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ABSTRACT.   It is proved in this paper that for a given simply connected
Lie group G  with Lie algebra g, every left-invariant closed 2-form induces a
symplectic homogeneous space. This fact generalizes the results in [7] and

[12]  that if H'(g) = /7(g) =0, then the most general symplectic homogeneous
space covers an orbit in the dual of the Lie algebra g.  A one-to-one corre-
spondence can be established between the orbit space of equivalent classes of
2-cocycles of a given Lie algebra and the set of equivalent classes of simply
connected symplectic homogeneous spaces of the Lie group.  Lie groups with

left-invariant symplectic structure cannot be semisimple; hence such groups of

dimension four have to be solvable, and connected unimodular groups with
left-invariant symplectic structure are solvable [4].

1. Symplectic manifolds. Let M be a 2rz-dimensional connected differenti-
able manifold. A symplectic structure on M is defined by a closed differential 2-

form <y which is everywhere of maximal rank. Such a form is called a symplectic
form of the symplectic structure defined on M. On a symplectic manifold M, a
one-to-one map from the space of vector fields X(M) onto the space of linear dif-
ferential forms Dl(M) can be defined as follows. If X is a vector field, the map

x i-> z'(X)û) (where  i(X)co denotes the interior product of X with co) is a bijective
map from X(M) onto Dl(M). In fact, at each point x £ M, this map from T (M) onto

7^(M) is given by the nonsingular bilinear form ox   A classical theorem attributed to Dar-
boux [ll] states that for an 77-dimensional manifold M with a closed 2-form co of
rank exactly p everywhere there can be introduced about every point a system of

coordinates x1, • • • , xn~p, y1, • • ■ , yP, in terms of which the local representa-
tion of co becomes
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146 BON-YAO CHU

(û = dxl A dy1 + ... + dxp A dyp;
such a system is called a canonical system.

An example of a symplectic manifold is provided by the cotangent bundle
T*(M) of any manifold M with the natural symplectic form defined as follows. On

T*iM) there is a linear form 6 such that, for any tangent vector X    at a point u

of T*iM), 6uiXu) = uirr^Xj, where 77 is the projection of T*iM) onto M.  The
form co = dd is of maximal rank and therefore defines a symplectic structure on

T*iM).

2. Affine transformation groups. Let R" be the vector space of B-tuple of

real numbers. We denote it by A" when we regard R" as an affine space. If A"
is considered as a differentiable manifold, then the tangent space to it at any

point can be identified in a natural way with the space R".  The group A(b; R)

of affine transformations of A" is represented by the group of all matrices of the
form

A(n; R) = J/ =     '  C   e GL(b+1, R)t,

where   / e GL(b;  R)   and   c  is a column vector in   R".   The group  A(b;  R)
is a semidirect product of  R"   and   GL(b;  R).   If we denote by R™   the Lie
algebra of the vector group   R",   then the Lie algebra  a(B; R)  of  A(n;  R)
is the  semidirect sum of   gl(B;  R)   and   R",  which means that  an infini-

tesimal affine transformation   T  of  An   can be expressed in matrix form

tg    q]  where L e  a,l(n;  R) and c is a column vector in   R" [6].  We call
T  £ a(n; R)   an infinitesimal affine transformation of  An,   L   the linear

part and   c  the translation part of  T  respectively.    The exponential map of

the Lie algebra of infinitesimal affine transformations into the affine trans-

formation group is given by the formula

(exp T)(x) = (exp D(x) + l Z ¿LB~ M (c)

for x £ A".
Let G be a connected semisimple Lie group with Lie algebra 9, then the

first cohomology group //Ho, p, V) is trivial for any representation p of 9 by
linear transformations on a finite-dimensional vector space V [3]. Therefore there
exists a one-to-one correspondence between the coboundaries Bli<j, p> V) and

the set of all infinitesimal affine representations of 9 in V with linear part p,

and it is also evident that a connected semisimple Lie group G operating on a
finite-dimensional vector space V as an affine transformation group has a fixed

point v. £ V under the action of G.
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SYMPLECTIC HOMOGENEOUS SPACES 147

3. Symplectic homogeneous spaces of a given Lie group. Let G be a con-
nected Lie group and H a closed connected subgroup of G. Denote by g and \)
the Lie algebras of G and H respectively, by M the homogeneous space G/H,
and by 77 the map g\-+gH oí G onto M; consider G as a group of operators for

M by setting t (g'/i) = gg'H. The map to (—♦ n*co establishes a one-to-one corre-
spondence between the invariant forms of order p on M and those left-invariant

p-forms 6 on G which satisfy the conditions
(i) z'(X)0 = 0 for all X £ Ê),

(ii) 6 invariant under the adjoint map of H\i\.
We say a homogeneous space M = G/H is symplectic if M has a symplectic

structure and the symplectic form a> of it is G-invariant under the natural action

by tgig'H) = gg H. When M has an invariant symplectic structure defined by a
closed 2-form co, the dimension of M is, of course, an even integer 2p and ojp,
being nonzero everywhere, defines a volume element of M.  Denote by &> the pull

back form z7*<y on G, since eu is nondegenerate, we see that an element X of g
belongs to \) if and only if coiX, Y) = 0 for all Y £ g.

The purpose of this section is to establish a correspondence between the

space Z2(g) of 2-cocycles of g and the set of all symplectic homogeneous
spaces of G.

Let M be any rz-dimensional diff eren ti able manifold. An zzz-dimensional in-
volutive distribution D on M is said to be regular, if every point x £ M possesses

a neighborhood Ux in M such that each maximal connected integral submanifold
of D intersects Ux in at most one zzz-dimensional slice [9]. If tu isa closed 2-
form having rank ttz everywhere, let

{DJx = lXxe Tx(M)\i(X)a>x = 0].

Then D a defines a diff eren tiable involutive distribution on M. a> is said to be
regular if Da is regular. The Lie algebra b, corresponding to a closed connected
Lie subgroup H oí G may be considered as an involutive distribution on G, and

H is the maximal connected integral submanifold of § passing through the iden-

tity element e [l]. Conversely, suppose  c) is a Lie subalgebra of g, and § is a

regular involutive distribution on G, then, according to a theorem given by Palais
[9], every leaf of b, is a closed submanifold of G. Therefore, in particular, the
maximal connected submanifold H of b, passing through the identity is a closed
Lie subgroup of G.

Theorem 1. Let G be a connected Lie group of n dimensions.

(i) Every 2p-dimensional symplectic homogeneous space of G induces a
left-invariant regular 2-form of rank p on G.
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148 BON-YAO CHU

(ii) Every left-invariant regular closed 2-form of rank p induces a 2p-dimen-
sional symplectic homogeneous space of G.

Proof, (i) Let H be the isotropy subgroup of G such that G/H is the given

2p-dimensional homogeneous space with the invariant symplectic form <¿j. The

pull back left-invariant closed 2-form u on G defines an involutive'distribution

^={XeoJi(X)« = 0|

which coincides with the Lie algebra  £) of //.  Hence the identity component of

H is the maximal integral submanifold through  e of  fc;   There exists a neighbor-

hood U of e in G such that H n U consists of at most a single slice. There-
fore for each g £ G, gU is the desired neighborhood of ¿. Hence íj~ is a regu-

lar involutive distribution of dimension n-2p and   a> is the left-invariant regular
closed 2-form on G of rank p.

(ii) Let 6 be a left-invariant regular closed  2-form of rank p on G.  Then

% = {X £ g|z'(X)6> = OS   is a regular involutive distribution. The maximal integral
submanifold passing through  e is a closed subgroup Hg with Lie algebra h,g, and

every leaf through ¿ of \ is just a right coset gHe of He. A homogeneous

space G/He of dimension 2p is defined and, furthermore,  Lx6 = diiX)6 + iix)dd
= 0 for all X e ijg. The form 6 is invariant under the adjoint map of Hg, which

can be projected down to an invariant form on G/H g defining a symplectic struc-
ture.

Hence the problem to find all the symplectic homogeneous spaces of a given
Lie group is to find all regular left-invariant closed 2-forms 0 on G. This is es-

sential to show that the connected Lie subgroup Hg corresponding to the Lie sub-
algebra ijg is closed in G.

Corollary 1.  Every left-invariant 2-form a> on a connected Lie group of the

form on = d6 with 0 left-invariant is regular.

Proof. Since Lx6 = i(X)dd + di(X)6, X belongs to f^ if and only if Lx6 = 0.
Then H = {h e G\Rhd = 6\ is a closed subgroup of G and has Lie algebra equal

to 1)   . H , being the identity component of H, is closed.

Corollary 2.  // the second dimension cohomology group H2i$ of the Lie al-

gebra g for a connected Lie group G is trivial, then every left-invariant closed 2-

/o777z ob G induces a symplectic homogeneous space.

Corollary 3 (Kirillov).  Every orbit Ad*(G)ö of g* is of even dimension.

Proof.  According to Corollary 1, dd is regular and induces a skew-

symmetric  2-form of maximal rank on Ad*iG)d, hence Ad*(G)ö is even dimensional.
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SYMPLECTIC HOMOGENEOUS SPACES 149

However, in general not every left-invariant closed 2-form on a given con-

nected Lie group is regular, since an irregular 2-form can be given on 3-dimen-

sional torus.  Thus, instead of solving the problem of finding all symplectic homo-

geneous spaces of a given Lie group, we now direct our attention to a slightly

different one, namely:  For a given Lie algebra  g, let co be a cocycle in Z2(g);

does there exist a homogeneous space with a symplectic structure induced by co?

We may, of course, take the simply connected Lie group G corresponding to the

given Lie algebra g as the transformation group of M, but it is still essential to

show that the Lie subalgebra given by  i)w= \X £ g| i(X)a> = Oi defines a closed .

Lie subgroup Ha in G. The following theorem answers the question.

Theorem 2.  On a simply connected Lie group, every left-invariant closed 2-
form is regular.

Proof.  Denote by  g*  the dual space of the Lie algebra  g for G  and regard

g* as an affine space. Let A(g*) be the group of affine transformations of g*>

and a(g*) be the Lie algebra of infinitesimal affine transformations of g*. If we

identify the Lie algebra of the vector group   g*  to itself, then a(g*) is a semi-

direct sum of  gl(g*)and  g* where  glXg*)  denotes the Lie algebra of linear trans-

formations of g*. Let Ty  and T', be two affine infinitesimal transformations in
a(g*) written as the sum of a linear part and a translation part, T, = L. + ct  and

T2 = L2 + c2 for Ly and L2 £ gt(g*), Cy and c2 £ g*. The Lie product is

[Ty,      T2]    =    [Ly,      L2]    +     LyC2~     L  2 C  y ,

where [Ly, L2] denotes the Lie product in  gl(g*). Noting co £ Z2(g) and z'(X)o)
£ g* for X £ g, we now define an affine representation /„ of Lie algebra g on
the representation space  g* as follows:

/*= g—«(g*)>

X h*-'ad(X) + i(X)co.
This means for any 6 £ g*,   fAX)(6) = ~'ad(X)(0) + z'(X)w .  Write -'ad = ad*,
then  Lx = ad*(X) and since Lyz'(X)<u = i(Y)Lxco  fot all X, Y £ g,    fA\X, y]) =
[fJpA, /*(y)].  Therefore f% is a Lie algebra homomorphism from  g onto  a(g*).

Because G is simply connected, the Lie algebra homomorphism ¡^ can be repre-
sented by a differential of an analytic homomorphism ¡ oí G into A(g*). Thus by

the representation /, we may regard G as an affine transformation group on  g*.
And the action of / is given for X e g, 0 e g*, as

fiexp X)(9) = 'Ad-Hexp X)0 + £ ^(Lx)"~ »¿(X)^.
72 = 1

The isotropy subgroup H oí G at origin of  g*  is closed.  Let Xe ^s and
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150 BON-YAO CHU

exp tX it e R) be the one parameter subgroup of G generated by X; then
/(exp ZXXO) = 0. This means exp tX is a one parameter subgroup in H.  Con-
versely, suppose  exp tX it £ R) is a one parameter subgroup in H;  then

/(exp zXXo) = 0 implies iiX)a = 0 and X £ íj  . Therefore the isotropy subgroup
H of G at the origin of  g*  has the Lie subalgebra i¡a. Ha, being the identity
component of the Lie group H corresponding to the Lie algebra Í)     is thus

closed in G, and since ^ is regular so is eu.
Let us denote by   Ad^G) the adjoint representation acting on g* and by

ilid) the orbit of 6 in  g*. Suppose, in the above theorem, that co = dQ where 6 is
a linear left-invariant form, then

/(exp X)(0) = Ad*(exp X)6 - 6.

The exponential map from g to G is not onto, but it is a local homeomorphism in

a neighborhood of the identity. And, since any neighborhood of the identity gen-
erates the whole group, we see that

/(g)(0) = Ad*ig)6-6    for g£ G.

Let tg £ A(g*) be the translation by 6 carrying each <p £ 9* to <f> + 6;   t$i<p) =
<p + 6- Replacing /(¿) by tgfig)t_g,  we have

tefig)t_gi6)=Ad*ig)6.
Hence every orbit 0,(6) of G in g* is a symplectic homogeneous space and the
symplectic structure is induced by the exterior differential of 6. Moreover, we
have the following.

Corollary 1.   // the second dimension cohomology group W2(g) of a simply

connected Lie group is trivial,  then every simply connected symplectic
homogeneous space is a covering space of some orbit of G in  g*.

This result was obtained by Kostant [7] and Souriau [12] in different ways.

Kostant considered strongly symplectic homogeneous spaces and proved that

there is a one-to-one correspondence between the set of all isomorphism classes

of simply connected Hamiltonian spaces and all orbits in g*. And Souriau dis-

cussed the affine action induced by a cocycle in a slightly different context from
the above.

The following is also an easy consequence of previous theorems.

Theorem 3. Let G be a simply connected Lie group with Lie algebra 9. De-

note by Sp(G) the set of all simply connected symplectic homogeneous spaces of
G.  There is a map from Z2(g) onto Sp(G) z'b such a way that:

(i) For co £ Z2(g), there is M = G/Ha £ Sp(G) where H     is the
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SYMPLECTIC HOMOGENEOUS SPACES 151

connected Lie subgroup of  G   corresponding to the Lie algebra  c)   .

(ii) Conversely, for any M = G/H £ Sp(G), there is co £ Z2(g) such that the

isotropy subgroup H, under the action of G on M, is Ha.

We will give a classification of Sp(G), but at first let us observe the follow-
ing lemma.

Lemma.   Let a>  be a left-invariant closed 2-form of rank p on G.   Then ¡or

any X £ g,  z'(X)û) = 0 if and only if iiX)cop = 0.

Proof. Since a isa closed 2-form of rank p on G, by the Darboux Theorem,
there is a canonical coordinate system x , • • • , x^, yl, ■ ■ • , y&, z1, • • • , z"~2^

in = dim G) defined around the identity e such that

a=dxl Ady1 + ... + dxp A dyp.e e J e e }e

Let X e g be expressed in terms of the coordinates at e,

where  a.'s,  b-'s and c.'s are real numbers. Hence i(X )oop = 0 implies a- = b;z j j e      e i j
= 0 by virtue of the fact that

ax1  A dyl A ... A d?  A dy1 A ... A dxp A dyp
e Je e Je e Je

and

dx1 A dyl A • • • A aV  A dy'  A ••• A dxp A dy"
e J e e J e e Je

are linearly independent in Te (G) for 1 < i, j < p. Therefore we have iiX)o> = 0.
The sufficient condition is trivial.

For M = G/H £ Sp(G), let 77 be the natural map from G to G/H.  The iso-
tropy subgroup of G at the point 77(g) = gH of G/H is equal to ¿Hg-1. Hence
there is an equivalence relation in Sp(G), namely, two simply connected symplec-

tic homogeneous spaces G/H and G/H   are equivalent if there exists g £ G

such that //'= gHg~l. Denote by Sp[G] the equivalence classes of Sp(G). An

equivalence relation in Z2(g) can also be defined as follows. Two elements ty

and ai e Z2(g) are equivalent if both &> and a> are of rank p and a>p = c-cop tot

some constant c 4 0. Denote by Sp[g] the equivalence classes in Z2(g). We now
have the classification.

Theorem 4. Let G be a simply connected Lie group with Lie algebra 0, Let

Ad(G) act on Sptg]- Then there is a one-to-one correspondence between the orbit
spaces of Sptg]  aB^ equivalence classes of Sp[G] defined as follows.
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152 BON-YAO CHU

For eu £ Z2(g), let G/H     be the corresponding simply connected sym-

plectic homogeneous space in Sp(G), then the orbit space   (Ad(G)cu!   in
Sp[g] induces the equivalence class [G/gH g~l\g e G] in Sp[G].

Proof.   Suppose there are symplectic  structures  cu   and  eu   defined on

G/H £ Sp(G) and the dimension of G/H is 2p. Both a>p and cop ate in-
variant volume elements on  G/H, so there is a constant  c 4 0 such that
úíp = c ■ <úp. Denote the pull back forms on   G of  cu   and  cu   by the same let-

ters respectively. We see eu'' = c-u>p on  G and H = Hffl. !Hence G/H £
Sp(G) induces [eu]eSp[g]. Conversely, suppose eu and eu in Z2(g) are
equivalent.   We would like to see   G/H   = G/H^.     Since G is simply con-

nected, H   and H~ are connected subgroups of G. The only thing to be

verified is 5)^= rj£¿  which follows easily from the lemma. Hence Ha = H^

and G/H   - G/H^. Therefore we achieve a one-to-one correspondence
between Sp[g]  and Sp[G]. Since Ad(G)[cu] = [Ad(G)eu],   the action   Ad(G)   on
Sp(g) is well defined.  Therefore, the fact that if cu £ Z2(g) induces G/H £
Sp(G), then Ad(g)eu induces G/gH g~ l £ Sp(G), establishes the one-to-one
correspondence between  the orbit space   Ad(G)[eu]   of   Sp(g)   and equivalence

class [G/gHug-l\g £ G] of Sp[GJ.

4. Lie groups with left-invariant symplectic structures.  A Lie group is

said to have a left-invariant symplectic structure if it has a left-invariant

closed  2-form of maximal rank. We call such Lie groups symplectic groups.

If eu is a left-invariant symplectic form on  G, then cue  defines a skew-
symmetric bilinear function of maximal rank on the Lie  algebra  g   of   G,   and
conversely any maximal rank  2-cocycle of g  defines a left-invariant symplectic
structure on G.

As an example, the cotangent bundle  T*(G) of any Lie group G has a

natural symplectic structure.  We would like to see what properties  G will

have  if the natural symplectic  structure is  left-invariant   under the left trans-

lation induced by the elements of Lie group T*(G).

Theorem 5. The natural symplectic structure co defined on the cotangent
bundle T*(G) of a Lie group G is invariant under the left translations in-

duced by the elements of Lie group T*(G) if and only if G is abelian.

Proof.   Let g be the Lie algebra of left-invariant vector fields on G
and let  g* be the dual space of  g consisting of left-invariant  1-forms on   G.

Every element of T*(G) can be expressed uniquely by the linear function

a    oí T* (G) obtained by a left-invariant  1-form  a at g £ G. The multiplication

in T*(G) is ag. ßh = (a+ tAd(g~1)ß)ghand the identity element of T\G) is 0e
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where 0 is the zero form on  G and e is the identity of G. Let La    and L    be
the left translation induced by a   and ¿ respectively in T*iG) and G. Denote by

77 the natural projection  T*(G) —» G. For any tangent vector X*    e    Ta (T*(g)),
we recall the fundamental 1-form 6 at a.   £ T*(G) is given by

*„(*: )=<*>*(*: ».
8 8 S 8

and ú) = dd defines the natural symplectic form on T*iG). Suppose X* is a left-
invariant vector field on T*iG), then 77H<(X* ) = L Att*ÍXq )) by the fact that 77

8
commutes with left translations.   77^ X* ) is independent of  a so that n*(X% ) =

TT^X*ß ) for all  a, ß £ g*.   Hence nJ,X*) = X defines a left-invariant vector

field on G.   Suppose eis) is the one parameter subgroup of T*iG) generated by

X*, then c(s) can be written as c(s) = a(s)b       where a(s) is a curve in g* and
rricis)) = b(s) is the one parameter subgroup of G generated by  X. In order to
show oí is left-invariant on T\G), it is sufficient to show

g        8 8 e       e e

fot any left-invariant   vector fields X* and V* on  T*(G) and any  a    £ T*(G).
To this end, let us compute X*6(Y*) in the equation

<u(x*, y*) = x*6íy*) - Y*6iX*) - fXtX*, Y*]).

X*  fl(y*)= lim   iíCAdíg-^aí^XY)!;

the value is independent of the choice of a-, hence especially for g = e,

X*6(Y*) = lim  iía(s)(y)i.
°e s-os

If we denote by d(s)      sY the one parameter subgroup of T*(G) generated by Y*

similar results   are obtained for  Y*6ÍX*);

1..,-U

and

Hence

Ya 0(X*) = lim A{(tAd(g-l)dis))iX)\
8 s-0 s

Yn 6iX*)= lim Í-|a-(s)(X)¡.

Wa (X* , Y* )=lim  iiCAd(g-^aísíXY)!

- lim liCAdig-^a-Î^XXli-aŒX, Y])
s~0S
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and

eu0 (X* , Y* )= lim  I{a(s)(y)i- lim  ~{d(s)(X)].
e       e e       s_n s s — 0 S

It is evident that the adjoint map is simply the identity map if G is abelian and
that the Lie algebra g is also abelian.   So cu„ (X*  , Y* ) = cun (Xï  , VÎ ) shows

g é? é? e e C
eu is left-invariant. Conversely, if cu is left-invariant, we see that  a([x, y]) is
the only term which does not involve g;   so a([x, y]) = 0 for all a e a* im-

plies [X, Y] = 0 for all X, Y e g. That is to say  g is abelian and so is G.
In the following, we are going to show that the Lie algebra of a symplectic

Lie group cannot be semisimple; but let us at first observe some interesting
phenomena.

A Lie algebra g is a vector space as well as an algebra with the multiplica-
tion satisfying [x, y] = -[y, x] and Jacobi identity [[x, y], z] + [[y, z], x] +

[[z, x], y] = 0.   Let us denote by V(<¡) the underlying vector space of g and de-
note by  o. an algebra whose underlying vector space is V. If we take, for in-
stance,  g = gt(rz; R), the Lie product in  g is given by [x, y] = x ■ y - y • x where
x • y is the matrix multiplication of x and y in  gU«; R). Then V(g) is the vec:
tor space of n x n matrices and  a can be taken as the associative algebra of
nxn matrices whose underlying vector space is   V. Furthermore, we see
that [x, y] • z = x ■ (y ■ z) - y • (x - z) [13].

Definition.  An algebra  a with underlying vector space  V(Q¡) is said to be an

algebra dominating the Lie algebra g (or g is subordinate to   <X) if the following
two conditions are satisfied:

(i) x • y - y • x = [x, y] for all x, y e V,
(ii) for each x 6 V, let /(x) be the linear map of V defined by l(x)y = x- y',

then   / is a representation of  g such that  l([x, y]) = [l(x), l(y)].

Hence we may say that gKrz; R) is subordinate to the associative algebra of
all n x n matrices.

Theorem 6. Let  g be the Lie algebra of a symplectic Lie group G.  Then  g

is subordinate to an algebra   0. and the multiplication in 0. is defined by the sym-
plectic form.

Proof.  Suppose cu is a left-invariant symplectic form defined on G; since

a> is of maximal rank, z'(x)cu = 0 if and only if x = 0 for x 6 g. Therefore, the map

defined by x (-» z'(x)cu is an isomorphism from the vector space  g to the vector
space  g* of left-invariant 1-forms on G. Denote by V the underlying vector

space of g. Then for x, y e V,   Lx(i(y)co) e g* so there is a unique z e V such
that z'(z)eu = Lx(i(y)a>). It is easy to see the map (x, y) h* z is bilinear from

V x V —» V. We define x • y = z.  By this multiplication, an algebra with the un-
derlying vector space V is defined. Observing the fact that z'(y)(E eu)= L (i(x)co),
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we have z'([x, y])cu > z'(x. y)eu - iiy-x)co and z([x, y] • z)cu = z'(x • (y • z))eu -
z'(y • (x • z))cu, thus [x, y] = x • y - y • x and [x, y] • z = x ■ (y • z) - y • (x • z). If
/ is the map such that l(x)y = x • y, then l([x, y]) = [l(x), l(y)]. Hence / defines
a representation of g, and g is subordinate to a.

Corollary.   // a connected Lie group G admits a two-sided invariant sym-
plectic form cu, then G is abelian.

Proof. Since Ad(g)eu = eu for all g e G, Lxcú = 0 for all x e g. We see that
z'(x • y)tu = z'(x)L eu = 0 implies x • y = 0 for all x, y £ g and [x, y] = 0. So g is
abelian.

Theorem 7. A semisimple Lie algebra is not subordinate to any algebra.

Proof.  Assume otherwise that g is the semisimple Lie algebra subordinate
to an algebra a and / is the representation of g in the underlying space V of
g as well as of a. For x £ g, define p(x) as an affine transformation of V by
p(x) = l(x)v + x for all v e V. We have p([x, y]) = [p(x), p(y)]. Thus p defines a
representation of g by infinitesimal affine transformations of V.  Denote by e
the identity map of V so that e(x) = x for x e V. e is a V-valued 1-cochain in
Cl(g, /, V) and p(x)v = l(x)v + ¿x). We see   l(x)Ay) - Ky)Áx) - ¿[x, y]) = 0. So
e is a 1-cocycle in ZKg, /, V) which coincides with ßKg» I, V) since g is
semisimple. Therefore there is e e V such that for any x £ V, e(x) = l(x)e and
e is a right identity in g such that x = x • e. Furthermore, ad(e)x = [e, x] =
1(e) • x - e(x), thus ad(e) = /(e) - e. Let n be the dimension of g, and by taking
traces of these maps of V, we have Tr ad(e) = Tr /(e) - n. Since g is semisimple,
Tr ad(e) = Tr/(e) = 0. We are led to a contradiction and the theorem is proved.

Combining the above two theorems, we have achieved the following.

Theorem 8. Azzy semisimple Lie group has no left-invariant symplectic
structure.

A Lie algebra g possesses a solvable ideal r with the property that every
solvable ideal of g is contained in X; the ideal V is called the solvable radical.
The residue class algebra g/r is semisimple. Let n be the projection from g
onto g/t; then there exists a Lie algebra homomorphism p: g/t —» g such that

77 op is the identity map on g/t [5]. We have the splitting exact sequence

0 —» x —» g —> g/t —» 0

and thus obtain a Levi decomposition g = 2 + v (vector space sum) where & is a
semisimple subalgebra of g.

Theorem 9. A symplectic Lie group of dimension four has to be solvable.
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Proof. Assume G is not solvable and whose Lie algebra has a Levi decom-
position   9 = 8 + T. Since the dimension of a semisimple Lie algebra is at least

three and 9 itself cannot be semisimple, hence dim s? = 3 and dim t= 1. There-

fore it is evident that  j" is  an ideal. Let o> be the symplectic structure, we also

have (u(8, x) = 0. Because t is one dimensional, o)(g, t) = 0 implies x= Í01.
This is a contradiction.

If a Lie algebra can resolve into the direct sum of its solvable radical and a

semisimple ideal, we have the following generalization.

Theorem 10.  Suppose the Lie algebra  g 0/ a symplectic group G has a Levi

composition  g = 2 + t as a Lie algebra direct sum; then G is solvable.

Proof. Suppose 8 4 IOÎ and <y is the symplectic structure. Since to is

closed, oXg.x) =0. Let {»j,..., x2n\ be a basis of g such that |xj, • • •, x j

spans & and jx     ,)••■> x.} spans  "C. The matrix of the skew-symmetric bi-
linear function at on  g has

" det Idet(o)(x„ x.)) = det
1     ;

cu(x., x.)
1     7

l«,/sp
aix., x.)i     j

p + l<i,j<2n

By Theorem 8, the skew-symmetric matrix

Ux., xil

determined by the restriction of w on f cannot be of maximal rank. Therefore o>
cannot be of maximal rank on  g unless s = joj so that G is solvable.

Corollary.  A compact connected symplectic group is a torus.

Proof. Since G is compact, the Lie algebra g of G has an invariant posi-
tive definite bilinear form, hence g resolves into the direct sum of its center and
a semisimple ideal [lO] which has to be zero.

This is also an immediate consequence of the following theorem.

Theorem 11.  Let G be a connected symplectic Lie group of 2n dimensions.
Suppose H2n(g) 4 0;  then G is solvable.

Proof. Suppose the Lie algebra g has a Levi decomposition  g = ê + T such
that 2 4 lo!. Let g* be the dual space of g and let co be a left-invariant sym-
plectic form. Define a representation p   of f by the infinitesimal affine trans-
formation of g*  as follows:

p:   i-a(g*),

x I-» L   + z'(x)<u
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that is, for ft £ çf, p(x)ft = Lxft + ¿(x)eu. The linear part L (Lie derivative) of p
is a representation of g by linear transformation of  g*   and the translation part

z'( )<u of p is a 1-cocycle in Zx(&, L, g*). Since HHS,,L, o*) = 0, z'( )cu is also
a 1-coboundary in B1(8 L, o*). Thus there exists 0 £ g* such that Lß= z'(x)cu

for all x e [. Since Lx0 = z'Matf, we have i(x)(dd - cu) = 0, so that z'(x) (d6 - cu)"
= 0. Next we shall prove cu" is cohomologous to zero in C"(g). For this purpose, let us

choose a basis \xy, ■ • • , xr, yy,...,ys\ r + s = 2n] fot g such that {*.,•••, x^f

spans  8 and fyj,'-',y j spans  t. Suppose jef1, •••, ^, 771, •••, 77s! is the dual
basis in  g*. Then (d6 - cu)" = agl A • • • A ¿f A 771 A • •. A 77s, where a is a
constant. A nonzero element x of  \ can be expressed as x = ¿>.x. + • • • + b x

such that not all of these constants ib.'s) ate zero. We have

r

i(x)(d6 - cu)" = £ a(- D*-1^^1 A - • • A ik A ... A ¿T A 771 A • • • A rjs = 0
fc = i

implies abk = 0 for I < k < r. Hence a = 0 so that (d6 - eu)" = 0. That is to say
the volume element cu" of G is an exact form which contradicts our assumption
/V2"(g) 4 0. Therefore g = ¡o! and G is solvable.

The result was first obtained by Hano [4], but the method employed here is
different from his.

A connected Lie group is said to be unimodular if det Ad(g) = 1 for all g e
G or equivalently if Tr ad(x) = 0 for all x e g. An n-dimensional connected Lie
group G is unimodular if and only if dim H"($) = 1.

Corollary.  A connected unimodular Lie group admitting a left invariant sym-

plectic structure must be solvable.

Hano has proved that a connected nilpotent Lie group admitting a left in-

variant K'áhlerian structure must be abelian. However, this is not the case for

symplectic Lie groups, as can be seen in the following example. Therefore, we
may say that not all symplectic Lie groups are given by Lie groups with left-
invariant K'áhlerian structures.

Example 1.  Take

t, x, y, z £ R /.
0 1 x z

0 0 1 y
0     0    0     1
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Evidently, g is nilpotent.  We may choose a basis Xj, x2, x    and x4 for g such

that x.  and x.  are in the center and [x,, x,] = x , and define a skew-symmetric
bilinear function a> of maximal rank whose matrix form with respect to the chosen
basis is

iaix., x.))

0      0    10
0      0    0    1

-1      0    0    0

0-100

By straightforward verification, da> = 0. Let Y be a discrete subgroup of G con-
sisting of

e  1    0     0 0

0      1    b. n.2 4

0      0     1 b3

0      0    0 1

where b.'s are integers. The set of left residue classes   r\G gives a compact
symplectic manifold.

There is a natural K'áhlerian structure defined on the upper half complex

plane //, and the group G = i[*  *]|x> 0, y £ R! acts on H transitively. Hence
the Kählerian structure induces a left-invariant symplectic structure on G. Com-
bining this fact and Theorem Ç), we may say that all symplectic groups of dimen-
sion less than or equal to four are solvable. However, it is not true for the case
of dimension six.

Example 2. Let  g be the Lie subalgebra of the Lie algebra  gt(3; R) con-
sisting of all the matrices of the form

al     a2

0      a6    ~a4

Then  9 contains a three-dimensional simple Lie subalgebra. Let {A |l < z < 6\

be a basis of 9, whose entry corresponding to their subscripts is 1 and zero

elsewhere. On  g, there is a maximal rank 2-cocycle co whose matrix form with
respect to the chosen basis is
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"O     1     00     00"

-1       0       0    1       0    0
0       0       0    0       0    1
0-1       0    0-10*
0       0       0    10    0

_ 0       0-10       0    0_

Hence a induces an invariant symplectic structure on the connected Lie group
with Lie algebra g in GL(3; R).
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