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1 Introduction

The geometry of singular Calabi-Yau three-folds, so-called canonical singularities, is inti-
mately related with the physics of 5d superconformal field theories (SCFTs). The moduli
spaces of such singularities reflect the Higgs and Coulomb branches of the SCFT. The
relation between these is furnished by M-theory: M-theory on a (non-compact) canonical
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Calabi-Yau three-fold singularity gives rise to a 5d SCFT, whereas resolving the singular-
ity, i.e. Kähler deformations, correspond to the (extended) Coulomb branch, of vacuum
expectation values (vevs) of adjoint scalars in the vector multiplet. Deformations on the
other hand map out the Higgs branch, i.e. the parameter space of vevs of hypermultiplets.

From the geometry of the Calabi-Yau singularities, the resolutions are fairly well un-
derstood and mapped to the extended Coulomb branch of numerous theories (for the first
studies see [1], and recent developments [2–18]). On the contrary the deformations and
their relation to the Higgs branch have been somewhat less systematically studied, and
only recently a systematic study for isolated hyper-surface singularities [19, 20] was ini-
tiated [21]. A precise map can be achieved for strictly convex toric polygons realizing
Calabi-Yau singularities [22, 23].

On the other hand, for many 5d SCFTs, including those having a description in
terms of 5-brane-webs [24–27], there has been recent progress towards a comprehensive
description of the Higgs branch using the so-called magnetic quivers (MQ) and Hasse dia-
grams [17, 28–39]. Magnetic quivers are graphs which, under certain conditions, provide a
combinatorial description of a class of algebraic varieties. The key step of this construction
is to interpret these graphs as 3d N = 4 quiver gauge theories, whose 3d Coulomb branch
give a physical realization of these varieties. These 3d Coulomb branches can be quantita-
tively studied using the monopole formula of [40]. For the 5d SCFTs studied in the present
paper, the magnetic quiver is a 3d N = 4 quiver gauge theory with unitary gauge groups,
whose Coulomb branch is conjectured to be the same symplectic singularity as the Higgs
branch of the 5d theory. From a geometric point of view, studying the realization of 5d
SCFTs in M-theory on canonical singularities, magnetic quivers were derived in [21]. The
Hasse diagram, introduced in [33], is a depiction of the partially ordered set correspond-
ing to the foliation of the Higgs branch by symplectic leaves. Any pair of leaves which
can be compared in the partial order defines a transverse slice between the two leaves,
which is again a symplectic singularity, and to which one can associate a magnetic quiver.
The leaves correspond physically to phases of the SCFT, while the transverse slices are
associated to new theories obtained from the original theory by (a generalization of) the
Higgs mechanism.

Ideally these insights should have a counterpart in the M-theory construction of said
5d SCFTs. Geometrically, there exists so far no comprehensive analysis. To counteract
this, we propose in this paper a reverse approach: utilizing the map of 5-brane-webs to
generalized toric polygons (GTP), or dot-diagrams [25, 26, 41, 42] (obtained by dualizing
the web), we identify the rules for determining the magnetic quiver and Hasse diagrams in
terms of the polygons.

This proposal for computing the magnetic quiver from the GTP has several advantages:
it first of all seems to be simpler to implement than the procedure in the brane-webs.
Secondly, and more importantly, we hope this provides the first step to understanding
the Higgs branch from a geometric point of view: when the GTP is a conventional toric
diagram, there is a known map to an actual Calabi-Yau geometry. Furthermore, in the
specialization to strictly convex toric diagrams our prescription agrees with the Minkowski
sum decomposition approach of Altmann [22, 23].
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Let us briefly summarize the logic: The starting point is the derivation of the magnetic
quiver and Hasse diagrams in the brane-webs, which relies on identifying sub-webs, which
can move freely in the directions orthogonal to the 5-branes. Using insights from tropical
geometry, an intersection between such sub-webs can be defined consistently [31]. The
resulting graph is identified with a magnetic quiver.

In turn, in our approach, we identify the sub-webs in the dual GTP as an edge col-
oring, which requires that edges of one color define a closed sub-polygon. Furthermore,
each sub-polygon is a refined Minkowski sum of multiple copies of an irreducible GTP,
which obeys the so-called s-rule minimally. These sub-polygons play the role of supersym-
metric sub-webs in the 5-brane-web. To a GTP with a consistent edge coloring we then
associate a Tropical Quiver (TQ), where each color maps to a node in the tropical quiver
with labels given by the multiplicity of the corresponding sub-polygon, whereas the edges
receive contributions from the mixed volume [43]1 (which maps to the stable intersection of
two tropical curves in the brane-web) and from sharing external edges in the GTP (corre-
sponding to the 7-brane contribution in the brane-web). In addition, there are nodes in the
tropical quiver that arise from vertices along an edge of the GTP, that are not associated
to a colored sub-polygon. In general there exist several inequivalent colorings of a given
GTP. Each coloring gives rise to a tropical quiver, which is identified with the magnetic
quiver of one of the cones, that comprise the 5d Higgs branch of the theory realized by
the GTP. The union of all the cones [34, 44], intersecting in a pattern that can be read
equivalently either from the construction of the tropical quivers via colorings, or from the
construction of the magnetic quivers via the brane-webs, gives the full Higgs branch.

Our approach is motivated from various points of view: although the map to webs is
one-to-one, much redundant information, such as the specific values of the Coulomb branch
parameters, is not encoded in the generalized toric polygons. As such, several operations
are far easier in the GTP. The process of flop transitions of curves connecting to external
edges, which in physics terms corresponds to decoupling hypermultiplet matter, is realized
much simpler in the generalized toric polygons, and will be used in [45]. Similarly, the
process of “pruning” is the polygon analog of brane creations/annihilations, or Hanany-
Witten moves [46], and is far simpler to implement.

As we emphasized already, this approach provides a first step to generalizing the de-
formation theory of strictly convex Calabi-Yau singularities. Applied to strictly convex
polygons, our approach reproduces precisely the mathematical results of Altmann [22, 23]:
the deformations are parametrized in terms of the Minkowski sum decomposition of the
polygon. The Altmann algorithm then further maps these to the algebraic deformations
of the canonical singularity. This last step requires to first find the map from GTPs to
canonical singularities. This is a very interesting question to which we hope to return in
the near future.

In addition to deriving the magnetic quiver from the GTP, we also construct the Hasse
diagram, and thereby the symplectic leaves of the Higgs branch. The Hasse diagram is ob-

1The mixed volume and its role in the intersection of tropical curves features in the chapter “Tropical
Rain Forest” in [43], which inspired our title.
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tained by introducing internal edges, which in 5d gauge theory corresponds to turning on
Coulomb branch (not extended Coulomb branch) parameters. These identify sub-polygons,
which define Minkowski sum decompositions involving the GTP of the theories that com-
prise the leaves in the Higgs branch. By successive application of this process of opening
up a partial Coulomb branch, we can reconstruct the full Hasse diagram from the GTP.

Finally we should remark on some insights we gained from studying general
webs/GTPs. When studying these constructions from a general point of view as we do
here, a natural question is whether any web/GTP gives rise to a 5d SCFT. Clearly there
are several basic consistency requirements that need to be satisfied: charge conservation
(which is implemented in the GTP by these forming polygons) and supersymmetry, which
is implemented in terms of the s-rule. We in fact provide a slight generalization of the
standard s-rule in section 6.1, which is manifestly SL(2,Z)-invariant. However we argue
that these conditions alone still can be insufficient to guarantee that the theory realized
on the 5-brane system is in fact a 5d SCFT. We propose that any web/GTP should in
addition satify the r-rule (rank-rule), which states that

r ≥ 0 , (1.1)

where r is computed in terms of the web/GTP data. In fact the r-rule is strictly stronger
than the s-rule, which is implied by the former when applied to triangle GTPs/trinion webs.
It would be indeed very interesting to derive this r-rule from first principles. However, we
should alert the reader, that even the r-rule can be insufficient to guarantee that the GTP
corresponds to a 5d SCFT. There can e.g. be magnetic quivers arising from GTPs that
are bad quivers. In such instances we would conjecture that the associated 5d theory is
not a SCFT. Of course this precise correspondence between SCFTs and GTPs requires
further investigation.

The plan of this paper is as follows: we begin with a brief summary and overview
of magnetic quivers and Hasse diagrams in section 2. We then present in section 3 our
proposed edge coloring and its relation to the magnetic quiver for 5d SCFTs, i.e. GTPs
without internal edges. In section 4 we generalize to GTPs with internal edges and provide
an algorithm to determine symplectic leaves and Hasse diagram, which is based on the
introduction of internal edges. In section 5 we provide an extensive list of examples. Finally
in section 6 we give a derivation of our rules via the brane-webs and tropical geometry.
Appendix A provides a lightning review of brane-webs and the rules associated to them.

2 Strategy: Higgs branches and magnetic quivers from GTP

In this paper we consider 5d SCFTs defined by so-called generalized toric polygons (GTP)
P (or dot diagrams) introduced in [26]. We denote these theories by TP . The GTPs are
lattice polygons, which generalize the concept of a toric fan for a Calabi-Yau three-fold.
They map one-to-one to a 5-brane-webWP (which in the toric case corresponds equivalently
to a tropical geometry)

P ←→ WP . (2.1)
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In the case when P is a toric polygon, we can associate an actual Calabi-Yau three-fold
geometry XP to it, and the dual web is associated to a tropical geometry [43].

The moduli spaces of such 5d SCFTs are parametrized by the vevs of scalar fields,
either in the vector multiplet — the Coulomb branch (CB) — or the hypermultiplet —
Higgs branch (HB). One of the challenges has been to compute the Higgs branch from
a geometric approach to 5d SCFTs, though recent progress has been made in [21] for
hypersurface singularities. Unlike the CB in 5d, the HB receives quantum corrections
from instantons — in M-theory on a canonical singularity, these are M2-brane instantons.
Computing these directly in 5d is a formidable task.

In the 5-brane-webs, an alternative proposal was made that identifies the HB in 5d
with the CB of a magnetic quiver (MQ), which is a 3d N = 4 quiver gauge theory (and in
the current context, with U(N) gauge nodes). The conjecture in [31] is that the Coulomb
branch of the magnetic quiver MQP associated to a GTP P can be identified with the
Higgs branch of the 5d SCFT

CB[MQP ] = HB[TP ] . (2.2)
Both of these spaces are hyper-Kähler cones, and the isomorphism is as such. The ad-
vantage however is that the CB of 3d N = 4 theories is much better under control, us-
ing the monopole formula to compute their (refined) Hilbert series [40], and subsequent
work [47–50]. The dressed monopole operators in 3d resum the 5d instanton corrections,
and conjecturally this yields the correct hyper-Kähler metric for the 5d HB.

A derivation using the M-theory geometry makes use of dualities in string theory,
relating the 5d SCFT to a 4d SCFT obtained by compactifying Type IIB on the same ge-
ometry [21]. Reducing to 3d and applying mirror symmetry, realized as T-duality, identifies
the magnetic quiver in certain instances.

The approach taken in this paper makes use of the 1-1 map in (2.1), which allows us
to identify in the GTP P each of the steps in the construction of the magnetic quiver in
the brane-web: the strategy, which will be expanded in section 6, is:

P −→ WP −→
Sub-web Decomposition

+Tropical Curve Intersection
−→ MQP

Refined Minkowski Sum

+Edge-Coloring and Mixed Volume
(2.3)

In the following we identify the direct map from P to MQP . We use the rules derived from
the brane-webs, and translate these into the language of the generalized toric polygons.
We find that in the case of strictly convex toric polygons, we make contact with the work
of Altmann on versal deformations [22, 23].
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Singularity Magnetic quiver

an 1 · · · 1

1

n

dn 1
2
· · ·

2
1

1 1

n− 3

e6

1 2 3 2 1

2 1

e7

1 2 3 4 3 2 1

2

e8

1 2 3 4 5 6 4 2

3

AN−1
1 1

N

Table 1. Summary of the elementary transverse slices that can appear in the Hasse diagram of
a symplectic variety defined by a unitary and simply laced magnetic quiver. For the first five
lines, these are closures of minimal nilpotent orbits of type g. In the last line are the Kleinian
singularities of type AN−1, simply denoted by AN−1. For each transverse slice, the second column
gives a magnetic quiver.

In addition we extract the foliation structure of this hyper-Kähler cone in terms of
symplectic leaves, which is achieved combinatorially in terms of the quiver subtractions [30].
The partially ordered set of such leaves is the Hasse diagram.

The elementary transverse slices of the Hasse diagram of the 5d Higgs branches for
the theories we consider here can be closures of minimal nilpotent orbits g or Kleinian
singularities — see table 1, which includes their magnetic quivers [51, 52]. In some other
instances, there can also be elementary slices of “rank-0” [33, 38], or of more exotic type
(see for instance [53, 54]). However a full classification of possible leaves is unknown. In
our discussion of the Hasse diagram, which is distinct from the derivation of the magnetic
quiver, we focus on the symplectic leaves that appear in table 1.

Although we propose a way to derive the MQ from P directly, a first principle derivation
from geometry is of course missing, except for the strictly convex toric case. In fact for
P not a toric, but a generalized toric polygon, it is thus far unknown what the associated
canonical singularity is. Building this dictionary should now be strongly motivated, given
the efficiency of how we can determine the MQs from P , using very simple combinatorial
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rules — which simplify not only the brane-web based analysis, but also connect to the
known geometric constructions in toric geometry.

3 Higgs branches for 5d SCFTs from edge colorings

We start our analysis by presenting the direct construction of the MQP from the GTP
P in (2.3). We review properties of toric polygons and their composition and introduce
generalizations that apply to GTPs. Furthermore, we provide criteria for a GTP (or a
sub-polygon thereof) to satisfy the so-called s-rule, which in the dual brane-web ensures
that the configuration preserves supersymmetry.

With this background, we then introduce the coloring of a GTP, which amounts to
a generalization of a Minkowski sum decomposition for toric polygons. Finally, we give a
short algorithm that associates a tropical quiver (TQ) to each coloring of a given GTP. We
conjecture that the tropical quiver can then be identified with the magnetic quiver charac-
terizing the 5d Higgs branch of the SCFT — and in cases when there are multiple cones of
the Higgs branch, i.e. multiple colorings, the union of these tropical quivers comprise the
full Higgs branch of the 5d SCFT.

3.1 GTPs and Minkowski sums

The concept of a generalized toric polygon was first introduced in [26] as a dual graph to
a 5-brane-web with multiple 5-branes ending on a single 7-brane. This generalization was
motivated, as such diagrams furnish 5d SCFTs.

We define a generalized toric polygon P as a lattice polygon, i.e. terms of a set of
vertices vi ∈ Z2, and edges, Eα, α = 1, · · · , nE , which connect a subset of the vertices.2

The GTP is the convex hull of the vertices. Each vertex lies on at least one edge. The set
of all vertices and edges will be denoted by

Vb = {vi ∈ Z2} , E = ∪αEα . (3.1)

A subset of the edges are the external edges, which are the boundary of the GTP,

∂P = ∪αE∂α ≡ E∂ ⊂ E , (3.2)

and likewise the complement of these in E are the internal edges, E\E∂ ≡ Ein. For the
rest of this section we will assume Ein = ∅. We will return to the treatment of GTPs with
internal edges in section 4.1.

The set of vertices is in general a subset of the set of points

Vb ⊂ E ∩ Z2 . (3.3)

The set of points that are in the complement (E∂∩Z2)\Vb ≡ Vw, will sometimes be denoted
by white dots/vertices, and

V = Vb ∪ Vw , (3.4)
2A toric polygon, is a special case of this, where each lattice point on an edge is also a vertex. This is

not necessarily the case for a GTP. The absent lattice points are sometimes referred to as ‘white dots’.
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denotes the complete set of vertices — black and white. The vertices along an edge Eα,
will be labeled by vα,i ∈ Vb, i = 0, · · · , bα + 1. If a vertex is the boundary of an edge,

∂Eα = vex
α,0 ∪ vex

α,bα+1 , (3.5)

we refer to it as an extreme vertex, which are always vα,i with i = 0 and i = bα + 1.
Note that extreme vertices cannot lie in the interior of any other edge and (for now, in the
absence of internal edges) must be part of the boundary of two edges.

Given that an edge Eα = vex
α,0vex

α,bα+1 is a vector in R2 connecting lattice points, it can
be identified with a pair of integers. We call the greatest common divisor of this pair of
integers

λα = gcd(Eα) , (3.6)

where we note that this is SL(2,Z) invariant. We then define the reduced vector

Lα = Eα
λα
≡ (xα, yα) . (3.7)

Furthermore, we define an orientation of the external edges by

vex
α+1,0 = vex

α,bα+1 , (3.8)

where we understand the periodicity in the α-indices. Because of closedness of the boundary
of P

0 =
∑
α

λαL
∂
α , (3.9)

where the L∂α are the line segments of the external edges and we take the sum with the
orientation implied by (3.8).

Finally, we define a partition of λα in terms of the vertices along an external edge
E∂α as

λα =
bα+1∑
i=1

µα,i , µα,iL
∂
α = vα,ivα,i−1 , (3.10)

with bα the number of non-extreme vertices along E∂α. Note that for a toric polygon these
partitions are always given by {1bα+1}. We order the partition in descending magnitude

µα,x ≥ µα,x+1 , (3.11)

where the index x is introduced as an ordered version of the index i. This ordered partition
will also be referred to as {µα}. In the following we will make use of the standard partial
order pertaining to a set of integer partitions of an integer N ≥ 1, called the dominance
ordering. We therefore review it here for the convenience of the reader:

Definition 1 (Dominance Ordering) Let ρ and ρ′ be two partitions of N , which means
that they are sequences of integers satisfying

N =
∑
1≤i

ρi =
∑
1≤i

ρ′i and ρ1 ≥ ρ2 ≥ · · · ≥ 0 , ρ′1 ≥ ρ′2 ≥ · · · ≥ 0 . (3.12)

– 8 –
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The dominance order is defined as follow: we say {ρ} ≥ {ρ′}, if for all j ≥ 1, we have∑
1≤i≤j

ρi ≥
∑

1≤i≤j
ρ′i , (3.13)

i.e. the smallest partition is given by {1N}, whereas the largest partition is {N}.

Example. In tandem with the general analysis in this section, we go through one exam-
ple that illustrates all the salient points. The example is the SCFT associated to an IR
description given by

SU(4)4 + 4F , (3.14)

which has vertices

Vb = ((0, 0), (1,−1), (2,−1), (3,−1), (4,−1), (6, 0), (6, 3), (3, 3)) , (3.15)

with no internal lines. From this we can read off the white dots

Vw = ((6, 1), (6, 2), (5, 3), (4, 3), (2, 2), (1, 1)) , (3.16)

which we draw as

P =
(0, 0)

(3.17)

We label the edges in counter-clockwise order, usually beginning on the lower left

Eα = ((1,−1), (3, 0), (2, 1), (0, 3), (−3, 0), (−3,−3)) , λα = (1, 3, 1, 3, 3, 3)
Lα = ((1,−1), (1, 0), (2, 1), (0, 1), (−1, 0), (−1,−1)) .

(3.18)

From the distribution of black and white vertices we can read off

bα = (0, 2, 0, 0, 0, 0) , {µα} =
(
{1}, {13}, {1}, {3}, {3}, {3}

)
. (3.19)

For a conventional toric polygon there exists a composition rule, the Minkowski sum,
which is instrumental in analyzing the deformations of a toric polygon [22, 23]. We give
the definition of a Minkowski sum of two polygons below, as well as a generalization that
we introduce for GTPs, which we call the refined Minkowski sum, from which we define a
notion of colored GTPs, that underlie the construction of the magnetic quiver.

Definition 2 (Minkowski Sum) A Minkowski sum of two polygons Pa and Pb is de-
fined by

Pa + Pb = {va + wb} , (3.20)

where va ∈ VPa and wb ∈ VPb are the vertices of Pa and Pb.
Note that this definition does not distinguish between black and white vertices. This

means that the Minkowski sum is not uniquely defined for a set of GTPs. We will thus
introduce a refinement of the Minkowski sum, which can accommodate the presence of
white dots in a GTP.
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Definition 3 (Refined Minkowski Sum for GTPs) Let Pa and Pb be GTPs. We de-
fine their refined Minkowski sum (or partition sum) as

Pa ⊕ Pb , (3.21)

such that the edges agree with the ones of Pa + Pb, i.e. the ordinary Minkowski sum, and
the partitions are

µPa⊕Pbα,x = µPaα,x + µPbα,x . (3.22)

Contrary to the Minkowski sum, the partition sum uniquely determines the partition
of all the edges of the resulting GTP. In other words, it imposes a unique configura-
tion of black and white vertices along the edges (up to an irrelevant reordering) of the
resulting GTP.

Example. (Continued) We can write P in (3.17) as a refined Minkowski sum

= ⊕ ⊕ . (3.23)

Note that the third summand cannot be further decompose due to the {13} partition on
the lower edge:

{µPα} =
(
{1}, {13}, {1}, {3}, {3}, {3}

)
(3.24)

= ({1},−,−, {1}, {1},−) + (−,−, {1},−, {1}, {1}) +
(
−, {13},−, {2}, {1}, {2}

)
.

Finally, we review a well-known concept in tropical geometry, the mixed volume of a
set of summands inside a polygon. The mixed volume is defined purely in terms of the
edges of the summands and so can readily be computed for any GTP. We will use the
mixed volume in the following to construct the magnetic quiver.

Definition 4 (Mixed Volume) Let P be a d-dimensional (refined) Minkowski sum

P =
d∑
c=1

Sc . (3.25)

Consider the object

P (`c) =
d∑
c=1

`cSc , (3.26)

where the `c ∈ R are scaling parameters. Then, the volume of P is a formal polynomial
in the `c of degree d, denoted by volP (`c). The mixed volume of d Minkowski summands
inside P is given by the coefficient

MV(S1, . . . , Sd) = volP (`c)|`1...`d . (3.27)

– 10 –
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Fact 1 (Mixed Volume for d = 2) Let P be a (refined) Minkowski sum as above for
d = 2. The mixed volume of two Minkowski summands is given by

MV(S1, S2) = Area
(
S1 + S2

)
− Area

(
S1
)
− Area

(
S2
)
, (3.28)

where we use the Euclidean metric to compute the areas.

Proof. Without loss of generality we take P = S1 + S2 and consequently P (`1, `2) =
`1S1 + `2S2. By definition we have, for some constants V 1 and V 2,

volP (`1, `2) = V1
(
`1
)2

+ MV(S1, S2)`1`2 + V2
(
`2
)2

, (3.29)

where the volume in d = 2 is just the euclidean area. Consider the cases P (1, 0) = S1 and
P (0, 1) = S2. Then, we have

Area(S1) = V1 , Area(S2) = V2 . (3.30)

Furthermore, in the case P (1, 1) = P we then have

Area(P ) = Area(S1) + MV(S1, S2) + Area(S2) , (3.31)

from which (3.28) immediately follows.

3.2 Pruning

The central concept in our construction is the coloring of a GTP. A coloring will be
defined in terms of the data of the GTP that we detailed in the previous section. However,
before determining a coloring of a given GTP, it will typically be very useful to first
consider, whether there exists a different GTP, representing the same physical theory, that
might simplify the construction, or identify equivalent theories. This so-called pruning will
simplify substantially the following analysis. It is not essential, but very useful in practice.

The following maps can be applied to a GTP without changing the underlying physics:

1. Global translations.

2. Global SL(2,Z) transformations.

3. Local SL(2,Z) transformations on two consecutive edges.

4. Crossing of an edge from one side of a polygon to the opposing side. In the web this
operation corresponds to a Hanany-Witten move.

The first two are rather elementary transformations on a lattice polygon. The third trans-
formation relates convex polygons to non-convex ones, and because a GTP is by definition
a convex polygon, we do not use this transformation in the present paper. The fourth op-
eration on the above list has proved exceedingly useful for producing simple GTPs that can
be straightforwardly colored. We will refer to repeated application of this transformation
as pruning. Precise definitions for how this affects a GTP are given in appendix B.
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The idea is that, starting from a given GTP, one can produce a new polygon, giving
rise to the same physics,3 by selecting an edge and moving it around the polygon, so to
speak, to the opposite side. In this process, one chooses whether to move the edge through
the polygon in the clockwise or counter-clockwise direction. Whichever direction is chosen,
the slopes of the edges along this side will change, whereas the other half of the polygon is
unaltered. In terms of the brane-web, this operation corresponds to picking out a 7-brane,
which sits on one side of the brane-web, and pulling it in through the whole brane-web
until it reaches the other side. Doing so will give rise to 5-brane creations and annihilations
on the 7-brane that is being moved, along with monodromy transformations of the branes
that are crossed. This is reflected in the polygon as a multiplicity change of the edge that
is moved, and changes in the slopes of the edges it crosses.

The advantage of pruning is precisely this change of the slopes of the edges of a GTP,
or equivalently the Euclidean length of the Lα, denoted |Lα|. It turns out the smaller
maxα|Lα|, the easier and the more intuitive it is to check whether the s-rule is satisfied
(as detailed in the next subsection). For instance, if maxα|Lα| ≤ 2 then the edges of the
polygon are horizontal, vertical, or at a 45 degrees slope, and in this situation the s-rule
is straightforward to check. Therefore, although this step is not strictly necessary for the
algorithm presented here, we use pruning to reduce maxα|Lα| as much as possible.

Example. (Continued) Recall our example from (3.17), repeated here for convenience

P =

(3.32)

We move the horizontal edge E5 at the top to the bottom in the clockwise direction (i.e.
through the right-hand-side of the polygon), changing the multiplicity of E5 and the slopes
of E3 and E4, but leaving E1, E2 and E6 unaltered. We arrive at

P ′ =
(3.33)

defined by the data

Lα = ((1,−1), (1, 0), (1, 1), (−1, 1), (−1,−1)) ,
λα = (1, 4, 1, 3, 3) , {µα} = ({1}, {14}, {1}, {3}, {3}) .

(3.34)

The details of how this is done are given in appendix B. This polygon is used to illustrate
the next steps of the algorithm.

3The theories are equivalent up to free hyper-multiplets.
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3.3 The s-rule

Not all GTPs give rise to a supersymmetric theory in 5d (unlike any convex toric polygon).
It is possible for a GTP to have an insufficient distribution of vertices (in a sense, too many
white dots). This is the GTP equivalent of a web configuration that is non-supersymmetric
because it has too many 5-branes ending on a single 7-brane — this is referred to as a web
that does not satisfy the so-called s-rule. Determining whether a GTP satisfies the s-rule
is a highly non-local problem. In [26] it was argued that a GTP P obeys the s-rule, if
there exists a consistent resolution, i.e. a tessellation, of P into tiles. Here we generalize
the definition of such a tile and introduce notions of minimality and irreducibility, related
to the s-rule. We should add a word of caution regarding the s-rule. The rule argued
for in [26] seems to not apply in general, in particular it is not invariant under SL(2,Z)
transformations. We propose a generalization of this in section 6 on brane-webs, and it is
this generalization of the s-rule that we implement here.

Definition 5 (Tiles) A tile TR is a GTP such that

1. Eα = (E1, E2, E3, E4), where L4 = −L2 and λ2 ≥ λ4 where we allow λ4 = 0. Thus,
TR is either a trapezoid or a triangle.

2. The partitions are
{µα} = {λα} , (3.35)

i.e. TR has no non-extreme vertices.

3. Define the auxiliary GTP T̃R with

L̃α = (L1, L2, L3) , λ̃α = (λ1, λ2 − λ4, λ3) , {µ̃α} = {λ̃α} , (3.36)

such that TR is the refined Minkowski sum of the triangle T̃R and the line of length
λ4 along E4. Then,

λ̃αλ̃β
∣∣∣det(L̃α, L̃β)

∣∣∣ ≥ (λ̃γ)2 , ∀α 6= β , α 6= γ , β 6= γ . (3.37)

With this general definition of a tile, we use the requirement of [26, 55] to determine
whether a GTP respects the s-rule. We furthermore define concepts of minimality and irre-
ducibility that are related to the s-rule, and which will be essential input for our definition
of a coloring.

Definition 6 (s-Rule, Minimality, Irreducibility, and IMPs) Let P be a GTP with
edges Eα of length λα and partitions {µα}.

1. P is said to obey the s-rule, if P can, by the inclusion of internal edges, be resolved4

into resolution tiles.
4Here we mean that the polygon can be tessellated by tiles by including internal edges.

– 13 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
4

2. Let P̃ be a GTP with edges Eα of length λα and partitions

{µ̃α} > {µα} , (3.38)

i.e. P̃ is obtained from P by removing vertices along the edges. P is said to obey the
s-rule minimally (or we say that P itself is minimal) if P̃ does not obey the s-rule
for any choice of {µ̃α}.

3. P is irreducible if there is no decomposition

P = P1 ⊕ P2 , (3.39)

such that P1 and P2 obey the s-rule.

If P is irreducible and obeys the s-rule minimally, we say that P is an IMP, for Irreducible
and Minimal Polygon.

The idea is that, given any GTP as a starting point, one can always find a minimal
GTP by removing vertices (i.e. converting black vertices into white ones) in the original
polygon. The minimal polygon(s) has the largest possible number of white dots, whilst still
satisfying the s-rule, i.e. there is no possible way to remove another vertex from the GTP
without breaking supersymmetry. On the other hand, a GTP is said to be irreducible if it
cannot be further decomposed into a partition sum of two other polygons. It is possible for
a GTP to be minimal but not irreducible, or irreducible but not minimal. In the following
section, we will require both conditions to be met by the building blocks of the coloring.
To avoid notational clutter, an irreducible GTP, that obeys the s-rule minimally is called
an irreducible minimal polygon (IMP).

Example. (Continued) Let us return to the example introduced in (3.17). We will con-
tinue with the pruned GTP P ′ in (3.33). Consider a sub-polygon T that sits inside P ′,
given by

T =
(3.40)

A way to tesselate T is

T →
(3.41)

where we have omitted the triangulation of the part of the GTP that is completely sur-
rounded by black vertices, as these can always be triangulated in a standard toric way. We
can easily check that the two symmetric trapezoids are tiles. Thus, T obeys the s-rule.
We check whether T is minimal by defining T̃ in which we have removed the only allowed
vertex, which sits on the lower edge. In terms of partitions we have

{µ̃2} = {2} > {12} = {µ2} , (3.42)
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satisfying (3.38). We find that T̃ still obeys the s-rule, since there exists a valid resolution
of T̃ given by

T̃ =
(3.43)

Thus, while T is not a minimal polygon, T̃ is, since there are no more vertices that can be
removed in T̃ . We can also check that T̃ is irreducible. For example, we could try to write
T̃ as a partition sum

⊕
, (3.44)

but then the last summand does not obey the s-rule itself. Thus, T̃ is an IMP.

3.4 The r-Rule

We now turn to the discussion of the rank of a GTP/web. As we alluded to in the
introduction, we propose that in addition to the charge conservation and s-rule, another
condition needs to be satisfied for a GTP/web to give rise to a 5d SCFT, namely that its
rank be non-negative. We define the rank of a GTP P as

r(P ) = r0 −
1
2
∑
α

bα+1∑
x=1

µα,x (µα,x − 1) , (3.45)

where r0 is the number of internal nodes of P . We can use Pick’s theorem [58] to write
this as

r0 = Area(P ) + 1− 1
2
∑
α

λα , (3.46)

where Area(P ) is the Euclidean area of P . Putting this together, and using (3.10), this gives

r(P ) = Area(P ) + 1− 1
2
∑
α

bα+1∑
x=1

µ2
α,x . (3.47)

We conjecture that this coincides with the gauge rank of the 5d gauge theory or SCFT
that P represents. This is substantiated by agreement in all examples considered in the
present paper, as well as in [45], and by the invariance of (3.47) under edge-moves and
pruning. The rank of a 5d gauge theory or SCFT, realised as a brane-web, is given by
the number of local deformations of the web [25]. Therefore, to make sense of a GTP as
associated to a 5d theory, its rank r should be non-negative. Note that this condition is
not automatically satisfied for webs/GTPs that satisfy the s-rule. We therefore propose
the following additional condition:

Definition 7 (r-rule) Let P be a GTP with edges Eα of length λα and partitions {µα}.
P is said to obey the r-rule, if

r(P ) ≥ 0 . (3.48)
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It is straight forward to show that the r-rule implies the s-rule for triangle GTP or
trinion webs, and is thus strictly stronger:

Fact 2 (r-rule implies s-rule for triangles) Let P be a triangular GTP with edges
Eα, α = 1, 2, 3, of length λα and partitions {µα} = {λα}, i.e. P has no non-extreme
vertices. The r-rule, given in definition 7, for P , implies the s-rule, given in definition 6,
for P .

Proof. To show this fact, consider a triangular GTP P as above. The area of P is
given by

Area(P ) = 1
2λαλβ | det(Lα, Lβ)| , (3.49)

for any choice of α 6= β. Thus, the rank of P is

2r = λ1λ2|det(L1, L2)| − λ2
1 − λ2

2 − λ2
3 + 2 , (3.50)

and equivalently for all other permutations of (1,2,3). From the above it immediately
follows that (

λ1λ2|det(L1, L2)| − λ2
3

)
= 2r + (λ2

1 − 1) + (λ2
2 − 1) . (3.51)

Since λα ≥ 1, the r-rule implies

λ1λ2|det(L1, L2)| ≥ λ2
3 , (3.52)

and similarly for the other permutations.

Example. (Continued) Let us illustrate these concepts on the example introduced
in (3.17). The number of internal dots is r0 = 12, which can be computed using Pick’s
theorem (3.46) as r0 = 18 + 1 − 1

2(1 + 3 + 1 + 3 + 3 + 3) = 12. This would be the rank
of the theory if all the vertices on the edges of (3.17) were black. However the presence of
white dots reduces the rank to r = r0 − 1

2(3 · 3(3− 1)) = 3. Alternatively, the rank can be
computed directly from (3.47) as r = 18 + 1− 1

2(5 · 12 + 3 · 32) = 3. The conclusion is that
the GTP (3.17) satisfies the r-rule. One can also check on that example that the rank is
preserved under pruning: the rank of the GTP (3.33) is r = 3.

Example. Let us consider an example of a GTP which satisfies the s-rule but violates
the r-rule, i.e. it has negative rank. One such GTP is

= ⊕ ⊕ ⊕ (3.53)

with

Lα = ((1, 0), (−1, 1), (0,−1)) , λα = (4, 4, 4) , µα,x = ({4}, {4}, {4}) . (3.54)
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Clearly, this GTP satisfies the s-rule as, according to definition 5, it is itself a resolution
tile, given that it satisfies 3.37 as

4 · 4 · 1 ≥ 42 . (3.55)

The rank r of this GTP is

r = 4 · 4
2 + 1− 3

2 · 4
2 = −15 . (3.56)

Example. In the previous example, the GTP was a Minkowski multiple of a simpler
GTP. We now show that there also exist irreducible GTPs which violate the r-rule while
satisfying the s-rule. Consider

(3.57)

for which the data is

Lα = ((2, 3), (−3,−2), (0,−1)) , λα = (3, 2, 5) , µα,x = ({3}, {2}, {5}) . (3.58)

Again, this GTP is itself a resolution tile, which satisfies 3.37 for each edge:

3 · 2 · 5 ≥ 52 , 3 · 5 · 2 ≥ 22 , 2 · 5 · 3 ≥ 32 . (3.59)

However the rank r of this GTP is

r = 5 · 6
2 + 1− 1

2(32 + 22 + 52) = −3 . (3.60)

3.5 Colorings of GTPs

In this section we define the notion of coloring of a GTP, which is the crucial step in
determining the magnetic quiver. A coloring of a polygon is dual to a maximal subdivision
of the 5-brane-web into consistent, supersymmetric sub-webs. The definition relies on the
data of the polygon, as well as the generalized decomposition rule, which was introduced in
section 3.1. Notice that the practical implementation of the following definition is usually
significantly simplified by applying it to a pre-pruned GTP (see section 3.2). Furthermore,
an essential feature of the building blocks of the coloring is that they represent minimal
supersymmetric configurations. This criterion is implemented by requiring irreducibility
and minimality with respect to the s-rule (see section 3.3).

– 17 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
4

Algorithm 1 (Colored Polygon) Let P be a GTP (with no internal edges), with edge
lengths λα. Let {λcα ∈ N} be a partition of the edge lengths, such that

nc∑
c=1

λcα = λα , (3.61)

where nc is the number of colors, and along each edge Eα of P , λcα segments Lα are colored
by c. A partition defines a colored GTP (P, {λcα}), if the following conditions are met:

1. For each c = 1, · · · , nc the associated line segments form a polygon, i.e.

0 =
∑
α

λcαLα . (3.62)

We denote these color sub-polygons by Sc.5

2. Each Sc is a refined Minkowski sum of mc times the same IMP T c,

Sc = T c ⊕ · · · ⊕ T c︸ ︷︷ ︸
mc

, (3.63)

and we require that the IMPs used for different colors are distinct,

T c 6= T d , c 6= d . (3.64)

3. For each α,

{µα} ≤
nc∑
c=1
{µcα} , (3.65)

where we use the dominance partial order of the partitions defined by (3.10) for P
and Sc respectively.

We then write

P ≤
nc⊕
c=1

Sc , P = S1 + · · ·+ Snc . (3.66)

For strict inequality of the partitions in (3.65) we also write P <
⊕nc

c=1 S
c.

In other words, we color the edges of a GTP such that the edges pertaining to a single
color form a closed sub-polygon Sc. A closed sub-polygon must be made up of a number
mc of identical IMPs T c. We require that no two distinct sub-polygons are comprised of
the same IMP (in such a situation the two sub-polygons are identified and the resulting
multiple of tiles mc is the sum). The final condition essentially ensures that all the sub-
polygons fit simultaneously into the GTP. The above conditions were derived by using the
map from brane-web to GTP to identify the dual concept of a maximal subdivision of the
web into sub-webs. The details of this map are explained in section 6.

5This also include the case of two parallel lines, as e.g. in (3.72).
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Example. (Continued) We discuss the coloring of the example (3.17). Since GTPs con-
nected by pruning are equivalent, we can use the pruned GTP P ′ in (3.33) for simplicity.
We need to determine the colored sub-polygons that are multiples of IMPs. We already
know of one IMP, T̃ in (3.43), defining a blue sub-polygon Sb with mb = 1. The data of
the blue sub-polygon inside P ′ is

λbα = (1, 2, 1, 2, 2) , {µbα} = ({1}, {2}, {1}, {2}, {2}) . (3.67)

We can check that another IMP defines a green sub-polygon Sg with mg = 1 and

λgα = (0, 2, 0, 1, 1) , {µgα} = (−, {12},−, {1}, {1}) . (3.68)

Combining the two colors we obtain

{µbα}+ {µgα} = ({1}, {3, 1}, {1}, {3}, {3}) > ({1}, {14}, {1}, {3}, {3}) = {µα} , (3.69)

so indeed
P ′ < Sb ⊕ Sg . (3.70)

We can draw this as

Sb ⊕ Sg = > = P ′

(3.71)

Note that the two GTPs have the same coloring but different partitions. From now on,
we only draw the partitions of the full GTP (in this case P ′). We can actually check that
there is a second coloring of P ′, given by

Sb ⊕ Sg ⊕ Sc >
(3.72)

In this coloring,
Sg = T g ⊕ T g , (3.73)

so mg = 2, in other words, the green sub-polygon has multiplicity 2.

In the convex toric case, our definition of a coloring exactly reduces to identifying the
decomposition of a given polygon into Minkowski summands, which was shown in [22, 23]
to parametrize the deformations of the geometry.

Fact 3 For a convex toric polygon P , its coloring (P, {λcα}) defines a Minkowski sum
decomposition

P = S1 + · · ·+ Snc , (3.74)

– 19 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
4

where the Sc are the sub-polygons, that are defined by the coloring {λcα}. Conversely,
any Minkowski sum decomposition of P into Sc defines a coloring {λcα}, if the Sc are
inequivalent, i.e. there is no n ∈ Q such that Sc = nSd for any c, d, and the decomposition
is maximal, i.e. none of the sub-polygons can be further decomposed to a set of distinct sub-
polygons (where two polygons that are related by scaling are not understood to be distinct).

Color-Subdivided GTPs. Before we show how to associate a quiver to a colored GTP,
we will explain how to graphically determine the mixed volume of definition 4, between
two colored sub-polygons. To this end, we define a color sub-division of a colored GTP
(P, {λcα}), in terms of uni-colored polygons and bi-colored parallelograms. The sub-division
agrees with the coloring of the edges of P on the boundary, and extends this to the interior.
The mixed volume of two color sub-polygons is dual to the tropical intersection of two sub-
webs in the brane-web. In particular, two sub-webs can be interpreted as a pair of tropical
curves whose intersection is determined by pulling apart the curves and adding up the
intersections of individual 5-branes. The pulling apart of the tropical curves is exactly
dual to the color sub-division of the colored GTP.

Definition 8 (Color-subdivided GTP.) A color-subdivision of a GTP is a tiling of
(P, {λcα}) by two types of polygons:

1. Parallelograms Gc1c2, where parallel edges have the same color

2. Polygons Gc where all edges have the same color

such that as a set
P =

⋃
c1,c2

Gc1c2 ∪
⋃
c

Gc , (3.75)

with the sub-polygons intersecting each other at most in edges. Furthermore, the color
sub-division agrees with the edge-coloring, i.e.

∂

( ⋃
c1,c2

Gc1c2 ∪
⋃
c

Gc
)∣∣∣∣∣

Eα

= {λcα} . (3.76)

Due to the last requirement, a colored polygon (P, {λcα}) determines a color-subdivision
of P , albeit not uniquely. Yet the sum of the area of all parallelograms Gc1,c2 (that are
bi-colored in c1 and c2) is an invariant. For each pair c1, c2 we write this invariant

Ac1,c2 =
∑

Area(Gc1,c2) , (3.77)

where the sum is over all parallelograms with colors c1 and c2, and we use the standard
flat metric in R2 to compute the area. This area is exactly the mixed volume of the
sub-polygons Sc1 and Sc2 .

Fact 4 (Color-subdivided Polygons and the Mixed Volume) Let (P, {λcα}) be a
colored GTP corresponding to a Minkowski sum P =

∑
c S

c. Then, for each choice of
color-subdivision

Ac1,c2 = MV(Sc1 , Sc2) , (3.78)
for all pairs c1, c2.
Proof. [43], section 4.6.
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Example. Consider the two colorings of P ′ in (3.71) and (3.72). The color sub-division
is given by introducing virtual lines, dividing the respective polygons as

Coloring 1: Coloring 2:

(3.79)

such that the respective areas are

Coloring 1: Abg = 6
Coloring 2: Abg = Acg = 4 , Abc = 2 .

(3.80)

3.6 Magnetic quivers from colored GTPs

Associated to a colored GTP we now define a quiver, which we refer to as the tropical
quiver. If the GTP in question allows for more than a single consistent coloring, then
each coloring gives rise to its own quiver. The tropical quiver will be identified with the
magnetic quiver, i.e. the 3d N = 4 theory, whose Coulomb branch is isomorphic to the
Higgs branch of the 5d theory TP .

Definition 9 (Tropical Quiver) The tropical quiver TQ(P, {λcα}) of a colored GTP is
given by a set of nodes with labels mI and symmetric intersections kIJ . Given a colored
GTP (P, {λcα}) we define it as follows.

1. Color nodes: Each color maps to a node in the tropical quiver. The labels of the nodes
are the mc defined in (3.63). In general, this is given by

mc = gcd
α

(λcα) . (3.81)

The intersections between the nodes of color c1 and c2 are determined from two parts.
The first is the mixed volume MV(Sc1 , Sc2) of definition 4. The second contribution,
which is negative, comes from configurations where an edge Eα is colored in both
colors, i.e. λc1

α , λ
c2
α > 0. Thus,

kc1,c2 = 1
mc1mc2

MV(Sc1 , Sc2)−
∑
α

bα∑
x=1

µc1
α,xµ

c2
α,x

 . (3.82)

In particular, the self-intersection of a color node is given by

kcc = 1
(mc)2

2 · Area(Sc)−
∑
α

bα+1∑
x=1

(µcα,x)2

 , (3.83)

where Area(Sc) is the Euclidean area of the c-colored sub-polygon. The self-
intersection determines the number of edges beginning and ending on the c-colored
node (i.e. loops) as

`c = 1 + kcc

2 . (3.84)
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2. Tails: There are additional nodes in the tropical quiver that are not associated to a
color. For each edge Eα, the tropical quiver contains a sequence of nodes of length
bα. The labels of these nodes are given by

mα,x =
x∑
y=1

(
−µα,y +

nc∑
c=1

µcα,y

)
, (3.85)

where x = 1, . . . bα.6 Neighboring nodes pertaining to the same edge are connected,
i.e. the number of intersections between the tail nodes is

kα,x;β,y = δα,βδ|x−y|,1 . (3.86)

The intersection between color and tail nodes is given by

kcα,x = 1
mc

(
µcα,x − µcα,x+1

)
. (3.87)

Since each colored sub-polygon Sc, consisting of mc IMPs, is dual to a sub-web of
multiplicity mc, we map it to a node in the tropical quiver with label mc. The two
contributions to the edges between color nodes in the tropical quiver correspond to the
“stable intersection number” and 7-brane contribution in the web. We refer the reader
to section 6 for details on the GTP-to-brane-web map. The tail nodes are not realized
in (P, {λcα}) as a colored sub-polygon. The information needed to construct the tails is
nonetheless contained in the colored GTP, and is given above in terms of the data defined
in the previous subsections.

Self-intersection. The self-intersection kcc of a colored sub-polygon Sc is a measure of
the amount of adjoint matter associated to the corresponding node. Specifically, if the
self-intersection number differs from −2, the U(mc) (mc 6= 1) node of the magnetic quiver
is associated with `c adjoint matter multiplets, indicated by a loop attached to this node.
Moreover, the self-intersection of a colored sub-polygon is related to the rank of the Higgsed
sub-sector of the SCFT that this sub-polygon corresponds to. In particular, we find

kcc = 2(r(T c)− 1) , (3.88)

where T c is the IMP in (3.63). Thus, the self-intersection is bounded from below by
−2. The tail nodes have self-intersection kα,x;α,x = −2 so they cannot have adjoint
matter associated to them, i.e. lα,x = 1 + kα,x;α,x

2 = 0. For theories with a high number
of flavors the appearance of colored sub-polygons with kcc 6= −2 is very rare [45]. E.g.
this phenomenon will not show up in the examples of section 5, and therefore we do not
explicitly give the self-intersection numbers there. This is a feature of our main example,
in a trivial sense however, as we show below.

The tropical quiver will be interpreted as defining a 3d N = 4 quiver gauge theory:
vertices U(mI), connected by kIJ hypermultiplets. The key relation of this tropical quiver
to the original 5d QFT, is via its Coulomb branch, which is a hyper-Kähler manifold, and
is identified with the Higgs branch of the 5d QFT TP .

6Note that one can easily show that all mα,x with x > bα vanish identically.
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Conjecture 1 (Tropical and Magnetic Quivers) Let P be a GTP, associated to a 5d
SCFT TP . There is a bijection between the inequivalent colorings of P and the cones of
the Higgs branch of TP ; moreover, the tropical quiver associated to a coloring is identified
with a magnetic quiver for the corresponding cone in the Higgs branch.

We obtain this conjecture by utilizing the 1-1 map to the brane-webs, that describe
the 5d N = 1 theories, in section 6.

Example. Now we are in the position to compute the tropical quiver of P in (3.17)
using its colorings. First, consider (3.71). There are two colors, blue and green, with
multiplicities mb = mg = 1. We compute the intersection of the corresponding color nodes
explicitly

kbg = (6− 0− 2− 0− 2− 2) = 0 , (3.89)

where the area was given in (3.80) and the partitions are given in (3.67) and (3.68) respec-
tively. Now, consider the tails. The only edge of P ′ with bα 6= 0 is E2 with b2 = 3. Thus
we can compute

m2,1 = −1 + 2 + 1 = 2 , m2,2 = −2 + 2 + 2 = 2 , m2,3 = −3 + 2 + 2 = 1 . (3.90)

Finally, the intersections between the color and tail nodes are given by

kb2,1 = 2 , kg2,2 = 1 , (3.91)

with all others vanishing. Thus, the tropical quiver for P ′ with this coloring is

1 2 2 1

1

. (3.92)

We can repeat the analysis above for the second coloring of P ′ in (3.72), and find that the
tropical quiver associated to this coloring is

1 2 2 1

11

. (3.93)

We identify each of these tropical quivers with a magnetic quiver, giving the two cones on
the Higgs branch of the 5d SCFT TP = TP ′ . This theory can be shown to represent the
strongly coupled SU(4)4 + 4F [31].

4 Symplectic leaves and colorings with internal edges

Our discussion so far required the GTP to have no internal lines. In M-theory, such
geometries correspond to 5d SCFTs — which are the main focus of our attention. In
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this section we generalize our approach to include GTPs with internal lines, which in the
geometry are partial resolutions, and in 5d language correspond to opening up partial
(extended) Coulomb branch directions. The motivation is two-fold: obviously if one would
like to study weakly coupled 5d gauge theories, these have rulings, i.e. internal edges.
Secondly, and perhaps more importantly for the current endeavor of mapping out the
Higgs branch, we require these to construct the Hasse diagram, i.e. the partially ordered
set of symplectic leaves that comprise the Higgs branch, as a hyper-Kähler cone. The
Higgsing is constructed by successively opening partial Coulomb branch directions. To
construct the associated magnetic quivers after each Higgsing, we require to be able to
generalize the algorithm to GTPs with internal lines.

4.1 Colorings with internal edges

For a polygon with internal edges, the edge coloring has to be extended to these. The first
step is to extend our algorithm 1. For polygons with internal edges, the s-rule only has to
be obeyed on external edges (it is irrelevant to apply it to internal edges, given that these
are dual to internal 5-branes (which do not end on any 7-branes)). A colored sub-polygon
Sc needs to be divided completely by internal edges, so that all extreme vertices in Sc are
part of at least two edges. We argue for this approach in the brane picture in section 6.1.

Algorithm 2 (Coloring for Polygons with Internal Edges) Consider a GTP P

with internal edges and denote the sub-polygons by PA, where A ⊂ α = {1, · · · , nE},

E ∩ PA = ∪α∈AEα , (4.1)

so the PA do not have any internal edges.
A coloring for a GTP P with internal edges Ein 6= ∅ is a partition

nc∑
c=1

λcα = λα . (4.2)

For all c, the {λcα} defines a refined Minkowski summand Sc of P ≤ S1⊕· · ·⊕Snc obeying
the following rules:

1. The Sc can be divided into sub-polygons

Sc =
⋃
ScA , (4.3)

without internal lines.

2. For all c and A
ScA = T cA ⊕ · · · ⊕ T cA︸ ︷︷ ︸

mcA

, T cA =
⊕
i

T iA , (4.4)

where each T iA is irreducible and obeys the s-rule minimally, for all external edges of
P . We require that for c 6= d

T cA 6= T dA , ∀A . (4.5)

The multiplicity of Sc is given by

mc = gcd
A
mc
A . (4.6)
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3. The partition is maximal, i.e. there is no sub-partition

Sc1 ≤ Sc2 ⊕ Sc3 , (4.7)

such that the resulting coloring is valid.

Essentially, we can understand this algorithm as a generalization of the algorithm 1
by extending the number of constraints imposed by the internal edges.

Example. Let us exemplify this by finding the coloring for the weakly coupled SU(4)
description of P ′ in (3.33). Turning on the SU(4) gauge coupling corresponds to adding an
internal edge, so that the GTP becomes

Pw.c. =
(4.8)

At this point, we do not distinguish between black and white vertices along the internal
edge. By including the internal edge the GTP data changes to

L∂α = ((1,−1), (1, 0), (1, 0), (1, 1), (−1, 1), (−1,−1) , Lin = (0, 1)
λ∂α = (1, 2, 2, 1, 3, 3) , {µα} = ({1}, {12}, {12}, {1}, {3}, {3}) , λin = 4 .

(4.9)

Furthermore, the internal edge splits P into two with the edges divided as

A1 = {1, 2, 6, in} , A2 = {3, 4, 5, in} . (4.10)

We need to find compatible colorings of Pw.c.
A1

and Pw.c.
A2

, i.e. the coloring on the internal
edge agrees. The only possible coloring is

(4.11)

From here, we can again compute the magnetic quiver, noting that the lower line is now
divided into two distinct edges. The magnetic quiver turns out to be

1 2 1

1

(4.12)

as expected for a weakly coupled SU(4) + 4F .
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4.2 Hasse diagram and symplectic leaves

The Higgs Branch of a 5d SCFT or gauge theory, has a foliation in terms of symplectic
leaves, as reviewed in section 2. Starting from the magnetic quiver associated to the 5d
QFT, the Hasse diagram can be obtained by successive quiver subtractions [30, 33, 34].

Here we provide a derivation in terms of the data of the colored polygon (P, {λcα}),
which characterize each cone of the Higgs branch of the theory TP . The full foliation
structure is however in general interconnected.

The Hasse diagram is obtained by introducing successive partial resolutions into the
GTP. In each step we start with a polygon P and find subtractions ∆i that result in the
next layer Qi of the Hasse diagram — there can in general be multiple such subtractions:

P

Q1 Qn

∆1 ∆n· · ·

(4.13)

If at some point the GTPs Qj along different branches agree, these nodes should be identi-
fied, leading to interconnections. This idea was first introduced in [33], where it was argued
in the brane picture that the Higgs branch at specific points along the Coulomb branch
reproduces the different layers in the Hasse diagram.

Definition 10 (Hasse diagram of a GTP) Let P be a GTP, characterized by edges Eα
with λ(P )

α and µ(P )
α,x . A transition in the Hasse diagram P

∆−→ Q is a set of internal edges
Eβ, which correspond to a partial resolution, with minimal line segments Lβ and number
of line segments νβ, such that:

1. There is a GTP, Q, characterized by

E∂(Q) = E∂(P ) , Ein
(Q) = Ein

(P ) ∪ Eβ , λ(Q)
α = {λ(P )

α , νβ} , µ(Q)
α,x = µ(P )

α,x .

(4.14)

2. Q admits a coloring, such that there is a color c∗ with

νc
∗
β = νβ ∀β , (4.15)

with associated λc∗α and µc∗α,x.

3. There is a GTP ∆ characterized by

E(∆) = {E(P )
α |λc

∗
α 6= 0} , λ(∆)

α = λc
∗
α , µ(∆)

α,x = µc
∗
α,x , (4.16)

such that the magnetic quiver of ∆ is a either the magnetic quiver of a Kleinian
singularity or the closure of a minimal nilpotent orbit.
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Note that the leaves that we allow here are those discussed in section 2. In case that
a given GTP has symplectic leaves that go outside of this class, it would interesting to see
how these are realized in the GTP in terms of introducing internal lines. We are confident
that any effect that occurs in the webs has a counterpart in our formulation in terms of
the GTPs, including more general symplectic leaves.

A physical way to understand the transitions in the Hasse diagram is in terms of a
Higgsing, or combinatorially in terms of quiver subtractions in the magnetic quiver [30].
This concept is reviewed in appendix A. Essentially, we replace the affine Dynkin diagram
of an ADE algebra (or a Kleinian singularity) by a single U(1) rebalancing node. The idea
is that the newly introduced color c∗ represents the rebalancing node. Including the νβ ,
Sc
∗ has magnetic quiver U(1) but excluding them it would represent an ADE singularity.

We argue about the details of this process in section 6.3, where we explain how it relates
to a partial opening of a Coulomb branch and subsequent Higgsing.

Fact 5 If P ∆−→ Q is a transition in a Hasse diagram, we can write P as a refined
Minkowski sum

P ≤ ∆⊕ S , (4.17)

where S is another GTP, which need not be irreducible and could be empty. Conversely,
such a Minkowski sum decomposition induces a transition in the Hasse diagram if

1. The magnetic quiver of ∆ is a symplectic singularity

2. There is an extension of ∆ by internal lines νβ to ∆ν with λ(∆ν)
α = {λ(∆)

α , νβ} such
that the s-rule for ∆ν is obeyed minimally on each external edge.

Then, Q ≤ ∆ν ⊕ S with µ(Q)
α,x = µ

(P )
α,x .

This implies that, should we find a ∆ representing a symplectic singularity as a refined
Minkowski summand of P , we can subtract the corresponding magnetic quiver, provided
that ∆ can be condensed to a U(1) by the inclusion of internal lines.

5 Examples: SQCDs, non-Lagrangian and toric models

We now provide a large class of diverse examples to show the workings of our conjecture.
We will study 5d SCFTs, which have IR descriptions as SQCD, i.e. SU(Nc)k+NFF , or with
additional antisymmetric matter. We extend our analysis to models such as TN as well as
descendants of TN that are non-Lagrangian. Another class of known theories are the strictly
convex toric theories, which have a direct connection to the work of Altmann [22, 23].
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5.1 SQCD-like theories

5.1.1 SU(3)1 + 6F UV SCFT

Our first example is the strongly coupled SCFT, with IR description given by SU(3)1 +6F .
The GTP P is given by7

P =

, (5.1)

which is characterized by the following data:

Lα = ((0,−1), (1, 0), (0, 1), (−1, 1), (−1, 0))
λα = (4, 2, 3, 1, 1) , µα,x = ({14}, {2}, {13}, {1}, {1}) .

(5.2)

As usual, we label the five edges of P in counterclockwise order, starting from the top left
edge. The unique consistent coloring (blue, green, cyan) of this diagram is given by

, (5.3)

i.e. the refined Minkowski sum decomposition of P is given by

P < ⊕ ⊕

(5.4)

with the partitions and multiplicities of these colorings being

λcα = (3, 0, 3, 0, 0) , µcαx = ({3},−, {3},−,−) , mc = 3
λgα = (0, 1, 0, 0, 1) , µgαx = (−, {1},−,−, {1}) , mg = 1
λbα = (1, 1, 0, 1, 0) , µbαx = ({1}, {1},−, {1},−) , mb = 1 .

(5.5)

Clearly, all the summands in (5.4) are irreducible and obey the s-rule minimally (up to
multiplicity). A choice of color sub-division is given by

, (5.6)
7Whichever presentation the reader would want to use for this, the only requirement is that, after

applying Hanany-Witten moves, the GTP is convex.
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so that the areas of the parallelograms are

Acg = 3 , Acb = 3 , Agb = 1 . (5.7)

From (5.5) and (5.7) we can compute the intersections between the color nodes using (3.82)
to be

kcg = 1 , kcb = 0 , kgb = 0 . (5.8)

Now, let’s turn to the additional nodes, which appear at edges E1 and E3. The node labels
and mutual edges can be read off from the µα,x and µcα,x in (5.2) and (5.5):

m1,x = (3, 2, 1) , kc1,1 = 1 , kb1,1 = 1
m3,x = (2, 1) , kc3,1 = 1 ,

(5.9)

and all others vanishing. Putting all this together the magnetic quiver is given by

1 2 3 3 2 1

1 1

. (5.10)

Now, let us look at the Hasse diagram of this theory. We can check that P can be
written as a refined Minkowski sum

P

<

< ∆

⊕

⊕ S . (5.11)

We can now check that this decomposition induces a transition in the Hasse diagram. It
is straightforward to see that the magnetic quiver of ∆ is the affine Dynkin diagram of d5.
Furthermore, there is an extension of ∆ with internal lines such that the s-rule is minimally
obeyed on each external edge, namely

, (5.12)

which is ∆ν . Thus, we can deduce Q, and its unique coloring, to be

, (5.13)
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where we denote the color c∗ by blue and the other color in the coloring of Q in cyan. We
can read off the data of the external lines

λcα = (1, 0, 1, 0, 0) , µcα,x = ({1},−, {1},−,−) , mc = 1

λbα = (3, 2, 2, 1, 1) , µbα,x =
(
{13}, {2}, {12}, {1}, {1}

)
, mb = 1 .

(5.14)

Together with Acb = 2 we can deduce

kcb = 0
m1,x = (1, 1, 1) , kc1,1 = 1 , kb1,3 = 1
m3,x = (1, 1) , kc3,1 = 1 , kb3,2 = 1 ,

(5.15)

with all others vanishing. Altogether, we arrive at the affine Dynkin diagram of a7. Since
the magnetic quiver of Q itself is a symplectic singularity, there is a trivial transition with
∆ = Q. Thus, the Hasse diagram of the strongly coupled SU(3)1 + 6F is

d5

a7
. (5.16)

5.1.2 SU(3)1 + 6F IR theory

Now, we turn to the weakly coupled version of the theory, i.e. the gauge theory SU(3)1+6F ,
which has a description as a GTP P , where we have a ruling

. (5.17)

There is one valid coloring (with color sub-division), which is given by

, (5.18)

i.e. the coloring data for the external lines is

λcα = (3, 0, 0, 3, 0, 0) , µcα,x = ({3},−,−, {3},−,−) , mc = 3
λgα = (0, 0, 1, 0, 0, 1) , µgα,x = (−,−, {1},−,−, {1}) , mg = 1
λbα = (0, 1, 1, 0, 1, 0) , µbα,x = (−, {1}, {1},−, {1},−) , mb = 1 .

(5.19)

Note, that now we have an additional edge, since the edge on the left is subdivided by an
internal line. The intersections between the color nodes are

Acg = Acb = 3 , Agb = 1 , kcg = kcb = 1 , kgb = 0 . (5.20)
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The additional nodes appear at edges E1 and E4 with

m1,x = (2, 1) , kc1,1 = 1
m4,x = (2, 1) , kc4,1 = 1 ,

(5.21)

with all others vanishing. Putting all together the magnetic quiver of the weakly coupled
theory is

1 2 3 2 1

1 1

. (5.22)

Again, we can look at the Hasse diagram. We can show that the following Minkowski
sum decomposition induces a transition in the Hasse diagram

P

<

< ∆

⊕

⊕ S ,
Q

<

< ∆ν

⊕

⊕ S , (5.23)

where the partitions of Q and P agree. We can again compute the magnetic quivers of
∆ν and Q and find the affine Dynkin diagrams of d4 and a5 respectively. Thus, the Higgs
branch of the weakly coupled SU(3)1 + 6F is

d4

a5
. (5.24)

5.2 T4

The trinions TN with extremal vertices (0, 0), (N, 0), (0, N) were studied in the context
of 5d SCFTs in [26]. Their (and their descendants’) magnetic quivers and Hasse diagrams
were derived in [17]. We will derive these from the colored polygon method for T4.

The toric polygon for T4 is

P =

(5.25)

The data characterizing P is

Lα = ((0,−1), (1, 0), (−1, 1))
λα = (4, 4, 4) , µα,x = ({14}, {14}, {14}) .

(5.26)
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We first compute the magnetic quiver. The only coloring that is consistent is by a single
color nc = 1:

. (5.27)

The coloring is specified by the partition data

λbα = (4, 4, 4) , µbα = ({4}, {4}, {4}) , mb = 4 . (5.28)

We find that there is one vertex in the magnetic quiver from the single color with label
4. All three edges give rise to additional (non-color) nodes in the magnetic quiver. Their
labels and intersections with the blue node are

mα,x = (3, 2, 1) , kbα,1 = 1 , (5.29)

with all other vanishing. The complete magnetic quiver is

MQ(T4) =

1 2 3 4 3 2 1

3

2

1

. (5.30)

To determine the Hasse diagram, we determine all the subdiagrams that correspond
to rank 1 theories: There is one e6 theory and three ways to embed the e7:

e6 : e7 :
(5.31)

These are the first four transverse slices of the Hasse diagram. The magnetic quiver of
the above diagrams can readily be checked to give the affine Dynkin diagrams of the
corresponding groups. Clearly, the refined Minkowski sum P ≤ ∆ ⊕ S can be realised in
two ways

P < ⊕ P <

(5.32)

and likewise for the other two representations of e7. Note that in the second case S is
empty. There is an extension of each of the ∆ with internal lines such that the s-rule is
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minimally obeyed on each external edge (∆ν):

e6 : e7 :
(5.33)

The e6 induces a transition in the Hasse diagram with Q given by

T4 − e6 =

(5.34)

To compute the magnetic quiver for this diagram we find the unique color sub-division

(5.35)

The data are
λbα = (3, 3, 3)
λcα = (1, 1, 1)

µbα = ({13}, {13}, {13})
µcα = ({1}, {1}, {1})

mb = 1
mc = 1

(5.36)

from which we deduce
Acb = 3
mα,x = (1, 1, 1)

kcb = 0
kbα,1 = 1 kcα,3 = 1 ∀α

(5.37)

with all others vanishing. Each of the three edges therefore contributes a chain three of
U(1) nodes. The magnetic quiver is thus

MQ(T4 − e6) =

1 1 1 1 1 1 1

1

1

1

1

. (5.38)

Next we note that there are three embeddings of a7 singularities into the partially
resolved diagram T4 − e6:

a7 :

(5.39)
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It can again be checked that the magnetic quiver of all these three diagrams is an affine
Dynkin diagram for a7. As before, there exists an extension of these diagrams (∆ν) by in-
ternal lines such that the s-rule is minimally obeyed on each external edge. The embedding
of these extended diagrams in T4 − e6 is

T4 − e6 − a7 =

(5.40)

The magnetic quiver of each of these diagrams is

MQ(T4 − e6 − a7) = a3 , (5.41)

which is the final symplectic leave in the e6 branch of the Hasse diagram.
Likewise along the e7 branches, the first step (the subtraction of the e7 slice) is obtained

by the following partial triangulation of the T4 diagram

T4 − e7 =

(5.42)

The magnetic quiver of this theory is readily obtained to be

MQ(T4 − e7) =

1 2 1

1

. (5.43)

Finally, we note that there are a1 singularities realizable as

a1 =

(5.44)

These are precisely subtracted by partially triangulating further as in (5.40), which is where
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the branches meet. This completes the Hasse diagram of T4, in agreement with [17]:

e6
e7 e7 e7

a1 a1 a1

a7 a7 a7

a3 a3 a3
. (5.45)

5.3 SU(4)3/2 + 1AS + 7F

Let us now look at a more complicated example, the SU(4)3/2 + 1AS + 7F. The GTP P

with a consistent coloring is given by

(5.46)

We can summarise the data by

Lα = ((−1,−1), (0,−1), (1, 0), (0, 1)) ,

λα = (4, 3, 4, 7) , µα,x =
(
{22}, {2, 1}, {4}, {17}

)
λcα = (4, 0, 4, 4) , µcα,x = ({4},−, {4}, {4})
λbα = (0, 3, 0, 3) , µbα,x = (−, {3},−, {3}) .

(5.47)

With Acb = 12 we can deduce for the color nodes

mc = 4 , mb = 3 , krb = 0 . (5.48)

Furthermore, there are additional nodes on edges E1, E2 and E4 with

m1,1 = 2 , kc1,1 = 1
m2,1 = 1 , kb2,1 = 1
m4,x = (6, 5, 4, 3, 2, 1) , kc4,1 = 1 , kb4,1 = 1 ,

(5.49)

with all others vanishing. The magnetic quiver is thus given by

1 2 3 4 5 6 4 2

3 1

. (5.50)
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We can now compute the Hasse diagram of this theory. It turns out that there are two
distinct branches which we will discuss in turn. First, we can write

P

<

< ∆

⊕

⊕ S ,
Q

<

< ∆ν

⊕

⊕ S ,

(5.51)
where ∆ corresponds to an e6.

Now, let us compute the magnetic quiver of Q. We start with the coloring, now
respecting the internal lines

. (5.52)
Again, we first compute the data of the coloring to be

λcα = (2, 0, 2, 2) , µcα,x = ({2},−, {2}, {2})
λgα = (0, 1, 0, 1) , µgα,x = (−, {1},−, {1})

λbα = (2, 2, 2, 4) , µbα,x =
(
{12}, {12}, {2}, {14}

)
.

(5.53)

The color nodes are characterized by

mc = 2 , mg = 1 , mb = 1
kcg = 0 , kcb = 0 , kgb = 0 .

(5.54)

Note that the multiplicity of the blue node is one, due to the internal lines. The additional
nodes appear on E1 and E4 and are

m1,1 = 1 , kc1,1 = 1
m4,x = (3, 3, 3, 3, 2, 1) , kc4,1 = 1 , kg4,1 = 1 , kb4,4 = 1 ,

(5.55)

with all others vanishing, whereas for E2 we see that the multiplicity of the possible single
additional node m2,1 vanishes. From this we see the magnetic quiver is

1 2 3 3 3 3 2 1

1 1

. (5.56)
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To see the next step in the Hasse diagram we write

< ⊕

,

< ⊕

,

(5.57)
and compute that the magnetic quiver of ∆ and Q to be d7 and a8 respectively.

Let us now turn to the other branch of the Hasse diagram. We can actually embed a
different Minkowski summand into P , namely a diagram corresponding to e8

<

,

<

. (5.58)

It is easy to compute the magnetic quiver of the rightmost diagram to be the affine diagram
of a1. This means that in total the Hasse diagram of the strongly coupled SU(4)3/2+1AS+
7F is

e6

d7

a8

e8

a1
. (5.59)

Let us quickly comment on why there is no e7 leaf. Given the shape of P the possible
e7 GTP is given by

. (5.60)

However, on edge E1, the S-rule would demand µb1,x = {13}, which is incompatible with
P , which has µ1,x = {22}. Similar incompatibilities hold for all other possible leaves.
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5.4 Pruning

As we emphasized, some GTPs benefit from pruning, before the algorithm is applied. We
now provide another example for this. Take the GTP P

(5.61)

which has
L1 = (−1,−2) , L2 = (1, 0) , L3 = (0, 1)
λα = (4, 4, 8) , µα,i = ({22}, {4}, {18}) ,

(5.62)

and consider the pruning P ′ = (P, µ3
1,−), i.e. along the edge E3. First we need to compute

det(L3, L1) = +1→ L1 ∈ E+ , det(L3, L2) = −1→ L2 ∈ E− . (5.63)

From this we can completely build P ′.

1. The unaltered edges are E− = 4L2 with µ2 = {4}

2. Removing the edge segment we prune along we have {17}L3

3. The slope of E+ changes, i.e. we have L1 → (−1,−2) + (0, 1) = (−1,−1) with
unchanged µ1 = {22}

4. The final slope is along −L3 = (0,−1) with µ−3 = {−1 + 4} = {3}.

Thus, P ′ is given by

1.

2.

3.

4.

(5.64)

where we labeled the four sides corresponding to their origin in the enumeration. From the
discussion in the previous example we know that the magnetic quiver of P ′ is the affine
Dynkin diagram of e8. Consequently, both P ′ and P represent the rank one E8-theory.
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5.5 Isolated toric singularities

For isolated toric singularities, i.e. which are strictly convex, with λα = 1 ∀α, the derivation
of the MQ and Hasse diagram substantially simplifies. As this is an interesting class of
theories we will here discuss this simplified setting. Furthermore, the polygons for each of
these have a Minkowski sum decomposition, which in this case is well-known to map to
the deformations of the singularities by the work of Altmann [22, 23]. We can consider the
setup discussed in this paper as a generalization of this to not strictly convex toric and
generalized toric polygons.

As the edge lengths are all 1 with no vertices along the edges, the multiplicities of all
the nodes in the magnetic quiver is always 1. Each color furthermore contributes precisely
one vertex and there are no tails, i.e. the number of colors determines the Higgs branch
dimension plus 1.

The Hasse diagram is obtained by simply collapsing along one Minkowski summand: if

P = P1 + · · ·+ Pnc , (5.65)

then the Hasse diagram has nc branches. Note that in this strictly convex case the partition
sum and Minkowski sum agree. Each branch correspond to the quiver subtraction of
the theory

∆i = P1 + · · ·+ Pi−1 + Pi+1 + · · ·+ Pnc . (5.66)

If ∆i is a trivial theory, then this branch is empty. The next level in the Hasse diagram is
obtained by taking the sub-polygon ∆i in P and assigning it a single color.

The simplest example is the ‘beetle’ [7]

Pbeetle =
(5.67)

There is precisely one coloring and an associated Minkowski sum decomposition

= + + (5.68)

The magnetic quiver is read off simply by computing the areas between the various bi-
colored parallelograms (there is only the stable intersection in this case)

MQ(Pbeetle) =

1

1 1

(5.69)

The Hasse diagram is obtained by taking the Minkowski sum of two colors only. This is
nontrivial (i.e. not a rank 0 theory) only for red + green, which is the A1 theory, which
results in

Pbeetle −A1 = Pbeetle− = = A1
. (5.70)
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A slightly more complicated example is the octagon, which has multiple branches. The
toric polygon is

Poctagon =
(5.71)

There are three colorings, and associated Minkowski sum decompositions

(Poctagon, {λc(1)}) = = + +

(Poctagon, {λc(2)}) = = + + +

(Poctagon, {λc(3)}) = = + +

(5.72)

The magnetic quivers are computed by filling the coloring

MQ(Poctagon, {λc(1)}) = MQ(Poctagon, {λc(3)}) =

1 1

1

(5.73)

and for the dimension three cone of the Higgs branch

MQ(Poctagon, {λc(2)}) =

1 1

1

1

(5.74)

To compute the Hasse diagram, we consider both branches: for λ(1) and λ(3) there are
three slices

A1 = , A′1 = , A′′1 = , (5.75)
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Subtracting this, results in the following three diagrams

(Poctagon, {λc(1)})−A1 =

(Poctagon, {λc(1)})−A
′
1 =

(Poctagon, {λc(1)})−A
′′
1 =

(5.76)

All these three colored GTPs have MQ given by the Kleinian singularity A3 (two vertices
with four lines connecting them). Along the other branch with the λ(2) coloring there are
three singularities

ac2 = , ar2 = , ag2 = , ab2 = . (5.77)

The singularity after subtraction of these a2, which is achieved by identifying the colors
appearing in these sub-polygons we find

(Poctagon, {λc(2)})− ac2 = = A3

(Poctagon, {λc(2)})− ar2 = = A3

(Poctagon, {λc(2)})− ag2 = = A2

(Poctagon, {λc(2)})− ab2 = = A2 .

(5.78)
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The combined Hasse diagram is then as follows:

A3 A3 A3 A2 A2 A3 A3 A3

A1 A1 A1 A1 A1 A1A1 A1

A2

A1

A2

.
(5.79)

5.6 Non-Lagrangian theories

With the algorithm presented in this paper we can also study non-Lagrangian theories. A
prime example are the theories B(i)

N introduced in [17]. Here, we will study the magnetic
quiver for B(1)

N , for which the colored GTP is given by (drawn for N = 7)

(0,1)

(0,N -1)

(N -1,1)
(N -1,0) (5.80)

i.e. the GTP agrees with the toric diagram and there are two colors, independent of N .
The data for the GTP and its coloring are

Lα = ((0,−1), (N − 1,−1), (0, 1), (−(N − 1), N − 2))

λα = (N − 2, 1, 1, 1) , µα,x =
(
{1N−2}, {1}, {1}, {1}

)
λbα = (N − 3, 1, 0, 1) , µbα,x = ({N − 3}, {1},−, {1})
λgα = (1, 0, 1, 0) , µgα,x = ({1},−, {1},−) ,

(5.81)

so both color nodes have multiplicity one. From this we can compute

Abg = N − 1 , kbg = 2 . (5.82)

The additional nodes come only from L1 with

m1,x = (N − 3, N − 4, . . . , 1) , kb1,1 = N − 3 , kg1,1 = 1 . (5.83)
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We can put this together to compute the magnetic quiver

1
· · ·

N -4 N -3 1

1

N -3

(5.84)

6 Derivation from the Tropics

We now turn to deriving the rules that we propose in section 3. The origin is in tropical
geometry, or in physics language, the (p, q) 5-brane-webs — the precise relation to tropical
geometry is only strictly known in the case when the GTP is toric, and generalizing this
to non-toric GTPs would be very interesting indeed. These are dual to the generalized
toric polygons, and in this context some progress was recently made in extracting the
Higgs branch magnetic quivers and Hasse diagrams [17, 30–36, 38]. For self-consistency,
we provide a brief summary of the webs, the concept of sub-webs and the derivation of
magnetic quivers in appendix A. In this section, we give a precise dictionary between the
concepts in the webs, and the data that we introduced in the GTP, and thereby provide a
derivation of the rules set out in section 3.

6.1 Sub-web decomposition to colored polygon

The most important identification is between a GTP and brane-web. First, recall that a
(p, q) 5-brane-web is made up of connecting (p, q) 5-branes, where we distinguish between
external branes (which end on corresponding (p, q) 7-branes) and internal branes (which
only connect to other (p, q) 5-branes). Given a web, the corresponding GTP is its dual
graph. As such, a set of n5 (p, q) 5-branes maps to a line in the GTP, that is perpendicular
to the branes, i.e. to an edge Eα with the properties

Lα = (−q, p) , λα = n5 . (6.1)

This holds both for internal and external branes. Note that charge conservation in the web
ensures closedness of the GTP. A stack of n5 external 5-branes, which end on n7 7-branes
gives rise to an external edge in the GTP with n7 + 1 vertices along it, i.e.

bα = n7 − 1 . (6.2)

Such a web configuration naturally defines a partition of n5 into the number of 5-branes
ending on each 7-brane, which is exactly given by the µα,x. Note that from the Lα and
µα,x we can infer the positions of the vertices vi, up to equivalent configurations, as follows.
Choosing an initial position for vex

α,0 we take any reordered set of µα,x, which we call µα,i.
All such reorderings are equivalent. The positions of the black vertices are then defined
inductively by

vα,i+1 = vα,i + µα,i+1Lα . (6.3)
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Furthermore, for neighboring edges Eα and Eα+1 we have

∂Eα ∩ ∂Eα+1 = vex
α,bα+1 = vex

α+1,0 . (6.4)

The brane-web thus induces the vertices Vb of the corresponding GTP.
Next, we discuss the idea of pruning. We can take a (p, q) 7-brane in the brane-

web, on which n5 5-branes end, and push it through the entire web, turning it into a
(−p,−q) 7-brane. This operation needs to preserve both the total monodromy and charge
conservation. The first condition is ensured by changing the branch cut of each of the
passed 7-branes. The second condition fixes the number of (−p,−q) 5-branes ending on
the moved (−p,−q) 7-brane. This can be done in either direction around the web. By
explicit computation we arrive at the results in section 3.2.

To extract the magnetic quiver, the brane-web is divided into sub-webs that are them-
selves consistent brane-webs. There can be multiple (maximal) divisions into sub-webs,
which are identified with different cones of the Higgs branch. Here, we will only consider
a single division. We distinguish between two kinds of sub-webs, which are those that are
associated to colors in the GTP, and those that are not but which give rise to tails in the
tropical quiver.

For now we will focus on the first class of sub-webs W c, which contain 5-branes that
end on two distinct kinds of 7-branes. Each W c is mapped to a colored sub-polygon Sc,
as specified in definition 1. An edge segment is part of Sc if the corresponding 5-brane is
contained in W c, defining the partition of λα into λcα for each edge. The refined Minkowski
sum of two sub-polygons Sc1⊕Sc2 is understood as combining two sub-webs W c1 andW c2 ,
where we identify the 7-branes involved in the W c.

Definition 1 contains certain conditions for a coloring of a GTP to be valid, which have
their origin in the brane-web:

1. Each sub-web W c gives rise to a sub-polygon Sc because charge conservation in the
brane-web ensures closed-ness in the GTP.

2. A sub-web W c has a multiplicity, i.e. it consists of mc identical minimal webs W c
min.

3. s-rule. The s-rule states that the number of D5-branes that may connect a single
D7-brane and a stack of NS5-branes is less or equal to the number of NS5-branes in
the stack. For a given sub-web W c, the µcα,1 essentially count the number of NS5-
branes in such a configuration, or any SL(2,Z)-transformed junction of this kind.
Let us consider a minimal web W c

min. It obeys the s-rule if there is a full resolution
such that each intersection obeys the s-rule locally. This idea was advanced in [26]
from which the introduction of tiles follows. In earlier work, an SL(2,Z)-invariant
formulation has already been discussed in [55]. Here we will provide a general formula
for this, which to our understanding has not appeared thus far. We propose that the
intersection of three types of branes (pi, qi) obeys the s-rule, if∣∣∣∣∣det

(
pi qi
pj qj

)∣∣∣∣∣ ≥ gcd(pk, qk)2 , (6.5)
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for every permutation (i, j, k) of (1, 2, 3). This is represented by (3.37). We provide
a proof of the formula (6.5) in the next paragraph.

4. The division into sub-webs is maximal, i.e. no sub-web can be further subdivided
while still satisfying the s-rule. The same must be true for the partitions {λcα}.

Derivation of the s-rule for simple intersections of 5-branes. Consider a junction
of three 5-branes (possibly with multiplicity) of type (pi, qi), for i = 1, 2, 3. Let δi =
gcd(pi, qi) be the multiplicities of the branes. We want to find a condition on the charges
(pi, qi) for this intersection to be supersymmetric when all the 5-branes on each of the three
legs end on a single 7-brane, as illustrated below:

(p1, q1)

(p2, q2)

(p3, q3)
. (6.6)

By Bézout’s identity, there exist two integers u and v such that up1 + vq1 = δ1. One can
then consider the matrix (

u v

− q1
δ1

p1
δ1

)
∈ SL(2,Z) . (6.7)

Using the SL(2,Z) transformation given by multiplying on the right the charges (pi, qi) by
that matrix, one transforms (p1, q1) to (δ1, 0). The other charges (pi, qi) (for i = 2, 3) are
transformed to (

upi + vqi,
1
δ1

det
(
p1 q1
pi qi

))
. (6.8)

After this transformation, the branes labeled by index 1 are δ1 D5 branes which all end on
the same D7 brane:

(δ1, 0)

(
up2 + vq2,

1
δ1

det
(
p1 q1
p2 q2

))

(
up3 + vq3,

1
δ1

det
(
p1 q1
p3 q3

))
. (6.9)
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Therefore the s-rule says that the number of NS5-branes, given by the absolute value of
the second charge in (6.8), has to be at least δ1, i.e.

1
δ1

∣∣∣∣∣det
(
p1 q1
pi qi

)∣∣∣∣∣ ≥ δ1 . (6.10)

Using charge conservation, p1 + p2 + p3 = 0 and q1 + q2 + q3 = 0, one can replace the
determinant on the right by the determinant of (p2, q2) and (p3, q3), which finally gives∣∣∣∣∣det

(
p2 q2
p3 q3

)∣∣∣∣∣ ≥ (δ1)2 . (6.11)

The same reasoning is true for any permutation of the indices (1, 2, 3), giving the rule (6.5).
This formula is clearly SL(2,Z)-invariant, as wanted.

A comment on internal edges. Let us briefly comment on the case where a GTP
has internal edges, which is the subject of section 4.1. This corresponds to a brane-web
containing internal 5-branes, i.e. 5-branes that connect two 5-brane junctions (rather than
ending on a 7-brane). Such a set of internal 5-branes necessarily pertains to a collection
of sub-webs {W c}. There is no obstruction to sending the length of the internal 5-branes
to infinity, i.e. the webs connected by the internal 5-branes are independent of each other,
apart from a matching condition along the internal 5-branes, and must obey the s-rule
locally. This is the reason the s-rule should be applied separately to each ScA, as detailed
in section 4.1.

6.2 Magnetic quivers

What we have seen so far is that a colored GTP contains the same data as the sub-web
decomposition of the dual web. We will now argue for the derivation of the tropical quiver
from GTP data, as explained in section 3.6, starting from the brane-web.

Each sub-web W c corresponds to a node in the magnetic quiver, labeled by the multi-
plicity mc of the sub-web. The sub-webs are mapped to colorings, or colored sub-polygons
Sc, in the GTP. To each color we thus associate a node in the tropical quiver with label
mc = gcdα(λcα).

The intersections between the color nodes are computed as follows: Consider the color
sub-division of the GTP. The area Ac1c2 corresponds to the stable intersection (SI) between
the sub-webs W c1 and W c2 in tropical geometry [31]. Recall, that the SI is defined by
infinitesimally displacing the two minimal sub-webs and computing the intersection

SI =
∑∣∣∣∣∣det

(
pc1 qc1

pc2 qc2

)∣∣∣∣∣ , (6.12)

where the sum goes over all intersections and the (pc, qc) are normalized by a factor of mc.
Now consider the parallelograms Gc1c2 in the color sub-divided polygon, with the two sides
characterized by λc1

α Lα and λc2
β Lβ . The Euclidean area of Gc1c2 is then given by

Area(Gc1c2) = λc1
α λ

c2
β |det (Lα, Lβ)| = λc1

α λ
c2
β

∣∣∣∣∣det
(
qc1 −pc1

qc2 −pc2

)∣∣∣∣∣ , (6.13)
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because of (6.1). However, here the (pc, qc) are normalized to be coprime, so, by the
inclusion of the λc, this agrees with the SI in (6.12).

There is an additional contribution to the intersection between two sub-webs, W c1

and W c2 , which is the effective number of 7-branes on which they both end. To see this
contribution in the GTP consider a single edge Eα, corresponding to a tail of (p, q) 5- and
7-branes, all of the same p and q, in the brane-web. Recall that the number of 7-branes that
an edge Eα gives rise to is n7 = bα + 1, and the intermediate segments (which are stacks
of 5-branes in the web) are labeled by x. Consider the 7-brane between segments x − 1
and x. The number of 5-branes in color c on either side differ by µcα,x, by definition. The
sum over all 7-branes yields the second contribution to the intersection between W c1 and
W c2 . However, we need to divide by the product of the multiplicities of the two sub-webs
to obtain the effective intersection in the magnetic quiver, given by

− 1
mc1mc2

bα∑
x=1

µc1
α,xµ

c2
α,x . (6.14)

Together with the SI contribution (6.13) this gives the number of edges (3.82) between
nodes in the tropical quiver associated to the two colors c1 and c2.

Furthermore, we can determine the number of 5-branes in a tail, which do not belong
to any of the W c. These sub-webs Wα,x, spanning the segment x between 7-branes in
a tail labeled by α, do not appear as sub-polygons in the GTP. Nonetheless, they do
give rise to additional nodes in the magnetic quiver, and their presence can be detected
in the GTP. Their multiplicities mα,x are given by the total number of 5-branes along a
segment x in the tail α, minus the number of 5-branes in that segment that belong to a
W c. The former is the total number of 5-branes protruding from the internal web in this
direction, λα, minus the number of 5-branes that have ended on a 7-brane further up the
tail,

∑x
y=1 µα,y. The computation of the latter is the same but restricted to a coloring c.8

Hence, the multiplicities of the sub-webs Wα,x, in terms of GTP data, are

mα,x =
x∑
y=1

(
−µα,y +

nc∑
c=1

µcα,y

)
, (6.15)

which is (3.85). These sub-webs give rise to the additional tail nodes in the magnetic quiver
with labels mα,x. They are connected to their nearest neighbors by a single edge, since
the only contribution to the intersection between Wα,x and Wα,x+1 comes from ending on
opposite sides of the same 7-brane.

Finally, we determine the number of edges between color nodes and tail nodes in the
tropical quiver. Consider a tail segment x made up of mα,x 5-branes between two 7-branes.
The number of 5-branes in color c ending on these two 7-branes is given by µcα,x and µcα,x+1
respectively. Each time the number of c-colored 5-branes ending on the 7-branes on either
side of a segment differs, the corresponding tail node is connected to the c-color node.
Thus, the intersection, after accounting for multiplicity, is

1
mc

(
µcα,x − µcα,x+1

)
, (6.16)

equivalent to (3.87).
8By some abuse of notation we say µcα,y = 0 if y is larger than the length of the partition µcα,x.
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6.3 Hasse diagram

Now, let us turn to the computation of the Hasse diagrams in section 4.2. Recall that given
a magnetic quiver of a theory, a transition in the Hasse diagram corresponds to the quiver
subtraction of a symplectic leaf, i.e. either the affine Dynkin diagram of an ADE Lie algebra
g corresponding to the magnetic quiver of the closure of a minimal nilpotent orbit, or a
Kleinian singularity — these are summarized in table 1. It was argued in [33, 34] that this
process can be translated into the language of brane-webs as follows. Consider a brane-web
WP , corresponding to a theory with some original magnetic quiver. A quiver subtraction
by a symplectic leaf9 g corresponds to turning on certain Coulomb branch parameters of
the theory, i.e. the introduction of internal 5-branes in the brane-web, resulting in a new
brane-web WQ. The Coulomb branch parameters must be turned on in such a way that,
in a maximal sub-division of WQ, all the newly introduced 5-branes belong to the same
sub-web W∆ν . At the origin of its Coulomb branch (we could call this brane-web W∆ in
parallel with the notation in section 4.1), the magnetic quiver of this sub-web is the affine
Dynkin diagram of g. By going into the Coulomb branch of this sub-theory, the associated
Higgs branch reduces to g → u(1). In the magnetic quiver this corresponds to a quiver
subtraction with subsequent rebalancing with a u(1) node.

Now, we can further translate this into the language of GTPs. Turning on Coulomb
branch parameters corresponds to a partial resolution of the GTP P , i.e. the introduction
of internal edges Eβ of length νβ , dual to the newly introduced internal 5-branes in the
web, which results in a new GTP Q. The internal 5-branes belong to a sub-web W∆ν ,
corresponding to a color sub-polygon ∆ν in Q, which includes the internal edges. To
describe the Higgs branch at a generic point on the Coulomb branch, the magnetic quiver
of ∆ν should be a single U(1) node. However, at the origin of the Coulomb branch, i.e. in
the absence of the Eβ where the GTP is ∆, the magnetic quiver correspond to g.

6.4 Example

As an instructive example let us consider SU(4) 3
2

+ 1AS + 7F at strong coupling, which
was discussed in detail in section 5.3 from the GTP point of view. The brane-web for this
theory was discussed in [56] and is given by

(−1, 0)

(−1, 1)

(0,−1)

(1, 0)31

4

2

4

7 6 5 4 3 2 1

,

(6.17)
9We assume for notational simplicity that the singularity is of ADE type, the logic holds in the

Kleinian case.

– 48 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
4

(p, q) 5-Brane-web/Tropics Generalized toric polygon

n5 coincident (p, q) 5-branes Edge Eα with Lα = (q,−p) and λα = n5

External and internal 5-branes External edges E∂ and internal edges Ein

n5 5-branes subsequently ending on n7 7-branes Partition µα,x of length bα = n7 − 1
Compact and non-compact faces Black vertices Vb

Division into sub-webs Coloring
Internal sub-web W c Colored subdiagram Sc

Partition of coincident 5-branes into sub-webs λα =
∑
λcα

Multiplicity of W c mc

S-rule, # branes of W c ending on each 7-brane µcα,x

Stable Intersection Mixed Volume MV (Sc1 , Sc2)
Multiplicities of sub-webs between 7-branes mα,x

5-brane displacement that is quiver subtraction Transition P ∆−→ Q

Coulomb branch parameters Partial resolution νβ

Table 2. Dictionary between brane-webs/tropics and colored GTPs: sub-webs, magnetic quivers
and Hasse diagram.

where we state the number of 5-branes and the type of 7-branes explicitly. There are no
internal 5-branes, so the dual GTP does not have internal edges. There are four different
types of 7-branes in the web, corresponding to four external edges in the GTP. From (6.1)
we can read off that the GTP has edges

Lα = ((−1,−1), (0,−1), (1, 0), (0, 1)) , λα = (4, 3, 4, 7) , (6.18)

where λα is the number of 5-branes protruding from the central junction. From the number
of 7-branes in each tail we find

bα = (1, 1, 0, 6) . (6.19)

Furthermore, we can read off the µα,x as the number of 5-branes ending on each of the
7-branes. For example, for the first edge (with the (−1, 1)-branes), two of the four 5-branes
end on each of the two 7-branes, i.e. µ1,x = {2, 2}. Conversely, for the second edge, of the
three 5-branes two and one end on the two 7-branes respectively, so µ2,x = {2, 1}. Using
this we can easily determine the GTP.

Now, let us determine the division of the brane-web into sub-webs. This is a simple
exercise and we arrive at

(−1, 0)

(−1, 1)

(0,−1)

(1, 0)31

4

2

6 5 4 3 2 1

,

(6.20)
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where we colored the sub-webs in blue Wb, and cyan Wc. This is equivalent to the coloring
of the GTP shown in (5.46). The number of 5-branes coming out of the central junction are

λbα = (0, 3, 0, 3) , λcα = (4, 0, 4, 4) . (6.21)

In this case the application of the s-rule is very simple, since the sub-webs are just (stacks
of) a fundamental D5-NS5-brane junction and a D5-brane, so both sub-webs end on the
first 7-branes they encounter. For example, we have µb4,x = {3} and µc4,x = {4}, which
contributes exactly

− 1
mbmc

6∑
x=1

µb4,xµ
c
4,x = − 1

3 · 4 (3 · 4 + 0 · · ·+ 0) = −1 (6.22)

to the intersection ofW b,W c. We can easily see that the stable intersection between the two
colored sub-webs is one, after accounting for multiplicity, so they actually do not intersect
in the magnetic quiver. SinceW b andW c both end on the first 7-branes they encounter, the
multiplicities mα,x of theWα,x sub-webs, coming from the 5-branes suspended between two
identical kinds of 7-branes, are not reduced, e.g. we have m4,x = {6, 5, 4, 3, 2, 1}. Finally,
the colored sub-webs intersect Wα,x if a different number of colored branes end on the 7-
branes on either side of Wα,x. This is true e.g. for W c and W4,1, since four cyan branes end
on the 7-brane to the left of W4,1 and none end on the 7-brane to the right. Following the
usual rules we can quickly check that the magnetic quiver of this web agrees with (5.50).

Let us now consider the first transition in the Hasse diagram P
∆−→ Q. From the

magnetic quiver it is clear that we can subtract an e6 singularity. The corresponding
Coulomb branch deformation in the web is given by

1 3

1

3 3 3 3 2 1

2

2
1 3 2 12 1 1 4

2

2

1 1

1

,

(6.23)
where the e6 sub-web (W∆ν ) is shown in blue. We arrive at this 5-brane deformation by
first considering the quiver subtraction in the magnetic quiver, from which we deduce how
many of each of the 5-branes should contribute to the e6 sub-web. In a second step we
need to find the Coulomb branch deformation that enforces this sub-web. Although there
might seem to be a lot of possibilities, the s-rule constrains the setup such that this is only
allowed deformation. We can read off the GTP after the transition, i.e. Q in (5.51), which
is the dual diagram of (6.23). It is obtained from P by adding the internal edges dual to
the internal 5-branes in (6.23). Similarly, the GTP ∆, indicating the subtracted symplectic
leave is dual to the blue e6 sub-web at the origin of the Coulomb branch.
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A Recap: webs, magnetic quivers and Hasse diagrams

In this section we quickly review the concept of (p, q) 5-brane-webs and how to read off
the magnetic quiver and Hasse diagram of the corresponding theory. A (p, q) 5-brane-
web is a type IIB configuration consisting of 5-branes, extended along the (x0, . . . , x4)-
directions and at an angle θ in the (x5, x6)-direction, and 7-branes, extended along the
(x0, . . . , x4, x7, x8, x9)-directions. To preserve eight supercharges the configuration needs
to obey

1. (p, q) 5-branes lie at angles10

tan θ = p

q
. (A.1)

2. (p, q) 5-branes end on corresponding (p, q) 7-branes.

3. At each junction, where multiple 5-branes meet, charge conservation implies∑
i

(pi, qi) = (0, 0) , (A.2)

where we take the orientation such that all branes are outgoing.

4. The web obeys the s-rule. We discuss the implications in detail around (6.5).

Each such (p, q) 5-brane-web describes a 5d N = 1 theory. Reviewing the connection
between these two descriptions is beyond the scope of this appendix, however, the brane-
webs corresponding to SU(N) quiver gauge theories with fundamental and antisymmetric
matter, which are relevant in this paper, are given in [31, 56, 57].

The method to compute the (unitary) magnetic quiver of a brane-web was developed
in [31]. The idea is to divide the web into a (maximal) set of sub-webs that themselves
are consistent, supersymmetric brane-webs. In type IIB this is justified by displacing these
sub-webs along the (x7, x8, x9)-directions, which make up the 5d N = 1 R-symmetry. Each
different division into sub-webs produces a magnetic quiver and corresponds to a distinct
component in the Higgs branch. Given a division into sub-webs, the magnetic quiver is
computed as follows

1. A sub-web corresponds to a U(1) node. If there are m equivalent (i.e. identical and
coincident) sub-webs this is enhanced to U(m).

10For this we choose τIIB = i for simplicity.
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2. The number of bifundamental matter multiplets, i.e. intersections between the nodes,
is determined by two contributions:

(a) The stable intersection number is determined by regarding the 5-branes of the
sub-webs as tropical curves, and infinitesimally displacing the curves. Then, in
each point where 5-branes from the two sub-webs intersect there is a contribution
to the stable intersection ∣∣∣∣∣det

(
p1 q1
p2 q2

)∣∣∣∣∣ , (A.3)

where the intersecting branes are (p1, q1) and (p2, q2). The sum over these
contributions is independent of the choice of displacement.

(b) The second contribution comes from 7-branes. If two 5-branes belonging to
different sub-webs end on opposite sides of a 7-brane, there is a contribution of
+1, if they end on the same side of a 7-brane, there is a contribution of −1.

The sum over all these contributions counts the intersection between two uni-
tary nodes.

Finally, let us look at the Hasse diagram, which can be seen from the repeated quiver
subtraction of symplectic leaves in the magnetic quiver. The balance of a node in the
magnetic quiver is given in terms of the node label U(mI) and the edge multiplicities
kIJ as

βI = −2mI +
∑
J 6=I

kIJ mJ . (A.4)

In a consistent magnetic quiver all balances are non-negative. We can subtract two quivers
Q+ and Q−, if all their edge multiplicities kIJ agree11 and m+

I − m
−
I > 0 for all nodes.

Then, we compute the resulting quiver Q = Q+ −Q−,

1. The node multiplicities are mI = m+
I −m

−
I and the edge multiplicities are kIJ = k+

IJ .

2. To rebalance we add an additional U(1) node and connect it such that the balances
of all nodes with non-negative multiplicity retain the balance βI = β+

I .

The Hasse diagram is obtained by repeatedly subtracting symplectic leaves. These can be
affine Dynkin diagrams of an ADE type Lie algebra g or a Kleinian singularity AN−1. We
summarize them in table 1. Note that the quaternionic dimension of the Higgs branch (at
a given point in the Hasse diagram) is given by

dimH(H) = −1 +
∑
I

mI , (A.5)

and the flavor symmetry of a theory is given by the lowest-lying leave in the Hasse diagram.
11We can label the quiver nodes in any way. If Q− has fewer nodes than Q+ this condition is only required

for the edges of Q−.
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B Pruning

We now give the precise definition for the pruning operation introduced in section 3.2.

Definition 11 (Pruning) Let P be a GTP with edges Eα = λαLα and partitions µα,i. A
pruning of P along µα,j in direction s = ±1 defines a new GTP

P ′ = (P, µα,j , s) , (B.1)

as follows. Divide the edges E of P into two parts E± with

± det(Lα, Lβ) > 0 ∀Lβ ∈ E± . (B.2)

Eα belongs to neither of the E± and we choose −Lα ∈ E+.12 Then, the edges E′ of P ′ are
given by

1. Es

2. {µα,1, . . . , µ̂α,j , . . . , µα,bα+1}Lα

3.
⋃
Eβ∈E−s{µβ,i} (Lβ + |det(Lα, Lβ)|Lα)

4.
(
−µα,j +

∑
Eβ∈E−s |det(Lα, Lβ)|λβ

)
(−Lα) .

If
(
−µα,j +

∑
Eβ∈E−s |det(Lα, Lβ)|λβ

)
≤ 0 the pruning is disallowed.

In the interest of gaining some intuition for how the slopes Lβ change in a pruning,
consider a simple example, where we move an edge segment Lα = (0,−1) from the vertical
edge on the left to the right.13 The crucial constraint is that the GTP still has to close
after this movement. Then, E± represent the lower/upper part of the GTP and we can
keep one of these, Es fixed. However, the slopes for all edges in E−s map to

Lβ = (xβ , yβ)→ (xβ , yβ − |xβ |) , (B.3)

i.e. they are tilted towards Lα. Note that the total horizontal extension does not change,
whereas the vertical one increases. This ensures that we can add an edge segment along
(−Lα) = (0, 1) such that the pruned GTP still closes. The length of this new segment is
given by the increase of vertical extension from the Lβ minus the length if the removed
edge segment.

In general, performing the pruning along either the positive or negative direction,
s = ±1, results in a set of GTPs that are related by an SL(2,Z) transformation. In the
web this choice reflects the two possible ways of exchanging two 7-branes with 5-branes
attached to them, such that the total monodromy is conserved.

12Note that the definition does not depend on this choice.
13Note that this setup can always be achieved by global SL(2,Z)-invariance.
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Fact 6 (Positive and Negative Monodromy Transitions) Let P ′± = (P, µα,j , s = ±)
be the two different GTPs obtained from P by pruning along µα,j with either choice of
s = ±. Then,

P ′+
∼= P ′− , (B.4)

up to SL(2,Z) transformation. If Lα = (xα, yα) then the relevant SL(2,Z) transformation is

φLα =
(

1− xαyα x2
α

−y2
α 1 + xαyα

)
, (B.5)

that leaves Lα (and −Lα) invariant.

It is also important to note that pruning defines an equivalence class of GTPs, since
the process is reversible.

Fact 7 (Reversibility of Pruning) Let P ′ = (P, µα,j , s) be a pruning of P . Then

P = (P ′, µ−α,j ,−s) , µ−α,j =

−µα,j +
∑

Eβ∈E−s
|det(Lα, Lβ)|λβ

 , (B.6)

where µ′−α,j lies along the edge −Lα. Thus, pruning is reversible and all GTPs that can be
obtained from each other by pruning are equivalent.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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