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Abstract. Using Donaldson’s approximately holomorphic techniques,
we construct symplectic hypersurfaces lying in the complement of any
given compact isotropic submanifold of a compact symplectic manifold.
We discuss the connection with rational convexity results in the Kähler
case and various applications.

1. Introduction

It was first observed by Duval (see e.g. [Du]) that, in Kähler geometry,
the notions of isotropy and rational convexity are tightly related to each
other. Recall that a compact subset N of Cn or more generally of a complex
algebraic manifold is said to be rationally convex if there exists a complex
algebraic hypersurface passing through any given point in the complement of
N and avoiding N . Among the results motivating the interest in this notion,
one can mention the classical theorem of Oka and Weil (further improved
by subsequent work) stating that every holomorphic function over a neigh-
borhood of a rationally convex compact subset N ⊂ Cn can be uniformly
approximated over N by rational functions.

It was shown in 1995 by Duval and Sibony that, if a smooth compact
submanifold of Cn is isotropic with respect to some Kähler structure on Cn,
then it is rationally convex [DS]. This result was extended in 1999 by Guedj
to the context of complex projective manifolds :

Theorem 1 (Guedj [Gu]). Let (X,ω, J) be a closed Kähler manifold, such
that the cohomology class 1

2π [ω] ∈ H2(X,R) is integral. Then any smooth
compact isotropic submanifold L ⊂ X (possibly with boundary) is rationally
convex, i.e. there exist complex hypersurfaces in X passing through any given
point in the complement of L and avoiding L.

Because the concept of isotropic submanifold originates in symplectic ge-
ometry, it is natural to seek an analogue of this result for symplectic mani-
folds. Although the lack of an integrable almost-complex structure prevents
the existence of holomorphic hypersurfaces in a general symplectic manifold,
a suitable analogue may be found in Donaldson’s construction of approxi-
mately holomorphic symplectic hypersurfaces.

Let (X,ω) be a closed compact symplectic manifold of real dimension 2n.
Unless otherwise stated, we will always assume that the cohomology class
1
2π [ω] ∈ H

2(X,R) is integral ; this does not restrict the diffeomorphism type
of X in any way. A compatible almost-complex structure J on X and the
corresponding Riemannian metric g are also fixed.
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Let L be a complex line bundle on X with first Chern class c1(L) =
1
2π [ω],

endowed with a Hermitian structure and a Hermitian connection ∇L whose
curvature 2-form is −iω. It was shown by Donaldson in [D1] that, when the
integer k is large enough, the line bundles L⊗k admit many approximately
J-holomorphic sections, some of which possess remarkable transversality
properties ensuring that their zero sets are smooth symplectic submanifolds
in X. Many interesting constructions in symplectic topology have recently
been obtained by using the same techniques (see e.g. [A2], [D2] and [S]).

Let us recall the following definitions. The almost-complex structure J
and the Hermitian connection on L⊗k induced by that on L yield ∂ and
∂̄ operators on L⊗k. Since the connection on L⊗k has curvature −ikω,
we introduce the rescaled metric gk = k g on X, in order to be able to
consider uniform bounds for covariant derivatives of sections of L⊗k. As a
consequence of this rescaling, the diameter of X is multiplied by k1/2, and
all derivatives of order p are divided by kp/2.

Definition 1. Let (sk)kÀ0 be a sequence of sections of L⊗k over X. The
sections sk are said to be asymptotically holomorphic if there exists a con-
stant C > 0 such that, for all k and at every point of X, |sk| + |∇sk| +

|∇∇sk| ≤ C and |∂̄sk| + |∇∂̄sk| ≤ Ck−1/2, where the norms of the deriva-
tives are evaluated with respect to the metrics gk = k g.

The sections sk are said to be uniformly transverse to 0 if there exists a
constant η > 0 (independent of k) such that the sections sk are η-transverse
to 0, i.e. such that, for any k and at any point x ∈ X where |sk(x)| < η,
the covariant derivative ∇sk(x) : TxX → L⊗kx is surjective and satisfies the
bound |∇sk(x)|gk

> η.

With these definitions, Donaldson’s construction amounts to showing the
existence of a sequence of sections sk of L⊗k which are at the same time
asymptotically holomorphic and uniformly transverse to 0 [D1]. It then
follows easily from these properties that, for large enough k, the zero sets
Wk of sk are smooth symplectic hypersurfaces in X.

Let L be a compact isotropic submanifold in X, not necessarily con-
nected : we wish to show that one can get the symplectic hypersurfaces Wk

to lie in X−L. The fundamental reason why it is reasonable to expect such
a result is that, since ω vanishes over L, the line bundle L|L comes equipped

with a flat connection. However L⊗k admits non-vanishing sections over L
only when its restriction to L is topologically trivial ; if L is not simply
connected, this can restrict the admissible values of the parameter k. For
example, if X = CP2 and L = RP2, an easy calculation in homology with
Z/2 coefficients shows that any symplectic submanifold of odd degree must
intersect L. Our main result is the following :

Theorem 2. Let L be a compact isotropic submanifold in X, and let N be
the order of the torsion part of H1(L,Z). Then, for all large enough values
of k, there exist asymptotically holomorphic sections sk of L

⊗k over X whose
zero sets Wk are smooth symplectic submanifolds, disjoint from L whenever
k is a multiple of N . Moreover, Wk can be assumed to pass through any
given point x0 ∈ X − L.
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This result is mildly surprising when one considers the results obtained
in [D1] and [A1] indicating that, when k increases, the submanifolds Wk

tend to fill all of X. There is no contradiction, though, as the distance by
which the submanifolds Wk given by Theorem 2 stay away from L actually
decreases like k−1/2.

Remark 1. (a) Theorem 2 remains valid when L has non-empty boundary ;
see [M] for details.

(b) When X is a Kähler manifold, one can perform the construction in
such a way that the sections sk are holomorphic. The submanifolds Wk are
then complex hypersurfaces ; this provides a new proof of Guedj’s rational
convexity result.

(c) When the cohomology class 1
2π [ω] is no longer assumed to be integral,

the line bundle L is no longer defined, but it is still possible to obtain sym-
plectic hypersurfaces in X which avoid the submanifold L and pass through
any given point in X − L.

Additional motivation for these results can be found in the work of Biran
[B], where the notion of Lagrange skeleton of a symplectic manifold of Kähler
type with respect to a hypersurface of Donaldson type is defined. As will be
explained in §3, Theorem 2 can be interpreted in this context as a flexibility
result for Lagrange skeleta in large degrees.

More importantly, it was observed by Seidel and Viterbo that Theorem 2
implies that if L is Lagrangian then its homology class is a primitive element
of Hn(X − Wk) (see §3) ; this remark might lead to obstructions to the
existence of certain Lagrangian embeddings.

Note. Different proofs of Theorem 2 were obtained independently by the
three authors ; the curious reader is referred to [M] and [Ga] for various
alternate arguments and generalizations.

The authors wish to thank Claude Viterbo, Paul Seidel and Paul Biran
for motivating discussions and for suggesting applications of Theorem 2.
The authors are respectively thankful to Ivan Smith, Julien Duval, Bruno
Sévennec and Emmanuel Giroux for discussions and advice.

2. Proof of Theorem 2

We first define the notion of concentrated sections of L⊗k :

Definition 2. Asymptotically holomorphic sections sk of L⊗k are said to
be concentrated over a subset N ⊂ X if there exist positive constants λ, c
and C (independent of k) such that for all y ∈ N , |sk(y)| ≥ c, and, for all
y ∈ X, |sk(y)| ≤ C exp(−λ d(y,N)2), where d(., .) is the distance induced
by gk. When the subset N consists of a single point x ∈ X, we say that the
sections sk are concentrated at x.

With this terminology, recall the following result (Proposition 11 of [D1]) :

Lemma 1 (Donaldson). For all large enough k the line bundles L⊗k admit
asymptotically holomorphic sections σk,x concentrated at any given point
x ∈ X.

As the properties of the sections σk,x play an important role in the argu-
ment, let us recall briefly their construction.
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Remember that, at any point x ∈ X, it is possible to find a local ap-
proximately holomorphic Darboux coordinate chart, i.e. a local symplecto-
morphism ψ : (X,x, ω) → (Cn, 0, ω0) such that, with respect to J and the
standard complex structure of Cn, ∂̄ψ(x) = 0 and |∇∂̄ψ|g is bounded uni-
formly by a constant C. The compactness of X implies that the size of the
neighborhood over which ψ is defined and the value of the constant C can
be assumed not to depend on the chosen point x.

In our case, we will moreover require that, whenever the point x belongs
to the given isotropic submanifold L, the coordinate map ψ locally sends L
to a linear subspace in Cn (obviously isotropic). The existence of Darboux
coordinate charts with this property is a very classical result of Weinstein
([W], see also [McS]) ; it is an immediate observation that the coordinate
map can still be chosen to satisfy ∂̄ψ(x) = 0, and the compactness of L
implies the existence of uniform estimates on |∇∂̄ψ| and on the size of the
coordinate chart.

In a Darboux coordinate chart, a suitable unitary gauge transformation
leads to a local trivialization of L⊗k in which the connection 1-form is given
by k

4

∑

(zjdz̄j − z̄jdzj). The local section defined by fk(z) = exp(−k|z|2/4)
is then holomorphic over a neighborhood of 0 in Cn. Pulling back fk via the
coordinate chart ψ, one obtains sections σ̂k,x of L⊗k over a neighborhood of
x in X, and it easily follows from the estimates on ∂̄ψ that these sections
are asymptotically holomorphic.

Finally, multiplying σ̂k,x by a smooth cut-off function vanishing at dis-

tance k−1/6 from x yields the desired asymptotically holomorphic sections
σk,x, easily shown to be concentrated at the point x (see [D1]).

Recall from [D1] (see also [A1]) that asymptotically holomorphic sections
with uniform transversality estimates are constructed by an iterative pro-
cess, where one starts with any given asymptotically holomorphic sections
sk of L⊗k (e.g. sk = 0) and perturbs them over small open subsets of X in
order to achieve transversality over those subsets ; successive smaller and
smaller perturbations are performed in such a way that the transversality
property gained at each step is preserved by all subsequent perturbations,
until transversality holds over all of X. In particular, given any constant
C > 0 it is possible to ensure that the constructed sections s̃k differ from
the given sections sk by less than C in C1 norm (i.e., at every point of X
we have |s̃k − sk|+ |∇s̃k −∇sk|gk

≤ C) [A1].
Therefore, in order to prove Theorem 2 (without requiring yet the sub-

manifolds to pass through a given point of X−L), it is sufficient to construct
asymptotically holomorphic sections σk,L of L⊗k, concentrated over L for k
ranging over all large enough multiples of N = |TorH1(L,Z)|. By definition
these sections satisfy a uniform lower bound over L by some constant c > 0,
and perturbing them by less than c/2 we get (for large enough k) uniformly
transverse sections which do not vanish over L. Our next ingredient is the
following observation :

Lemma 2. Given any compact isotropic submanifold L ⊂ X, there exists a
constant CL > 0 such that, whenever k is a multiple of N = |TorH1(L,Z)|,
the restriction of L⊗k to L admits a section τk such that |τk(x)| = 1 and

|∇τk(x)|g ≤ CL, i.e. |∇τk(x)|gk
≤ CL k

−1/2, at every point x ∈ L.
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Proof. Since L is isotropic, the restriction to L of the connection ∇L on
L is flat ; therefore the first Chern class c1(L|L), although not necessarily

trivial, belongs to the kernel of the natural map ι : H2(L,Z) → H2(L,R).
By the universal coefficients theorem (see e.g. [BT], page 194), Ker(ι) =
TorH2(L,Z) ' TorH1(L,Z). It follows that the order of c1(L|L) divides N ,

so that the complex line bundle L⊗k|L has zero first Chern class and hence is

topologically trivial whenever k is a multiple of N .
Fix a trivialization of L⊗k over L, and consider the 1-form αk ∈ Ω1(L, iR)

representing the connection on L⊗k induced by∇L. We work with the metric
on L induced by g, and observe that a suitable choice of trivialization of L⊗k

ensures that the 1-form αk and its derivatives satisfy uniform bounds which
depend only on the geometry of L and not on k.

Indeed, it is well-known that the moduli space of flat unitary connections
on the trivial complex line bundle over L up to U(1) gauge transformations
is compact and isomorphic to H1(L,R)/H1(L,Z). Therefore, a well-chosen
gauge transformation makes it possible to obtain uniform bounds on the
1-form αk and its derivatives, independently of k. More precisely, a first
gauge transformation in the identity component can be used to make the
closed 1-form αk harmonic, while the flexibility coming from the connected
components of the gauge group makes it possible to ensure that αk lies in a
fixed bounded subset of H1(L,R).

Let τk be the section of L⊗k over L which identifies with the constant
function 1 in the chosen trivialization : clearly, |τk| = 1 at every point of L
and the derivatives of τk are bounded by uniform constants independently
of k with respect to the metric g.

Remark. The bounds satisfied by αk and ∇τk depend on the minimum g-
length δ(L) of a homotopically non-trivial loop in L ; in fact CL must be at
least of the order of δ(L)−1. This is one of the reasons why the submanifold
L cannot be allowed to vary with k, another one being that we need to
control the size of the balls centered at points of L which can be trivialized
by Weinstein’s theorem.

Throughout the remainder of this section we assume that k is a multiple
of N . For each such k, let Pk be a finite set of points of L such that the balls
of gk-radius 1 centered at the points of Pk cover L and any two points of Pk
are at gk-distance at least 2

3 from each other. Such a set can be constructed

by covering L by finitely many balls of gk-radius
1
3 and iteratedly removing

the points that are too close to each other (see also [D1]).
Define the sections

σk,L =
∑

p∈Pk

τk(p)

σk,p(p)
σk,p

of L⊗k over X. The sections σk,L are linear combinations of the asymptot-
ically holomorphic sections σk,p, with coefficients unitary complex numbers
(recall that |τk(p)| = |σk,p(p)| = 1). Therefore, because any two points of Pk
are mutually gk-distant of at least

2
3 and because the sections σk,p are con-

centrated at points, a standard argument ([D1],[S]) shows that the sections
σk,L are uniformly bounded and asymptotically holomorphic.
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We now show that the sections σk,L are concentrated over L. The decay
properties of σk,L away from L follow from the following lemma :

Lemma 3. Let Pk ⊂ X be a finite set of points whose mutual gk-distance
is bounded from below by a constant δ > 0. Let (αk,p)p∈Pk

be a family of
complex numbers such that |αk,p| ≤ 1 ∀p ∈ Pk, and let sk =

∑

p∈Pk
αk,pσk,p.

Then there exist constants Cδ and λδ, independent of k and Pk, such that
|sk(x)| ≤ Cδ exp(−λδdgk

(x, Pk)
2) at every point of X.

Proof. Because σk,p is supported in Bg(p, 2k
−1/6), we can restrict ourselves

to only considering points in a fixed ball around the given point x ∈ X ; since
the gk-distance between any two points of Pk is greater than δ, this implies
that the number of points p ∈ Pk lying within a given fixed gk-distance ρ
of x is bounded by Q(ρ), where Q is a polynomial depending only on δ.
Therefore, using the existence of a bound |σk,p(x)| ≤ C ′ exp(−λ′d(x, p)2) for
σk,p and ordering the points of Pk according to their distance from x, we get
the desired bound on |sk(x)| by summing over concentric slices.

We immediately conclude that |σk,L(x)| ≤ C2/3 exp(−λ2/3dgk
(x,L)2). It

remains to be shown that the norm of σk,L at a point of L admits a uniform
lower bound. For this, we first prove the following result :

Lemma 4. If k is large enough, and if p and x are two points of L such
that dgk

(p, x) ≤ k1/10, then σk,p(x) 6= 0 and
∣

∣

∣

∣

arg

(

σk,p(x)

τk(x)

)

− arg

(

σk,p(p)

τk(p)

)∣

∣

∣

∣

≤
π

4
.

Proof. Since the g-distance between x and p is less than k−2/5, the cut-off
function used to define σk,p is equal to 1 at x, and therefore σk,p(x) 6= 0.

We work in the same local coordinate chart ψ and local trivialization of
L⊗k that were used to define σk,p ; we write ψ(x) = u, and consider the

radial path γ(t) = ψ−1(tu) from p to x. Recall that the connection on L⊗k

is expressed as d+ Ak = d+ k
4

∑

(zjdz̄j − z̄jdzj), while σk,p is locally given

by the function exp(−k
4 |z|

2). Therefore one easily checks that

∫ 1

0

(

∇σk,p
σk,p

)

γ(t)

· γ′(t) dt =

∫ 1

0
d(−

k

4
|z|2)(tu) · u dt = −

k

4
|u|2 ∈ R.(1)

Recall that by construction we require that ψ locally maps L to a linear
subspace of Cn. Therefore the radial path γ is contained in L, and we can
use the bound on ∇τk given by Lemma 2 to obtain that

∣

∣

∣

∫ 1

0

(

∇τk
τk

)

γ(t)

· γ′(t) dt
∣

∣

∣
≤

∫ 1

0
|(∇τk)γ(t)| · |γ

′(t)| dt = O(k−2/5).(2)

Therefore,

arg

(

σk,p(x)

τk(x)

)

− arg

(

σk,p(p)

τk(p)

)

= Im

[

∫ 1

0

(

∇σk,p
σk,p

−
∇τk
τk

)

γ(t)

· γ′(t) dt

]

is bounded by a constant times k−2/5, which gives the result.
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Lemma 4 implies the existence of a uniform lower bound on σk,L at any
point of L. Indeed, consider a point x ∈ L, and let p be the point of Pk
closest to x. By construction dgk

(x, p) ≤ 1, and therefore there exists a
constant c > 0 (independent of x, p and k) such that |σk,p(x)| ≥ c. By
Lemma 4 we know that the contributions of the various points q ∈ Pk whose
gk-distance to x is less than k1/10 cannot cancel each other, and we have

∣

∣

∣

∣

∣

∑

q∈Pk

d(x,q)≤k1/10

τk(q)

σk,q(q)
σk,q(x)

∣

∣

∣

∣

∣

≥ |σk,p(x)| ≥ c.

On the other hand, Lemma 3 implies that the contribution of the remaining
points of Pk decreases exponentially with k. Therefore, when k is large
enough we get that |σk,L(x)| ≥ c/2 at any point x of L ; in fact, we even get
that supx∈L | arg(σk,L(x)/τk(x))| becomes arbitrarily small for large k.

We conclude that the asymptotically holomorphic sections σk,L are con-
centrated over L, which ends the argument : perturbing σk,L by less than
c/4 we obtain asymptotically holomorphic sections σ̃k,L satisfying a uniform
transversality property, and by construction their zero sets are (asymptoti-
cally holomorphic) symplectic submanifolds which do not intersect L.

The final step to complete the proof of Theorem 2 is to show that these
asymptotically holomorphic hypersurfaces can be made to pass through a
given point x0 ∈ X − L. Considering the sections uk,x0

= k1/2z1 σk,x0
,

where z1 is a local approximately holomorphic coordinate function at x0,
the idea is to work with σk,L+ uk,x0

instead of σk,L. Indeed, observing that
for large k the support of uk,x0

is disjoint from L, a small perturbation of
σk,L + uk,x0

yields asymptotically holomorphic hypersurfaces Wk avoiding
L and passing through a point x within unit gk-distance of x0. It is then
possible to find a Hamiltonian diffeomorphism φ preserving L, mapping x
to x0, and sufficiently close to the identity in order to ensure the asymptotic
holomorphicity of φ(Wk).

Remark. When L is Lagrangian, Theorem 2 can also be proved by arguing
along the following lines. By Weinstein’s Lagrangian neighborhood theorem,
a neighborhood V of L in X is symplectomorphic to a neighborhood of the
zero section in T ∗L with its standard symplectic structure dp ∧ dq ; the
fibers of π : T ∗L → L can be chosen g-orthogonal to L at every point of
L. Consider the trivialization of L⊗k over L given by the section τk of
Lemma 2, and extend it over V in such a way that the connection 1-form
is given by βk = π∗αk − ik p dq, where αk is the same 1-form on L as in
Lemma 2. It can then be checked that the sections of L⊗k over V defined by
sk = exp(−1

2k|p|
2
g) (where | · |g is the metric induced by g|L on the fibers of

T ∗L) are asymptotically holomorphic ; multiplying sk by a suitable cut-off
function we obtain asymptotically holomorphic sections concentrated over
L, from where Theorem 2 is easily obtained.

3. Remarks and applications

3.1. The Kähler case. We consider the case where (X,ω, J) is a Kähler
manifold, and show how the construction can be performed in the holo-
morphic category (Remark 1 (b)) using the ideas of Donaldson (see pp.
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696–700 of [D1]). The first observation is that near any point x ∈ X there
exists a local holomorphic section of L which, in the same local trivializa-
tion of L as in the proof of Lemma 1, is given by a function f such that
f(z) = 1− 1

4 |z|
2 +O(|z|3) and df(z) = −1

4

∑

j(zjdz̄j + z̄jdzj) +O(|z|2) ; see

the proof of Lemma 36 of [D1].

Multiplying f(z)k by a smooth cut-off function at distance k−1/6 from x
yields asymptotically holomorphic sections σk,x of L⊗k, concentrated at x
as in Lemma 1 ; moreover, as observed by Donaldson in [D1], there exist

holomorphic sections σ̃k,x of L
⊗k such that sup |σ̃k,x−σk,x| ≤ C exp(−ak1/3),

with a and C positive constants (independent of k and x).
We now proceed as in §2.1, using the new sections σk,x instead of those

obtained in Lemma 1. The argument remains the same, the only difference
being in the proof of Lemma 4 where the l.h.s. of (1) becomes equal to

∫ 1

0

(d+Ak)f(z)
k
(tu)

f(tu)k
· u dt =

∫ 1

0
k
(df

f

)

(tu)
· u dt = −

k

4
|u|2 +O(k|u|3).

Since |u| is at most of the order of k−2/5 the imaginary part of this quantity

is bounded by O(k−1/5), which is enough to prove Lemma 4 and hence
construct σk,L as in §2.1.

Replacing σk,x by σ̃k,x in the definition of σk,L, we obtain holomorphic

sections σ̃k,L which differ from σk,L by at most C exp(−ak1/3) card(Pk) and
therefore also satisfy a uniform lower bound over L. It is then possible to
conclude as usual, by adding a linear combination of the sections σ̃k,x to
σ̃k,L in order to achieve uniform transversality.

Alternately, given a point x0 ∈ X −L, one can add a multiple of σ̃k,x0
to

σ̃k,L in order to obtain holomorphic sections σ̃k,L,x0
which vanish at x0 while

remaining bounded away from zero over L. In terms of the projective embed-
dings i : X → PH0(L⊗k)∗, these sections correspond to hyperplanes passing
through i(x0) while avoiding i(L). A small generic perturbation yields a hy-
perplane passing through i(x0) which intersects i(X) transversely and still
avoids i(L) ; this gives smooth complex hypersurfaces passing through x0

and avoiding L, giving a new proof of Guedj’s result.

3.2. The non-integral case. In this section we no longer assume that the
cohomology class 1

2π [ω] is integral, as in Remark 1 (c). As in [D1] the idea is

to perturb the symplectic form ω into a symplectic form ω′ such that 1
2π [ω

′]
is proportional to an integral class, and work with a multiple of ω′. It is
however necessary to ensure that L remains isotropic.

Because 1
2π [ω] lies in the kernel of the restriction map from H2(X,R) to

H2(L,R), it is the image of a class α ∈ H2(X,L;R). Moreover, H2(X,L;Q)
contains elements lying arbitrarily close to α in H2(X,L;R). Therefore, by
adding to ω an arbitrarily small closed 2-form vanishing over L, we obtain a
symplectic form ω′ such that 1

2π [ω
′] is the image of a class inH2(X,L;Q) and

hence belongs toH2(X,Q). By construction, ω′ satisfies up to multiplication
by a constant factor the required integrality condition, and L is ω′-isotropic.

The symplectic form ω′ admits a compatible almost-complex structure
J ′, C0-close to J ; since ω(v, J ′v) > 0 ∀v ∈ TX, any J ′-complex subspace is
ω-symplectic. So, if a sequence of submanifolds Wk ⊂ X is asymptotically
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J ′-holomorphic, then Wk is a symplectic submanifold of (X,ω) for large
enough k. One then concludes by applying Theorem 2 to (X,ω′, J ′).

3.3. Uniqueness up to isotopy. It was shown in [A1] that the symplectic
submanifolds constructed by Donaldson in [D1] are, for each large enough
value of k, canonical up to symplectic isotopy, independently of the almost-
complex structure J . One may ask whether in our case the submanifolds
Wk are canonical up to a symplectic isotopy of X preserving L ; such a
uniqueness property does not hold in general, because the homotopy class
of the non-vanishing section sk of L⊗k over L plays a determining role.

Let γ be a non-contractible loop in L bounding a disc D in X : the
homotopy class of the non-vanishing section (sk)|γ over γ determines the
number of zeroes of sk over D, i.e. the linking number of Wk with γ, which
can be modified by choosing different trivializations of L⊗k over L. Still,
when L is simply connected the homotopy classes of the nowhere vanishing
sections (sk)|L are uniquely determined.

Even though it seems reasonable to expect that the isotopy class of asymp-
totically holomorphic hypersurfaces in X − L should only depend on the
homotopy class of (sk)|L, our techniques do not allow us to prove so strong
a statement ; we are only able to prove that the submanifolds constructed
in §2 (using either the given proof or the alternate argument sketched at
the end) are canonical up to symplectic isotopy in X − L. For this, we use
the control on the complex argument of (sk)|L given by the construction : it
follows directly from Lemma 4 and the subsequent discussion that for large
k the argument of sk/τk remains small at every point of L.

Proposition 1. Let τ 0
k and τ1

k be sections of L⊗k over L belonging to the
same homotopy class and such that |τ ik| ≡ 1 and |∇τ ik|g = O(1). Let s0k
and s1k be asymptotically holomorphic sections of L⊗k over X, uniformly
transverse to 0, uniformly bounded from below over L, and such that the
bound | arg(sik/τ

i
k)| ≤

π
3 holds at every point of L. Then for large enough k

their zero sets W 0
k and W 1

k differ by a symplectic isotopy preserving L.

Proof. We use the same one-parameter argument as in [A1] in order to
construct for large k a one-parameter family of asymptotically holomorphic
sections stk, bounded from below on L, interpolating between s0

k and s1k.

First, choosing a trivialization of L⊗k over L to express τ ik in the form

exp(φik) for i ∈ {0, 1}, we define sections τ tk of L⊗k|L for t ∈ [0, 1] by τ tk =

exp((1− t)φ0
k+ tφ

1
k). Observing that |τ tk| ≡ 1 and |∇τ tk|g = O(1) for all t, we

can define sections σtk,L =
∑

p∈Pk
(τ tk(p)/σk,p(p))σk,p of L⊗k over X which

are asymptotically holomorphic and concentrated over L.
Define stk to be equal to (1 − 3t)s0k + 3tσ0

k,L for t ∈ [0, 1
3 ], to σ

3t−1
k,L for

t ∈ [13 ,
2
3 ] and to (3− 3t)σ1

k,L+(3t− 2)s1k for t ∈ [23 , 1]. All these sections are

asymptotically holomorphic ; observing that for i ∈ {0, 1} the arguments of
sik and σik,L both remain within π

3 of that of τ ik at every point of L, they also
satisfy a uniform lower bound by some constant c > 0 at every point of L.

Let γ > 0 be the uniform transversality estimate satisfied by sik for
i ∈ {0, 1}. Applying the main theorem of [A1], we obtain, provided that
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k is large enough, uniformly transverse sections s̃tk of L⊗k depending con-

tinuously on t and differing from stk by at most 1
2 inf(c, γ) in C1 norm ;

slightly modifying this 1-parameter family near its extremities we can safely
assume that s̃0k = s0k and s̃1k = s1k (see Corollary 2 in [A1]). The zero sets
of s̃tk are then symplectic hypersurfaces W t

k ⊂ X − L realizing a smooth
isotopy between W 0

k and W 1
k . The argument in §4.2 of [A1] then shows that

this smooth isotopy can be turned into a symplectic isotopy preserving L
(observe that all the quantities appearing in the argument can be chosen to
vanish over a neighborhood of L).

A final remark about the homotopy class of the sections we construct
in the non simply connected case : the homotopy class of (sk)|L as given
by our construction is in fact related to the evaluation of ω on elements
of π2(X,L). More precisely, given a loop γ ⊂ L bounding a disc D in X,
the trivialization of L⊗k over γ which minimizes the norm of the connection
1-form differs from the one which extends over D by an amount of twisting
approximately equal to 1

2π

∫

D kω ; therefore, in the construction of Wk we
obtain a linking number differing from this amount by at most a bounded
quantity.

3.4. Behavior of concentrated sections along normal slices. For any
point x ∈ L, let Nx be the image by the exponential map of the metric g of
a small disc in the normal space to L at x. Let σk,L be the asymptotically
holomorphic sections concentrated over L constructed in §2. The following
Lemma will be useful for applications.

Lemma 5. There exist constants δ > 0 and γ > 0, independent of k, such
that the restriction of |σk,L|

2 to the intersection of Nx with Bgk
(x, δ) is

strictly concave, with second derivatives bounded from above by −γ w.r.t.
gk, and reaches its maximum at a point within gk-distance o(1) from x. The
set of all these maxima is a smooth submanifold L′k, C

0-converging towards
L as k increases. Moreover, when X is Kähler the same properties remain
true for the holomorphic sections σ̃k,L constructed in §3.1.

Proof. Fix a value of k and a point p ∈ Pk such that dgk
(x, p) ≤ k1/10,

and work in the approximately holomorphic Darboux coordinate chart used
to define σk,p ; recalling that L is locally mapped to a linear subspace, let
N ′x be the affine subspace through x orthogonal to L in these coordinates.
Since x lies at g-distance less than k−2/5 from p where the coordinate map
is an isometry, Nx and N ′x are very close to each other (their angle at x is

at most O(k−2/5)). Moreover, the restriction to N ′x of the function f(z) =
exp(−1

4 |z|
2) is strictly concave (with a uniform upper bound on its second

derivatives) and admits a maximum at x ; therefore, f|Nx
is also strictly

concave and admits a maximum within g-distance O(k−4/5) from x. Since
σk,p coincides with fk near x, the same property holds for |σk,p|

2, except
that the upper bound on second derivatives depends on dgk

(p, x) and only
holds over a ball of fixed gk-radius around x.

Next, recall from the proof of Lemma 4 that the contributions to σk,L
coming from the various points of Pk lying within gk-distance k

1/10 from x
do not cancel each other at x, and more precisely their complex arguments
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at x differ from each other by at most O(k−2/5). Of course this no longer
remains true as soon as one moves away from L ; still, by a computation
similar to the proof of Lemma 4 we can obtain control on the manner in
which the complex arguments of the various contributions to σk,L differ from
each other at a point close to x.

More precisely, consider a geodesic arc γ joining x to a nearby point y in
Nx, and let p be a point of Pk within gk-distance k

1/10. Then

Im

∫ 1

0

(

∇σk,p
σk,p

)

γ(t)

· γ′(t) dt =

∫ 1

0
− ik

4

∑

zjdz̄j − z̄jdzj · γ
′(t) dt

is equal to −k
2ω0(x − p, y − x) + O(k dg(x, p)

2dg(x, y)), where ω0 is the
standard symplectic form on Cn and the error term comes from the non-
linearity of Nx in the Darboux coordinate chart. In particular, if p, p′ and
y are at bounded gk-distance from x then the difference of complex argu-
ments between the contributions of σk,p and σk,p′ to σk,L(y) is given by

φp,p′(y) =
k
2ω0(p− p

′, y− x) +O(k−2/5), where the first term is bounded by
a fixed constant times dgk

(y, x).
Fix a large constant D > 0 (independent of k and x), and let us first

restrict ourselves to the sum σk,L,x,D of the contributions of the points of Pk
within gk-distance D from x. It follows from the above remarks that there
exists a constant δ(D) > 0 (of the order of D−1) such that |σk,L,x,D|

2 is a
strictly concave function at every point of Nx∩Bgk

(x, δ(D)), with a uniform
upper bound (independent of k, D and x) on its second derivatives. Indeed,

|σk,L,x,D(y)|
2 =

∑

p

|σk,p(y)|
2 +

∑

p6=p′

|σk,p(y)| |σk,p′(y)| cosφp,p′(y).

When dgk
(y, x) is not too large, cosφp,p′ has second derivatives bounded

from above by o(1) (by the above expression of φp,p′ and the corresponding
bounds on its first and second derivatives) ; therefore, using the lower bounds
on |σk,p|, |σk,p′ | and cosφp,p′ , the upper bounds on their second derivatives
and the estimates on their first derivatives near x, we obtain that all the
terms in the sum are strictly concave functions, thus yielding the desired
concavity property for |σk,L,x,D|

2.
Moreover, since the total contribution of the remaining points of Pk to

the section σk,L decreases exponentially fast as a function of D, it cannot
affect the concavity property provided that D is chosen large enough.

The contributions of the points within distance k1/10 from x reach their
maxima over Nx within g-distance O(k−4/5) from x and their arguments at

x differ by O(k−2/5), while the remaining terms decrease exponentially fast
with k. Therefore, the value of |σk,L(x)|

2 is sufficiently close to the maximal
possible one in order to guarantee that the maximum of |σk,L|

2 over Nx is
reached within gk-distance o(1) from x.

Finally, the smoothness of the set L′k of all maxima is an immediate
consequence of the smoothness of σk,L and of the uniform concavity property.

In the Kähler case, recall from §3.1 that the sections σk,p are now con-

structed using the local holomorphic section f(z) = 1 − 1
4 |z|

2 + O(|z|3),
for which the maximum over N ′x is reached not necessarily at x but at an
arbitrary point within g-distance O(k−4/5) from x ; however this does not
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affect the properties of |σk,p|
2
|Nx

that we have used. Similarly, the fact that

f is no longer real-valued affects the complex arguments of the various con-
tributions to σk,L, both at a point x ∈ L (bound by O(k−1/5) instead of

O(k−2/5) in Lemma 4, see §3.1) and outside L (but it turns out that these
extra contributions do not affect the estimates) ; still, the argument remains
valid without modification. Finally, since the holomorphic section σ̃k,L dif-
fers from σk,L by an amount decreasing exponentially fast with k, it enjoys
the same concavity and maximum properties as σk,L, so that the conclusion
remains valid in this case as well.

Remark. The assertions of Lemma 5 are also trivially satisfied by the
concentrated sections obtained in the alternate proof of Theorem 2 outlined
at the end of §2.

3.5. Relations with Lagrange skeleta. LetX be a compact Kähler man-
ifold, let s be a holomorphic section of L⊗k, transverse to 0, and consider the
smooth hypersurface W = s−1(0). It is a result of Biran [B] that the section
s determines a splitting X = B t ∆, where B is a “standard” symplectic
disc bundle over W and ∆ is an isotropic CW-complex called the Lagrange
skeleton of (X,W ). The skeleton ∆ is obtained as the union of the ascending
varieties of all the critical points of the plurisubharmonic function log |s|2 ; it
is well-known that these critical points are all of index at least n. Combined
with standard results in Lagrangian intersection theory, this result provides
powerful restrictions on Lagrangian embeddings. For example, any simply
connected embedded Lagrangian submanifold in X must intersect either W
or ∆ (otherwise it could be disjointed from itself by a Hamiltonian flow in
B −W ).

Biran’s result is generally expected to remain valid in the more general
case of a symplectic manifold and a symplectic hypersurface “of Donaldson
type”. However, to be on the safe side we will assume throughout this
section that X is Kähler, considering only the construction of §3.1.

Proposition 2. Let L be a compact isotropic submanifold of X. Then for
large k there exist holomorphic sections sk of L⊗k, transverse to 0 and non-
vanishing over L, such that L is contained in arbitrarily small neighborhoods
of the Lagrange skeleta ∆k corresponding to their zero sets Wk.

Proof. We use the notations of §3.1, and consider the local behavior near
L of the transverse sections sk constructed as small perturbations of the
concentrated holomorphic sections σ̃k,L. By Lemma 5 we know that the
restriction of |σ̃k,L|

2 to each normal slice Nx is locally concave and reaches
its maximum close to L. Therefore, choosing the transverse sections sk
close enough to σ̃k,L we conclude that the restriction of hk = log |sk|

2 to Nx

admits a unique local maximum at gk-distance less than 1
2δ from x ; as in

Lemma 5, the set of these local maxima is a smooth submanifold L′′k in X,
obtained from L by an arbitrarily small deformation.

Observe that, by construction, every critical point of hk|L′′k is also a critical

point of hk, with index increased by codimL. Moreover, although the union
Λk of the ascending varieties of these critical points is not exactly L′′k, one
expects it to be a small deformation of L as well. More precisely, observe
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that the gradient of hk is directed inwards at every point of the boundary of
the δ-tubular neighborhood Tδ(L) of L (w.r.t. gk). This implies, first, that
every point of Λk lies at gk-distance less than δ from L, since all ascending
trajectories remain in Tδ(L). Conversely, consider the disc Dx = Nx ∩
Bgk

(x, δ) and its image by the downward gradient flow of hk : since no
trajectory can re-enter Tδ(L), the algebraic intersection number of the disc
with L′′k constantly remains equal to 1, which implies that Dx ∩ Λk is non-
empty. In particular L is contained in the δ-neighborhood of Λk, which is
itself contained in the Lagrange skeleton.

3.6. Obstructions to Lagrangian embeddings. In this section, we no
longer assume that X is Kähler, but we assume that L is Lagrangian (i.e.,
dimL = n). It was suggested to us by Seidel, Viterbo and Biran that
Theorem 2 might provide obstructions to the existence of certain Lagrangian
embeddings by arguing along the following lines.

Consider the asymptotically holomorphic sections sk of L⊗k, bounded
from below over L and uniformly transverse to 0, given by Theorem 2,
and their zero sets Wk. It follows from Lemma 5 that, if the sections con-
structed in §2 are chosen sufficiently close to the concentrated sections σk,L,
their norms reach local maxima over the transverse slices Nx along smooth
submanifolds L′′k obtained by slightly deforming L. Moreover, after an ar-
bitrarily small perturbation we can assume that hk = log |sk|

2 is a generic
Morse function over X −Wk, without affecting the other properties.

Consider a point x ∈ L′′k where the restriction of hk to L′′k reaches a local
minimum : it is a critical point of index n of hk. However the sections sk
are asymptotically holomorphic and uniformly transverse to 0, so it follows
from a result of Donaldson [D1] that the critical points hk are all of index
at least n. Therefore, the genericity condition on hk implies that the stable
manifold ∆x is a topological disc in X − Wk, with boundary mapped to
Wk, and intersecting L′′k transversely at x. Observe that ∆x is the image
by the downward gradient flow of hk of the small disc ∆x ∩ Tδ(L), where
Tδ(L) is the δ-tubular neighborhood of L. However, the downward gradient
flow is pointing outwards at every point of the boundary of Tδ(L), so that
x is the only intersection between L′′k and ∆x, and the intersection pairing
between these two cycles evaluates to 1. This implies that the homology
class [L′′k] ∈ Hn(X −Wk) is a primitive element. Since L′′k is isotopic to L,
we obtain the following

Proposition 3. The element [L] ∈ Hn(X −Wk) is primitive.

Moreover, when L is not connected we can apply the same argument
to the minima of hk over each component individually, obtaining that the
fundamental classes of the various components of L are linearly independent
primitive classes in Hn(X −Wk).

When X is a complex projective manifold, working with the holomorphic
sections of §3.1 and assuming moreover that L is simply connected, it is an
interesting question to ask whether the smooth complex hypersurfaces Wk

are always isotopic in X−L to hypersurfaces Hk arbitrarily close to a given
hyperplane section H of X avoiding L. A positive answer would imply that
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[L] is primitive in Hn(X −H) as well, providing a new proof of a theorem
of Gromov.

However, even though no problem with homotopy classes of sections over
L is to be feared in the simply connected case, the isotopy result of §3.3 does
not apply in this context, as we have no control over the complex argument
of the holomorphic section of L⊗k defining Hk. Whether a refinement of
Proposition 1 can handle this case or not remains an open question.
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