �− e1 − e6 − e7 [C3] = �− e2 − e3 − e6

The remaining spheres in the concave cap have the form ei1 − ei2 . Suppose C4

is adjacent to C1. Then since [C1] · [C4] = 1, and [Cj ] · [C4] = 0 for j = 0, 2, 3,
one of the ei which has −1 coefficient in [C1] must have +1 coefficient in [C4]. In
Case A, up to relabeling, this determines [C4] = e2 − e8 (if e1 appeared in [C4] it
would be impossible to cancel the algebraic intersection of C4 with both C2 and C3

since only two ei’s can appear with non-zero coefficient in [C4]). Continuing with
the assumption that we are in Case A for now, if C5 is adjacent to C4, then the
intersection relations imply [C5] = e8 − e9 or [C5] = e3 − e2. However, if there is
another sphere C6 adjacent to C5, then we cannot have [C5] = e3−e2, because there
is no way to write [C6] = ei1 − ei2 such that [C6] · (e3 − e2) = 1 and [C6] · [C1] = 0.
The homology of the spheres in the other arms is determined independently in the
same way. Therefore if we are in Case A, and each arm in the dual graph has
length at least four (i.e. n1, n2, n3 > 4), the homology of the spheres is unique up
to relabeling the ei.

If the first four spheres are configured as in Case B, and C4 is adjacent to C1, then
the intersection relations imply [C4] = e4 − e7 or [C4] = e1 − e5 (up to symmetric
relabeling). If C5 is adjacent to C4, then we cannot have [C4] = e1 − e5. This is
because it is not possible to find [C5] = ei1 − ei2 such that [C5] · (e1 − e5) = 1,
[C5] · [C2] = 0, and [C5] · [C3] = 0. Therefore if C5 is adjacent to C4, [C4] = e4 − e7.
Furthermore, [C5] = e7 − e8, since if [C5] = ei − e4 it is not possible to ensure
[C5] · [C1] = 0 and [C5] · [C2] = [C5] · [C3] = 0 simultaneously. In conclusion, if the
lengths of all of the arms in the dual graph are at least three (i.e., n1, n2, n3 > 3),
the homology of all of the spheres are determined, up to obvious symmetries, by
the choice that the first four spheres are as in Case B.

This implies that when n1, n2, n3 > 4, there are at most two diffeomorphism
types of strong symplectic fillings of the Seifert fibered space arising as the bound-
ary of the plumbing in Figure 15a. It is clear from the previous analysis in section
3 that the diffeomorphism types obtained from Case A and Case B differ by a
rational blow-down of the central −4 sphere. Furthermore, we know that the origi-
nal symplectic plumbing and the rational blow-down of the −4 sphere provide two
non-diffeomorphic symplectic fillings. �

4.3. A special case. When some of n1, n2, and n3 take values 3 or 4, some more
interesting fillings can appear. The most interesting case is when n1 = n2 = n3 = 3,
which we discuss here. (When some of the nj = 4, one can perform rational blow-
downs of any disjoint collection of −4 spheres. If only one or two of the nj = 3,
nothing new appears.)

Proof of Theorem 1.4. When n1 = n2 = n3 = 3, each arm in the dual graph has
length 2. Following the analysis of the previous proof, the four spheres C0, C1, C2, C3

represent in homology one of two possibilities referred to as Case A and Case B.
There are three more spheres in the dual graph, C4, C5, C6 adjacent to C1, C2, C3

respectively. As described above, if the first four spheres represent the homology in
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 −1
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(a) Embedding into CP 2#6CP 2

 −1

 −1

 −1

(b) Upside down complement of dual con-
figuration

Figure 16. The embedding of the concave cap and its comple-
ment which is a rational homology ball. (Color available online.)

Case A, the homology classes of C4, C5, C6 are determined up to symmetries. The
resulting embedding determined by this homology will have complement diffeomor-
phic to the original plumbing of spheres.

If the first four spheres are configured as in Case B, there are two possibilities
for each adjacent sphere. However, because [C4] · [C5] = [C5] · [C6] = [C4] · [C6] = 0,
these choices cannot be made independently of each other. Up to permutation of
the indices there are only two possibilities if the first four spheres represent the
homology as in Case B, given as follows:

[C4] = e4 − e7 [C4] = e1 − e5
[C5] = e5 − e8 [C5] = e3 − e6
[C6] = e6 − e9 [C6] = e2 − e4

The first of these gives rise to the rational blow-down of the −4 sphere in the
original plumbing. The second gives rise to a rational blow-down of the entire
original plumbing. The embedding of the concave cap into CP 2#6CP 2 is visible in
Figure 16a. By turning the complement upside down, one obtains a manifold built
from a 0-handle, three 1-handles, and three 2-handles, as in Figure 16b. One can
cancel two of the 1-handles with two of the 2-handles, and the remaining 2-handle
links nine times with the 1-handle, and it is thus a diagram for a rational homology
ball.

It is known that a smoothing of a complex singularity gives this rational ho-
mology ball whose boundary is Y (−4;−3,−3,−3). The complex structure gives
a convex symplectic structure to this smooth manifold, filling the same contact
structure ξpl (by [30] and [25]). Therefore all three of these diffeomorphism types
must be strong symplectic fillings of (Y (−4;−3,−3,−3), ξpl). �

4.4. The family Wp,q,r. The special case in the previous example generalizes to
a family of dually positive symplectic plumbings of spheres that can be completely
rationally blown down, given by the graphs in Figure 17a. This is the only family
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(b) Dual graphs

Figure 17. Wp,q,r and dual graphs.

of dually positive graphs which has a symplectic rational blow-down (of the entire
configuration) due to the classifications in [6] and [30].

We can classify the convex symplectic fillings completely for these graphs. Let
Y (Wp,q,r) denote the boundary of the plumbing of spheres according to the graph
Wp,q,r.

Theorem 4.1. The convex symplectic fillings of (Y (Wp,q,r), ξpl) are of the following
diffeomorphism types:

(1) The original symplectic plumbing of spheres according to the graph Wp,q,r.
(2) A rational blow-down of the central −4 sphere in the original plumbing of

spheres.
(3) A rational blow-down of a subset of the spheres in the first arm, the first

with square −p− 3 and the next (p− 1) spheres with square −2 ( assuming
p− 1 ≤ q).

(4) A rational blow-down of a subset of the spheres in the second arm, the first
with square −r− 3 and the next (r− 1) spheres with square −2 ( assuming
r − 1 ≤ p).

(5) A rational blow-down of a subset of the spheres in the third arm, the first
with square −q − 3 and the next (q − 1) spheres with square −2 ( assuming
q − 1 ≤ r).

(6) Any combination of (3), (4), and/or (5) assuming all the necessary hy-
potheses given above on p, q, r are met. Also, any combination of (3), (4),
and (5) with (2), but in that case we require the stronger conditions on (3),
(4), and (5) that p ≤ q, r ≤ p and q ≤ r respectively (this ensures the
rational blow-downs can all be done disjointly).

(7) A rational blow-down of the entire graph.

Proof. First note that all the above diffeomorphism types are realized as convex
symplectic fillings of ξpl because these rational blow-downs are known to be sym-
plectic operations by [31], [30]. Furthermore, all of these rational blow-downs pro-
duce non-diffeomorphic manifolds which can be distinguished by their intersection
forms (except when there are obvious symmetries of the three arms). Therefore it
suffices to provide an upper bound on the number of convex fillings which matches
the number of diffeomorphism types provided in the statement of the theorem.

By section 2, an upper bound is given by the number of ways to represent the
homology classes of the spheres in the dual graph in terms of a standard basis for
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H2(CP
2#MCP 2) of the form given in section 2.4. The dual graph for Wp,q,r is

given in Figure 17b.
Denote the sphere representing the central vertex by C0, and the three spheres

intersecting C0 by C1, C2, C3. Denote the string of spheres of square −2 whose
first sphere is adjacent to Cj by Cj

1 , · · · , C
j
p+1 for j = 1, 2, 3. There are two pos-

sibilities for the homology classes of the first four spheres, as in previous compu-
tations. Throughout this computation, all eni will be distinct basis elements for

H2(CP
2#MCP 2;Z) of square −1.

Case A Case B
[C0] = � [C0] = �
[C1] = �− e01 − e11 − · · · − e1q+2 [C1] = �− e01 − e02 − e11 − · · · − e1q+1

[C2] = �− e01 − e21 − · · · − e2p+2 [C2] = �− e01 − e03 − e21 − · · · − e2p+1

[C3] = �− e01 − e31 − · · · − e3r+2 [C3] = �− e02 − e03 − e31 − · · · − e3r+1

The remaining strings of spheres each have two possible configurations that can
occur in either Case A or B. They can each occur independently of each other, but
one of each of these two choices requires some inequality between p, q, r to be true.
The configurations are:[

C1
1

]
= e11 − e41

[
C2

1

]
= e21 − e51

[
C3

1

]
= e31 − e61[

C1
2

]
= e41 − e42

[
C2

2

]
= e51 − e52

[
C3

2

]
= e61 − e62

...
...

...[
C1

p+1

]
= e4p − e4p+1

[
C2

r+1

]
= e5r − e5r+1

[
C3

q+1

]
= e6q − e6q+1

or or or[
C1

1

]
= e11 − e41

[
C2

1

]
= e21 − e51

[
C3

1

]
= e31 − e61[

C1
2

]
= e12 − e11

[
C2

2

]
= e22 − e21

[
C3

2

]
= e32 − e31

...
...

...[
C1

p+1

]
= e1p+1 − e1p

[
C2

r+1

]
= e2r+1 − e2r

[
C3

q+1

]
= e3q+1 − e3q .

Note that the bottom choices are only possible if there are enough eni for n = 1, 2, 3,
namely we need p+1 ≤ q+2, r+1 ≤ p+2, or q+1 ≤ r+2 if we want the bottom
choice for the homology classes of {C1

j }, {C2
j } or {C3

j } respectively, and the first
four spheres represent the homology given by Case A. We need p + 1 ≤ q + 1,
r + 1 ≤ p + 1, or q + 1 ≤ r + 1 if we want the bottom choice for the homology
classes of {C1

j }, {C2
j } or {C3

j } respectively, and the first four spheres represent the
homology given by Case B.

As in all previous examples, the effect of choosing the first four spheres to repre-
sent the homology in Case B versus Case A is to rationally blow down the central
−4 sphere. The conditions for when one can choose the lower representation of the
homology of the jth arm of the dual graph match up precisely with the conditions
for when one can rationally blow down a linear subgraph of the jth arm in the orig-
inal graph in Case A. In Case B, these conditions on when we have a second choice
for the homology of the jth arm of the dual graph match the conditions needed to
rationally blow down a linear subgraph of the jth arm disjointly from the central
−4 sphere.
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Additionally, the symmetries which make the rational blow-down of one arm
diffeomorphic to the rational blow-down of another arm, correspond to symmetries
in the eji which permute the values of j.

There is one additional way to represent the homology of the arms in the dual
graphs, when the first four spheres represent homology given by Case B. We know
that [Cj

1 ] = em1
i1

− em2
i2

, where em1
i1

must show up with coefficient −1 in [Cj ]. In

Case A, we cannot have em1
i1

= e01 and still have [Cj
1 ] · [Cj′ ] = 0 for j 	= j′ ∈ {1, 2, 3}.

However, in Case B, this can occur, but it uniquely determines the remaining
homology classes as follows:[

C1
1

]
= e01 − e21

[
C2

1

]
= e03 − e31

[
C3

1

]
= e02 − e11[

C1
2

]
= e21 − e22

[
C2

2

]
= e31 − e32

[
C3

2

]
= e11 − e12

...
...

...[
C1

p+1

]
= e2p − e2p+1

[
C2

r+1

]
= e3r − e3r+1

[
C3

q+1

]
= e1q − e1q+1.

This gives an embedding of the dual configuration of symplectic spheres into
CP 2#(p + q + r + 6)CP 2. Note that the dual graph has p + q + r + 7 vertices,
so a regular neighborhood N of the corresponding configuration of spheres has
b2(N) = p+q+r+7 = b2(CP

2#(p+q+r+6)CP 2. The first and second homology

of ∂N = Y (Wp,q,r) are both torsion, and N and CP 2#(p+q+r+6)CP 2 are simply
connected, so their first homologies are zero. Therefore, the Mayer-Vietoris theo-
rem implies that the first and second homologies of the complement of N in this
embedding are both torsion. Therefore this is the diffeomorphism type of a rational
homology ball. Since this is the unique possible rational homology ball which can
strongly symplectically fill its contact boundary, it must be diffeomorphic to the
smoothing of the normal surface singularity studied in [30].

Therefore the number of ways to represent the homology of the spheres in the
dual graph is in direct correspondence with the diffeomorphism types we can realize
by starting with the original symplectic plumbing, and rationally blowing down a
subgraph or the entire graph, so these are all possible convex symplectic fillings of
(Y, ξpl). �

5. Fillings of Seifert fibered spaces

with more than three singular fibers

We have completed the classification of the simplest cases of symplectic fillings
of Seifert fibered spaces with k > 3 singular fibers when e0 ≤ −k− 3 in section 4.1.
Here we consider the simplest cases when k > 3, but e0 = −k− 1 and e0 = −k− 2.
We are prevented from giving full classifications for all such examples because we
need Lemmas 2.7 and 2.8 to say that each homology representation of the spheres
in the dual graph uniquely determines a symplectic filling. These lemmas do not
apply when e0 = −k− 1 or −k− 2 except when k ∈ {3, 4, 5}. However, we can still
get a hold on what happens when k = 4, 5, and the resulting fillings provide new
symplectic operations as opposed to the previous examples.

We look at the case where e0 = −k − 1 with k = 4 or 5 arms, with coeffi-
cients as in Figure 18a. The boundary of the corresponding plumbing is
Y (−k − 1; −n1

n1−1 , · · · ,
−nk

nk−1 ). The dual graph is in Figure 18b.
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n1 − 1

n2 − 1 n3 − 1

nk − 1

−k − 1

−2

−2 −2

−2

−2−2−2−2

(a) Graphs

−n1

−n2 −n3

−nk

1

(b) Dual graphs

Figure 18. The dually positive graphs for which the boundary
of the corresponding plumbing is Y (−k − 1; −n1

n1−1 , · · · ,
−nk

nk−1 ) and
their dual graphs.

By gluing an arbitrary convex filling to the concave neighborhood of the dual
graph, we obtain an embedding of C0 ∪ · · · ∪Ck into CP 2#MCP 2. By Lemma 2.4,
the homology of these spheres in terms of the standard basis for H2(CP

2#MCP 2;Z)
has the following form:

[C0] = �

[C1] = �− ei11 − · · · − ei1n1+1

...

[Ck] = �− eik1 − · · · − eiknk+1

and |{ij1, · · · , i
j
nj+1}∩{ij

′

1 , · · · , i
j′

nj′+1}| = 1 for all j 	= j′ ∈ {1, · · · , k}. When k = 4

this can occur in 3 different ways, and when k = 5 this can occur in 5 different
ways (up to symmetries). After blowing down the corresponding embeddings into

CP 2#MCP 2, these dual graphs descend to the configurations I4
1 , I4

2 , and I4
4 when

k = 4, and the configurations I5
1 , I5

2 , I5
5 , I5

6 , and I5
7 when k = 5 (see Figure 5). The

spheres which share a common intersection point after blowing down, will share a
common ei with coefficient −1 in their homology representations in the blow-up.

Note that if the nj are not sufficiently large, it may not be possible to realize
all possible homology configurations. It suffices to assume nj ≥ k − 2 for all j ∈
{1, · · · , k} to obtain all possibilities. It will be clear which homology representations
and thus diffeomorphism types of fillings cannot be realized when the nj are smaller.

We first produce diagrams which depict the embeddings of the dual graph into
CP 2#MCP 2 that correspond to these different representations of the homology,
and then use them to generate diagrams of the complement of these embeddings.
Then we show that these diffeomorphism types have the structure of an appropriate
Lefschetz fibration to prove that these diffeomorphism types are actually realized
as convex symplectic fillings.

The result of blowing up according to one of the possible homology represen-
tations gives an embedding represented by one of the choices in Figures 19a and
20. The attaching circles of the k + 1 spheres in the dual configuration which are
proper transforms of the original k + 1 complex projective lines are shown in red,
and the attaching circles for the 2-handles corresponding to the exceptional spheres
are shown in black.
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+1

−n4

−n3

−n2

−n1

4 3-h, 1 4-h

(a) Embeddings of dual graph

(b) Complement of dual graph

Figure 19. Embeddings of the dual graph into CP 2#MCP 2

when k = 4, and the complement of the embedding. Alternate
embeddings (and their complements) can be obtained by replacing
the boxed portion with one of the adjacent boxes. All framings on
the black attaching circles are −1. (Color available online.)
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+1

−n5

−n4

−n3
−n2

−n1

5 3-h, 1 4-h

Figure 20. The embeddings of the dual graph when k = 5. Alter-
nate embeddings can be obtained by replacing the boxed portion
with one of the adjacent boxes. All framings of the black attaching
circles are −1. (Color available online.)

We obtain the diffeomorphism type of the potentially convex symplectic filling by
cutting out the dual configuration, and turning the manifold upside down. Cutting
out the dual configuration corresponds to deleting the 0-handle, and the 2-handles
corresponding to the spheres in the dual graph (those whose attaching circles are
shown in red). To turn the resulting manifold upside down, we take the mirror
image of the original link formed by all attaching circles (which we can do by
reversing all the crossings), change all the framing coefficients to surgery coefficients
with the opposite sign, attach 2-handles along 0-framed meridians of the black
surgery circles (since we cut out the other 2-handles with the dual graph), and
replace the k 3-handles by k 1-handles. After a diffeomorphism of the boundary
(performing all the blow-downs along the surgery curves with coefficients ±1), all
of the crossings are reversed back to their original orientation (the lower half of the
crossings are reversed when the surgery curve coming from the red +1 framed curve
is blown down, and the upper half of the crossings are reversed when performing
the blow-downs along the surgery curves corresponding to the exceptional spheres
that intersect more than one sphere in the dual configuration), and the only 2-
handles are −1 framed in the same position as in the embedding. Representing the
k 1-handles by dotted circles we obtain diagrams like that in Figure 19b. Rotating
the plane we are projecting the link onto by 90◦ about the vertical axis, we obtain
diagrams for the possible fillings given by Figures 21a and 21b.

As in our simplest examples in section 3, these diagrams represent Lefschetz
fibrations, now over D2 with fibers k-holed disks. The vanishing cycles are given
by the −1-framed 2-handles (note that the Seifert framing agrees with the page
framing in this diagram, so this is indeed a positive Lefschetz fibration). Now we
need to check that the open book decomposition induced on the boundary of the
Lefschetz fibration supports the contact structure ξpl.
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(a) k = 4 (b) k = 5

Figure 21. The rotated diagrams giving all possible diffeomor-
phism types of these symplectic fillings. All 2-handles (shown in
black) have framing coefficient −1. (Color available online.)

Proposition 5.1. The open book decompositions arising as the boundary of these
Lefschetz fibrations supports ξpl.

Proof. The open book decompositions on the boundaries of these Lefschetz fibra-
tions have pages which are disks with k holes, and the monodromy is given by
positive Dehn twists around the vanishing cycles, ordered from the lowermost van-
ishing cycle in the figure to the uppermost. If we place the holes on the page on
the vertices of a regular k-gon contained in the disk, we can isotope the attaching
circles so that its projection onto a page has convex interior and contains some non-
empty subset of the k-holes. We will denote a Dehn twist about a curve on this
standard k-holed disk that convexly contains holes {h1, · · · , hj} by Dh1,··· ,hj

. We
will label the holes corresponding to the dotted circles 1, · · · , k from the leftmost
dotted circle to the right-most. Then the monodromy Mk· of the open books on the
boundary of the above given Lefschetz fibrations in Figure 21 is given as follows:

M4a = D3,4D2,4D1,4D2,3D1,3D1,2D
n1−2
1 Dn2−2

2 Dn3−2
3 Dn4−2

4

M4b = D3,4D2,4D1,4D1,2,3D
n1−1
1 Dn2−1

2 Dn3−1
3 Dn4−2

4

M4c = D1,2,3,4D
n1
1 Dn2

2 Dn3
3 Dn4

4

M5a = D4,5D3,5D3,4D2,5D1,5D2,4D1,4D2,3D1,3D1,2D
n1−3
1 Dn2−3

2 Dn3−3
3 Dn4−3

4 Dn5−3
5

M5b = D4,5D3,5D3,4D2,5D1,5D2,4D1,4D1,2,3D
n1−2
1 Dn2−2

2 Dn3−2
3 Dn4−3

4 Dn5−3
5

M5c = D4,5D3,5D2,5D1,5D1,2,3,4D
n1−1
1 Dn2−1

2 Dn3−1
3 Dn4−1

4 Dn5−3
5

M5d = D3,4,5D2,5D1,5D2,4D1,4D1,2,3D
n1−2
1 Dn2−2

2 Dn3−1
3 Dn4−2

4 Dn5−2
5

M5e = D1,2,3,4,5D
n1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5 .

Theorem 2.1 tells us that ξpl is supported by an open book decomposition whose
pages are k-holed disks, and whose monodromy consists of boundary parallel curves,
nj of them about each hole, and one parallel to the outer boundary. Note that this
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is identical to the monodromy given by M4c and M5e. We will show that the other
elements are just other factorizations of the same monodromy.

Elements in the mapping class group of the disk with k holes placed on the ver-
tices of a regular k-gon inside the disk satisfy the lantern relations. These relations
say that if A,B, and C are disjoint collections of holes, then DADBDCDA∪B∪C =
DA∪BDB∪CDA∪C , where A,B,C are subsets of the holes {1, · · · , k} (see [19]). We
first prove a lemma which gives us more general moves obtained from a sequence
lantern relations.

Lemma 5.2. Suppose B0, B1, · · · , Bm are disjoint subsets of the k holes on the
disk (m ≥ 2). Then

Dm−1
B0

DB1
· · ·DBm

= DB0∪B1
DB0∪B2

· · ·DB0∪Bm
DB1∪···∪Bm

D−1
B0∪B1∪···∪Bm

.

Proof. This relation can be obtained by performing m − 1 lantern relations, and
using the fact that Dehn twists around disjoint curves commute. In the notation
above, for the jth lantern relation in this sequence, let A = {B1, · · · , Bj}, B = B0,
and C = Bj+1. �

Now we can use these moves to show that M4a = M4b = M4c and M5a =
M5b = M5c = M5d = M5e. A simple lantern relation shows that M4a = M4b.
An application of the lemma with B0 = 4, B1 = 3, B2 = 2, B3 = 1 shows that
M4b = M4c.

One lantern relation gives that M5a = M5b, and two lantern relations gives
that M5a = M5d. We can commute Dehn twists about disjoint curves so we can
commute D3,4 past D2,5 and D1,5. Therefore,

M5b = D4,5D3,5D2,5D1,5D3,4D2,4D1,4D1,2,3D
n1−2
1 Dn2−2

2 Dn3−2
3 Dn4−3

4 Dn5−3
5 .

Then an application of the lemma with B0 = 4, B1 = 3, B2 = 2, B3 = 1 gives
M5b = M5c. A final application of the lemma with B0 = 5, B1 = 4, B2 = 3, B3 = 2,
B4 = 1 implies M5c = M5d �

As in the examples in section 3, we can stabilize this Lefschetz fibration to an
allowable Lefschetz fibration, so by [2], [18], and [26] this manifold supports a Stein
structure inducing a contact structure on its boundary that is supported by the
boundary open book decomposition, which is ξpl by the previous proposition.

Note that the diffeomorphism types of the fillings 4a, 4b, and 4c can be distin-
guished by Euler characteristic:

χ(4a) = (n1 − 2 + n2 − 2 + n3 − 2 + n4 − 2 + 6) − (4) + (1)

= n1 + n2 + n3 + n4 − 5,

χ(4b) = n1 + n2 + n3 + n4 − 4,

χ(4c) = n1 + n2 + n3 + n4 − 2.
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Similarly, we can distinguish 5a, 5b, 5c, 5d, and 5e:

χ(5a) = n1 + n2 + n3 + n4 + n5 − 9,

χ(5b) = n1 + n2 + n3 + n4 + n5 − 8,

χ(5c) = n1 + n2 + n3 + n4 + n5 − 6,

χ(5d) = n1 + n2 + n3 + n4 + n5 − 7,

χ(5e) = n1 + n2 + n3 + n4 + n5 − 3.

Note that the homology representation yielding the possible diffeomorphism type
given by 4a can only occur when n1, n2, n3, n4 ≥ 2, and 4b requires n4 ≥ 2. In
general, since we are classifying fillings whose arms have length nj − 1, we have
implicitly assumed nj ≥ 1. The restrictions for 5a are that nj ≥ 3 ∀j; for 5b
we need n1, n2, n3 ≥ 2 and n4, n5 ≥ 3; for 5c we need n5 ≥ 3; for 5d we need
n1, n2, n4, n5 ≥ 2.

This completes the classification of symplectic fillings of

(Y (−k − 1;
n1

n1 − 1
, · · · , nk

nk − 1
), ξpl)

when k = 4, 5, thus proving Theorem 1.5. Note that 4c and 5e are diagrams for the
original plumbing after handle-slides and cancellations. 4b and 5c are obtained from
these plumbings by performing a rational blow-down of the central vertex (a sphere
of square −k−1) together with k−4 spheres of square −2 in one of the arms. How-
ever, 4a, 5a, 5b, and 5d are new diffeomorphism types. Note that the restrictions
on the nj for these diffeomorphism types imply that their Euler characteristics are
always strictly greater than 1, so none of these are rational homology balls. Further-
more, these cannot be obtained by a rational blow-down of any subgraph containing
the central vertex because by varying the nj , we have classified all fillings of sub-
graphs containing the central vertex, so any such rational blow-down would give
back one of our original diffeomorphism types (4a, 4b, 4c, 5a, 5b, 5c, 5d, 5e). Each of
these diffeomorphism types is distinguished from the others by Euler characteristic,
so there cannot be any non-trivial rational blow-downs of a subgraph containing
the central vertex. Any subgraph not containing the central vertex is a union of
linear subgraphs of spheres of square −2, which are known to have no rational
blow-downs. Therefore these diffeomorphism types cannot be obtained by any ra-
tional blow-down of a subgraph of the original plumbing of spheres. Note, however
that their Euler characteristics are still strictly smaller than those of the original
plumbing.

6. Further observations and questions

Note that in many of the examples we have considered, each possible diffeomor-
phism type of a strong symplectic filling was actually realized by a Stein filling. This
is not surprising, because each of the contact manifolds we consider are supported
by planar open book decompositions (Theorem 2.1), and a result of Wendl in [33]
says that any minimal strong symplectic filling of a contact structure supported
by a planar open book can be deformed through a homotopy of strong symplec-
tic fillings to a Stein filling. Thus any diffeomorphism type supporting a convex
symplectic structure also supports a Stein structure.
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In all the examples we have considered, we have been able to prove that each
possible diffeomorphism type allowed by the homological restrictions of section 2
has a symplectic structure with convex boundary by direct construction. While
it is valuable to understand explicit symplectic manifolds of each diffeomorphism
type which can convexly fill a given contact manifold, we can only provide these
constructions on a case-by-case basis. It would be useful to know abstractly that
every diffeomorphism type produced by the arguments in section 2 are actually
realized as strong symplectic fillings. One way to show this would be to prove
that any symplectic embedding of the dual configurations of spheres has a concave
neighborhood. Since the blow-up construction gives a symplectic embedding of the
dual configuration into a blow-up of CP 2, if we could ensure this dual configuration
has a concave neighborhood, the complement would necessarily have a symplectic
structure with convex boundary.

Additional complications in the opposite direction arise in the cases when k is
large and e0 = −k−2,−k−1, since we do not understand the possible embeddings
of the dual graph into a blow-up of CP 2. While the space of complex projective
lines in a complicated intersection configuration may be disconnected or empty,
it is not clear what the space of smoothly embedded spheres in this intersection
configuration looks like. It would be interesting to understand what information is
generally implied about the classification of minimal strong symplectic fillings by
the representations of the homology classes of the spheres in the dual graph into
the second homology of a blow-up of CP 2.

Question 6.1. Are there dually positive Seifert fibered spaces for which the number
of diffeomorphism types of minimal strong symplectic fillings is strictly less than
or strictly greater than the number of homology representations of the dual graph
into the homology of a blow-up of CP 2?

One phenomenon that is apparent from all the examples we have computed
is that the original plumbing of spheres has the highest Euler characteristic of
all the symplectic fillings of its boundary. Thus replacing these plumbings with
alternate fillings could be useful in searching for symplectic manifolds with small
Euler characteristic. One may ask if this phenomenon is true in greater generality.

Question 6.2. Does a (dually positive or more general) symplectic plumbing of
spheres have the highest Euler characteristic of any symplectic filling of its contact
boundary?

Finally, we have shown in Theorem 1.1 that dually positive Seifert fibered spaces
with the contact structure ξpl have finitely many strong symplectic fillings. Similar
boundaries of other symplectic plumbings have been shown to admit infinitely many
symplectic fillings (see in particular the work of Akhmedov and Ozbagci [5]). How-
ever, these plumbings involve curves of higher genus at the central vertex. While
those examples and the ones considered here provide some information about when
symplectic plumbings can be replaced by only finitely many versus infinitely many
symplectic fillings, there is still plenty of unknown ground. Since every negative
definite graph (with each vertex decorated by the genus and self-intersection of the
corresponding curve) corresponds to a symplectic plumbing of spheres with convex
boundary inducing a contact structure ξpl (by [11]), these contact boundaries are
natural manifolds to start with.
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Question 6.3. Which manifolds, (Y, ξpl), arising as the boundary of a negative
definite symplectic plumbing have only finitely many strong symplectic fillings?
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