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ABSTRACT. In this paper we make various remarks, mostly of a com-
putational nature, concerning a symplectic manifold X on which a Lie group
G acts as a transitive group of symplectic automorphisms. The study of such
manifolds was initiated by Kostant [4] and Souriau [5] and was recently
developed from a more general point of view by Chu [2].

The first part of this paper is devoted to reviewing the Kostant, Souriau,
Chu results and deriving from them a generalization of the Cartan conjugacy
theorem. In the second part of this paper we apply these results to Lie algebras
admitting a generalized (k, p) decomposition.

In this paper we make various remarks, mostly of a computational nature,
concerning a symplectic manifold X on which a Lie group G acts as a transitive
group of symplectic automorphisms. The study of such manifolds was initiated
by Kostant [4] and Souriau [5] and was recently developed from a more general
point of view by Chu [2]. For the convenience of the reader we will begin by
summarizing the basic facts.

1. General facts. Let G be a Lie group and X = G/H a homogeneous
space for G where H is a closed subgroup, and let m: G — G/H = X be the
projection. If € is an invariant form on X then it is clear that ¢ = 7*Q is a
left invariant form on G which satisfies

(i) £_1o = 0 for all £ € h where h is the Lie algebra of H;

(ii) o is invariant under right multiplication by elements of H, and hence
under Ad for elements of H.

Conversely, it is clear that any left invariant form ¢ on G satisfying (i) and
(ii) arises from G/H. If 2 is a symplectic form then it is clear that a left invariant
vector field will satisfy £ lo = 0 if and only if £ € &. Furthermore, since do = 0,
the set of all vector fields satisfying £_lo = 0 forms an integrable subbundle of
TG, and in particular, the left invariant ones form a subalgebra of the Lie algebra
of G; let us call it 4,. We have thus recovered 2. Let H,, be the group generated
by h,. Notice that for any & € h, we have D0 = £_ldo + d(§ o) = 0 so that
o is invariant under H,. The only problem is that H, need not be closed. Let
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114 SHLOMO STERNBERG

us say that o is regular if H is closed. Notice that if G/H is a symplectic homo-
geneous space, so that H is a closed subgroup, and if we construct o as above,
then H, is just the connected component of the identity in H (and hence a
closed subgroup of G). We have thus established

ProrosiTioN 1.1 (CHU [2]). Each 2p-dimensional homogeneous space
determines a left invariant regular closed two form of rank 2p on G. Conversely
a regular left invariant closed two form determines a homogeneous symplectic
space.

Notice that if 0 = df where § is a left invariant one form then ¢ is auto-
matically regular. Indeed DB = £_ldf + d(¢§8) = §lo for any left invariant
vector field & since £_I8 is constant. Thus £ € & if and only if Dsﬁ =0. Let
Ad¥ denote the coadjoint representation of G on g*. Now H = {aI(Ad# a)pf =
B} is clearly a closed subgroup and H,, is the identity component. In any event,
it is clear from the foregoing discussion that

PRrOPOSITION 1.2 (KIRILLOV-KOSTANT-SOURIAU).  Each orbit, Ad*(G)B
for B € g* is a symplectic manifold whose symplectic structure is induced from
dp.

We now assert

ProrositioN 1.3 (CHU [2]). If G is a simply connected Lie group then
every left invariant closed two form is regular.

We sketch the proof. Let o be a left invariant closed two form. We think
of g as a one cocycle f from g to g*, where f(§) = §£_Jo. Here fis a cocycle
relative to the action ad® of g on g*. Hence f defines an action of g as affine
transformations on g* via

£+0 = d*s) 0 + f(¢) = (ad¥y) 0 + £ o

Since G is simply connected this defines an affine action of G on g*. It is clear
that £ € h, if and only if £ - 8 = 0. Thus H,, is the identity component of the
isotropy group of the origin and hence closed.

Let 0 be a left invariant closed two form on G and suppose that the sub-
algebra A has minimum dimension among all subalgebras of the form A . This
implies that if o, is a curve of closed one forms with o, = 0, then any £ € h,
can be extended to a curve &, with §; = &, and £, € b, " (Indeed, choose a
subspace m complementary to h, in the Lie algebra g,. Since dim &, is
minimal, this implies that dim h, = dim k- for all ¢’ close to 0. Then projection
along m defines an isomorphism of 4, with k- for all o’ close to 0.) In particular,
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SYMPLECTIC HOMOGENEOUS SPACES 115

let 6 be any left invariant one form and consider 0, = 0 + ¢ df. We can write

g, =t+ tt' + O(r?*). Examining the coefficient of ¢ in the equation ¢ Jo,=0
gives £_1d9 + £’ o = 0. Let n be some other element of h, and take the interior
product of this last equation with . The term n_lg'_lo = £'_In_lo = 0 and we get
n-Jt_Jd6 = 0. Now, since n and 8 are both left invariant, n_10 is a constant and
therefore

0 = Dy(n_18) = Dyn18 + n_ID6 = [£, n] 18 + n_J¢_1do,

since £_16 is also constant. Thus [£, n] 8 = 0. Since this holds for arbitrary 8
we conclude that {£, 7] = 0. We have thus proved

PROPOSITION 1.4. Let o be a left invariant closed two form such that h,
has minimal dimension. Then h is commutative. In particular, let X be a homo-
geneous symplectic manifold of G with maximal dimension. Then the connected
component of the isotropy group of any point of X is commutative.

For the case that ¢ = df is an exact two form this result was obtained by
Duflo and Vergne [3]. (It is just a trivial observation to remark that their proof
works just as well for the case of closed two forms.) For the case where G is a
semisimple group, the dual of the Lie algebra can be identified with the Lie
algebra via the Killing form. In this case, to say that 4;, has minimal dimension
becomes the assertion that the centralizer of the corresponding element 6 has
minimal dimension, and Proposition 1.4 reduces to the classical assertion that for
such regular elements the centralizer is abelian. For regular elements the subalgebra
h,g is a Cartan subalgebra.

For semisimple subalgebras one has a conjugacy theorem for Cartan sub-
algebras which, in the real case, can be formulated as asserting that if 8 is generic,
then k44 is conjugate to hy, under the adjoint group if 6’ is sufficiently close
to 6. One can ask to what extent this remains true in the general case. This
problem was pointed out to me by Michéle Vergne. It is not true for all Lie
algebras as is shown by the following example: let g = R + ¥ where V is the
trivial Lie algebra (a vector space with trivial bracket) and [r, v] = forr €R
and v € V. It is easy to see that for any 8 € g* which does not vanish on ¥V the
subalgebra h,, consists of the hyperplane in ¥ defined by the equation 6(v) = 0,
corresponding to two dimensional orbits in g*. It is clear that no two such sub-
algebras are conjugate to one another if they are distinct. Let us call a 6 in g*
stable if h,, is conjugate to kg for all 6’ close to 6.

PROPOSITION 1.5. Suppose that h gy has minimal dimension and that
[s, hge]l Ny = {0}. Then 6 is stable and conversely.
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PROOF. It is clear that for any 6’ on the orbit of @ the algebra h,, and
h 4o are conjugate. Thus we will be done if we can find a submanifold W trans-
versal to the orbit through § with the property that kg = hy, for all 8' € W
(near ). By the implicit function theorem we can reduce the problem to the
corresponding infinitesimal problem: to show that every 8’ can be written as
0, + 0, where 6, € g_ldf (the tangent space to the orbit) and h,,_1d6, = 0
(which, on account of the minimality of dim A, is the same as saying that
ha+6,) = hag if 0, is sufficiently small). It therefore suffices to show that
no vector in g can be annihilated by all such 6, and 8,. Now to say that
(§,g1d0) = 0 is the same as saying that £_Jd0 = 0, i.e. that  €Ehy,. To say that
(&, 0,) =0 for all 6, means that (£, 6,) = 0 for all , with the property that
(g, hgel,0,)=0,ie. that £ € [g, h,y]. By hypothesis this implies that £ = 0.

If 6 is stable, then k4, must have the generic dimension, which is the
minimal dimension. Suppose that there is some 7 in kg, with 0 # [n, §] in hy,
for some ¢ in g Choose ¥ with {[n, {], v) # 0. If we apply the condition for
the existence of a conjugacy of kg 4 ;) With hyo and compare coefficients of
t, it is easy to see that we must be able to solve the equations

(&, n],8,0)=(n, 81,7}

for all ¢ in g Choosing [n, {] € h,, and using Jacobi’s identity on the left gives
zero while the right side does not vanish, giving a contradiction.

Observe that Proposition 1.5 is not true if we replace the coboundary d6
by a cocycle 0. Indeed, consider the trivial three dimensional algebra. Here
every two form is a cocycle and, for nonzero o, the subalgebra h, consists of
the line ¢_lo = 0, and no distinct lines are conjugate since the adjoint group acts
trivially. On the other hand, [g, g] = 0, so the condition [g, ;] Nk, =0 is
certainly satisfied.

In order to understand this example it is useful to observe that for any Lie
algebra g, we can form the central extension of g by H2(g) as follows: choose a
basis ¢y, ..., ¢ for H?(g) and cycles 2y, .+« » Z; tepresenting the ¢’s. Then
define

[(U, X), (W, y)] = (zl(x, y) cl +...+ zk(x! y) ck’ [x! y])

where v and w are in H2(g) and x and y are in g This gives a Lie algebra struc-
ture to H?(g) + .

If 6 € (H%(g) + g)* is given by 0((v, X)) = a; where v = Za,c;, then it is
clear that d6 = z;. In this way every cocycle of g can be regarded as a cobound-
ary in the extended algebra. If ¢ is a cocycle of g corresponding to the cobound-
ary df of the extended algebra, it is clear that hy, = H?(g) + h,. If 0 is stable
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SYMPLECTIC HOMOGENEOUS SPACES 117

then so is 8 and conversely. We must therefore require the stability criterion in
the extended algebra.

2. Computation of cocycles for algebras with decomposition. We would
now like to classify the homogeneous symplectic manifolds for various interesting
Lie groups. We will do this by reducing the problem to studying the behavior
of closed two forms with respect to certain subgroups. In particular, we will
make the following assumption about the Lie algebra g of G. We will assume
that there are two subspaces, k and p, of g such that

g=k+p, knp=1{0}, [k k] Ck, and [k p] Cp.

Thus we are assuming that k is a subalgebra of g and that p is a supplementary
subspace to k which is stable under the action of k. We do not make any special
assumptions at the moment about p. Thus [p, p] will have both a k and a p
component which we denote by 7 and s respectively: for 7 and o’ in p we have
[n, 71 = r(n, 7" + s(n, n') where r(n, n') €k and s(n, n') € p. Jacobi’s identity
implies some identities on r and s. It is easy to check that these are

&r(s(m, 1), 1") =0, &{s(s(n, n"), n") + [r(n, 1), n"1} =0

where & denotes cyclic sum. Also
&, )] =rE n,0) +r(n, & - 1)

where ¢ € k and 0, n' € p and we have written £ - n for [£, 1], thinking of &
acting on p. We also have the equation

£-s(n,n) =s@n, n) + s, £ - 1)

In addition we have the identity asserting that k acts as a Lie algebra of linear
transformations on p and Jacobi’s identity for k. Conversely, starting from any
action of a Lie algebra k on a vector space p together with 7 and s satisfying the
above identities it is clear that g = k + p becomes a Lie algebra. Let us give
some illustrations of this situation:

(A) r =5 = 0. In this case p is a supplementary abelian ideal, and k acts
as linear transformations on p. In other words, g is the semidirect product of k
and p where & is a Lie algebra with a given linear representation of k on p. Any
such linear representation of & gives rise to g which is called the associated affine
algebra.

(B) r = 0. Here all that is assumed is that p is a supplementary ideal to %.
An important illustration of this situation is the case of the Gallilean group.
Recall that the Gallilean group can be regarded as the group of all five by five
matrices of the form
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A v x
01 ¢
0 01

where 4 € 0(3), v €R3,x €R® and t € R. Such a matrix carries the space
time point (x,, #,) into the space time point (Ax, + x + tqv, t + t,). The cor-
responding Lie algebra consists of all matrices of the form

a v x
0 0 ¢
0 0O

where @ € 0(3) and v, x, ¢ as before. Here we can take k v 0(3) to consist of
the subalgebra with x = v =1¢ = 0 and p to be the seven dimensional subalgebra with
a = 0. Denoting an element of p by (v, x, t) we see that

[ x, ), W, x', )] = s x, D), ¢, x, ) = (0, t'v -1, 0)

and £ (v, x, ) = (¢ v, § * x, 0) where £ - v denotes the usual action of ¢ € 0(3)
on v € R3 and similarly for £ - x.

(C) The case where g is semisimple and k, p corresponds to a Cartan decom-
position. Here s = 0.

(D) The case where k is an ideal. Here the action of k on p is trivial. For
example, in the case of the Heisenberg algebra we can take k to be the center.
For this case p is a symplectic vector space, k = R acts trivially on p and r is the
symplectic two form, while s = 0.

Let £ € N’g* be a two form. Identifying A2g* with N2k* + k* ® p* +
A2p* allows us to write f =a + b + ¢ so that

fE+n,E +0)=ak &)+ bE 1) - bE, n) + e, 7).

Now df € Ng* is given by df (x, X', X") = &f([x, X'], x") where & denotes
cyclic sum. Writing x = ¢ + 7 etc., the equation df = 0 becomes

&{a([t, &1 + r(n, "), ") + b([E, E'] + r(n, '), 7")
-bE" k0 —E ntsmu)teE n—F n+sm )2} =0.

We now derive various identities for 4, b, and ¢ by considering special cases of
this identity.
g=¢ =¢"=0. In this case the identity becomes
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SYMPLECTIC HOMOGENEOUS SPACES 119

) &0, "), n") + c(s(n, 7)), ")} = 0.

For the case of the affine algebra this identity is vacuous. If p is a subalgebra so

that = 0, only the identity involving ¢ remains. For example, a direct compu-

tation in the case of the Gallilean group shows that (x) reduces to the condition

(0, x, 0), (0, x', 0)) = 0. For the case of the Cartan decomposition only the

identity involving b remains. Similarly for the case of the Heisenberg algebra.
g=t=0,7"=0. In this case the identity becomes

(%) a@(, 1), £~ bE", s, ) + " m, )+ e, £ - n) = 0.

For the case of the affine algebra both » and s vanish and this identity becomes

(»%) et mn)+temE - n)=0

which asserts that the antisymmetric form ¢ is invariant under the action of k.
For example, in the case of the Poincaré algebra where k = 0(3, 1) and p = R*
there is no invariant antisymmetric form so we conclude that ¢ = 0.

In the case that we only assume that p is a subalgebra so that r vanishes
the identity becomes

(+%)g et nn) + e &) = b s, 1))

For example, in the case of the Gallilean algebra if we apply this identity to
n= (@, x, 0) and o' = V', x, 0) the right-hand side vanishes and we conclude
that ¢, when restricted to (R® + R3)A(R? + R®) is invariant under the action
of 0(3), which acts diagonally on R + R3. There is obviously only one such
invariant (up to scalar multiples) and it is given by

(v, x, 0), (v, x', 0)) = m({v, x> =V, x))

where ( , ) denotes the Euclidean scalar product. If we take n = (0, x, 0) and
7’ = (0, 0, #) the right side of (x#)g still vanishes. On the left the term £ - '
vanishes and £ - x is arbitrary. We conclude that ¢{(0, x, 0), (0, 0, 1)) = 0. Thus

c(@ x, D, W, x, ) =mlu, x")= W, x)+(, tv-n')

for some I € R® where (x+)p implies that (J, £ - v) = b(%, (0, v, 0)). In the case
of a Cartan decomposition, or, more generally when s = 0, the identity ()
becomes

(+#)c o - m,n) + c(n, £ - ') = a(&, r(n, n)).
For the case where k is an ideal (#%) becomes

(++)p at, rm, ) + b s, n")) = 0.
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£=0,1 =1"=0. In this case neither 4 nor ¢ contributes and we obtain
the identity

(+%%) b([£, "), ) + bE", & - )~ b(E, §" - m) = 0.

This identity says that the map from & to p* sending &~b(%, *) is a cocycle.
If k is semisimple, then Whitehead’s lemma asserts that b must be a coboundary,
i.e. that there exists a @ € p* such that

(xx2)g b(¢, m) = 6(¢ - n).

Suppose that instead of assuming that & is semisimple we assume that k contains
an element in its center which acts as the identity transformation on p. Taking
£' to be this element and £” to be an arbitrary £ in (s#x) we see that (xx%)g
holds with 8(n) = b(¢', n). Thus

if either k is semisimple or k contains an element in its
center acting as the identity transformation on p then
(x#x)g holds.

For example, in the case of the Gallilean algebra, we see that the bilinear form b
is given by
Bt (@ x, ) =Kl E-v)+(LE-x)

where I' and [ are elements of R3.

n=1n"=1"=0. In this case we simply obtain the identity which asserts
that a is a cocycle in /A2k*. Again, if k is semisimple we can conclude that a
must be a coboundary. In the case of the Gallilean algebra we have thus estab-
lished that the most general cocycle can be written as

(& v x 0,E, v, %, ) =1([5 D)+, @' - Ev)
+(, &' —Ex +v-n')+ mly, x") -V, x)

where 7 € 0(3)*. Now the sum of the first three terms can be written as
0([¢ v, x, D), (€, V', X, t')]) where § = (r, I', I, 0) € g*, i.e. as a coboundary.
On the other hand, it is clear that the last term is definitely not a coboundary.
We have thus recovered the result of Bargmann [1].

If G is the Gallilean group that H®(g) is one dimensional
and, up to coboundaries, a cocycle can be written as
f((’é- v, X, t), (2,9 v'n x'; t')) = M((v, x,) - (U,, X)).

We now turn to the problem of describing the action of G on the space of
two-cycles in order to determine when two such cycles define equivalent symplec-
tic structures. We begin with the case of the semidirect product, i.e. the affine
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algebra. Every element of the simply connected group corresponding to g can be
written as m exp n where m € K = exp k and € p. Now K leaves both k and
p invariant so that the action of K on f =a + b + ¢ does not mix the summands
and the action on each summand is the appropriate exterior or tensor product of
the contragredient representation. In case f=df for § € g* = k* + p*, mf =
dm@ where K acts on g* via the contragredient representation. We must there-
fore examine the action of exp . Now

[7,7'] =0 and [n,8] =-%-n.
Thus

Adg,p o + 1) =explad - n)¢ +7) =@ +& n+1)
Therefore
(Exp m)f(¢' +n', §" + ") =f(Exp —n(¢ + 1), Exp —n(§" +7"))
=fE +E n+0 "+ n+0")
=a(t, £ +bE, E ) —bE" E n) F e 0, £ m) + (', ")
Now by (x#%)
b(¢, " - m) - b, £ ) =b([£, £"], m)
and, by (xx),
e mE m)=-cm, & & ) =c@ £ nm)=%e([£, 5] - m,m).
We can thus write
Expm)@+btcy=(@+ d(bn + %epn)) + (b +dey) +e
where b, and ¢, , € k* are defined by
by®)=bEm) and () = ot - n, M)
while ¢, € p* is defined by
cp(n) = —c(n, ).

In the important special case where (g + b) = d(r + 0) is exact, where 7 € k*
and 0 € p* we can write

(Exp m)(d(r + 0) + &) =d((7 + b, + e,) + 6 +¢,)) +c.

We can therefore describe the situation as follows. The element ¢ is invariant
under the action of G. It is invariant under Exp p by the above computation

and it is invariant under the action of K by (x%),. For a given choice of ¢ we
can move 8 into (h*~1)0 + c,h €K and n € p. This determines an action of
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K x p on p*. Suppose that we have parametrized the orbits of this action and
have, in fact, chosen a cross-section for these orbits. For a given orbit we have
thus picked a fixed 6. This determines a subgroup of G, the isotropy group of

6. The corresponding algebra consists of those (£, ) for which 6 + €y = 0. The
set of £ which occur forms a subalgebra of k which we denote by k,. Thus ¢ €
k, if and only if there exists an ny €p such that (% - ) = c(n;, m) for all n € p.
It is easy to check that the identity (++), implies that the assignment {won, is

a cocycle of k, with values in p. If this cocycle is a coboundary (for instance if
k, is semisimple or contains the identity operator) then we can find an 7 such
that £ — c,» = £ — c;) = 0. Thus by changing our choice of § within the
orbit we can arrange that k, consist exactly of those ¢ for which £ = 0. Notice
that this equation is equivalent to the equation 6,(¥) = O for all n. If we consider
the action of Exp 1 on the k* component, it adds exactly 8, + lac,,. If ¢, =
0, we see that the orbit of 7 is just the complete inverse image of the orbit of
pg(7) under K, where p,: k¥ — k} is the projection dual to the injection of

ko — k. In this case the cocycles are thus parametrized by ¢, 6 ranging over a
cross-section of the action of G on k* determined by ¢, and x ranging over a
cross-section for the action of Ky on kj.

For example, for the case of the Lie algebra of the Poincaré group we have
already seen that ¢ = 0. The orbits of G on p* are thus the same as the orbits
of K = SO(3, 1) on p* and consist of single sheeted hyperboloids 92 =m?® >0,
8, > 0and 62 = m? > 0,0, < 0; the forward light cone §2 = 0,0, > 0, the
backward light cone 82 = 0, o <0, the single sheeted hyperboloids 6% = -m?
< 0; and the origin. We thus choose cross-sections for these orbits as follows:

(m, 0,0,0), (-m 0,0,0), (1,1,0,0),
(-1,1,0,0), (0,m, 0,0), (0,0,0,0).

It is easy to see that the group K (m,0,0,0) 1 exactly SO(3). Its orbits acting on
the dual of its Lie algebra are spheres. If we call s the radius of these spheres,

we see that a fi.nily of orbits is parametrized by the two real parameters m > 0
and 5 > 0. Here m is the “mass” and s is the “spin”. For “mass zero” i.e. for
(1,1,0,0) or (-1, 1, 0, 0) it is easy to see that the corresponding isotropy group
is the Euclidean group E(2). The orbits of E£(2) in the dual of its Lie algebra

are easily seen to be cylinders (of radius 7, say) and points on the axis r = 0. If
we let the real parameter s describe the points on this axis we see that the symplec-
tic structures corresponding to (1, 1, 0, 0) are parametrized by r > 0 and, if r = 0 by an
arbitrary real parameter s. The case r > 0 does not arise in known physical sys-
tems; for r = 0 the parameter s is also called the “spin”. The isotropy group of
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(0, m, 0, 0) is SI(2). Its orbits are again hyperboloids, forward and backward
“light cones” and the origin. No particles with negative mass® (“tachyons”) seem
to occur.

Let us now do a slightly more complicated computation determining the
symplectic homogeneous spaces for the Gallilean group. Here p is not abelian.
However, it is easy to check that

Ad(exp ~ (0, v, x, OXE, W, ¥, )= (& w + &, y + E(x + %) + tw — s, 5).

We have already written the form of the most general cocycle of the Gallilean
algebra. Under the action of exp(n) it is easy to check that I’ is moved into I’ +
mx and [ is changed into  — mv. Thus by suitable choice of x and v we can
arrange that both / and /' vanish, provided that m # 0. (In the case that m # 0
one can show that the physical interpretation of / is the linear momentum of the
“center of mass”. Our choice of v amounts to making a change to a new frame
of reference in which the center of gravity is at rest. The physical interpretation
of —I'/m is that it is the position of the center of mass in the frame in which it
is at rest. By shifting the origin of the coordinate system we can arrange that
this is the origin.) Once we have arranged that I = I’ = 0, the only possibility
left for n (in the case of nonzero m) is n = (0, 0, £) and it is clear that
exp(0, 0, —¢) acts trivially. Thus we are left with the action of SO(3) on k* =
o(3)*. Again, the orbits are spheres, parametrized by their radius, a nonnegative
parameter, s. Thus for m # 0 the homogeneous symplectic manifolds for the
Gallilean group are parametrized by m and s 2 0, the ““mass” and the spin. Form =
0, we cannot change while I is moved into I' + ¢, On the other hand, 7 is moved
into 7+ (I, - v) + (I, - (x + %tv)). If we identify 7 as a vector in three space
this last expression can be written as 7+ ' x v + 1 x (x + %v) where x
denotes vector product. In this case it is more convenient to let G act by letting
SO(3) act first and then exp p. By applying a suitable element of SO(3) we can
arrange that / = (f, 0, 0) and then, if f # 0 that I’ = (0, b, ¢). If I and I’ are
independent by suitable choice of v and x we can arrange that 7 =0. If f# 0
and b = ¢ = 0, then we can arrange that 7 = (zsf, 0, 0) where s > and f > 0.
(This corresponds to the case of a particle of zero mass, travelling with infinite
velocity. Here the condition that b = ¢ = 0 amounts to the condition that the
“disturbance is transverse” and the parameter f isthe “inverse of the wave length”,
i.e. the *“color”. The parameter s is called the spin and the +or ~ is called the
helicity. For details, see Souriau [5, p. 195].)

We can compute the space of cocycles, and the corresponding symplectic
manifolds for the Gallilean group from a slightly different point of view. Let
S0(3) x R* act on R? by (4, v) * (x, t) = (4x + tv, ). Here (x, t) is a vector in R?,
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with x a vector in R3 and ¢ in R. We can regard the Gallilean group as the semi-
direct product of SO(3) x R3 with R*. Again we have a (k, p) decomposition but
this time with & = 0(3) + R3 (semidirect) and p = R®. It is easy to check that
there are no invariant antisymmetric two forms on R4, so that ¢ = 0. We can
write b as

b=b,(& X) +by(& 1) + by(v, x) + by(v, )
where £ is in 0(3) and v in R3. Condition (%) implies that

by(E v, x) + byt v, )=b (& )~ b, & - x)
and

by([&, &1, %) + by ([, €1, ) = by (5, £ - X) — by (E, £ - %)

The first of these equations, with ¢ = 0, implies that b;(v, x) = m (v, x) while
for ¢ # 0 it implies that b,4(¢ - v, £) = b, (£, tv). The second equation implies
that b, is a cocycle of 0(3) with values in R3", and hence a coboundary, and

that b, = 0. Thus

b={L - x+t)+tmiyx)

The fact that a is a cocycle in A2k* implies that it is a coboundary, @ = d(r + I)
where 7 € 0(3)* and  €R3”. We thus recover the expression that we derived
above for the most general cocycle for the Gallilean algebra. The analysis of the
operation of the Gallilean group on the space of cocycles proceeds as before.

Let us now do a computation at the opposite extreme—the Heisenberg
algebra. In this case % is the one dimensional center that we may identify with
R, and p is a symplectic vector space with r identified as its symplectic two form.
The action of k on p is trivial and s = 0. Since k is one dimensional, 2 = 0 and
conditions (xx) and (x##) are vacuous. Condition (%) can be interpreted as
follows: let w denote the symplectic form on p and let k € p* be defined by
k = b(1, ). Then (x) becomes wA k = 0. If dim p = 2, this imposes no condi-
tion. If dim p > 2, then this implies x = 0. Indeed, for dim p > 2 we can write
w =0 Ak + ' for some suitable 8 € p* and where w'Ak #0. Any ¢ € Nep*
gives a cocycle. The element w € /\Pp* is a coboundary, w = dI where [ is any
element of g* satisfying I(1) = 1, with 1 denoting the basis element of the center
which we have identified with R. It is clear that the only coboundaries are the
multiples of w. Now

[Gs, v), (¢, w)] = (w(v, w),0) wheres,t€k=Randv, wEPp.

Therefore
Ad(exp(s, V) (1, w) = (¢ + w(v, w), w).
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Thus the group acts trivially on A’p*. For dim p = 2 it maps a nonzero b € k*
® p* onto b + ¢ where ¢ ranges all over A2p*. For dim p > 2 the action of the
group on the space of cocycles is completely trivial. Thus H2(g) v k* ® p* for
dim p = 2 while H3(g) ~ A2p*/{w} for dim p > 2. The orbits of G acting on
g* via the contragredient representation are the hyperplanes (1, 0) = const. for
I(1, 0) # 0, and the points in the subspace /(1, 0) = 0. Thus these orbits either
have dimension equal to dim p or are zero dimensional. The symplectic manifolds
corresponding to the nonvanishing cohomology classes for dim p = 2 are all two
dimensional while for dim p > 2 the dimension corresponding to an element of
N2p* is equal to its rank.

3. We now list the homogeneous symplectic manifolds for the low dimen-
sional Lie algebras.

n = 1. There is only one Lie algebra of dimension one, the trivial Lie
algebra, the corresponding simply connected group is just the additive group of
real numbers, which obviously does not act transitively on any symplectic manifold
of positive dimension. Hence the only homogeneous symplectic manifold is a
point. Nevertheless, even in this most trivial example there are a number of
interesting lessons to be learned. The action of the adjoint group is trivial, and
hence so is the coadjoint action. Thus the orbits of G in g* consist entirely of
points. This is obviously the case for any commutative Lie algebra. Although
the orbits are all distinct, they all correspond to the same symplectic manifold,
because the operator d is trivial, and hence all orbits give the zero cocycle. From
the point of view of “classical mechanics™ these orbits are all the same. But from
the “quantum” viewpoint, i.e. from the point of view of representation theory,
they all correspond to different infinitesimal characters, to different representations.
This is already true at the level of “prequantization”, to use Kostant’s [4] term-
inology, where one is interested in classifying homogeneous Hermitian line bundles
with connection. Another comment is in order, even at the level of “classical
mechanics”. While it is obvious that the real line cannot act transitively on any
manifold whose dimension is greater than one, the action can be “ergodic” in
any of the various senses, e.g. topologically transitive, or metrically transitive, or
mixing, etc. Each of these concepts corresponds to a different mathematical
formulation of the intuitive notion of “irreducibility” for a mechanical system.
The notion of transitivity, the one we are dealing with, is just the most simple
of these concepts.

n = 2. There are two Lie algebras of dimension two, the trivial Lie algebra
and the Lie algebra with basis {, n} and bracket relations [£, 7} = 5. We shall
call this second algebra the scale algebra. It corresponds to the group of symmetries
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in which one can change the origin of measurement (time translation) and the
choice of units (scaling). For both algebras all two forms are cocycles since the
algebra is two dimensional. However the operator d: g* — /\2g* behaves dif-
ferently in each of the two cases.

The trivial algebra. Here the operator d is trivial. Thus each element of
/\2g* represents a different cohomology class and the action of G on /\’g* is
trivial. Each element of /\2g* gives a distinct symplectic space. It is easy to see
that the explicit realizations of these spaces are given by w = cdx A dy, ¢ # 0, with
£ — 0/0x and n — 9/dy. In addition, of course, there is the zero dimensional
symplectic manifold corresponding to the orbits of g* to which the remarks made
above in the one dimensional case apply.

The scale algebra. We have a k + p decomposition with both &£ and p one
dimensional. Hence & = ¢ = 0, and, since d is nontrivial (or by applying the
general argument using the fact that k contains the identity), we know that every
cocycle is a coboundary. Thus every b has the form b(¢, -) = I([£, -]) for some
1 € p*. The group K acts on p and hence on p* by multiplication by positive
numbers, while exp p does not change dl. Hence there are three symplectic homo-
geneous spaces corresponding to the alternatives I(n) > 0, I(n) = 0, and I(n) <O0.
Let (g, b) be the coordinates on g* given by £ and 7, so that 8(¢) = a and 8(n) =
b if 8 € g* has coordinates (g, b). Then a direct computation shows that

Ad¥ (e b)=(a,€'b) and Adf, (s b)=(@+1b,b)

For b > 0, say, we get a symplectic manifold, and £ = b(3/9b), # = —b(3/da).
It is clear that the invariant two form  must be given by w = kb™! db da for
k # 0. On the other hand, replacing (a, b) by (sa, sb), where s is an arbitrary
constant, does not change £ or 7, but replaces k by sk. This shows that the
symplectic manifolds corresponding to /() > 0 and /(i) < 0 are equivalent, so
that there is exactly one two dimensional homogeneous symplectic manifold for
the scale algebra. There is, of course, also the zero dimensional manifold as well.
If we introduce the variables x = a/b, y = b, we can rewrite the two
dimensional action as

(exp t8) (v, Y) = (ex, €7%), (expm) (x,¥) = (x + ¢, ).

In terms of these coordinates we have w = dx dy.

If we set u = @ and v = —log b we can describe the action as w = du dv,
exp t&(u, v) = (U, v + ) and exp m, v) = (u + 1€, v).

n = 3. The three dimensional Lie algebras over R are classified as follows
(cf. Jacobson, Lie algebras, pp. 11-13):

(i) the trivial algebra,
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(i) the Heisenberg algebra,

(i) the direct sum R + h where 4 is the two dimensional scale algebra,

(iv) 5 the affine algebra k + p where k is one dimensional and p is two dim-
ensional.

Here, a basis element of &k acts on p via the linear transformation A4, which
is nonsingular. Here A4 is determined only up to conjugacy on p and multiplica-
tion by any nonzero real number (since the basis of k¥ was chosen arbitrarily).

We will distinguish several possibilities, according to whether the trace of 4 is or
is not zero. If tr A = 0, and if 4 has real eigenvalues then we may arrange that
A is diagonal with eigenvalues + 1. Thus A is the matrix which infinitesimally
preserves the indefinite metric xy on the (x, y) plane, and g is the algebra of
(infinitesimal) motions for this metric. We list this algebra as

@iv) e(1, 1).

If tr A = 0 and A has complex eigenvalues, then the eigenvalues must be
purely imaginary, and we can arrange that they are + 1. Thus 4 is an infinitesimal
rotation for the Euclidean metric in the plane and we are in the case

(v) e(2), the Lie algebra of the group of Euclidean motions in the plane,

(vi) the case of the affine algebra (iv), where tr A4 #0,

(vii) the orthogonal algebra o(3), and

(viii) si(2, R).

For the case of the trivial algebra, every element of A2g* is a cocycle and
no element is a coboundary; each nonzero element has a one dimensional kernel
which will act trivially on the corresponding symplectic manifold, which is a
homogeneous symplectic manifold for the quotient two dimensional trivial algebra.
We have already discussed the Heisenberg algebra. For the case (iii) we can apply
the k, p decomposition with ¥ = R and with p = A, both ideals. Thena =0
and c is a cocycle for the scale algebra, while condition (x*)p, implies that
b(k, [k, h]) = 0. The space of possible b’s is thus one dimensional and none of
them is a coboundary, and thus H2(g) is one dimensional. Let x, y, and z be a
basis of g with the bracket relations [x, y] =, [x, z] = [», z] =0, and let
A, =exp tx, B, = exp ty, and C, = exp ¢z be the corresponding one parameter
subgroups. Then it follows from the above computation that the space of all
two dimensional symplectic manifolds is parametrized by the constant m =
b(z, x). The actual manifolds are all R? with coordinates (1, v) and w =du A dv
and actions given by

A, v)=@u@v+1), B v)= @+t v), Clu v)=@u+mtv).

We now turn to the remaining cases:
(iv) the algebra e(1, 1). Here we can choose a basis with [z, x] =x,
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[z, ] =-y and [x, y] = 0. Here k is spanned by z and p is spanned by x and
¥. Any ¢ in A’p* is a cocycle and is not a coboundary if ¢ # 0. The operator
d: g* — /\’g* has a one dimensional kernel and hence the space of coboundaries
is two dimensional. Thus dg* = k* ® p*, i.e. all b’s are coboundaries. If ¢ = 0,
the map of p — k* ® p* sending vw-sc(- v, ) is nonsingular and hence surjective.
Thus if ¢ # 0, we can eliminate b by the action of G. There are thus two
families of two dimensional symplectic manifolds, one parametrized by nonzero

¢ € A\2p* and the other parametrized by a cross-section for the orbits of C,
acting on p*. The first family all consist of R? with coordinates (u, v) and with
varying forms w = m du A dv (where m = c(x, y)) and action

A, v)=@+tv), Buv)=@wv+1), Clu v)=/ ("4 e ).

To describe the orbits in p* observe that x and y can be thought of as functions
on g* and hence on p*, and the orbits of C, are the various components of the
hyperbolas xy = « for different values of the constant k. The actual orbits of

G in g* are given by the same equations and are, in fact, just cylinders over these
curves with generators in the k* direction. Again the orbits can all be identified
with R2, with coordinates (4, v) and w =du A dv. For the orbits on which x #
0 we can use the vectors (1, k) as cross-sections to the orbits; the corresponding
actions are given by

A, v)=(+1te,v), Bu v)=@-xet%v), Clu v)=(@v+1.

The case k = o is obtained in the limit as A4, acting as the identity and B,(u, v)
= (u t te’, v) and C,(u, v) = (, v + £). It is interesting to give some interpreta-
tion to the parameters m and k. Notice that the algebra e(1, 1) contains two
copies of the scale algebra, namely z, x and z, y, with the group C, multiplying
x by e’ and multiplying y by e”*. Now there are two situations where making a
change in scale of one variable induces the inverse change of scale of a second
variable, if the variables are dual to one another (i.e. represent coordinates in dual
one dimensional vector spaces) or if the variables are inverse to one another. The
first family of orbits corresponds to the duality situation, with the parameter m
giving the duality between u and b. The second family of orbits corresponds to
the situation where the scale algebra is acting on variables 7 and s related by
s =K.

(v) The situation for the Euclidean algebra e(2) is quite similar to that for
e(1, 1). The cohomology is one dimensional, each nonzero element of A2p*
corresponding to a nonzero cohomology class and giving rise to a symplectic
manifold with x and y acting as constant vector fields. The remaining symplectic
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manifolds are given by orbits in g* which are the cylinders x2 + 2 =2, for r
positive, together with the zero dimensional orbits on the z axis.

(vi) For the affine algebra with tr 4 # 0, there is no nonzero invariant in
/¥p*, and thus the space of cocycles is two dimensional, the cohomology vanishes.
The orbits in g* are seen to be cylinders over the orbits of exp £z acting on p*,
and these provide all the two dimensional symplectic manifolds. The z-axis
again splits into zero dimensional orbits.

(vii) The orthogonal algebra is semisimple, so its cohomology vanishes. The
orbits in g* are given by the spheres x2 + y2 + z2 = 12, where x, y, and z are
the usual basis of 0(3), with the bracket relations [x, y] =z, [z, x] =y, [z, ]
=-x.

(viii) The algebra s/(2) is also semisimple, so its cohomology also vanishes.
We may choose a basis x, y, and z with the bracket relations [x, y] =z, [z, x]
=x and [z, y] =—y. Then xy + z2/2 is invariant under the action of g, and
thus, when considered as a function on g*, defines two dimensional surfaces
which are invariant under G. The connected components of these level surfaces
are clearly the orbits of G; they are the single sheeted hyperboloids, the double
sheeted hyperboloids, and the two components of the punctured light cone.

We now study the behavior of homogeneous symplectic manifolds under
deformation of the Lie algebra structure. As an illustration of what can happen
let us consider the deformation of s/(2) into e(1, 1). We consider a three dimen-
sional vector space with basis x, y, and z, and with bracket relations [z, x] = x,
[z, ] = -y, [x, y] =ez. For e # 0, this algebra is isomorphic to s/(2), while
for € = 0 the algebra is e(1, 1). For all values of e the function xy + €z2/2 is
invariant. The double sheeted hyperboloids, corresponding to positive values of
this function for e < 0 (and to negative values for € > 0), clearly deform into the
cylinders xy = ¢ for € = 0. It is interesting to examine the behavior of the single
sheeted hyperboloids. They provide both the other cylinders and also the sym-
plectic manifolds of e(1, 1) corresponding to nonvanishing cohomology classes of
e(1, 1). (Recall that H2(e(1, 1)) = R while H2(si(2)) = 0.) Indeed, for a fixed
value of xy + €z/2 the points near x = 0 of the hyperboloid (or near y = 0)
clearly move off to infinity at the rate ¢ * and the hyperboloid splits into two
cylinders. As to the orbits with nonvanishing cohomology, observe that the
cocycles are of the form Ax* A y*, and, for all ¢, we have dz* = ex* A y*. For
€ = 0 we know that Ax* A y* is not a coboundary (for nonvanishing /) while
for € # 0 the above equation shows that hx*y* = d(he~!z*). This suggests
looking at the orbit through the point with x = 0,y = 0 and z = ke ™!, i.e. the
orbit xy + €z2]2 = m, where m, = (26)_1h2. A direct computation shows
that if we consider a bounded region of x and y, the action on this portion of
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the orbit tends to the desired limiting action for e(1, 1). This computation is
suggestive of a similar computation that can be carried out in higher dimensions.
According to Segal’s theory of the cosmos, the correct group of the universe is
the fifteen dimensional conformal group SO(4, 2) (or one of its covering groups).
If we let € = R ™! where R is the radius of the cosmos in laboratory units, then
as R — oo the Lie algebra o(4, 2) deforms into a fifteen dimensional algebra
consisting of the semidirect product of the Lorentz algebra plus scale acting on
V + V* where V is the four dimensional Minkowski space. The cohomology of
this limiting algebra is again one dimensional, the classes being parametrized by
cocycles of the form ¢ = h((v, v'*) — V', v*)) where (v, v*) and V', v'*) lie in
V + V*. The maximal orbits are twelve dimensional, and for the orbits with
nonvanishing cohomology the parameter & plays the role similar to Planck’s con-
stant. The maximal orbits with zero cohomology are again twelve dimensional,
given by three parameters. By picking a suitable representative point on one of
these orbits, and letting the subgroup consisting of the ten dimensional Poincaré
group act, one gets an eight dimensional orbit. The mass parameter of this eight
dimensional orbit of the Poincaré group can be related to the parameters describ-
ing the twelve dimensional orbit of the fifteen dimensional algebra. This sug-
gests a possible relationship between quantization, the masses of the observed
particles and cosmology.
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