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SYMPLECTIC LOCAL TIME-STEPPING IN NON-DISSIPATIVE DGTD

METHODS APPLIED TO WAVE PROPAGATION PROBLEMS

Serge Piperno1

Abstract. The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the
solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes,
they handle easily complex geometries and remain fully explicit with easy parallelization and extension
to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy
is exactly conserved. However, the stability limit of the methods, related to the smallest elements in
the mesh, calls for the construction of local-time stepping algorithms. These schemes have already been
developed for N-body mechanical problems and are known as symplectic schemes. They are applied
here to DGTD methods on wave propagation problems.
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1. Introduction

The accurate modeling of systems involving electromagnetic waves, in particular through the resolution of
the time-domain Maxwell equations on space grids, remains of strategic interest for many emerging technologies
(optical waveguides, furtivity, weapon technologies, etc.). Although the explicit, energy-conserving Finite Dif-
ference Time-Domain (FDTD) method proposed by Yee [33] is still prominent, it lacks two important features
to be easily applicable in industrial contexts. First, the use of structured or block-structured grids is a huge
constraint when a complex geometry is to be analyzed. Second, the accuracy or the efficiency of FDTD methods
are limited when fully curvilinear coordinates are used.

Many different types of methods have been proposed in order to handle complex geometries and heterogeneous
configurations by dealing with unstructured tetrahedral meshes. One can mention Finite Element Time-Domain
(FETD) methods, which have been accelerated using accurate mass lumping [9, 20], mimetic methods [19], or
Finite Volume Time-Domain (FVTD) methods [4, 27, 30], which all fail in being at the same time efficient,
easily extendible to high orders of accuracy, stable, and energy-conserving. The global conservation of the
electromagnetic energy, which is one particular aspect of Yee’s original method, is also achieved for FETD
methods or for FVTD methods based on totally centered numerical fluxes [27], coupled with a centered implicit
time-scheme or an explicit leapfrog time-scheme.

The Discontinuous Galerkin methods enjoy an impressive favor nowadays and are now used in many and
various applications [5], taking advantage of their ability to achieve a high order of accuracy by simply choosing
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suitable basis functions (spectral elements [22], Lagrange high-order polynomials on tetrahedra [12–14]) or to
handle complicated geometries and meshes (including locally-refined [2] and non-conformal grids [32]). The
existing software are mostly based on upwind fluxes and multi-step low-storage Runge-Kutta time-schemes,
which lead to robust and stable, but slightly dissipative Discontinuous Galerkin Time-Domain (DGTD) methods.
However, centered fluxes coupled with an explicit leapfrog time-scheme lead to a convergent, stable, and energy-
conserving DGTD method [10]. This property, which is important for long-term computations, cannot be exactly
obtained with DGTD methods based on upwind fluxes [4, 22, 31], although upwind fluxes lead to more robust
codes, particularly for frequency-domain computations [14].

At the same time, the most popular methods for computational electromagnetics, including FDTD, FVTD or
DGTD methods, cannot deal very easily with configurations involving small devices or details in the geometry.
The use of FDTD methods for these configurations would require fine cartesian grids, quickly becoming un-
manageable for small details in three-dimensional problems. Numerical methods based on finite element meshes
(FVTD, FETD, DGTD) would be able to handle locally refined unstructured grids, but the time-integration
would remain a concern: implicit time-schemes are expensive, while explicit time-schemes have a stability
constraint on the time-step directly related to the smallest elements in the mesh.

In this paper, we propose an original strategy to overcome these difficulties in the particular context where
an energy conservation property is seeked for. The idea is to introduce locally implicit time-integration (the
time scheme is implicit in some parts of the domain and explicit everywhere else) or explicit local time-stepping.
Algorithmic solutions have already been proposed in the literature. High-order localized time-integration tech-
niques, in particular based on recently developed additive Runge-Kutta methods [21], are now available [3]. If
some additional property is seeked for, the situation is more complex. For example, for the transient solution
of hyperbolic conservation laws where several algorithms have been proposed [8, 26], it is not easy to verify a
maximum principle and to maintain high order accuracy. In our context, where a non-dissipative spatial dis-
cretization is used in order to achieve exact energy conservation, efficient local time-stepping is also difficult to
built: a solution for wave propagation with Lagrange multipliers has been proposed [7] and enhanced [1], which
leads however to the solution of a fixed, interface-sized linear system at each time iteration. Another totally
explicit solution was built, which seems to be only consistent in average and then first-order accurate [25].

The algorithm proposed in this paper is directly inspired from the theory of symplectic integrators developed
for the numerical time integration of dynamical Hamiltonian systems. Such methods have been successfully
used in the fields of astronomy and molecular dynamics where numerical accuracy and energy conservation
are very important over large time integration periods [29]. Using traditional methods, very small time steps
are sometimes needed to maintain roughly constant energy throughout a long simulation. On the contrary,
the preservation of the symplectic structure is known to lead to improved conservation of energy in long-term
simulations. As the Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system of
PDEs, people are now considering the use of symplectic schemes for the time discretization in time-domain
simulations [15, 16, 28].

We consider in this paper the application of some particular symplectic schemes to the finite-dimensional
system obtained after space-discretization using a Discontinuous Galerkin method based on totally centered
fluxes, with a particular attention to configurations where different scales in the grid are present. In Section 2,
we recall the basic features of Discontinuous Galerkin space-discretizations of first-order Maxwell’s equations
in the time domain, based on totally centered numerical fluxes. In Section 3, we recall some basic results
concerning symplectic schemes for Hamiltonian systems, with a particular emphasis on partially-implicit schemes
and multi-scale time-schemes. In Section 4, we present two symplectic approaches in the particular context of
DGTD methods for Maxwell’s equations. The second-order accurate algorithms are presented in full details, and
elementary stability properties are proved (energy conservation, boundedness of solutions). Numerical results in
two space dimensions are presented in Section 5 and conclusions and further research and development directions
are summarized in Section 6.
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2. Discontinuous Galerkin method for Maxwell’s system

We consider the Maxwell’s equations in three space dimensions for heterogeneous anisotropic linear media
with no source. The electric permittivity tensor ¯̄ε(x) and the magnetic permeability tensor ¯̄µ(x) are varying
in space and both symmetric positive definite (with uniform strictly positive lower and upper bounds). The

electric field �E and the magnetic field �H verify

¯̄ε∂t
�E = �curl �H, ¯̄µ∂t

�H = − �curl �E, (1)

where the symbol ∂t denotes a time derivative. These equations are set and solved on a bounded polyhedral
domain Ω of R3. For the sake of simplicity, a metallic boundary condition is set everywhere on the domain

boundary ∂Ω, i.e. �n× �E = �0 (where �n) is the unitary outwards normal). We assume we dispose of a partition of
a polyhedral domain Ωh (approximating the regular or Lipschitz-continuous domain of interest Ω) into a finite
number of polyhedra (each one having a finite number of faces). For each polyhedral element Ti, Vi denotes
its volume, and ¯̄εi and ¯̄µi are respectively the local electric permittivity and magnetic permeability tensors
of the medium, which could be varying inside the element Ti. We call face between two finite elements their
intersection, whenever it is a polyhedral surface. We denote by Fh the union of faces and by F int

h = Fh/∂Ωh

the union of internal faces (common to two finite elements). For each internal face aik = Ti

⋂

Tk, we denote by
Sik the measure of aik and by �nik the unitary normal, oriented from Ti towards Tk. The same definitions are
extended to metallic boundary faces (in the intersection of the domain boundary ∂Ωh with a finite element),
the index k corresponding to a fictitious element outside the domain. Finally, we denote by Vi the set of indices
of the neighboring elements of the Ti (having a face in common). We also define the perimeter Pi of Ti by
Pi =

∑

k∈Vi
Sik. We recall the following geometrical property for all elements:

∑

k∈Vi
Sik�nik = 0.

Following the Discontinuous Galerkin approach, the electric and magnetic fields inside each finite element

are seeked for as linear combinations (�Ei, �Hi) of linearly independent basis vector fields �ϕij , 1 ≤ j ≤ di, where
di denotes the local number of scalar degrees of freedom inside Ti. We denote by Pi = Span(�ϕij , 1 ≤ j ≤ di).

The approximate fields (�Eh, �Hh), defined by (∀i, �Eh|Ti
= �Ei, �Hh|Ti

= �Hi) are allowed to be completely
discontinuous across element boundaries. Because of this complete discontinuity, a global variational formulation
cannot be obtained. However, dot-multiplying (1) by any given vector field �ϕ ∈ Pi, integrating over each single
element Ti and integrating by parts, yields















∫

Ti

�ϕ · ¯̄εi∂t
�E = −

∫

∂Ti

�ϕ · (�H× �n) +

∫

Ti

�curl �ϕ · �H,
∫

Ti

�ϕ · ¯̄µi∂t
�H =

∫

∂Ti

�ϕ · (�E × �n) −
∫

Ti

�curl �ϕ · �E.
(2)

In equations (2), we now replace the exact fields �E and �H by the approximate fields �Eh and �Hh in order to
evaluate volume integrals. For integrals over ∂Ti, some additional approximations have to be done since the
approximate fields are discontinuous through element faces. We choose to use completely centered fluxes, i.e.

∀i,∀k ∈ Vi, �E|aik
≃ (�Ei + �Ek)/2, �H|aik

≃ (�Hi + �Hk)/2. The metallic boundary condition on a boundary face
aik (k in the element index of the fictitious neighboring element) is dealt with weakly, in the sense that traces

of fictitious fields �Ek and �Hk are used for the computation of numerical fluxes for the boundary element Ti.

In the present case, where all boundaries are metallic, we simply take �Ek|aik
= −�Ei|aik

and �Hk|aik
= �Hi|aik

.
Replacing surface integrals using centered fluxes in (2) and re-integrating by parts yields



















∫

Ti

�ϕ · ¯̄εi∂t
�E =

1

2

∫

Ti

( �curl �ϕ · �H + �curl �H · �ϕ) − 1

2

∑

k∈Vi

∫

aik

�ϕ · (�Hk × �nik),

∫

Ti

�ϕ · ¯̄εi∂t
�H = −1

2

∫

Ti

( �curl �ϕ · �E + �curl �E · �ϕ) +
1

2

∑

k∈Vi

∫

aik

�ϕ · (�Ek × �nik).
(3)
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We can rewrite this formulation in terms of scalar unknowns. Inside each element, the fields are recomposed

according to �Ei =
∑

1≤j≤di
Eij �ϕij , �Hi =

∑

1≤j≤di
Hij �ϕij . Let us denote by Ei and Hi respectively the

columns (Eil)1≤l≤di
and (Hil)1≤l≤di

. The equations (3) can be rewritten as:















M ǫ
i ∂tEi = KiHi −

∑

k∈Vi

SikHk,

Mµ
i ∂tHi = −KiEi +

∑

k∈Vi

SikEk,
(4)

where the mass matrices M ǫ
i , Mµ

i , and the rigidity matrices Ki are symmetric matrices of size di (the mass
matrices being positive definite), given by

(M ǫ
i )jl =

∫

Ti

t �ϕij ¯̄εi�ϕil, 1 ≤ j, l ≤ di,

(Mµ
i )jl =

∫

Ti

t �ϕij ¯̄µi�ϕil, 1 ≤ j, l ≤ di,

(Ki)jl =
1

2

∫

Ti

(

t �ϕij
�curl�ϕil + t �ϕil

�curl�ϕij

)

,

and for any interface aik, the di × dk rectangular matrix Sik is given by

1 ≤ j ≤ di, 1 ≤ l ≤ dk, (Sik)jl =
1

2

∫

aik

�ϕij · (�ϕkl × �nik). (5)

Finally, if all electric (resp. magnetic) unknowns are regrouped inside column vectors E (resp. H) of size
d =

∑

i di, then the space discretized system (4) can be rewritten as

{

Mǫ∂tE = KH − AH − BH,

Mµ∂tH = −KE + AE − BE,

where we have the following definitions and properties:

• Mǫ, Mµ and K are d × d block diagonal matrices with diagonal blocks equal to M ǫ
i , Mµ

i , and Ki

respectively. Therefore Mǫ and Mµ are symmetric positive definite, and K is symmetric; one can recall
that the matrices M ǫ

i and Mµ
i being block diagonal, time integration with an explicit time-scheme leads

to an almost completely explicit algorithm;
• A also is a d × d block sparse matrix, whose non-zero blocks are equal to Sik when k ∈ Vi is not

fictitious (aik then is an internal face of the grid). Since �nki = −�nik, it can be checked from (5) that
(Sik)jl = (Ski)lj , and then Ski = tSik; then A is symmetric;

• B is a d × d block diagonal matrix, whose non-zero diagonal blocks are equal to Sik when aik is an
metallic boundary face of the grid. In that case, (Sik)jl = − (Sik)lj , and Sik = −tSik; then B is

skew-symmetric (t
B = −B).

One finally obtains that the Maxwell’s equations, discretized using discontinuous Galerkin finite-elements with
centered fluxes and arbitrary local accuracy and basis functions can be written, in function of the matrix
S = K − A − B, in the general form:

{

Mǫ∂tE = SH,

Mµ∂tH = −tSE,
(Mǫ, Mµ symmetric positive definite). (6)

The general form of the system of ordinary differential equations obtained preserves an energy. Indeed, for any
solution of (6), the quantity E ≡ 1

2

(

t
EMǫE + t

HMµH
)

is exactly conserved.
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3. Symplectic schemes for Hamiltonian systems

Symplectic integrators include a variety of different time-discretization schemes designed to preserve the
global symplectic structure of the phase space for a Hamiltonian system. These integrators are well established
for finite-dimensional Hamiltonian systems (see [24] for several references), but their extension to infinite-
dimensional PDEs has not been very extensive. The most part of applications of symplectic schemes have been
devoted to N -body mechanical systems. However, the number of applications of symplectic schemes in the
context of computational electromagnetics is currently growing [16, 28]. Indeed, the Maxwell’s equations can
be written as an infinite-dimensional Hamiltonian system of PDEs. In order to fully exploit the properties of
symplectic schemes, the most commonly used technique to design “symplectic” numerical methods consists in

(1) discretizing the Maxwell’s equations with the numerical method at hand;
(2) considering the finite-dimensional system of ODEs obtained has an input for symplectic methods (an-

other approach uses a symplectic time-integrator of the continuous system [24]).

However, in very few cases only, the discretization of Maxwell’s equations actually leads to a Hamiltonian system
of ODEs. This is the case for some discretizations like Finite Differences [16] or Finite Elements [28], and time
accuracies up to fourth order have been obtained in both cases using symplectic schemes. This is also the
case for Discontinuous Galerkin discretizations based on totally centered fluxes, as was proved in the previous
section.

In N -body mechanical systems for instance, fixed step-size numerical integration leads to difficulties when
particles are very close: the global solution is not far from a singularity (of the Newtonian potential in N -body
mechanical systems) and accuracy should be achieved by reducing the time step. A solution to get rid of these
small time-steps is provided by the implicit midpoint rule, which can also be used with an adaptive time-steps if
it is required. However, in some nonlinear cases, it can be much more expensive than explicit methods, like the
leapfrog-Verlet method. In the computational electromagnetics community, the leapfrog time-scheme is widely
used and would take the following form for the time-integration of (6):











Mǫ En+1 − En

∆t
= SHn+ 1

2 ,

Mµ Hn+ 3
2 − Hn+ 1

2

∆t
= −t

SEn+1.

(7)

Remark. A well-known result concerning the leapfrog scheme is that the following quadratic form En of
numerical unknowns En and Hn+ 1

2 is exactly conserved:

En = t
EnMǫEn +

t
Hn+ 1

2 MµHn- 1
2 .

The quadratic form En (it is actually a quadratic form of En and Hn+ 1
2 after having developed Hn- 1

2 in function

of En and Hn+ 1
2 !) is positive definite if ∆t is small enough (for example ∆t

∥

∥

∥

√
Mµ

−1
S
√

Mǫ
−1

∥

∥

∥
< 2).

The Verlet method used for N -body systems is exactly equivalent, but would be written in a more obviously
reversible way, as:































Mµ Hn+ 1
2 − Hn

∆t/2
= −t

SEn,

Mǫ En+1 − En

∆t
= SHn+ 1

2 ,

Mµ Hn+1 − Hn+ 1
2

∆t/2
= −t

SEn+1.

(8)

The leapfrog writing leads to an equivalent, cheaper two-step algorithm. The Verlet writing allows for the com-
putations of fields at the same time stations. Moreover, it seems the reversible writing leads to many quite easy
enhancements in the scheme. For example, an adaptive Verlet method allows for a stable, energy-conserving,



820 S. PIPERNO

leapfrog-type integration with a varying time-step [18]. Higher-order accurate extensions are available as gen-
eralizations of the Verlet method [17] and some of these extensions have already been applied to Maxwell’s
equations [16, 28]. Fast, multi-scale, regularized integrators are available for Kepler motion or atomic dynam-
ics [23]. Last but not least, two very promising possibilities can be imagined in the context of the present
paper, where the local refinement of the unstructured grid could motivate the use of local time-stepping for the
resolution of the system of ODEs (6):

• while the energy-preserving coupling of the leapfrog method and on the implicit midpoint-rule remains
a non-obvious question, the coupling of the Verlet method with the midpoint rule is quite easy, and
will be presented in the next section; it would allow, for example, the time-integration of Maxwell’s
equations with a locally implicit time-scheme;

• the totally explicit integration of symplectic systems with different time-steps (i.e. local time-stepping)
is already available [11]. It is globally second-order accurate and symplectic, thus leading to the con-
servation of some approximate energy. This kind of algorithm (totally explicit, globally second-order
accurate, energy preserving, stable) has been seeked for for many years. A simplified version will be pre-
sented in the next section too. A very elegant solution with Lagrange multipliers has been proposed [7]
and enhanced [1], which leads however to the solution of a fixed linear system at each iteration. An-
other totally explicit solution was built, which seems to be only consistent in average and then first-order
accurate [25].

4. Symplectic schemes designed for locally refined meshes

In this section, we present two particular symplectic algorithms designed for the particular case where a
DGTD method is used for the time-domain solution of Maxwell’s equations on unstructured meshes where
some geometrical details or flaws in the mesh generator lead to locally refined grids. In that case, the classical
explicit leapfrog time discretization, which is very efficient and simple, has stability constraints which reduces
the possible time-step to an upper bound directly proportional to the smallest edge of the mesh, which can be
unmanageable. Two solution algorithms are proposed herein. In the first one, the idea is to use a midpoint rule
in a limited number of elements where the stability constraint is too severe. In the second one, the algorithm
proposed is fully explicit and local time-stepping is introduced. In both cases, the algorithms obtained are
stable and non-dissipative, i.e. some discrete electromagnetic energy is exactly conserved.

4.1. A locally-implicit symplectic scheme

We first consider a case where the set of elements has been partitioned into two classes: one made of
particularly small elements and the other one gathering all other elements. We assume this partition has
been done once and for all, before the beginning of the time-domain simulation and is based for example on
geometrical and physical criteria. At this stage, there is no need of a particular assumption on the connectivity
of the set of “small” or “large” elements. The “small” elements will be handled using an implicit midpoint rule,
while all other elements will be time-advanced using a Verlet method.

Using notations inspired from domain decomposition algorithms, we denote with an “e” (resp. “i”) subscript
unknowns and matrices related to the explicit (resp. implicit) subdomain. Unknowns are reordered such that
explicit elements and unknowns are numbered first, i.e.

E =

(

Ee

Ei

)

, H =

(

He

Hi

)

,

and the block-diagonal matrices Mǫ, Mµ, K and B are decomposed as

Mǫ =

(

Mǫ
e Od

Od Mǫ
i

)

, Mµ =

(

Mµ
e Od

Od M
µ
i

)

, K =

(

Ke Od

Od Ki

)

, B =

(

Be Od

Od Bi

)

,
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where Mǫ
e/i and M

µ
e/i are symmetric positive definite, Ke/i are symmetric, and Be are skew-symmetric. The

non-block diagonal matrix A, corresponding to interfaces fluxes is decomposed into

A =

(

Aee Aei

Aie Aii

)

,

where Aee and Aii are symmetric and Aei = t
Aie. Finally, defining the two symmetric matrices Se = Ke−Aee+Be

and Si = Ki − Aii + Bi, the system of ordinary differential equations (6) can be rewritten as

{

Mǫ
e∂tEe = SeHe − AeiHi,

Mµ
e ∂tHe = −t

SeEe + AeiEi,
{

Mǫ
i∂tEi = SiHi − AieHe,

M
µ
i ∂tHi = −tSiEi + AieEe.

We propose the following implicit-explicit algorithm: starting from unknowns at time tn = n∆t, we perform
the three following sub-steps:

(1) we time-advance of ∆t/2 the explicit domain with a pseudo-forward-Euler scheme;
(2) we time-advance of ∆t the implicit domain with the implicit midpoint rule;
(3) we time-advance of ∆t/2 the explicit domain again with the reversed pseudo-forward-Euler scheme.

The whole algorithm reads:



















Mµ
e

H
n+ 1

2
e − Hn

e

∆t/2
= −t

SeEn
e + AeiE

n
i ,

Mǫ
e

E
n+ 1

2
e − En

e

∆t/2
= SeH

n+ 1
2

e − AeiH
n
i ,











Mǫ
i

En+1
i − En

i

∆t
= Si

Hn
i + Hn+1

i

2
− AieH

n+ 1
2

e ,

M
µ
i

Hn+1
i − Hn

i

∆t
= −t

Si
En

i + En+1
i

2
+ AieE

n+ 1
2

e ,



















Mǫ
e

En+1
e − E

n+ 1
2

e

∆t/2
= SeH

n+ 1
2

e − AeiH
n+1
i ,

Mµ
e

Hn+1
e − H

n+ 1
2

e

∆t/2
= −tSeEn+1

e + AeiE
n+1
i ,

(9)

Remark. This algorithm is obviously reversible. It can be sequentially read as made of five operations, the
central one corresponding to the implicit midpoint-rule for the “implicit” subdomain. One can verify that,
if the two subdomains are disconnected (i.e. Aei = Od), this algorithm reduces to the juxtaposition of the
Verlet-method for the “explicit” subdomain and the midpoint-rule for the “implicit” subdomain.

Stability. The stability of the algorithm (9) can be shown using an energy approach. We have the following
result:
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Lemma 4.1. The following quadratic form En of numerical unknowns En
e , En

i , Hn
e , and Hn

i is exactly conserved
(i.e. En+1 = En) through a time step of algorithm (9):

En = En
e + En

i + En
c with















En
e = t

En
e Mǫ

eEn
e +

t

H
n+

1
2

e Mµ
e H

n-
1
2

e ,

En
i = t

En
i Mǫ

iE
n
i + t

Hn
i M

µ
i Hn

i ,

En
c = −∆t2

4
tHn

i
tAei (Mǫ

e)
−1

AeiH
n
i .

(10)

Proof. Simple calculations yield that the variation of the “explicit” energy En
e through the time step is given by:

En+1
e = En

e + 2∆t

(

t

H
n+ 1

2
e Aei

En
i + En+1

i

2
−

t
En

e + En+1
e

2
Aei

Hn
i + Hn+1

i

2

)

.

Similarly, the variation of the “implicit” energy En
i through the time step is given by:

En+1
i = En

i + 2∆t

(

t
Hn

i + Hn+1
e

2
AieE

n+ 1
2

e −
t
En

i + En+1
i

2
AieH

n+ 1
2

e

)

.

Recalling that Aei = t
Aie, one gets

En+1
e + En+1

i = En
e + En

i − ∆t
t (

En
e − 2E

n+ 1
2

e + En+1
e

)

Aei
Hn

i + Hn+1
i

2
.

Subtracting the second equation of (9) to the fifth one, one gets

Mǫ
e

En+1
e − 2E

n+ 1
2

e + En
e

∆t/2
= Aei

(

Hn
i − Hn+1

i

)

.

Reporting this result in the equation above leads to

En+1
e + En+1

i = En
e + En

i +
∆t2

4

t (

Hn+1
i − Hn

i

)

t
Aei (Mǫ

e)
−1

Aei

(

Hn
i + Hn+1

i

)

.

The matrix t
Aei (Mǫ

e)
−1

Aei being symmetric, one finally gets

En+1
e + En+1

i = En
e + En

i +
∆t2

4

(

t
Hn+1

i
tAei (Mǫ

e)
−1

AeiH
n+1
i − t

Hn
i

tAei (Mǫ
e)

−1
AeiH

n
i

)

= En
e + En

i + En
c − En+1

c ,

which concludes the proof. �

Remark. One can easily show that the explicit-implicit coupled algorithm (9) is stable for ∆t small enough
(for ∆t small enough, the total energy En

e is a positive definite quadratic form of unknowns). A more closer
investigation is required to determine if a sufficient condition on ∆t for having a stable coupled scheme is that
the explicit Verlet scheme alone is stable.

Remark. It is interesting to notice that En
e and En

c can be recombined into a more compact expression:

En
e + En

c =
t (

En
e +

∆t

2
(Mǫ

e)
−1

AeiH
n
i

)

Mǫ
e

(

En
e − ∆t

2
(Mǫ

e)
−1

AeiH
n
i

)

+
t

H
n+ 1

2
e Mµ

e H
n- 1

2
e .
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Figure 1. Algorithm R2(∆t): the nine sub-steps are detailed from 1 to 9.

4.2. A multi-scale fully-explicit symplectic scheme

The fully explicit algorithm proposed in this section is directly inspired from the one introduced by Hardy
et al. [11]. In this paper, the authors propose a second-order accurate symplectic integration scheme for N -body
problems with multiple time stepping, i.e. the atoms or bodies are time-advanced simultaneously with different
time steps. In their papers, the authors consider the general case where successive classes of bodies have
corresponding time steps being multiple of the next one, the choice of powers of 2 being probably the most
efficient in general. We present here a less general version, with time steps given as ∆t/2k where ∆t is the
global time step of the algorithm. To make things clear, we assume that:

(1) the set of elements has been partitioned into N classes;
(2) this partition has been done once and for all, before the beginning of the time-domain simulation and

is based for example on geometrical or physical criteria;
(3) the global time step of the algorithm is ∆t; for 1 ≤ k ≤ N , elements of the class k will be time-advanced

using the Verlet method with the local time step ∆t/2N−k; thus the larger elements should lie in class
N and the smallest in class 1.

4.2.1. Recursive definition of the algorithm

Let us denote by RN (τ) the algorithm for advancing in time N classes over the time interval τ > 0. We
define RN(τ) in a recursive way. We decide that the algorithm R1(τ) with only one class is exactly the Verlet
method (8) with ∆t = τ . For any N ≥ 1, if RN (τ) is well defined, we define RN+1(τ) by:

(1) start with all unknowns at time tn = n∆t;
(2) advance all elements with class k ≤ N with RN(∆t/2); if required, use values at time tn for unknowns

in elements of class N + 1;
(3) advance all elements with class k = N + 1 with the Verlet method (i.e. R1(∆t)); if required, use values

at time tn + ∆t/2 for unknowns in elements of class k ≤ N ;
(4) advance all elements with class k ≤ N with RN(∆t/2); if required, use values at time tn+1 for unknowns

in elements of class N + 1;
(5) all unknowns at time tn+1 = tn + ∆t have been computed.

Remark. The reader can check that this algorithm does not require any additional storage and remains
completely explicit. It is reversible, symplectic, second-order accurate and conserves an energy [11]. We again
refer to [11] where the authors have also proposed accelerations for the computation of forces or fluxes in
nonlinear N -body mechanical systems.
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4.2.2. The algorithm R2(∆t)

Let us consider the case where N = 2 (we recall the case N = 1 is exactly the Verlet method (8)). As in the
previous section, the subscripts k ∈ {1, 2} denote the class of the elements and replace the subscripts e and i.
Elements are reordered and matrices are substructured as in the explicit-implicit coupling case. The algorithm
R2(∆t) is described in Figure 1.

It can be thoroughly developed as follows:















































































































































Step 1. M
µ
1

H
n+ 1

4

1 − Hn
1

∆t/4
= −t

S1En
1 + A12En

2 ,

Step 2. Mǫ
1

E
n+ 1

2

1 − En
1

∆t/2
= S1H

n+ 1
4

1 − A12Hn
2 ,

Step 3. M
µ
1

H
n+ 1

2

1 − H
n+ 1

4

1

∆t/4
= −t

S1E
n+ 1

2

1 + A12En
2 ,

Step 4. M
µ
2

H
n+ 1

2

2 − Hn
2

∆t/2
= −tS2En

2 + A21E
n+ 1

2

1 ,

Step 5. Mǫ
2

En+1
2 − En

2

∆t
= S2H

n+ 1
2

2 − A21H
n+ 1

2

1 ,

Step 6. M
µ
2

Hn+1
2 − H

n+ 1
2

2

∆t/2
= −tS2En+1

2 + A21E
n+ 1

2

1 ,

Step 7. M
µ
1

H
n+ 3

4

1 − H
n+ 1

2

1

∆t/4
= −t

S1E
n+ 1

2

1 + A12En+1
2 ,

Step 8. Mǫ
1

En+1
1 − E

n+ 1
2

1

∆t/2
= S1H

n+ 3
4

1 − A12Hn+1
2 ,

Step 9. M
µ
1

Hn+1
1 − H

n+ 3
4

1

∆t/4
= −t

S1En+1
1 + A12En+1

2 .

(11)

Energy conservation and stability. The stability of the algorithm (11) can be shown using the theory of
symplectic schemes. Hence, it does not yield in general an explicit expression of the energy which is conserved.
Such an expression can be obtained using a not so classical energy approach. However, the computations are
tedious and the generalizations to more complex versions RN (∆t) with N > 2 seems a difficult task. We begin
with the following lemma on a sub-scaled reversible scheme built on implicit midpoint rules:

Lemma 4.2. Consider the following midpoint-rule-based sub-scaled scheme:



























MXXn+
1
2 = MXXn + ∆t

2

(

AX
Xn+Xn+

1
2

2 + BY n

)

,

MY Y n+1 = MY Y n + ∆t
(

AY
Y n+Y n+1

2 − tBXn+
1
2

)

,

MXXn+1 = MXXn+
1
2 + ∆t

2

(

AX
Xn+

1
2 +Xn+1

2 + BY n+1

)

,

where X and Y denote vectors in Rd (the sizes could be different) and MX , MY , AX , AY , and B are d × d
square matrices with the additional assumptions that MX and MY are symmetric positive definite matrices, and
tAX = −AX , tAY = −AY . Then,
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(i) the following symmetric quadratic form is exactly conserved:

En =

t(

Xn

Y n

) (

MX − ∆t2

16
tAXM−1

X AX
∆t2

8 AXM−1
X B

∆t2

8
tBM−1

X
tAX MY − ∆t2

4
tBM−1

X B

) (

Xn

Y n

)

.

(ii) for ∆t small enough, this quadratic form is positive definite, therefore the scheme is stable (solutions
(Xn, Y n)n∈N are bounded).

(iii) a sufficient stability condition on ∆t is that

ρmax

(

tAXM−1
X AX −2AXM−1

X B

−2tBM−1
X

tAX 4tBM−1
X B

)

∆t2 < 16 min (ρmin(MX), ρmin(MY )) ,

where ρmin(M) (resp. ρmax(M)) denotes the smallest (resp. largest) eigenvalue of a real symmetric
matrix M .

Proof. Let us introduce the following simplifying notations: X̄ ≡ (Xn + Xn+1)/2, Ȳ ≡ (Y n + Y n+1)/2,
δX ≡ Xn+1−Xn, Ȳ ≡ (Y n +Y n+1)/2. Simple calculations based on the equations describing the scheme yield:

MXδX = ∆tAXX̄ + ∆tBȲ − ∆t2

16
AXM−1

X AXδX − ∆t2

8
AXM−1

X BδY,

MY δY = ∆tAY Ȳ − ∆ttBX̄ +
∆t2

8
tBM−1

X AXδX +
∆t2

4
tBM−1

X BδY.

This can be rewritten into

(

MX − ∆t2

16
tAXM−1

X AX
∆t2

8 AXM−1
X B

∆t2

8
tBM−1

X
tAX MY − ∆t2

4
tBM−1

X B

)(

δX

δY

)

= ∆t

(

AX B

−tB AY

) (

X̄

Ȳ

)

.

The matrix in the left hand side being symmetric and the one in the right and side being skew-symmetric, the
proof of (i) follows simply. For ∆t small, the energy matrix is close to the block-diagonal matrix (MX , MY )
which is positive definite, then for ∆t small enough, the proposed quadratic form is also positive definite. More
precisely, the condition given in (iii) is a sufficient condition for that. Then the energy provides a norm, and
for this norm the solutions (Xn, Y n)n∈N are bounded, which ends the proof. �

We now propose some manipulations of the nine different steps in algorithm R2 given in (11). They are
summed up in the next lemma.

Lemma 4.3. The three groups of three steps of algorithm R2 given in (11) can be rewritten in the following form:

Steps 1.2.3. ⇐⇒ M
[∆t

2
]

1 F
n+

1
2

1 = M
[∆t

2
]

1 Fn
1 +

∆t

2
P1

Fn
1 + F

n+
1
2

1

2
+

∆t

2
Q1Fn

2 ,

Steps 4.5.6. ⇐⇒ M
[∆t]
2 Fn+1

2 = M
[∆t]
2 Fn

2 + ∆t P2
Fn

2 + Fn+1
2

2
+ ∆t Q2F

n+
1
2

1 ,

Steps 7.8.9. ⇐⇒ M
[∆t

2
]

1 Fn+1
1 = M

[∆t

2
]

1 F
n+

1
2

1 +
∆t

2
P1

F
n+

1
2

1 + Fn+1
1

2
+

∆t

2
Q1Fn+1

2 ,



826 S. PIPERNO

∆t

∆t

2

∆t

2

∆t

2

∆t

2

∆t

4

∆t

4

∆t

4

∆t

4

∆t

4

∆t

4

∆t

4

∆t

4

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

tn

tn+1
3

H E H EH E
1 1 22 3

1
2

3
5

4

6
7

8
9

10

11

12

13

15
16

17

18
19

20
21

14

Figure 2. Algorithm R3(∆t): the twenty-one sub-steps are detailed from 1 to 21.

where we have used the following notations: ∀θ ∈ {1, 2}, ∀τ ,

Pθ =

(

0 Sθ

−tSθ 0

)

, Fn
θ =

(

En
θ

Hn
θ

)

, M
[τ ]
θ =

(

Mǫ
θ − τ2

4 Sθ (Mµ
θ )

−1 tSθ 0

0 M
µ
θ

)

,

Q1 =

(

0 −A12

A12 0

)

, Q2 =

(

0 −A21

A21 0

)

.

Proof. The proof is pure calculation. For the sake of simplicity, we give here the main stages corresponding to

steps 4.5.6. Starting from the expressions in (11) for steps 4.5.6, the idea is to get rid of H
n+ 1

2

2 by adding and
subtracting the two equations corresponding to steps 4 and 6. We have:

M
µ
2

(

Hn+1
2 − Hn

2

)

= −∆t t
S2

En
2 + En+1

2

2
+ ∆t A21E

n+ 1
2

1 , (12)

H
n+ 1

2

2 =
Hn

2 + Hn+1
2

2
+

∆t

4
(Mµ

2 )
−1 (

t
S2En+1

2 + En
2

)

,

and, using this result inside the equation corresponding to step 5, we get

Mǫ
2

En+1
2 − En

2

∆t
= S2

Hn
2 + Hn+1

2

2
+

∆t

4
S2 (Mµ

2 )
−1 (

t
S2En+1

2 + En
2

)

− A21H
n+ 1

2

1 . (13)

Finally, grouping (12) and (13) leads to the result of the lemma for steps 4.5.6. �

Remark. We just proved that the algorithm R2 given in (11) can be seen as a particular occurrence of the the
midpoint-rule-based sub-scaled scheme of Lemma 4.2, with the following values:

{

Xn = Fn
1 ,

Y n = Fn
2 ,

{

AX = P1,

AY = P2,

{

MX = M
[∆t

2
]

1 ,

MY = M
[∆t]
2 ,

B = Q1,

and we have verified that MX , MY are symmetric positive definite matrices (for ∆t small enough), AX and AY

are skew-symmetric and Q2 = −tQ1. This leads to the following energy conservation and stability theorem:

Theorem 4.4. The algorithm R2 given in (11) conserves an energy and is stable (the solutions computed for
given initial values are bounded) if ∆t is small enough.
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Figure 3. Algorithm R4(∆t): the forty-five sub-steps are detailed from 1 to 45.

Proof. The proof is explained in the preceding remark. For ∆t small enough, more precisely, if M
[∆t

2
]

1 and M
[∆t]
2

are positive definite, and if the condition on ∆t given in Lemma 4.2 is satisfied for the above values for the
matrices, then the algorithm conserves an energy which is a positive definite quadratic norm of the unknowns.
The set of conditions on ∆t writes































Mǫ
1 −

∆t2

16
S1 (Mµ

1 )
−1 t

S1 is positive definite

Mǫ
2 −

∆t2

4
S2 (Mµ

2 )
−1 t

S2 is positive definite

ρmax

(

tAXM−1
X AX −2AXM−1

X B

−2tBM−1
X

tAX 4tBM−1
X B

)

∆t2 < 16 min (ρmin(MX), ρmin(MY )) ,

which is verified for ∆t small enough. �

4.2.3. The algorithms R3(∆t) and R4(∆t)

We consider the case where N = 3 (resp. N = 4). Again, the subscripts k ∈ {1, 2, 3} (resp. k ∈ {1, 2, 3, 4})
denote the class of the elements, elements are reordered and matrices are substructured as previously. The
algorithm R3(∆t) and R4(∆t) are described in Figures 2 and 3 respectively.

5. Numerical results

The locally implicit algorithm of Section 4.1 has not been implemented yet. This section is devoted to
numerical results obtained with the local time-stepping algorithm of Section 4.2.

We consider here the homogeneous Maxwell equations in two space dimensions and in the TE case. The
unknown fields are Ex, Ey, and Hz and satisfy the following equations and reflecting boundary condition:











∂tEx = ∂yHz,

∂tEy = −∂xHz ,

∂tHz = ∂yEx − ∂xEy,

with Exny − Eynx = 0 on Γ.

These equations are equivalent to the acoustics equations in homogeneous medium, where the unknowns are
the pressure perturbation p and the velocity perturbation (horizontal u and vertical v components), p ↔ Hz ,
u ↔ Ey, v ↔ −Ex, and the perfectly reflecting condition of electromagnetic waves corresponds to a perfect slip
boundary condition for acoustics �u · �m = 0.
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Table 1. Characteristics of mesh generated on the unit square for the accuracy study.

Mesh # Vertices # Elements hmin hmax

M4 23 32 0.214 0.336

M3 81 132 0.094 0.188

M2 279 500 0.048 0.097

M1 1038 1962 0.023 0.052

The first part of this section is devoted to the numerical investigation of the impact of local time-stepping on
the accuracy. The following sections report numerical results obtained on toy problems where detailed structures
are involved.

5.1. Impact of local time-stepping on the accuracy

In this section, we investigate the impact of local-time stepping on the global accuracy of the numerical
solution. Let us recall the known results on the accuracy of the DGTD method used in this paper. Let is
introduce the largest element diameter h in the mesh. Using the method of lines (i.e. before time discretization
and after Discontinuous Galerkin space discretization), the semi-discretized method based on Pk polynomials
inside all elements yields an error in hk if totally centered fluxes are used [10] and in hk+1 if upwind fluxes are
used [13]. Although upwind fluxes lead to slightly dissipative but more robust schemes, it is well known they do
not cope well with leapfrog-type time schemes (the use of RKDG-scheme is a possible way to get high accuracy
in both time and space [6], but the global stability of algorithms using locally adapted time steps is still to be
proved). At the same time, a study on the accuracy of Discontinuous Galerkin methods with variable spatial
discretization (for instance a polynomial degree k being spatially variable) could be conducted. The aim of this
paper being to concentrate on local time-stepping, we intend to assess the accuracy of the time-discretization
algorithm, assuming the “fixed-k” Pk Discontinuous Galerkin spatial discretization is used.

We consider a totally reflecting unit square cavity for which acoustic eigenmodes are given by











p = ω cos(πnxx) cos(πnyy) cos(ωt),

u = πnx sin(πnxx) cos(πnyy) sin(ωt),

v = πny cos(πnxx) sin(πnyy) sin(ωt),

with ω2 = π2(n2
x + n2

y). We consider the (1, 1)-mode (i.e. nx = ny = 1). For all computations, the initial

approximate solution is obtained via element-wise L2-projection on Pk polynomials over each element, a suffi-
ciently accurate quadrature formula being used (we have chosen a quadrature exact for polynomials of degree
up to 15). At the end of each computation (final time T = 1), we compute the L2-norm of the difference
between the discontinuous approximate solution and the element-wise L2-projection on Pk of the exact solution
(the difference between this projection and the very smooth exact solution is in O(hk+1)).

In order to discriminate space and time discretization errors, we have chosen to use unstructured quasi-
uniform grids. We have built four unstructured but regular grids M4, M3, M2, and M1 (each one being twice
finer than the previous one). The characteristics of these meshes are given in Table 1.

We first verified the convergence of the Pk-DGTD method based on totally centered fluxes and the Verlet
time-integration scheme. We obtained the errors (in L2-norm) reported in Table 2. The time step ∆t used
is derived from the Courant number ν ≡ ∆t/hmin, and the Pk-DGTD is numerically proved to be stable for
ν ≤ νk (with ν0 ≃ 0.768, ν1 ≃ 0.252, ν2 ≃ 0.133, ν3 ≃ 0.085, ν4 ≃ 0.0584, etc.). For all computations, the
Courant number was chosen as a fraction of ν̃k = 0.9 νk. In a general setting, the L2-norm of the error should
be bound by e ≤ ckhk

max + Kt∆t2, where ck and Kt should be mesh- and time-step-independent constants. In
our context where hmax/hmin is bound, we get e ≤ ckhk + cth

2ν2 (where we have simply used h = hmax and
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Table 2. L2-norm of the error at time T = 1, using the Verlet method.

M4 k = 1 k = 2 k = 3 k = 4

ν = ν̃k/1 4.71 × 10−2 4.64 × 10−3 5.24 × 10−5 5.66 × 10−5

ν = ν̃k/2 4.69 × 10−2 4.64 × 10−3 5.21 × 10−5 4.06 × 10−5

ν = ν̃k/4 4.69 × 10−2 4.63 × 10−3 5.20 × 10−5 4.00 × 10−5

ν = ν̃k/8 4.69 × 10−2 4.63 × 10−3 5.21 × 10−5 3.99 × 10−5

ν = ν̃k/16 4.69 × 10−2 4.64 × 10−3 5.21 × 10−5 3.99 × 10−5

ν = ν̃k/32 4.69 × 10−2 4.64 × 10−3 5.20 × 10−5 3.99 × 10−5

ν = ν̃k/64 4.69 × 10−2 4.64 × 10−3 5.20 × 10−5 3.99 × 10−5

M3 k = 1 k = 2 k = 3 k = 4

ν = ν̃k/1 2.30 × 10−2 1.11 × 10−3 7.78 × 10−5 1.04 × 10−5

ν = ν̃k/2 2.30 × 10−2 1.11 × 10−3 7.62 × 10−5 3.36 × 10−6

ν = ν̃k/4 2.30 × 10−2 1.11 × 10−3 7.62 × 10−5 2.32 × 10−6

ν = ν̃k/8 2.30 × 10−2 1.11 × 10−3 7.62 × 10−5 2.27 × 10−6

ν = ν̃k/16 2.30 × 10−2 1.11 × 10−3 7.62 × 10−5 2.27 × 10−6

ν = ν̃k/32 2.30 × 10−2 1.11 × 10−3 7.62 × 10−5 2.27 × 10−6

ν = ν̃k/64 2.30 × 10−2 1.11 × 10−3 7.62 × 10−5 2.27 × 10−6

M2 k = 1 k = 2 k = 3 k = 4

ν = ν̃k/1 1.15 × 10−2 2.42 × 10−4 1.12 × 10−5 2.96 × 10−6

ν = ν̃k/2 1.15 × 10−2 2.42 × 10−4 9.71 × 10−6 7.50 × 10−7

ν = ν̃k/4 1.15 × 10−2 2.42 × 10−4 9.65 × 10−6 2.24 × 10−7

ν = ν̃k/8 1.15 × 10−2 2.42 × 10−4 9.65 × 10−6 1.35 × 10−7

ν = ν̃k/16 1.16 × 10−2 2.42 × 10−4 9.65 × 10−6 1.31 × 10−7

ν = ν̃k/32 1.16 × 10−2 2.42 × 10−4 9.65 × 10−6 1.31 × 10−7

ν = ν̃k/64 1.16 × 10−2 2.42 × 10−4 9.65 × 10−6 1.31 × 10−7

M1 k = 1 k = 2 k = 3 k = 4

ν = ν̃k/1 5.76 × 10−3 4.90 × 10−5 1.71 × 10−6 6.01 × 10−7

ν = ν̃k/2 5.76 × 10−3 4.90 × 10−5 1.21 × 10−6 1.50 × 10−7

ν = ν̃k/4 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 3.81 × 10−8

ν = ν̃k/8 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 1.13 × 10−8

ν = ν̃k/16 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 6.81 × 10−9

ν = ν̃k/32 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 6.61 × 10−9

ν = ν̃k/64 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 6.59 × 10−9

with ct is also a mesh- and time-step-independent constant). In view of the results in Table 2, many remarks
can be made:

• for k = 1, the spatial errors prevail (∀ ν ≤ 1) and the convergence according to e ∼ c1h is confirmed;
• for k = 2, the spatial and time errors have the same order but the space errors seem (in this particular

case) dominant. The convergence according to e ∼ O(h2) is also confirmed;
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Table 3. Study of the time accuracy of Verlet method (based on the L2-norm of the error at
time T = 1); for a given mesh, the error behaves like O(∆t2).

k = 4 M1 M2 M3

e(ν̃k/1) − e(ν → 0) 5.95 × 10−7 2.83 × 10−6 8.13 × 10−7

e(ν̃k/2) − e(ν → 0) 1.44 × 10−7 6.19 × 10−7 1.09 × 10−7

e(ν̃k/4) − e(ν → 0) 3.15 × 10−8 9.30 × 10−8 5.00 × 10−8
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Figure 4. Time-step classes on the regular mesh (left) and the irregular mesh (right) of the unit square.

• for k = 3 and k = 4, the observed limit for e when ν → 0 is close to the expected O(hk);
• for k > 2, the time errors prevail when ν ∼ νk. The value of e(ν) − e(ν → 0) actually behaves like

O(ν2), i.e. O(∆t2) (it appears more clearly for k = 4). We have given in Table 3 the successive values
for e(ν) − e(ν → 0) for k = 4 and different ν.

In a second series of computations, we have used the R3(∆t) algorithm on the same meshes in order to compare
easily the errors obtained to those obtained with the classical R1(∆t) Verlet method. In order to actually use
different classes of elements, we have artificially reduced the admissible time step in given zones: the global
time step used ∆t is the same as for the corresponding computation using the Verlet method, but the time step
is ∆t/2 if the distance to the center is less than 0.1333 and ∆t/4 if it is smaller than 0.2. The time step classes
are shown on the regular mesh of the square in Figure 4 (left).

The L2-norms of the error at time T = 1 are given in Table 4 for the meshes M1 and M2. The results are
similar to those obtained with the standard Verlet method. The algorithm is second-order accurate in time: the
errors due to time discretization are masked for k = 1, and the variation of these errors is clearly in O(∆t2),
with a larger constant than for the Verlet method though.

It is interesting to note that, in general, the error obtained with the R3(∆t) algorithm is larger than the one
obtained with the Verlet method with ∆t. This means that the local time-stepping should not be used as a way
to obtain a better accuracy (although more computations are performed than with the Verlet method for the
same macro time step ∆t). It should rather be seen as a way to accelerate the computation. This conclusion
should also be moderated by the fact that the local-time stepping zone is quite large in the test cases considered.

Finally, we have made additional computations showing the accuracy obtained with local time-stepping in
a typical case where the mesh is locally – and only locally – refined. We have used the mesh of the square
shown on the right part of Figure 4. We have given in Table 5 the L2-norm of the error at time T = 10 for
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Table 4. L2-norm of the error at time T = 1, using the R3(∆t) algorithm.

M2 k = 1 k = 2 k = 3 k = 4

ν = ν̃k/1 1.16 × 10−2 2.56 × 10−4 6.55 × 10−5 4.80 × 10−5

ν = ν̃k/2 1.16 × 10−2 2.43 × 10−4 1.87 × 10−5 1.19 × 10−5

ν = ν̃k/4 1.15 × 10−2 2.42 × 10−4 1.04 × 10−5 2.98 × 10−6

ν = ν̃k/8 1.15 × 10−2 2.42 × 10−4 9.71 × 10−6 7.54 × 10−7

ν = ν̃k/16 1.16 × 10−2 2.42 × 10−4 9.65 × 10−6 2.24 × 10−7

ν = ν̃k/32 1.16 × 10−2 2.42 × 10−4 9.65 × 10−6 1.38 × 10−7

ν = ν̃k/64 1.16 × 10−2 2.42 × 10−4 9.65 × 10−6 1.31 × 10−7

M1 k = 1 k = 2 k = 3 k = 4

ν = ν̃k/1 5.76 × 10−3 6.33 × 10−5 3.18 × 10−5 2.34 × 10−5

ν = ν̃k/2 5.76 × 10−3 5.01 × 10−5 7.98 × 10−6 5.81 × 10−6

ν = ν̃k/4 5.76 × 10−3 4.91 × 10−5 2.29 × 10−6 1.45 × 10−6

ν = ν̃k/8 5.76 × 10−3 4.90 × 10−5 1.28 × 10−6 3.63 × 10−7

ν = ν̃k/16 5.76 × 10−3 4.90 × 10−5 1.20 × 10−6 9.08 × 10−8

ν = ν̃k/32 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 2.35 × 10−8

ν = ν̃k/64 5.76 × 10−3 4.90 × 10−5 1.19 × 10−6 8.63 × 10−9

Table 5. L2-norm of the error at time T = 10 on a locally refined mesh.

Verlet method ∆t error cpu

k = 1 3.21 × 10−4 1.62 × 10−2 32

k = 2 1.70 × 10−4 2.42 × 10−4 131

k = 3 1.08 × 10−4 9.44 × 10−6 428

k = 4 7.45 × 10−5 1.35 × 10−7 1210

R4(∆t) ∆t error cpu

k = 1 2.57 × 10−3 1.63 × 10−2 10

k = 2 1.36 × 10−3 2.43 × 10−4 35

k = 3 8.67 × 10−4 1.19 × 10−5 104

k = 4 5.96 × 10−4 3.90 × 10−6 284

computations using Pk polynomials with 1 ≤ k ≤ 4, with ν = ν̃k and with both the Verlet method and the
R4(∆t) algorithm.

For k < 4, the influence of local time-stepping on the global error is not important. However, it is perceptible
for k = 4. A way to improve these results should consist in using local time stepping along with more than
second-order accurate symplectic time-schemes. A related problem of constructing more than second-order
accurate local time-stepping schemes remains open.
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Figure 5. Unstructured triangular mesh for the “waves” toy problem.

Table 6. Comparison of CPU times and gain between algorithms R7, R1, and a classical
leapfrog implementation (7).

Algorithm R7(3.54 ms) R1(6.06 µs) leapfrog (7, 6.06 µs)

CPU time 2412 11 820 7880

Gain (vs. leapfrog) 3.68 0.67 1

5.2. Test-case with a typical unstructured mesh

We have imagined a first toy problem where the propagation of waves in an homogeneous medium is confined
in a completely reflecting cavity. In order to have different scales in the geometry, the cavity has be designed
the following way:

• the cavity is an ellipse (2 m × 1.6 m);
• inside the cavity, a small geometrical detail is located on the right focus (the detail is the word “waves”);

the characteristic size for the whole detail is nearly 0.1 m, with small elements like the thickness of the
letters smaller than 0.01 m; the boundary of the detail is also perfectly reflecting;

• the initial condition is a p/Hz pulse (for the acoustic equations) located at the other focus, such that
the solution should refocus exactly on the other focus and scatter on the detail.

We have generated an unstructured mesh using a commercial mesh generator (with no indication on the sizes of
elements, except for the domain boundaries which were meshed according to the local geometrical characteristic
length). The mesh obtained contains 3883 vertices and 7258 elements. Successive zooms of the mesh are shown
in Figure 5.

One can see that the size of the elements in the mesh obtained is varying quite smoothly. One can also
notice that the mesh generator has produced triangular elements with bad aspect ratio, which will lead locally
to small admissible time steps.

We report here the computed results of two simulations up to time T = 8 s with the P4-DGTD method
introduced in Section 2 (the fields are described with polynomials of degree at most 4 inside elements). For
both computations, some local admissible time step ∆ti is computed inside each element Ti. It is directly
proportional to the smallest height of the element. Then,
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T = 1 s

T = 2 s

T = 3 s

T = 4 s

Figure 6. waves-cavity: algorithm R7(3.54 ms) (left) vs. algorithm R1(6.06 µs) (right).
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T = 5 s

T = 6 s

T = 7 s

T = 8 s

Figure 7. waves-cavity: algorithm R7(3.54 ms) (left) vs. algorithm R1(6.06 µs) (right).
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T = 4 s

T = 5 s

T = 6 s

Figure 8. waves-cavity (zoom): algorithm R7(3.54 ms) (left) vs. algorithm R1(6.06 µs) (right).

• in a “reference” computation, we have used the algorithm R1(∆t) with ∆t ≡ mini(∆ti);
• in a “multi-scale” computation we have used the algorithm R7(∆t) with ∆t ≡ maxi(∆ti)/1.999: the

number of 7 classes was reached simply because, in this particular mesh, 26 mini(∆ti) < maxi(∆ti) <
27 mini(∆ti). For each element, the class ci of the element was set such that 2ci−7 < ∆ti/∆t < 2ci−6

(thus the element with the largest ∆ti – i.e. 2∆t > ∆ti > ∆t – is of class ci = 7). The reader must
realize that the time step actually used in the smallest elements (with ci = 1) is ∆t/64.

Results for the p/Hz field obtained with both simulations are shown at integer times in Figures 6 and 7. Zooms
on the waves-detail (p/Hz field) obtained with both simulations are shown in Figure 8. Contours of u/Ey

and v/ − Ex components are shown near the waves-detail in Figure 9. Singularities near corners are partially
obtained. Finally, we must compare the CPU times obtained for both computations. The CPU times (obtained
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Figure 9. waves-cavity (zoom): u/Ey (left) and v/ − Ex (right) near the waves-detail,
obtained with algorithm R7(3.54 ms).

Figure 10. Unstructured triangular mesh for the square inclusion problem.

Table 7. Comparison of CPU times and gain between algorithms R10, R1, and a classical
leapfrog implementation (7).

Algorithm R10(2.6 ms) R1(6.16 µs) leapfrog (7, 6.16 µs)

CPU time 527 29 040 19 360

Gain (vs. leapfrog) 36.7 0.67 1

on a linux PC with 3.4 Ghz Pentium IV processor) are given in Table 6. We have added a third column with
the CPU time which should have been obtained with a classical leapfrog implementation (7) instead of (8), i.e.
only two-thirds of the CPU time of algorithm R1. For this particular case, the computational time is reduced
by a factor 3.68. This reduction is strongly related to the distribution of element sizes over the mesh. In the
present case, the automatically generated mesh has a smoothly varying element-size, and the gain obtained is
quite typical (it is reasonable to think that this gain is not far from a lower bound). The aim of the second
computation is to show cases where the gain might be much larger.
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Table 8. Comparison of CPU times and gain between algorithms R11, R1, and a classical
leapfrog implementation (7).

Algorithm R11(2.6 ms) R1(3.54 µs) leapfrog (7, 3.54 µs)

CPU time 7958 58 212 38 808

Gain (vs. leapfrog) 4.88 0.67 1

5.3. Test-case with a strongly refined unstructured mesh

We consider a second test-case where the mesh has been designed to be strongly refined in a limited area.
We have considered the same elliptic domain as previously, but the reflecting inclusion is now a square of size
0.2 mm centered at the right focus of the ellipse (the mesh is conforming and refined inside a square of size
0.01 m also centered at the focus). The mesh obtained contains 1017 vertices and 1958 elements. The mesh
partitioning leads to ten classes of elements, i.e. the smallest elements are time-advanced 512 times more often
than the largest elements. A zoom of the mesh near the square is shown in Figure 10. Contours of the fields
obtained with the algorithm R10(2.6 ms) are shown in Figure 11.

Since the mesh is quite coarse, we have used in this section the P5-DGTD (the fields are described with
polynomials of degree at most 5 inside elements). The CPU times obtained with the different time schemes
considered are given in Table 7.

For this particular case, the computational time is reduced by a factor near 37! This reduction is due to the
fact that 45% of elements are time-advanced only every global time-step, 43% twice more often, and only 10%
four times often or more. This gain is not surprising, since the existence of small elements is not a concern for
the multi-scale algorithm while it leads to a proportionally smaller time step for the classical algorithm, i.e. a
conversely growing computational time.

5.4. Test-case with a detailed structure

We consider a last test-case with a more complex geometry. The elliptic domain encloses again a reflecting
inclusion centered at the right focus of the ellipse. The device is a circular array of 0.2 mm square, set at a
distance equal to 1 mm from the focus. The mesh obtained contains 1176 vertices and 2254 elements. The
mesh partitioning leads to eleven classes of elements, i.e. the smallest elements are time-advanced 1024 times
more often than the largest elements. A zoom of the mesh near the square is shown in Figure 12. Contours of
the fields obtained with the algorithm R11(2.6 ms) are shown in Figure 13.

We have also used in this section the P5-DGTD (the fields are described with polynomials of degree at most
5 inside elements). The CPU times obtained with the different time schemes considered are given in Table 8.

For this particular case, the computational time is reduced by a factor near 5. This smaller reduction is due
to the fact that 80% of elements are time-advanced at most 4 times per global time-step, but 11% of elements
are time-advanced at most 512 times per global time-step (the refined zone of the mesh is more significant).

6. Conclusion

In this paper, we have presented two symplectic algorithms which are able to perform a reversible, energy-
conserving, second-order accurate, stable, and adaptive time-integration of the Maxwell’s equations after dis-
cretization on unstructured meshes using the Discontinuous Galerkin method. The main conclusion is that, if
totally centered numerical fluxes are to be used, in order to have no numerical dissipation at all, local time-
stepping can overcome the stability limit set by the leapfrog time-scheme.

This kind of algorithm can be particularly valuable if the mesh is distorted or locally refined, i.e. the mesh
is refined in a very limited area, for example around a geometrical detail. Two ways have been proposed in
this paper. The first one relies on a simple implicit/explicit coupled algorithm. It has not been implemented
but is the most promising for configurations where the unstructured mesh at hand has very small elements and
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Figure 11. Square inclusion: p/Hz (top), u/Ey (middle), and v/ − Ex (bottom) near the
inclusion, obtained with algorithm R10(2.6 ms) at t = 4 s (extremal values for contours on the
right have been adapted).

is difficult to restore. Another totally explicit algorithm, with no additional storage, has been proposed, and
leads to very efficient implementations, at least in two space dimensions.

Further works will deal with the implementation of the locally implicit scheme, and with implementations in
three space dimensions, the latter being quite straightforward because the algorithms can be seen as time-step
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Figure 12. Unstructured triangular mesh near the circular array.

 

 

 

Figure 13. Square inclusion: p/Hz (top), u/Ey (middle), and v/ − Ex (bottom) near the
inclusion, obtained with algorithm R11(2.6 ms) at t = 4 s (extremal values for contours on the
zooms have been adapted).
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reorganizations only. The main difficult task will certainly consist in obtaining an efficient parallel implemen-
tation of these local time-stepping algorithm. In particular, mesh partitioning and message passing have to be
optimized. Another promising research direction concerns the use of more than second-order accurate symplectic
time schemes.
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