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Abstract

Let G be a compact connected semisimple Lie group. We extend the techniques of
Weinstein [W] to give a construction in group cohomology of symplectic forms ω on
‘twisted’ moduli spaces of representations of the fundamental group π of a 2-manifold
Σ (the smooth analogues of Hom(π1(Σ), G)/G) and on relative character varieties of
fundamental groups of 2-manifolds. We extend this construction to exhibit a symplectic
form on the extended moduli space [J1] (a Hamiltonian G-space from which these
moduli spaces may be obtained by symplectic reduction), and compute the moment
map for the action of G on the extended moduli space.

1 Introduction

Let Σ be a closed oriented 2-manifold of genus g ≥ 2; the fundamental group of Σ will be
denoted π. Let G be a compact connected Lie group with Lie algebra g. This paper concerns
the moduli space M = Hom(π, G)/G of conjugacy classes of representations of π into G,
and certain more general analogues of M. The space M has an open dense set on which the
structure of a smooth symplectic manifold is defined. In addition to the definition we have
given in terms of representations of π, the space M has two alternative descriptions. The
first of these is the gauge theory description: via the holonomy map, M is identified with
the space of gauge equivalence classes of flat connections on a trivial principal G bundle over
Σ. The second alternative description appears once one fixes a complex structure on the
2-manifold Σ, so that Σ becomes a Riemann surface; M is then identified with the space of
equivalence classes of semistable holomorphic GC bundles over Σ.

∗This material is based on work supported by the National Science Foundation under Grant No. DMS-
9306029.
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The purpose of this paper is to extend work of Karshon [K] and Weinstein [W] to a
more general setting; this paper follows [W] closely and should be read in conjunction with
it. These two papers complement the work of Goldman [G]. Goldman originally gave a
construction in group cohomology of the symplectic form ω on the space M; in order to prove
ω is closed, Goldman used the gauge theory description of the symplectic form. Karshon [K]
gave a proof of the closedness of the symplectic form using group cohomology; Weinstein [W]
reinterpreted Karshon’s construction in the setting of the de Rham-bar bicomplex [B,Sh].
In the present work we extend Weinstein’s work to construct symplectic forms on relative
character varieties of surface groups, and on ‘twisted’ moduli spaces Mβ of bundles on
Riemann surfaces (see Section 6 of [AB]) associated to an element β ∈ Z(G). The spaces
Mβ share many properties with M but in general have less singularities. Indeed, Mβ is
smooth when G = SU(n) and β is a generator of the center of SU(n): in contrast, even
when G = SU(2), the space M is smooth only in the very special case g = 2.

We also give a group cohomology construction of symplectic forms on the extended moduli
spaces X and Xβ [J1]: these are finite dimensional symplectic G-spaces from which M and
Mβ may be obtained by symplectic reduction. In [J1], symplectic structures on Xβ and X
(which are in fact the same as the symplectic forms we recover below) were specified using
gauge theoretic techniques. Here we compute the moment maps for the G action on X and
Xβ; up to a normalization factor, these coincide with the moment maps found in [J1].

The purpose of the construction of Xβ in [J1] was to exhibit Mβ as the result of finite di-
mensional symplectic reduction (in contrast to the infinite dimensional quotient construction
given in [AB]). We make further use of this finite dimensional quotient construction in [JK2],
where we extend the techniques of [JK1] (which gives a formula for intersection pairings in
the cohomology ring of the symplectic quotient MX of a finite dimensional Hamiltonian
G-space X, in terms of the G-equivariant cohomology H∗

G(X)) to treat the intersection pair-
ings in Mβ , starting from the equivariant cohomology of Xβ. By this means we give proofs
of formulas (found originally by Witten [Wi] using physical methods) for the intersection
pairings in H∗(Mβ).

In this paper, the symplectic forms on X and Xβ are constructed explicitly in terms of the
Maurer-Cartan form on G and the chain homotopy operator that occurs in the standard proof
of the Poincaré lemma. This explicit description of the symplectic form will be important in
[JK2], where we make use of explicit equivariantly closed differential forms representing the
relevant classes in de Rham cohomology. In [J2] we extend the methods of this paper to give
explicit representatives in De Rham cohomology for all the generators of the cohomology ring
of Mβ (one of which is the cohomology class of the symplectic form); for the applications in
[JK2], we shall need the de Rham representatives for all the generators.

After this work was completed, we received the paper of Huebschmann [H], in which he
has obtained similar results independently.

Acknowledgement: We thank A. Weinstein for helpful conversations.
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2 Group cohomology

Let F = F2g be the free group on 2g generators x1, . . . , x2g. We introduce a relation R =
∏g

i=1[x2i−1, x2i], where [a, b] denotes the commutator aba−1b−1. The fundamental group π of
a closed 2-manifold of genus g is then given by

π = F/R

where R is the normal subgroup generated by R.

We shall work with Eilenberg-Mac Lane group chains (see [G] section 3.8), and shall
denote the differential on the group chain complex by ∂. The p-chains Cp(Γ) on a group Γ
are Z-linear combinations of elements of Γp. In particular, associated to the relation R there
is a distinguished 2-chain c ∈ C2(F) given by

c =
2g
∑

i=1

(∂R/∂xi, xi). (2.1)

(Here, ∂/∂xi refers to the differential in the Fox free differential calculus: see [G], sections
3.1-3.3.) Goldman ([G], above Proposition 3.9) shows

∂c = 1 − R. (2.2)

3 The de Rham-bar bicomplex

Weinstein [W] introduces a bicomplex (C∗,∗(G), δ, d) whose p, q term is Cq(Gp). The second
coboundary is the exterior differential d, while the first is the differential δ appearing in
group cohomology:

(δβ)(g0, . . . , gp) = (−1)p+1β(g0, . . . , gp−1) +
p

∑

i=1

(−1)iβ(g0, . . . , gi−1gi, . . . , gp) + β(g1, . . . , gp).

(3.1)
Let Y denote Hom(F, G) = G2g. Then there is a second bicomplex (C̃∗,∗(G), δ, d) whose p, q
term is Ωq(Fp × Y ) = Ω0(Fp) ⊗ Ωq(Y ). (The differential δ in the bicomplex C̃∗,∗(G) is the
adjoint of the differential ∂ in the Eilenberg-Mac Lane group chain complex.) As in [W], the
evaluation maps

Ep : F
p × Y → Gp

give rise to maps
E∗

p : Ωq(Gp) → Ω0(Fp) ⊗ Ωq(Y )

which combine to form a map of bicomplexes E∗ : C∗,∗(G) → C̃∗,∗(G).

We recall the following elements of C∗,∗(G) defined in [W]. Let α ∈ Ω1(G) ⊗ g denote
the (left-invariant) Maurer-Cartan form on G, and ᾱ the corresponding right-invariant form.
Define projection maps πi : Gp → G (i = 1, . . . , p) to the i’th copy of G, and let αi = π∗

i α
and ᾱi = π∗

i ᾱ. In terms of this notation, the following are introduced in [W]:

λ =
1

6
α · [α, α] ∈ Ω3(G), (3.2)
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Ω = α1 · ᾱ2 ∈ Ω2(G2). (3.3)

Given η ∈ g, Weinstein also introduces

θη = η · (α + ᾱ) ∈ Ω1(G). (3.4)

(Here, · denotes an invariant inner product on g.) These forms satisfy the following properties
([W], Lemmas 3.1, 3.3 , 4.1 and 4.4):

Proposition 3.1 We have
dλ = 0; (3.5)

dΩ = δλ; (3.6)

ιη̃λ = dθη; (3.7)

ιη̃Ω = −δθη, (3.8)

where η̃ is the vector field generated by η.

4 Two-forms on moduli spaces

Let us now introduce
ω = 〈c, E∗Ω〉 ∈ Ω2(Y ). (4.1)

We then have

Proposition 4.1 In terms of the identification of Y = Hom(F, G) with G2g, we have

dω = −ǫR
∗λ (4.2)

where ǫR : Hom(F, G) → G is the map given by evaluation on the element R ∈ F:

ǫR(g1, . . . , g2g) =
g

∏

i=1

[g2i−1, g2i]. (4.3)

Proof: We have
d〈c, E∗Ω〉 = 〈c, dE∗Ω〉

= 〈c, E∗dΩ〉 = 〈c, E∗δλ〉

= 〈c, δE∗λ〉 = 〈∂c, E∗λ〉

= 〈1 − R, E∗λ〉,

where the last step follows from (2.2). �

If t is any element of G, define Yt = ǫR
−1(t) ⊂ Y . The following is an immediate

consequence of Proposition 4.1:

Proposition 4.2 The 2-form ω restricts on Yt to a closed form.
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Definition 4.3 If t is an element of G, let Zt ⊂ G be the centralizer of t in G.

Notice that Yt carries an action of Zt by conjugation.

Definition 4.4 If t ∈ G, the relative character variety associated to t is the space Mt =
Yt/Zt, where Zt acts on Yt by conjugation.

Some properties of the symplectic geometry of relative character varieties were given in
[JW1] and [JW2]. Relative character varieties also arise in algebraic geometry where (under
appropriate circumstances) they are identified with moduli spaces of semistable parabolic
vector bundles on Riemann surfaces: see [MS] (where the identification between relative
character varieties and moduli spaces of parabolic bundles is given) or [Se]. A gauge theory
construction of a symplectic form on relative character varieties is given in [J1]: it will follow
from the Remark at the end of Section 5 that this is essentially the same as the symplectic
form we construct here (i.e., the two are the same under a natural map identifying the
relevant Zariski tangent spaces).

By extending the calculations in [W], we obtain the following two propositions.

Proposition 4.5 The form ω is invariant under the action of G on Y by conjugation.

Proof: Let η ∈ g; we will show that the Lie derivative of ω with respect to the vector field η̃
generated by η is zero, in other words Lη̃ω = (dιη̃ + ιη̃d)ω = 0. Now

ιη̃dω = −ιη̃ǫR
∗λ = −ǫR

∗ιη̃λ. (4.4)

Also dιη̃ω = d〈c, E∗ιη̃Ω〉. But ιη̃Ω = −δθη by (3.8), so we get

dιη̃ω = −d〈c, E∗δθη〉

= −d〈c, δE∗θη〉

= −d〈∂c, E∗θη〉 = −d〈1 − R, E∗θη〉

= dǫR
∗θη = ǫR

∗dθη.

But by (3.7) we have dθη = ιη̃λ, so dιη̃ω = ǫR
∗ιη̃λ, and Lη̃ω = 0. �

Proposition 4.6 We have the following identification of 1-forms on G2g:

ιη̃ω = ǫR
∗θη. (4.5)

Thus, the restriction of ω to Yt is horizontal with respect to the action of Zt. (In other words,
if η ∈ Lie(Zt) generates the vector field η̃ on Y , then ιη̃ω|Yt

= 0, where ιη̃ denotes the interior
product with respect to η̃.)
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Proof: We have
ιη̃ω = 〈c, ιη̃E

∗Ω〉 = 〈c, E∗ιη̃Ω〉 = −〈c, E∗δθη〉,

= −〈∂c, E∗θη〉 = −〈1 − R, E∗θη〉 = ǫR
∗θη.

This form necessarily restricts to zero on the level sets of ǫR. �

Propositions 4.5 and 4.6 imply that the form ω descends to a 2-form ω̄ on the space Mt,
which is closed by Proposition 4.2. Nondegeneracy will be established in Corollary 5.5.

In particular if t is a central element β ∈ Z(G) then Zβ is the full group G. If G = U(n)
and β = e2πid/ndiag(1, . . . , 1) then the space Mβ appears in algebraic geometry (see [AB])
as the moduli space of semistable holomorphic vector bundles of rank n and degree d. When
β is as above but G = SU(n), the algebraic geometry interpretation of the space Mβ is as
the moduli space of semistable holomorphic vector bundles of rank n and degree d with fixed
determinant.1 The constructions in this section exhibit a group cohomology construction of
a symplectic form on the ‘twisted’ moduli spaces Mβ associated to central elements β of
G. It is shown in [J2] that the form ω̄ is in the cohomology class of (a constant multiple
of) the standard generator f2 of H∗(Mβ; R) (in the notation of Sections 2 and 9 of [AB]).
In fact in [J2] we extend the construction which gives rise to the symplectic form ω̄, to give
representatives in de Rham cohomology for all the generators of the ring H∗(Mβ; R) given
in [AB]. Our applications in [JK2] will rely at least as heavily on the fact that ω̄ is a de
Rham representative of the cohomology class f2 as on its being nondegenerate: in any case,
many results of the type we shall invoke for Hamiltonian G-manifolds generalize (cf. [KT])
to manifolds where the symplectic form degenerates on a locus of measure 0.

5 The symplectic form on the extended moduli space

Let β be an element of the center Z(G). The associated extended moduli space Xβ constructed
in [J1] may be described as a fibre product

Xβ = (ǫR × eβ)−1(△) ⊂ G2g × g. (5.1)

Here, △ is the diagonal in G × G and ǫR : G2g → G was defined above, while e : g → G is
the exponential map and eβ = β ·e. The space Xβ is equipped with two canonical projection
maps pr1 : Xβ → G2g and pr2 : Xβ → g, for which there is the following commutative
diagram:

Xβ
pr

2−→ g

pr1 ↓ ↓ eβ

G2g ǫR−→ G

(5.2)

A straightforward argument using the regular value theorem endows Xβ with a smooth
structure on an open dense set Xβ

s including pr−1
2 (0): see [J1], Proposition 5.4, where an

explicit characterization of the singular locus of Xβ is given.

1When G = U(n) or SU(n) and d is coprime to n, the spaces Mβ are smooth manifolds. This is in
contrast to the spaces M, which are singular except in a few very special cases.
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The space Xβ carries an action of the group G. A gauge theoretic construction of a
G-invariant closed 2-form on Xβ was given in [J1], and it was shown that this form is
nondegenerate on an open dense set in Xβ and that the action of G is Hamiltonian where
the 2-form is nondegenerate. There is thus an open dense set in Xβ which is a smooth finite
dimensional Hamiltonian G-space such that the space Mβ is given by symplectic reduction
of this G-space at 0.

By extending the techniques of [W], we construct here a G-invariant closed 2-form on
Xβ which is nondegenerate on an open dense set, and show that the moment map µ is given
by a constant multiple of pr2, as was shown in [J1]. The symplectic form will in fact turn
out to be the same as the one constructed using gauge theory (see the Remark at the end
of this section): in other words, one of these symplectic forms is the pullback of the other
under a natural map. It follows from our construction that the symplectic quotient (at 0)
with respect to the action of G on Xβ is the twisted moduli space Mβ described above. For
t ∈ G, the relative character variety Mt from Section 4 is the symplectic reduction of X at
the orbit OΛ ⊂ g (under the adjoint action) that corresponds to an element Λ ∈ g for which
exp(Λ) = t.

To construct the symplectic form, we first construct a form σ ∈ Ω2(g) for which

e∗λ = dσ. (5.3)

The existence of such a form follows from the following standard result (see e.g. [Wa], Lemma
4.18):

Proposition 5.1 [Poincaré Lemma]

(a) If γ ∈ Ωp+1(V ) where V is a vector space, and dγ = 0, then there is a form σ ∈ Ωp(V )
with γ = dσ.

(b) Denote by I the map Ωp+1(V ) → Ωp(V ) sending γ to σ. Then dI + Id = id.

For β ∈ Ω∗(V ), Iβ is given at v ∈ V by

(Iβ)v =
∫ 1

0
F ∗

t (ιv̄β)dt (5.4)

where v̄ is the vector field on V which takes the constant value v, and Ft is the map V → V
given by multiplication by t. In our case the form

σ = I(e∗λ)

is G -invariant because λ is G-invariant and e is a G-equivariant map.

We now restrict to the fibre product Xβ ⊂ G2g × g. For (h, Λ) ∈ Xβ we have ǫR(h) =
eβ(Λ), so if (H, ζ) ∈ ThG

2g × g represents an element in the tangent space to Xβ, we have

ǫR∗H = eβ∗ζ. (5.5)

We define a 2-form on Xβ by
ω̃ = pr∗1ω + pr∗2σ, (5.6)

7



where ω was defined in (4.1). We find that

d(pr∗1ω + pr∗2σ) = pr∗1dω + pr∗2dσ

so
dω̃(H, ζ) = −ǫR

∗λ(H) + dσ(ζ) (by (4.2)) (5.7)

= −λ(ǫR∗H) + λ(e∗ζ) = −λ(ǫR∗H) + λ(eβ∗ζ) = 0.

(Here, we have used the fact that λ is invariant under multiplication by β, so e∗λ = eβ
∗λ.)

So we have

Proposition 5.2 The 2-form ω̃ on G2g × g restricts on Xβ to a closed form.

The G-invariance of ω̃ follows because σ and ω are G-invariant and the projection maps
pr1 and pr2 are G-equivariant maps.

We may now identify the moment map for the action of G on Xβ: in other words, we
find a function µ : X → g such that ιη̃ω̃ = η · dµ where η̃ is the vector field on Xβ generated
by η ∈ g.2 First we recall from (4.5) that (ιη̃ω) = ǫR

∗θη. Now since σ = I(e∗λ) = I(eβ
∗λ),

we have
ιη̃σ = ιη̃(Ieβ

∗λ) = −I(ιη̃eβ
∗λ) = −I(eβ

∗ιη̃λ)

= −I(deβ
∗θη) (by (3.7)) . (5.8)

Combining (5.8) with Proposition 5.1 (b) we find

ιη̃σ = −eβ
∗θη + d(Ieβ

∗θη) (5.9)

Adding (4.5) and (5.9) we have
ιη̃(ω̃) = d(Ieβ

∗θη)

so that a moment map µ : Xβ → g for the action of G on Xβ is given by

η · µ = Ieβ
∗θη. (5.10)

Now

(Ieβ
∗θη)Λ =

∫ 1

0
F ∗

t

(

eβ
∗θη(Λ)

)

by (5.4) (5.11)

=
∫ 1

0
(eβ

∗θη)Λt(Λ) =
∫ 1

0
(θη)eβ(Λt)(eβ∗Λ)

=
∫ 1

0
η · (α + ᾱ)eβ(Λt)(eβ∗Λ)

= 2η · Λ.

Thus we have explicitly specified a moment map for the action of G, which is equivariant
with respect to the adjoint action of G:

2Ordinarily the moment map is specified as a map into g
∗. Here we have used the inner product to

identify g
∗ with g.
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Proposition 5.3 A moment map for the action of G on Xβ is given by the map µ = 2pr2 :
(h, Λ) 7→ 2Λ.

To complete the identification of the form ω̃ as a symplectic form on an open dense set
in Xβ, one needs the following:

Proposition 5.4 The form ω̃ is a nondegenerate bilinear form on the Zariski tangent space
T(h,Λ)Xβ, for any (h, Λ) ∈ Xβ for which (dǫR)h is surjective.

Our proof of this Proposition parallels the gauge theory argument given in [J1] (see Propo-
sition 3.1 of [J1] for the case G = SU(2)). This material is treated in [H] (Theorem 4.4 and
Section 5) and [K] (Theorem 4): the proof we sketch is essentially the one given by Hueb-
schmann [H], to whom the group cohomology proof of the nondegeneracy of the symplectic
form on an open neighbourhood of the zero locus of the moment map in the extended moduli
space is due.3

Proof of Proposition 5.4: To establish nondegeneracy of ω̃ we proceed as follows. Proposition
5.3 establishes that if η̃ is the vector field associated to the action of η on Xβ , and if
(H, ζ) ∈ T(h,Λ)Xβ for (h, Λ) ∈ Xβ (in other words, (dǫR)hH = (deβ)Λζ), then

ω̃(h,Λ)(η̃, (H, ζ)) = 2η · ζ. (5.12)

Thus to establish nondegeneracy of ω̃ at those (h, Λ) for which (dǫR)h is surjective (see (5.5))
it suffices to establish it on the orthocomplement in Ker(dpr2) ⊂ T(h,Λ)Xβ of the image of
the action of g. This means we must establish that ω is nondegenerate restricted to

T(h,Λ)

(

pr−1
2 (Λ) ⊂ Xβ

)

{η̃ : η ∈ Stab(Λ)}
. (5.13)

We have commutative diagrams

0 0 0
↓ ↓ ↓

0 −→ KB −→ B1(F; gh)
δ

−→ B1(Z; gǫR(h)) −→ . . .
↓ ↓ ↓

0 −→ KC −→ C1(F; gh)
δ

−→ C1(Z; gǫR(h)) −→ . . .
↓ ↓ ↓

0 −→ KH −→ H1(F; gh)
δ

−→ H1(Z; gǫR(h)) −→ . . .
↓ ↓ ↓
0 0 0

(5.14)

in which the columns are short exact sequences. Here, if Γ is a discrete group (where Γ = Z

or Γ = F) equipped with a representation ρ : Γ → G, the notation C∗(Γ; gρ) refers to the

3The proof given in [H] applies to a suitable neighbourhood of the zero locus of the moment map in Xβ

which is contained in pr−1
2 (Oreg), where Oreg is the subset of g where the exponential map is regular: the

subset pr−1
2 (Oreg) is a proper subset of the smooth locus of Xβ . We have adapted the proof so it applies to

the Zariski tangent space T(h,Λ)Xβ for all points (h, Λ) ∈ Xβ for which (dǫR)h is surjective.
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Eilenberg-Mac Lane group cochain complex with coefficients in the Γ-module gρ specified by
ρ under the adjoint action of G on g. For Γ = F or Γ = Z, we have C1(Γ; gρ) = Z1(Γ; gρ). The
maps δ are induced by dǫR, while KB, KC and KH are the kernels of the maps δ on B1, C1

and H1. Then the vector space T(h,Λ)(pr−1
2 (Λ)) is identified with KC ⊂ C1(F; gh), while

{η̃ : η ∈ Stab(Λ)} is identified with KB = KC ∩B1(F; gh). Then we see from (5.14) that the

quotient KC/KB is canonically identified with KH = Ker
(

δ : H1(F; gh) → H1(Z; gǫR(h))
)

.

We have the long exact sequence

0 → H0(F; gh) → H0(Z; gǫR(h))
δ∗
→ H1(F, Z; gh) → H1(F; gh) → (5.15)

δ
→ H1(Z; gǫR(h)) → H2(F, Z; gh) → 0.

The vector spaces and maps in this sequence satisfy Poincaré duality. Furthermore, the
pairing · : g ⊗ g → R gives rise to a cup product pairing

H1(F, Z; gh) ⊗ H1(F; gh) → H2(F, Z; R) ∼= R, (5.16)

and Poincaré duality in (5.15) implies that the restriction of this pairing to (H1(F, Z; gh)/Im(δ∗) )⊗
(Ker(δ) ⊂ H1(F; gh)) is nondegenerate.

Now one may show (see for instance [K] Theorem 4 or [H] Theorem 4.4) that this cup

product is the restriction of the form ω to Ker(δ) ⊂ H1(F; gh) ∼= Th

(

ǫR
−1(CǫR(h))/G

)

. (Here,

CǫR(h) denotes the conjugacy class of ǫR(h) in G.) The nondegeneracy of the pairing arising
from the cup product thus completes the proof of nondegeneracy. �

Remark: Goldman ([G], proof of Proposition 3.7) has shown that

Im(dǫR)h =
(

Lie(Stab(h))
)⊥

.

Suppose G = SU(n) and β is a generator of Z(G). The subset of Xβ where (dǫR)h is
surjective then contains the zero level set of the moment map. Thus the following is an
immediate consequence of Proposition 5.4:

Corollary 5.5 Let G = SU(n) and suppose β is a generator of Z(G). Then 0 is a regular
value of the moment map µ = 2pr2. Further, Mβ is a smooth manifold and the form ω̄ on
Mβ is nondegenerate.4

Remark: At the end of the last Proof, we alluded to the identification of ω (on quotients
of level sets of pr2) with the bilinear form given by the cup product (5.16). It is easy to
see that the vector spaces H1(F; gh) and H1(F, Z; gh) (arising from group cohomology with
coefficients in the F-module gh specified by h ∈ Hom(F, G)) are the same as the vector spaces
H1(Σ −D2; dA) and H1(Σ − D2, ∂D2; dA) arising in the gauge theory description of Xβ (cf.
Section 2.2 of [J1]). Here, A is a flat connection on the punctured surface Σ − D2 whose
holonomy gives rise to the representation h of the fundamental group F. This identification

4When zero is a regular value of the moment map on Xβ, standard arguments establish the smoothness
of the reduced space Mβ .
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comes from the identification between gauge equivalence classes of flat G connections and
conjugacy classes of representations of the fundamental group into G, which arises from the
map sending a flat connection to the representation given by its holonomy.5 Furthermore,
the pairing H1(F; gh) ⊗ H1(F, Z; gh) → R arising from the group cohomology cup product is
the same as the pairing (α, β) 7→

∫

Σ−D2 α · ∧β that gives the symplectic form in the gauge
theory description. (Here, α and β are dA-closed g-valued 1-forms on Σ−D2, and α·∧β is the
element of Ω2(Σ) that arises from the wedge product combined with the pairing g ⊗ g → R

given by the invariant inner product · .) Hence the symplectic form we have constructed on
Xβ is in fact the same as the one constructed in [J2] using gauge theory.
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