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An accurate beam finite element is used to solve nonlinear vibration of arched beams 
andframed structures. The nonlinear governing equations of a skeletal structure are 
integrated numerically using symplectic integration schemes so that the Poincare 
integral invariant of a Hamiltonian flow are preserved during the evolution. The 
element stiffness matrices are not required to be assembled into globalform, because 
the integration is completed on an element level so that many elements can be han­
dled in core by a small computer. Testing examples include arched beams andframes 
with and without damping infree andforced vibration. The dynamic symmetry break­
ing phenomena are noted at the dynamic buckling point. © 1995 John Wiley & Sons, 
Inc. 

INTRODUCTION 

The geo.metric no.nlinear analyses o.f framed 

structure fo.r bo.th static and dynamic Io.ading are 

o.f co.nsiderable interest and practical impo.r­

tance. Chajes and Churchill (1987) and Meek and 

Tan (1984) co.nsidered the influence o.f higher o.r­

der no.nlinear terms and gave the stiffness matrix 

expressio.ns accurately. But co.nsiderable effo.rts 

have been co.ncentrated o.n the tangent o.r secant 

stiffness matrices that co.nsider geo.metric no.nlin­

earity o.f vario.us degrees. In o.ur previo.us paper 

(Leung and Mao., 1995), the seco.nd- and third­

o.rder no.nlinear stiffness matrices were intro­

duced by the order o.f no.dal displacements. The 

equilibrium equatio.ns were accurately dis­

cretized and an explicit beam finite element was 

established. The dynamic problems o.f beams 

with large displacement and small strain and ro-
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tatio.n have been so.lved. Using the explicit beam 
finite element, bo.th programming and co.mputing 

the strain energy o.f the discretized systems and 

the derivatives o.f the strain energy with respect 

to. the no.dal displacements are co.nvenient and 
are mo.re advantageo.us. 

In this article, a previo.usly develo.ped beam 

finite elements fo.rmulatio.n (Leung and Mao., 

1995) is extended to. framed structures. The 
symplectic numerical integratio.n schemes 

(Feng and Qin, 1991; Ruth, 1983; Wu, 1988) are 

applied to. so.lve the equatio.ns element by ele­

ment witho.ut fo.rming the glo.bal matrices. This 

makes it Po.ssible to. so.lve no.nlinear vibratio.ns o.f 

large framed structures using a small computer. 

Symplectic integratio.n schemes are used. Em­

phasis is o.n the asymmetric reSPo.nse o.f symmet­

ric structures subject to. symmetric dynamic 

Io.ads. 

CCC 1070-9622/95/060481-12 
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LAGRANGIAN EQUATIONS 

For an initially straight Euler-Bernoulli beam 

undergoing large displacement with small strain 

and small rotation, the axial strain ex at the cen­

troid of the cross section can be expressed as 

(Crisfield, 1991) 

(I) 

Assuming plane sections remain plane, the dis­

placement in the x direction UC and the strain e ~ at 

distance z from the centroid are given by 

dw _ 
uZ=u-z dx ' e.~=cx+ZX, 

where the curvature X is defined as 

Here u(x, t) and w(x, t) are the axial and trans­

verse displacements of the neutral axis, respec­

tively. The axial resultant force S and the bend­

ing moment M are related to Cx and X and are 

S = EAex, M = E1X, 

where E is Young's modulus, A the cross sec­

tional area, and I the second moment of area of 

the cross section. The corresponding Lagrangian 

for an undamped beam of length I is 

1 I' f(au)2 (aw)2] 
L ="2 0 pA at + at dx 

1 11 0 0 -"2 0 (EAc.~ + E1x-) dx (3) 

+ J~ (F"u + Fww) dx 

where p is the mass density of material, t is the 

time variable, and F,k(, t) and FAx, t) are the 

axial and transverse loads, respectively. 

FINITE ElEMENT DISCRETIZATION 

Consider an initially straight beam, the displace­

ments u(x, t) and w(x, t) are interpolated by their 

nodal values u(t), w(t), respectively, so that 

u(x, t) = [n(x)]{u(t)}, 

w(x, t) = [N(x)]{w(t)}. 
(4) 

where [N(x)] = [1 - 3e + 2g" g(g2 -2g + l)/, 

3e - 2g3, (e - e)l]' and In(x)] = [1 - g, g] are 

the shape functions and g = xll. After integra­

tion, Eq. (3) will be discretized into 

- t{uY[K,J{u} - ! {wY[KwHw} 
(5) 

- ! {uY[K",J{w,J - k {w,tY[K'IHw,J 

+ {F"Y{u} + {F .. Y{w}, 

where, for the element e with node i and node j, 

{we} = {Wi, Oi, Wi, OJ, {Ue} = {lIi, II;}. 

[M~] = J>A[nY[n] dx, [M~.] = l>AlNYlN] dx. 

[Kit] = J~ EA[n.xY[n . .rl dx, 

[K~.] = J~ EI[N.xxY[N.x'] dx, 

{Fit} = J~ [nFl'" dx, {F~.} = J~ [NFFw dx. 

The following terms are new: the quadratic nodal 

displacement 

the second-order stiffness matrix 

and the third-order stiffness matrix 

[K~] = J~ EA[QY[Q] dx, 

in which [Q] is defined by the interpolation, 

(aw/a.tV = [QHw~} and is given by 
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2(-2~ + lle - 18e + ge), ~~ (e - 2e + ~4), 1[2 (-2e + 5e - 3e), 

4e - 12e + geJ. 
An overdot denotes differentiation with respect 

to t. The matrices [K~q] and [K~], which are inde­

pendent of the nodal displacements, are given 

explicitly in Leung and Mao (1995). The others 

are available in most of the references. 

SYMPLECTIC INTEGRATION SCHEMES 

The Lagrangian formulation is more popular than 

the Hamiltonian because the former uses physi­

cal quantities directly in the configuration space. 

The Hamiltonian methods are not particularly 
superior to Lagrangian techniques for the direct 

solution of mechanical problems. Rather, the 

usefulness of the Hamiltonian viewpoint lies in 
the invariant symplectic structure of the resulting 

equations that will be very convenient in theoret­

ical and numerical studies. 

All dynamic evolutions of Hamiltonian sys­
tems are symplectic (canonical) transformation; 

the time discretization algorithm should also be 
symplectic. Ruth (1983), Feng and Qin (1991), 

and Feng et al. (1989) developed some symplec­

tic integration methods for Hamiltonian systems. 

Simo et al. (1992) gave second-order accurate 

methods, which preserved both momentum and 

energy exactly, and a detailed discussion to ex­

act energy-momentum conserving algorithms 
and symplectic schemes for nonlinear dynamics. 

Robert and Pau (1992) discussed the accuracy of 

symplectic integrators in the energy error. Wu 

(1988) proposed the time-centered Euler scheme 

with second-order accuracy to an arbitrary mth­

order accuracy for ordinary different equations. 

Assuming that the mechanical systems are ho­

lonomic and that the forces are monogenic, then 

the dynamic evolution problems may be ex­

pressed in the canonical system of differential 

equations: 

ap at = - Hq(p, q, t), 

aq at = Hp(p, q, t). 

(6) 

for a given Hamiltonian H. The Hamiltonian is 

reduced to the energy function H(PI, ... , PIl' 

ql, . . . , qn, t) for the inertial frame of refer­
ence, where Hp = aHlap, Hq = aHlaq. 

Before discussing nonautonomous systems, 

let us consider the autonomous Hamiltonian sys­
tem when H is independent on time, 

where 

. - J aH 
z - a;: , (7) 

Here 1 is the standard n x n unit matrix and 0 is 

the n x n zero matrix, and Zi = Pi, Zi+1l = qi; i::s 

n, n is the number of degrees of freedom. Its 
phase flow is denoted as gt(z) = g(z, t) = gH(Z, t), 

being a one-parameter group of canonical maps 

(Abraham and Mardsen, 1978; Arnold, 1978) i.e., 

and if Zo is taken as an initial condition, then 

z(t) = gt(zo) is the solution of (7) with the initial 

values Zo. Different symplectic integration 

schemes for the system (7) have been con­

structed (Feng and Qin, 1991). Symplectic 

schemes for Hamiltonian systems preserve all 

the linear conservative quantities. Moreover, the 

implicit time-centered symplectic scheme pre­

serves all the linear and quadratic conservative 

quantities. Let us consider the first-order and the 

second-order canonical difference schemes for 
Eq. (7), 

p7+1 = pf - hHqi(pk+l, qk), 

q7+1 = qf + hHp(pk+l, qk). 

p}+1 = p7 - hHqi(Pk+I, qk) 

(8) 
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(9) 

where h is the time step. These schemes are ex­

plicit with respect to the coordinate q and are A 

stable. In general, the Hamiltonian for nonlinear 

vibration problems of structures is separable, 

i.e., H = U(p) + V(q), where U(p) is quadratic 

in p representing the kinetic energy. Thus, in this 

case, Eqs. (8) and (9) are a set of linear equations 

in p. The time-centered Euler scheme (Feng and 

Qin, 1991) for Eq. (7) is 

(
Zhl + Zk) 

Zk-I = Zk + hJH-
, 2 .' 

which may be written further in 

P k+ I = k - hH P ,p q q (
hi --I- k k+ I + k) 

I P, q; 2 ' 2 ' 

k+1 _ k (pk+1 + pk qk+1 + qk) 
qi - qi + hHp 2 ' 2 . 

(10) 

(lOa) 

(lOb) 

The scheme (10) is an implicit second-order 

scheme, Thus scheme (10) requires iterations 

while schemes (8) and (9) do not. 

For nonautonomous Hamiltonian systems, we 

regard the time t as an additional dependent vari­

able. That is, letting qll+1 = t, we can choose a 

parameter T as a new independent variable. It is 

well known (Goldstein, 1980) that 

PIl+I = -H, 

which has a unit of energy, is the generalized 

momentum conjugate to the time t. For this spe­

cial choice, the function K(w) = p,,+ I + H(z) with 

w = (ql, . .. , qll, t,PI,' .. ,p", -H)Twill take 

the place of the Hamiltonian function H. 

Consider the ordinary differential equation 
(ODE), 

dx = F(x) 
dt 

(II) 

where F: RS ~ RV is an analytic function in R\ 

For time-dependent ODEs, we use a new time 

variable T to make the system time independent. 

Let t = T and 

dt 

dT 
1, 

then the time-dependent ODEs in R;\' can be re­

written as time-independent equations in RN+ I. 

To make a set of ODEs into a Hamiltonian 

system, we. introduce a matching system (Wu, 

1988) 

~~ = -(XTF'(X»T, 

(12) 

F'(x) = ~:. 

Assuming that the Hamiltonian H = X 7F(x)' the 

systems (II) and (12) together can be rewritten as 

a Hamiltonian system 

dx aH 
dt ax' 

(13) 

dX aH 
dt ax 

Wu (1988) gave a time-centered Euler scheme 

with second-order accuracy to an arbitrary mth­

order accuracy for system (13). This scheme is L 

stable. The second time-centered Euler scheme 

is 

hi _ k (Xk + X k+ l ) 
Xi - Xi + hFi 2 . (14) 

This is an implicit second-order scheme indepen­

dent of the matching system (12). 

If the Hamiltonian system (6) is separable, 

then 

H = U(p) + V(q, t). (15) 

Ruth (1983) constructed a third-order explicit 

symplectic scheme for the separable Hamiltonian 

(15). Qin et at. (1991) constructed a fourth-order 

explicit symplectic difference scheme. 

We may use the different symplectic integra­

tion schemes mentioned above to solve Hamilto­

nian equations. From the viewpoint of computa­

tional stability, implicit schemes are better. For 

explicit schemes, variable time steps may be 

used to guarantee the stability of computation. 

The time step is controlled by the superior and 
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inferior limits of motion, i.e., Iq7+ ' - q~'1 ::; G or 

Ixf+' - xf::; G. In this work we use the first-order 

scheme (8) and the time-centered Euler schemes 

(10) and (14) for the numerical examples below. 

FINITE ELEMENT EQUATIONS OF 
MOTION 

For an initially straight beam, the finite element 

equations are obtained from Eq. (3) by the Ham­

ilton principle, 

[MII]{ii} + [KII]{u} + i [Kllq]{wq} = {FII}, 

[MII·]{w} + [KII·]{w} (16) 

+ HWq . IIF[KllqF{u} + t [w'f.'IF[K,,]{w,J = {Fir}, 

where the subscript (, Il') denotes differentiation 

with respect to {w}. For damped forced vibration 

problems, the finite element equations are ob­

tained by adding the appropriated damping 

terms, 

[MII]{ii} + [C,J{u} + [KII]{u} + i [Kllq]{w,,} = {F,,}, 

[MII·]{w} + [CJ{w} + [Kw]{w} (17) 

+ Hw".IIF[K"qF{u} + t[wq . IIF[Kq]{wq} = {Fw}, 

where [CII], [Cu·] are the corresponding damping 

matrices. 

Equations (16) and (17) are different from 

some existing references, such as Yang and 

Saigal (1984) in that the induced axial force S is a 

function of displacements and is not averaged 

and, in finite element discretization, Eq. (3) has 

not been linearized, i.e., the discretization is 

more accurate. Due to the accurate discretiza­

tion, iteration procedures are not needed in cal­

culating every incremental step. The accuracy 

for the unaveraged S is important in the study of 

nonlinear vibrations, chaos, and bifurcations. 

Now, we use the Hamiltonian formalism. For 

free vibration and undamped forced vibration 

problems the Hamiltonian of the Lagrangian (3) 

is obtained by the method introduced in Gold­

stein (1980), 

H = i {PIIV[M,,]-I{p,,} + i {PIIY[Mw]-I{PII} 

+ i {uV[K"Hu} 

+ i {wV[Kw]{w} + i {uV[K",J{w,,} (18) 

+ k {w"V[K,,]{w,,} 

- {FIIV{u} - {FIIY{w} , 

where {PII} = [M"Hu}, {PII.} = [MlI'Hw} are the mo­
menta. Hamilton's equations corresponding to 

Eq. (18) are 

a{u} _ -I 
at - [Mil] {p,,}, 

a{w} _ -I at - [Mil'] {PII'}, 

a~;,} = -[KII]{u} - i [KllqHw,,} + {F,,}, (19) 

a~;J = -[KII.]{w} - i [wq.lI'F[KllqF{u} 

For damped forced vibration problems, ex­

tended Hamiltonian equations are obtained by 

writing Eq. (17) in the form of Eq. (II) 

{iJ} = _[M,,]-I([C,,]{U} + [K,,]{u} 

+ i [K"q]{wq} - {FII}), 

{W} = -[MIXI({C.·]{W} + [KII·]{w} (20) 

+ i [wq . II.]T[KllqF{u} 

+ t [wq . II.]T[Kq]{wq } - {Fw}), 

{u} = {U}, {w} = {W}. 

For an initially straight beam, forming general 

stiffness matrices [Kllq] and [Kq] is not compli­

cated (Leung and Mao, 1995). But for framed 

structures with many elements, computing the 

general nonlinear stiffness matrices is of some 

complexity. However, when one uses explicit in­

tegration schemes, the global stiffness matrices 

are not needed. Thus we may integrate the Ham­

iltonian equations element by element. 

For an arbitrarily oriented beam element in 

the plane, the nodal displacements of the ith 

node in terms of local coordinates of element e, 

{dr}, and those in terms of global coordinates {di} 

are related by 

{ll:} _ f-A. J.t O]{Ui} v I - J.t A. 0 v, 

() 'f 0 0 I ()i 

(2Ia) 

or symbolically 

(21b) 
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where A. = cos a and fL = sin a with a being the 

angle of orientation of the beam. The Hamilto­

nian may be written on the element level, 

(22a) 
+ ! {ueF[Ki,q]{w~} + ~ {w~F[K~]{w~} 

- {Fi,F{ue} - {F~Y{we}), 

where [Md] is the conventional global mass ma­

trix in terms of global coordinates and {pA = [M d] 

{d} are the momenta. Denote the expression after 

Le in Eq. (22a) by Vi, then Eq. (22a) may be 

written as 

Vr = VI + n I is the total potential energy of 

element e, with Vi being the strain energy and 

n r the potential energy of external forces. The 

first- and the second-order derivatives of VI with 

respect to {d} are easily computed. Thus, the 

Hamiltonian equations corresponding to Eq. 

(22a) may be obtained. For damped forced vibra­

tion problems, the finite element equations are 

obtained by adding the appropriate damping 

terms, 

where [Cd] are the corresponding damping matri­

ces. Equation (23) may be rewritten in the form 

of Eq. (20). 

NUMERICAL EXAMPLES 

In the case of transient excitation by pulses 

(i.e., shock load, explosions, etc.), damping has 

very little effect on the response qualitatively, so 

an undamped analysis is generally adequate. 

However in the case of steady-state vibration, 

damping is relatively important. Several exam­

ples on the dynamics of nonlinear structures with 

and without damping are presented. The material 

ofthe structures is isotopic linear elastic. Results 

are compared with those of other investigators 

when possible. Example 1 and example 2 were 

calculated previously in Leung and Mao (1995) 

by means of forming all global stiffness matrices 

that gave the same results as in this study work­

ing on the element matrices only. 

Example 1: Undamped Forced Vibration of 
a Clamped-Clamped Beam by Sudden Load 

A clamped-clamped beam under a static concen­

trated force of 2843.919 N acting at the midspan 

at time t = 0 is considered. The modulus of elas­

ticity is E = 2.07 X 108 kN/m2, the mass density 

is p = 2.71 X 10-3 kg/cm3, the length is I = 50.8 

em, and the cross section is 2.54 x 0.3175 cm. 

The beam geometry with a concentrated load is 

shown in Fig. I. Because of symmetry, one-half 

of the beam is modeled by six finite elements. 

Figure 2 gives the nonlinear responses of the 

midspan deflection obtained using the time-cen­

tered Euler scheme with an equal time step, D.t = 

1 fLS. Figures 3 and 4 give the total energy E = 

kinetic energy K + potential energy V and the 

total kinetic energy K, respectively. 

This problem has been studied by many inves­

tigators. Mondkar and Powell (1977) used five 8-

node plane stress elements to model one-half of 

the beam. Yang and Saigal (1984) used six beam 

elements with D.t = 5 fLS and D.f = 10 fLS. McNa­

mara (1974) used five beam bending elements 

based on a central-difference operator with D.t = 
5 fLS. The maximum displacement and the period 

of the first cycle were 0.02286 m and 2884 fLS in 

McNamara (1974), 0.019558 m and 2300 fLS in 

Mondkar and Powell (1977) and Yang and Saigal 

(1984), and 0.019456 m and 2151 fLS in this study. 

Simo et al. (1992) and Crisfield and Shi (1994) 

explored that the time-centered Euler scheme is 

the idea of a "midpoint equilibrium." For nonlin-

§ I I I I 

P{t) 

I 

P{t) 

1 
I 

i 2843.919 N 

.;. 

~ 

FIGURE 1 Beam under concentrated load. 
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FIGURE 4 Total kinetic energy K, M = I /LS. 

ear Hamiltonian systems the time-centered Euler 

scheme fails to conserve the total energy of the 

system (Simo et aI., (1992). But from Figs. 3 and 

4 we may know that the amplitude is very small 

referring to the total kinetic energy, and the total 

energy is almost preserved when using small 

time steps. 

Example 2: Damped Forced Vibrations of a 

Hinged-Hinged Beam by Harmonic Force 

Consider a hinged-hinged uniform beam with im­

movable edges under a concentrated force of F 

cos wt acting at the midspan, where F = 2.0 x 

10-3, w = 1.1 WL, where WL is the linear natural 

frequency WL = 3.4189 X 10-3. The modulus of 

elasticity, E = 1; the mass density, p = 1; the 

length, I = 28.8675; the second moment of iner­

tia, I = 0.083333; and the cross-sectional area, 

A = 1.0. Assume the damping forces are propor­

tional to the mass matrix, i.e., C = aM, and 

damping ratio a = 0.01. Because of symmetry, 

one-half of the beam was modeled by four finite 

elements. We use the time-centered Euler 

scheme with a variable time step. The response 

curve is shown in Fig. 5. The phase plane trajec­

tories of steady-state motion are shown in Fig. 6. 

Example 3: Elastic Dynamic Snap Buckling 

of an Arch 

A dynamic buckling analysis of the circular arch 

shown in Fig. 7 was carried out. Due to symme­

try, one-half of the arch is modeled by nine finite 

elements. Figure 8 shows the displacement re­

sponse predicted in this study using the time-
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FIGURE 5 Midspan displacement of a hinged beam. 

centered Euler scheme. In Fig. 8, the deflection 8 

defined as 

8 = vertical displacement at apex 

average rise to arch = H/2 

is used. The dynamic buckling of the arch occurs 

at the load level at which a sudden increase in the 

p 

p 
o 
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0012 ~ 
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FIGURE 6 Midspan phase plane trajectories of 

steady-state motion of a hinged beam. 

deflection ratio is measured. Figure 8 shows that 

at Po = 0.202, it oscillates about a position of 

approximately 8 = -0.5, and that at Po = 0.203 it 

snaps through at 7 = 60.0, and it oscillates about 

a position of approximately 8 = -4.0. Therefore, 

for 7 from 0 to 90.0, the buckling load predicted 

here lies between ITo = 0.202 and Po = 0.203. For 

I 

! 

~ 

E= 6.9872 X]06 N /cm~ 

p =2.6085)( lO-Jkg/cm' 

c= fI =S.141xl05 cm/sec 
fp 

~I\·-
3.316 x 10-4 sec 

TIME P ARAMETR 

C 

LOAD PARAMETER 

R 1 q 
P=(-)-x-

h E 

t=-x t 
R 

FIGURE 7 Simply supported shallow arch. 
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~ 
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-5 
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FIGURE 8 Dynamic snap-through of a shallow cir­

cular arch. 

7 from 0 to 50, the buckling load predicted here 

lies between Po = 0.203 and Po = 0.204, which is 

about 2.0% higher than that predicted by Bathe 

et al. (1975). Moreover, results obtained using 

the whole arch are the same as those using one­

half of the arch. 

Example 4: Dynamic Analysis 
of Plane Frames 

The geometry for the frame is given in Fig. 9, 

where the modulus of elasticity is E = 2.07 X 108 

kN/m2 , the mass density is p = 2.71 X 10-3 kg/ 

cm3, and the cross section is 25.4 x 3.175 cm. 

Every beam member is modeled by four ele­

ments. 
For the undamped case, nonlinear responses 

to different concentrated load p(t) = Fe acting at 

the top point of the frame are shown in Fig. lO(a­

e) and Figure 11. In Fig. IO(e) we give the linear 

solution obtained using the whole frame for Fe = 
120 kN. The nonlinear subharmonic solutions are 

obvious. Intuitively, due to symmetry, results 

obtained using one-half of the frame should be 

1 pet) 

0.6574 m 1 

2.45345 In 

FIGURE 9 Plane frame under concentrated load. 

the same as using the whole frame. However, in 

numerical calculations, the difference is very 

large in some cases, when anti symmetric modes 

are resonated by the nonlinear frequency. In 

such cases, the symmetric solutions obtained us­

ing one-half the frame are, in fact, unstable. The 

lower branches of Figs. 10 and 11 show the sym­

metry breaking branches. Moreover, Fig. 10 Ca­

e) show a comparison of the nonlinear responses 

for different loads. With Fe increasing, the sym­

metry breaking emerges more easily. Here, we 

have not introduced any small perturbations arti­

ficially to obtain the asymmetric deformation, 

which is different from the usual references. For 

example, Wood and Zienkiewicz (1977) calcu­

lated the asymmetric deformation of a two­

hinged deep arch by imposing a small perturba­

tion to the radius of the arch. Of course, the 

rounding error of computers may be regarded as 

small perturbations. Figures IOea-e) also show a 

comparison of the linear and nonlinear response. 

The considerable difference in the maximum dis­

placements of the linear and nonlinear solutions 

can also be noted. 

For proportionally damped vibration (C = 

aM), where damping ratio a = 0.1, pet) = F cos 

wt N acting at the top point, w = 1.1 WL, F = 1200 

kN in which the linear fundamental frequency of 

symmetry mode WL = 275.844 rad/s. The time­

centered Euler scheme with variable time step is 

used. The response curves are shown in Fig. 

12(a-c). For a linear response, solutions ob­

tained using the whole frame are in agreement 

with those obtained using one half of the frame. 

Figure I2(a-c) shows that the difference between 

the linear and nonlinear responses and the differ­

ence between solutions obtained using one-half 

of the frame and using the whole frame still exist. 

CONCLUSIONS 

Symplectic methods are successful in integrating 

the Hamiltonian equations of skeletal structures 

consisting of beam elements developed by Leung 

and Mao (1995). The equations of motion are in­

tegrated element by element which avoids the 

formation of a global stiffness matrices so that 

complicated framed structures with many ele­

ments can be handled in core. The present 

method is efficient for dynamic and geometric 

analyses. Dynamic symmetry breaking is demon­

strated. The response after symmetry breaking is 

an order higher that cannot be overlooked in a 
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FIGURE 10 Vertical Displacement at the top point of plane frame without damping for 

different loads Fe, curve 1 obtained using one half of frame, curve 2 obtained using whole 

frame. (a) Using the first order scheme, Fe = 1200 KN; (b) Using time-centered Euler 

scheme, Fe = 1200 KN; (c) Using time-centered Euler scheme, Fe = 1000 KN; (d) Using 

time-centered Euler scheme, Fe = 600 KN; (e) Linear solution in time-centered Euler 

scheme, Fe = 120 KN. 



e 
,5. 
E 

e 
" <> 

'" ~ 
is 

Symplectic Integration and Nonlinear Dynamic Symmetry 491 

-2 

-5 

-8 

-'2 

-'5 

-'8 

! 

~ ! II ~ ! 

; i d 
I 

~ ~\ 
! 

~ 
f~ 

~T , 

~I 
~I i i ~ 

I 

: ! ! 

-20 

~J\n ~ n 
-40 

e 
-50 

\~r 
I 

,5. -80 

\ V \ V \ r "5 -100 

e 
8 -120 

II \ 
'" J Q. 

Y ! 
.~ -~ 40 

Q 

-200 

~ -220 

-20 
! O.~2 I 0.04 0.06 O.~8 I 0_1 0_12 0.14 

-240 

005 0.08 
001 0.03 0.05 0.07 0_09 0_ 11 0_13 0.15 

Time(scc) 
0.05 0.07 0.09 011 

Time (sec) 

(a) Horizontal displacement (b) Vertical displacement 

FIGURE 11 Displacement at top point of a plane frame for Fe = 1200 KN, using whole 

frame, (a) horizontal displacement; (b) vertical displacement. 

e 
..5 
.... 
C 

'" e 

'" u 

~ 
0. 
Ul 
.~ 

Q 

20 

-~o I 

-4C L 
-50 

-12C ~ 

-l40 ~ 

-'50 t 
-lBO 

0.2 

...., 
c 

'" e 

'" u 

~ 
0. 
Ul 
.~ 

Q 

0.4 

8C,-~~~~~~~~~~~~~~~~~~--, 

60 

-4G 

-8e 

-: 00 ~-

-140 

-160L-~~~~~~~~~C~~~~~~~~~~ 

01 0.2 0.3 04 05 06 0.7 0.8 

Time (secl 

(b) Nonlinear solution using one half of frame 

0.7 0.8 

Time (sec) 

(c) Nonlinear solution using whole frame 

FIGURE U Vertical Displacement at the top point of plane frame with damping; (a) 

linear solution using whole frame; (b) nonlinear solution using one half of frame; (c) 

nonlinear solution using whole frame. 



492 Mao and Leung 

structural design. It is advisable to use the whole 

structure rather than its symmetric portion when 

nonlinear dynamic response is of interest. 

The research was supported by the Research Grant 

Council of Hong Kong. 

REFERENCES 

Abraham, R., and Marsden, J. E., 1978, Foundations 

of Mechanics, 2nd ed., Bejamin/Cummings, Read­

ing, MA. 

Arnold, V.I., 1978, Mathematical Method of Classical 

Mechanics, Springer-Verlag, New York. 

Bathe, K. J., Ramm, E., and Wilson, E. L., 1975, 

"Finite Element Formulations for Large Deforma­

tion Dynamic Analysis," International Journal of 

Numerical Methods in Engineering, Vol. 9, pp. 353-

386. 

Chajes, A., and Churchill, J. E., 1987, "Nonlinear 

Frame Analysis by Finite Element Methods," Jour­

nal of Structural Engineering, ASCE, Vol. 113, pp. 

1221-1235. 

Crisfield, M. A., 1991, Nonlinear Finite Element Anal­

ysis of Solids and Structures, Wiley, New York. 

Crisfield, M. A., and Shi, J., 1994, "A Co-Rotational 

Element/Time-Integration Strategy for Non-Linear 

Dynamics," International Journal of Numerical 

Methods in Engineering, Vol. 37, pp. 1897-1913. 

Feng, K., and Qin, M. Z., 1991, "Hamiltonian Algo­

rithms for Hamiltonian Systems and a Comparative 

Numerical Study, " Computer Physics Communica­

tions, Vol. 65, pp. 173-187. 

Feng, K., Wu, H. M., Qin, M. Z., and Wang, D. L., 

1989, "Construction of Canonical Difference 

Schemes for Hamiltonian Formalism Via Generat­

ing Functions," Journal of Computational Mathe­

matics, Vol. 7, pp. 71-96. 

Goldstein, H., 1980, Classical Mechanics, Addison­

Wesley, Reading, MA. 

Leung, A. Y. T., and Mao, S. G., 1995, "Symplectic 

Integration of an Accurate Beam Finite Element in 

Nonlinear Vibration," Computers & Structures, 

Vol. 54, pp. 1135-1147. 

McNamara, J. E., 1974, "Solutions Schemes for Prob­

lems of Nonlinear Structural Dynamics," Journal of 

Pressure Vessel Technology, ASME, vol. 96, pp. 

96-102. 

Meek, J. L., and Tan, H. S., 1984, "Geometrically 

Nonlinear Analysis of Space Frames by an Incre­

mental Iterative Technique," Computer Methods in 

Applied Mechanics and Engineering, Vol. 47, pp. 

261-282. 

Mondkar, D. P., and Powell, G. H., 1977, "Finite Ele­

ment Analysis of Nonlinear Static and Dynamic Re­

sponse," International Journal of Numerical Meth­

ods in Engineering, Vol. II, pp. 499-520. 

Qin, M. Z., Wang, D. L., and Zhang, M. Q., 1991, 

"Explicit Symplectic Difference Schemes for Sepa­

rable Hamiltonian Systems," Journal of Computa­

tional Mathematics, Vol. 9, pp. 211-221. 

Robert, I. M., and Pau, A., 1992, "The Accuracy of 

Symplectic Integrators," Nonlinearity, Vol. 5, pp. 

541-556. 

Ruth, R. D., 1983, "A Canonical Integration Tech­

nique," IEEE Transactions on Nuclear Science, 

Vol. NS-30, pp. 2669-2671. 

Simo, J. C., Tarnow, N., and Wong, K. K., 1992, 

"Exact Energy-Momentum Conserving Algorithms 

and Symplectic Schemes for Nonlinear Dynamics," 

Computer Methods in Applied Mechanics and Engi­

neering, Vol. 100, pp. 63-116. 

Wood, R. D., and Zienkiewicz, O. c., 1977, "Geomet­

rically Nonlinear Finite Element Analysis of Beams, 

Frames, Arches and Axisymmetric Shells," Com­

puters & Structures, Vol. 7, pp. 725-735. 

Wu, Y. 1988, "The Generating Functions for the Solu­

tion of ODEs and Its Discrete Methods," Computa­

tional Mathematics and Applications, Vol. 15, pp. 

1041-1050. 

Yang, T. Y., and Saigal, S., 1984, "A Simple Element 

for Static and Dynamic Response of Beams with 

Material and Geometric Nonlinearities," Interna­

tional Journal of Numerical Methods in Engineer­

ing, Vol. 20, pp. 851-867. 



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


