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Abstract

It is well known that symplectic Runge-Kutta and Partitioned Runge-Kutta
methods exactly preserve quadratic first integrals (invariants of motion) of the sys-
tem being integrated. While this property is often seen as a mere curiosity (it does
not hold for arbitrary first integrals), it plays an important role in the computation
of numerical sensitivities, optimal control theory and Lagrangian mechanics, as de-
scribed in this paper, which, together with some new material, presents in a unified
way a number of results now scattered or implicit in the literature. Some widely
used procedures, such as the direct method in optimal control theory and the com-
putation of sensitivities via reverse accumulation imply ‘hidden’ integrations with
symplectic Partitioned Runge-Kutta schemes.
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1 Introduction
Symplectic Runge-Kutta (RK) [22], [28], [36] and Partitioned Runge-Kutta (PRK) [1],
[37] formulae were introduced to integrate Hamiltonian systems in long time intervals.
They are defined in terms of a purely geometric property and provided the first widely
studied instance of what it was later termed geometric integration [29]. While it is
well known that symplectic RK methods exactly preserve all quadratic first integrals
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(invariants of motion) of the system being integrated, such a property is often seen
as a curiosity: it does not hold for arbitrary first integrals. The aim of this paper is
to emphasize that the conservation of quadratic invariants plays an important role in
the computation of numerical sensitivities, in optimal control theory and in classical
mechanics. Actually, some widely used procedures, such as the direct method in opti-
mal control theory and the computation of sensitivities via reverse accumulation imply
‘hidden’ integrations with symplectic PRK schemes; therefore the theory of symplectic
PRK integration should be helpful in understanding such procedures.

The paper presents, in what we hope is a coherent way, some new results together
with results that are already available in the literature of different communities. It is
not always the case that such known results appear in their sources in the unifying lan-
guage used here. In order to cater for a variety of possible readers, this paper is written
without assuming much background. We hope it will help researchers in optimal con-
trol to better understand RK schemes and, similarly, encourage RK experts to consider
sensitivities and optimal control problems.

Section 2 provides background on numerical integrators. We introduce the neces-
sary notation and recall a number of properties of symplectic RK and related schemes.
In particular, we quote some results (Theorems 1, 3) that ensure the exact preservation
by the integrator of quadratic conservation laws; such a preservation is the linchpin of
the paper.

Section 3 is devoted to the integration of the adjoint variational equations used to
perform sensitivity analysis. While it is well known that an RK methodM applied to
the variational equations of a system S automatically produces the variational equations
for the discretisation of S by means ofM (Theorem 5), the situation for the adjoints is
more complicated, cf. [34]. There are three cases of increasing complexity:

• S is integrated with a symplectic RK schemeM. Then the application ofM to
the adjoint equations of S produces the adjoint equations for discretisation of S
by means ofM (Theorem 6).

• S is integrated with a non-symplectic RK schemeMwith non-vanishing weights.
Then, the adjoint equations for the discretisation are obtained by integrating the
adjoint equations of S with a different set of RK coefficients, so that the overall
procedure is a symplectic PRK method (Theorem 7). The recipe for the adjoint
coefficients is given in formula (41) below. The method used for the adjoint
equations will in general be of lower order than the RK schemeM used for the
main integration and will also have different stability properties. For these rea-
sons non-symplectic methods M should be used with care. The computation
of sensitivities of the discrete solution via automatic differentiation with reverse
accummulation implicitly provides the symplectic PRK integration of the adjoint
equations with coefficients (41) (Theorem 8).

• S is integrated with a non-symplectic RK scheme M having one or more null
weights. Then, to obtain the adjoint equations of the discretisation, the contin-
uous adjoint equations have to be integrated with a fancy integrator outside the
RK class (Appendix A). Again an order reduction is likely to take place and
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again the fancy integration is implicitly performed whenever differentiation with
reverse accumulation is used.

Section 4 deals with the Mayer optimal control problem in the case of uncon-
strained controls. The situation there is quite similar to that in the preceding section
(the case of vanishing weights is discussed in Appendix A):

• For a symplectic RK method, commutation [26] takes place : the discretisation
of the continuous first order conditions necessary for optimality provides the first
order necessary conditions for the discrete solution (Theorem 10).

• When the equations for the states are discretised with a non-symplectic RK
scheme with non-vanishing weights, to achieve commutation the costate equa-
tions have to be integrated by means of a clever set of coefficients that does
not coincide with the set used for the states (Theorem 10). With this clever
set, the overall integration (states+costates) is performed with a symplectic PRK
method. In general, an order reduction will take place for states, costates and
controls. As first noted by Hager [15], the required set of coefficients is alterna-
tively defined, not by imposing symplecticness of the integration, but by using
the direct approach, i.e. by minimising the cost in the discrete realm with the
help of Lagrange multipliers (Theorem 11).

For a symplectic RK or PRK integration of the system for states and costates, the
direct and indirect approach are mathematically equivalent. When a non-symplectic
PRK is used in the indirect approach, the discrete solution cannot be reached via the
direct approach, which always implies a symplectic integration of the states+costates
system.

Some extensions are presented in Section 5. Section 6 is devoted to classical me-
chanics. Hamilton’s variational principle may of course be viewed as a control prob-
lem: it is a matter of minimising a functional subject to differential constraints. As it
is well known, the application of the theory of optimal control to this situation repli-
cates the standard procedure to obtain Hamilton’s canonical equations from Hamilton’s
principle. In the discrete realm, this process provides the variational derivation of sym-
plectic PRK integrators, originally due to Suris [37].

There are two appendices with more technical material. The first deals with the
problem of how to ‘supplement’ a given non-symplectic RK method with vanishing
weights so as to have a symplectic algorithm for partitioned systems. The second
relates the contents of the paper and the theory of reflection and transposition of RK
coefficients introduced by Schrerer and Türke [32].

In order not to clutter the exposition with unwanted details, I shall not be concerned
with technical issues such as existence of solutions of implicit integrators, smoothness
requirements and so on. These may be very important in some circumstances (e.g.
smoothness poses difficulties if the controls are constrained, see [9]).
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2 Numerical integrators
In this section we review some results on RK and related methods. For more details
the reader is referred to [31], [5], [17], [19], [20].

2.1 Runge-Kutta schemes
An RK method with s stages is specified by s2 + 2s numbers

aij , i, j = 1, . . . , s, bi, ci, i = 1, . . . , s. (1)

Given a D-dimensional differential system, F : RD × R→ RD,

d

dt
y = F (y, t), (2)

to be studied in an interval, t0 ≤ t ≤ t0 + T , and an initial condition

y(t0) = A ∈ RD, (3)

the method (1) finds approximations yn to the values y(tn), n = 0, 1, . . . , N , of the
solution of (2)–(3), t0 < t1 < · · · < tN = t0 + T , by setting y0 = A and, recursively,

yn+1 = yn + hn

s∑
i=1

biKn,i, n = 0, 1 . . . , N − 1. (4)

Here hn = tn+1 − tn denotes the step-length and Kn,i, i = 1, . . . , s, are the ‘slopes’

Kn,i = F (Yn,i, tn + cihn) (5)

at the so-called internal stages Yn,i. The vectors Yn,1,. . . , Yn,s are in turn defined by
the relations

Yn,i = yn + hn

s∑
j=1

aijKn,j , i = 1, . . . , s. (6)

In the particular case where the matrix (aij) is, perhaps after renumbering the stages,
lower triangular (explicit RK methods), the stages are computed recursively from (5)–
(6). In the general case, (5)–(6) provides, for each n, a system of coupled equations to
be solved for the stages.

The internal stages should not be confused with the values yn output by the in-
tegrator and may merely be regarded as auxiliary variables. Alternatively, the vector
Yn,i is sometimes viewed as an approximation to the off-step value y(tn + cihn). It
is important to emphasise that the differences y(tn + cihn) − Yn,i are typically much
larger than the differences y(tn)− yn.

When the system (2) is autonomous, i.e. F = F (y), the ci play no role. At the
other end of the spectrum, if F is independent of y, the RK discretisation amounts to
the use in the interval t0 ≤ t ≤ t0 + T of the composite quadrature rule based on the
abscissas ci and the weights bi.
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An RK scheme is said to possess order ρ if, for t0 ≤ tn ≤ t0 + T and smooth
problems, |yn − y(tn)| = O(hρ), where h = maxn hn. The expansion of the local
truncation error in powers of the step-length hn includes, for each power hkn, k =
1, 2, . . . , one or several elementary differentials of F ; an integrator has order ≥ ρ if
and only if, in that expansion, the coefficients of the elementary differentials of orders
k = 1, . . . , ρ vanish. For instance, the relations (order conditions)

s∑
i=1

bi = 1,

s∑
i,j=1

biaij =
1

2
,

s∑
i,j,k=1

biaijajk =
1

6
,

s∑
i,j,k=1

biaijaik =
1

3
, (7)

ensure order at least 3 for autonomous problems. They correspond to the elementary
differentials F (of order 1), (∂yF )F (of order 2) and (∂yF )(∂yF )F , (∂2yyF )[F, F ]
(both of order 3) (∂yF is the Jacobian matrix and ∂2yyF the tensor of second deriva-
tives). Since the work of Butcher in the early 1960’s, order conditions and elementary
differentials are studied with the help of graphs. To impose order ≥ ρ for autonomous
problems, there is an independent order condition for each rooted tree with ρ or fewer
vertices. Most, but not all, useful RK schemes satisfy ci =

∑
j aij for each i; for them

order ρ for autonomous problems implies order ρ for all problems.
The present paper is based on the following 1987 result of Cooper [8]. It ensures

that some RK methods automatically inherit the quadratic conservation laws possessed
by the system being integrated.

Theorem 1 Assume that the system (2) possesses a quadratic first integral I , i.e. I(·, ·)
is a real-valued bilinear mapping in RD×RD such that, for eachA and t0, the solution
y(t) of (2)–(3) satisfies (d/dt)I(y(t), y(t)) ≡ 0. The relations

biaij + bjaji − bibj = 0, i, j = 1, . . . , s, (8)

guarantee that, for each RK trajectory {yn} satisfying (4)–(6), I(yn, yn) is indepen-
dent of n.

We shall not reproduce here the proof of this result; it is similar to that of Theorem
3 below. The relations (8) are essentially necessary for an RK scheme to conserve
each quadratic first integral of each differential system [17, Chapter VI, Theorems 7.6,
7.10].

In many applications the system (2) is Hamiltonian. This means that D is even
and, after writing y = [qT, pT]T, F = [fT, gT]T, with q, p, f, g ∈ Rd, d = D/2, there
exists a real-valued function H(p, q, t) (the Hamiltonian) such that fr = ∂H/∂pr,
gr = −∂H/∂qr, r = 1, . . . , d (superscripts indicate components). Hamiltonian sys-
tems are characterised geometrically by the symplectic property of the corresponding
solution flow [2]. When d = 1, simplecticness means conservation of oriented area;
in higher dimensions a similar but more complicated interpretation exists. It is often
advisable [31], [17], [23] to integrate Hamiltonian problems by means of so-called
symplectic algorithms, i.e. algorithms such that the transformation yn 7→ yn+1 in R2d

is symplectic; those algorithms are particularly advisable in integrations where the in-
terval t0 ≤ t ≤ t0+T is long (for a recent reference in that connection, see [11], which
is part of a project to integrate the solar system over a 60 million year interval). Using
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the method of modified equations [14], each numerical solution may (approximately)
be interpreted as a true solution of a nearby differential system called the modified
system. For symplectic methods applied to Hamiltonian systems, the modified system
is Hamiltonian; for non-symplectic discretisations, the modified system, while close
to the system being integrated, is not Hamiltonian and this fact is likely to imply a
substantial distortion of the long-time dynamics [31], [17].

The first symplectic integrators were constructed in an ad hoc way; it was later
discovered (independently by Lasagni [22], Suris [36] and the present author [28]) that
the class of RK methods contains many symplectic schemes:

Theorem 2 Assume that the system (2) is Hamiltonian. The relations (8) guarantee
that the mapping yn 7→ yn+1 defined in (4)–(6) is symplectic.

The proof of Theorem 2, not included here, is very similar to the proof of Theorem
1. Just as for the conservation of quadratic first integrals, it turns out, see [31], Section
6.5, that the relations (8) are essentially necessary for yn 7→ yn+1 to be symplectic for
each Hamiltonian system.

The set of relations (8) thus ensures two different properties: quadratic conserva-
tion and symplecticness. These two properties are not unrelated: symplecticness may
be viewed a consequence of the quadratic conservation because, as noted in [3], the
preservation of the symplectic structure by a Hamiltonian solution flow may be in-
terpreted as a bilinear first integral of the solution flow of the associated variational
system.

The symplectic character of RK schemes satisfying (8) has attracted much attention
in view of the importance of Hamiltonian systems in the applications. On the other
hand, it is fair to say that quadratic conservation has been largely unnoticed or even
disregarded as a mere curiosity. For this reason, while schemes satisfying (8) could
have been called conservative, the following terminology is standard:

Definition 1 The RK scheme (1) is called symplectic (or canonical) if (8) holds.

Our focus in this paper is on symplectic schemes in as far as they conserve quadratic
invariants, as these are actually crucial in several applications. The discussion of any
possible benefits derived from the symplectic character of the map yn 7→ yn+1, in-
cluding the existence of modified Hamiltonian systems, are out of our scope here. The
paper [7] is, in this sense, complementary to the present work.

It was proved in [30] that the relations (8) act as simplifying assumptions vis-à-vis
the order conditions: once these relations are imposed, the order conditions correspond-
ing to the different elementary differentials/rooted trees are no longer independent. For
instance, it is a simple exercise to show that, when (8) holds, the second order condi-
tion in (7) is a consequence of the first and therefore symplectic RK schemes of order
≥ 1 automatically possess order ≥ 2. Similarly the last order condition in (7) is a
consequence of the first three. In this way, for a general RK methods to have order
≥ 3 for autonomous problems, there are 4 order conditions; for symplectic methods
the number is only 2. For a symplectic RK method to have order ≥ ρ for autonomous
problems there is an order condition for each so-called non-superfluous free tree with
≤ ρ vertices.
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There are many symplectic RK methods [31] including the Gauss methods (of max-
imal order 2s and positive weights) as first shown in [28]; however no symplectic RK
scheme is explicit.

2.2 Partitioned Runge-Kutta schemes
In some applications the components of the vector y in (2) appear partitioned into two
blocks: y = [qT, pT]T, q ∈ RD−d, p ∈ Rd. Hamiltonian problems, where d = D/2,
provide an example, as we have just seen. In those cases it may make sense to use a set
of coefficients (1) for the integration of the block q and a second set

Aij , i, j = 1, . . . , s, Bi, Ci, i = 1, . . . , s, (9)

for the integration of the block p. (There is no loss of generality in assuming that the
number of stages s in (9) coincides with that in (1): see [31] Remark 3.2.) The overall
method is called a PRK scheme. PRK methods are not a mathematical nicety: the
Verlet algorithm, the method of choice in molecular dynamics [33] is one of them. A
more precise description follows.

Denote by F = [fT, gT]T, f ∈ RD−d, g ∈ Rd the partitioning of F induced by the
partitioning of y, so that (2) reads

d

dt
q = f(q, p, t),

d

dt
p = g(q, p, t); (10)

then the equations for the step n→ n+ 1 of the PRK method (1), (9) are

qn+1 = qn+hn

s∑
i=1

bikn,i, pn+1 = pn+hn

s∑
i=1

Bi`n,i, n = 0, . . . , N −1, (11)

where

kn,i = f(Qn,i, Pn,i, tn + cihn), `n,i = g(Qn,i, Pn,i, tn + Cihn), (12)

and the internal stages Qn,i, Pn,i, i = 1, . . . , s, are defined by the relations

Qn,i = qn + hn

s∑
i=1

aijkn,j , Pn,i = pn + hn

s∑
j=1

Aij`n,j . (13)

Clearly an RK scheme may be regarded as a particular instance of a PRK method
where the two sets (1), (9) happen to coincide. For PRK methods to possess order ≥ ρ
for autonomous problems, there is an order condition associated with each bicolour
rooted tree with ρ or less vertices (see e.g. [17, Chapter III]). For order ≥ 2 the order
conditions are: ∑

i bi = 1,
∑
iBi = 1, (14)∑

ij biaij = 1
2 ,

∑
ij biAij = 1

2 ,
∑
ij Biaij = 1

2 ,
∑
ij BiAij = 1

2 ; (15)

they correspond to the elementary differentials f , g, (∂xf)f , (∂xf)g, (∂xg)f , (∂xg)g
respectively. It will be important later to note that, if the PRK (1), (9) has order ρ,
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then the RK scheme with coefficients (1) and the RK scheme with coefficients (9) have
both order ρ. The converse it is not true: if (1) and (9) are the coefficients of two RK
schemes of order ρ, then the combined PRK scheme may have order < ρ. This is plain
in (15), where the second and third relations are necessary for the PRK to have order
≥ 2 but are obviously not required for (1) and (9) to be the coefficients of two different
RK schemes of order ≥ 2.

For PRK methods, the result corresponding to Theorem 1 is (cf. [17, Chapter IV,
Theorem 2.4], where only the autonomous case is envisaged):

Theorem 3 Assume that S(·, ·) is a real-valued bilinear map in Rd×RD−d such that,
for each t0 and A, the solution y(t) = [q(t)T, p(t)T]T of (3), (10), satisfies

d

dt
S(q(t), p(t)) ≡ 0.

The relations

bi = Bi, i = 1, . . . , s, biAij +Bjaji − biBj = 0, i, j = 1, . . . , s, (16)

and
ci = Ci, i = 1, . . . , s, (17)

guarantee that, for each PRK trajectory satisfying (11)–(13), S(qn, pn) is independent
of n.

As in the case of RK methods, the condition in the theorem is necessary for con-
servation to hold for all S and all partitioned differential systems, see [17, Chapter
VI, Theorems 7.6, 7.10]. In the particular case of autonomous problems the abscissas
play no role. Thus, to achieve conservation, it is not necessary to impose the condition
(17) whenever f and g are independent of t. Note that the theorem only applies to
a quadratic function of the form S(q, p) which is not the most general possible; for
instance the inner product qTq is not included in that format.

Before proving the theorem we present a simple algebraic auxiliary result that will
be used repeatedly later in other contexts.

Lemma 1 Let qn, pn, Qi, Pi, kn,i, `n,i be arbitrary vectors satisfying (11) and (13).
If S is bilinear and (16) holds, then

S(qn+1, pn+1)− S(qn, pn) = hn
∑
i

bi

(
S(kn,i, Pn,i) + S(Qn,i, `n,i)

)
. (18)

Proof: Since S is bilinear, we may write from (11)

S(qn+1, pn+1)− S(qn, pn) = hn
∑
i

biS(kn,i, pn) + hn
∑
j

BjS(qn, `n,j)

+ h2n
∑
ij

biBjS(kn,i, `n,j).
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Now use (13) to eliminate qn and pn from the right-hand side:

S(qn+1, pn+1)− S(qn, pn) = hn
∑
i

biS(kn,i, Pn,i − hn
∑
j

Aij`n,j)

+hn
∑
j

BjS(Qn,j −
∑
i

ajikn,i, `n,j)

+ h2n
∑
ij

biBjS(kn,i, `n,j).

In view of the bilinearity and (16), the proof is complete. 2

Proof of the theorem: Conservation of S implies that S(f(q, p, t), p)+S(q, g(q, p, t)) ≡
0, because, along each solution q(t), p(t),

S
( d
dt
q(t), p(t)

)
+ S

(
q(t),

d

dt
p(t)

)
=

d

dt
S(q(t), p(t)) = 0.

Therefore (12) and (17) entail that the right-hand side of (18) vanishes. 2

For the preservation of the symplectic structure, the result (derived in [37] and [1]
independently) is:

Theorem 4 Assume that the system (10) is Hamiltonian. The relations (16)–(17) guar-
antee that the mapping (qn, pn) 7→ (qn+1, pn+1) defined in (11)–(13) is symplectic.

The conditions (16)–(17) are essentially necessary for symplecticness [31] and
hence the following definition:

Definition 2 The PRK scheme (1), (9) is called symplectic if (16)–(17) hold.

If the PRK is symplectic, there is a reduction in the number of independent order
conditions; the classes of equivalent order conditions were first described by Hairer
[16]. An alternative treatment (see [25]) based on so-called H-trees was given by Murua
in his 1995 thesis, cf. [4]. For instance, for a symplectic PRK method to have order≥ 4
it is necessary to impose 13 order conditions: for general PRK methods that number is
36.

3 Variational systems and their adjoints
We now explore the role of symplectic RK schemes when integrating adjoint varia-
tional systems. A comprehensive discussion of the use of adjoints to determine sensi-
tivities is not within our scope here. The paper [12] provides a general introduction,
together with applications to aerodynamics. Applications of adjoints to atmospheric
models are discussed in [27]. Of course the idea of an adjoint problem is not restricted
to differential equations; see [6] for an early paper describing a very general frame-
work.
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3.1 The continuous problem: quadratic conservation
In this section we consider a d-dimensional differential system

d

dt
x = f(x, t). (19)

We denote by α ∈ Rd the corresponding initial value and by x̄(t) the solution that
arises from the perturbed initial condition x̄(t0) = α+ η. Linearisation of (19) around
x(t) shows that, as |η| → 0, x̄(t) = x(t) + δ(t) + o(|η|), where δ solves the (linear)
variational system (see e.g. [19] Section I.14)

d

dt
δ = ∂xf(x(t), t) δ, (20)

(∂xf is the Jacobian matrix of f with respect to x). Thus, when x(t) is known, solving
for δ(t0 + T ) the initial-value problem given by (20) and δ(t0) = η yields an estimate
for the change in solution x̄(t)− x(t).

The adjoint system of (20) is given by

d

dt
λ = −∂xf(x(t), t)T λ. (21)

(To avoid confusion, variables in this paper are always column vectors; from a math-
ematical point of view it would have been better to write sensitivities, Lagrange mul-
tipliers and momenta as row vectors, as they belong to the dual space of the space of
states.) The right-hand side in (21) has been chosen in such a way that the the following
proposition is valid. More precisely, it is best to think that the adjoint is the system for
which (23) below holds.

Proposition 1 For each x, δ, λ ∈ Rd and real t:(
− ∂xf(x, t)T λ

)T
δ + λT∂xf(x, t)δ = 0.

Therefore if δ(t) and λ(t) are arbitrary solutions of (20), (21) respectively, then

d

dt
λ(t)Tδ(t) =

( d
dt
λ(t)

)T
δ(t) + λ(t)T

( d
dt
δ(t)

)
≡ 0 (22)

and accordingly
λ(t0 + T )Tδ(t0 + T ) = λ(t0)Tδ(t0). (23)

Why is the adjoint system useful? Regard η as a parameter and assume that we are
interested in finding ωTδ(t0 + T ) for fixed ω ∈ Rd, i.e. in estimating, at the final time
t0 +T , the change along the direction of ω of the solution of (19) induced by the initial
perturbation α 7→ α+ η. (For instance choosing ω equal to the r-th co-ordinate vector
would correspond to estimating the change in the r-th component of the solution.)
When x(t) is known, we solve (21) with the final condition λ(t0 + T ) = ω and note
that the quantity we seek coincides with λ(t0)Tη because, from the proposition,

ωTδ(t0 + T ) = λ(t0 + T )Tδ(t0 + T ) = λ(t0)Tδ(t0) = λ(t0)Tη.
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The advantage of this procedure is that, as η varies, the computation of λ(t0)Tη requires
only one integration of (21); the computation of ωTδ(t0 + T ) via (20) would need a
fresh integration for each new choice of η.

As an application, consider the task of computing the gradient, ∇αC(x(t0 + T )),
of a real-valued function C with respect to the initial data α. We set ω = ∇xC(x(t0 +
T )) in the preceding construction and successively let the r-th coordinate vector, r =
1, . . . , d, play the role of η to conclude that the gradient sought has the value λ(t0)
where λ(t) is the solution of the adjoint system with final condition λ(t0 + T ) =
∇xC(x(t0 + T )). Only one integration is required to find d derivatives ∂/∂αr. The
adjoint system (21) ‘pulls back’ gradients with respect to x(t0 +T ) into gradients with
respect to x(t0).

3.2 The continuous problem: Lagrange multipliers
We shall also need an alternative derivation of the recipe ∇αC(x(t0 + T )) = λ(t0)
just found. Since the use of Lagrange multipliers (see e.g. [12, Section 2.5]) in this
connection (as distinct from their use in minimisation) may not be known to some read-
ers, we give full details (see e.g. [12, Section 2.5]). Define the Lagrangian functional
L = L(α̂, x̂, λ̂0, λ̂)

L = C(x̂(t0 + T ))− λT0
(
x̂(t0)− α̂

)
−
∫ t0+T

t0

λ̂(t)T
( d
dt
x̂(t)− f(x̂(t), t)

)
dt,

where, α̂, λ̂0 are arbitrary vectors, x̂, λ̂ arbitrary functions. Whenever x̂ is a solution
of (19) and x̂(t0) = α̂, the value of L(α̂, x̂, λ̂0, λ̂) coincides with C(x̂(t0 + T )).

If η and δ are the variations in α and x̂ respectively, the variation δL of the func-
tional is

δL = ∇xC(x̂(t0 + T ))Tδ(t0 + T )− λ̂T0
(
δ(t0)− η

)
−
∫ t0+T

t0

λ̂(t)T
( d
dt
δ(t)− ∂xf(x̂(t), t)δ(t)

)
dt;

so that, after integration by parts,

δL =
(
∇xC(x̂(t0 + T ))− λ̂(t0 + T )

)T
δ(t0 + T ) + λ̂(t0)Tη

+
(
λ̂(t0)− λ̂0

)T
δ(t0)

+

∫ t0+T

t0

( d
dt
λ̂(t)T δ(t) + λ̂(t)T∂xf(x̂(t), t)δ(t)

)
dt.

We now make specific choices λ0, λ for the (so far arbitrary) multipliers; we impose
the requirements (21), λ0 = λ(t0), and λ(t0 + T ) = ∇xC(x(t0 + T )). This choice
ensures that, at x, α, the intermediate variation δ(t) does not contribute to δL; we then
have, at x, α, δL = λ(t0)Tη and therefore λ(t0) = ∇αC(x(t0 + T )). The original
system (19) and the initial condition may also be retrieved from the Lagrangian by
making zero the variations with respect to λ̂ and λ̂0 respectively.

11



The same approach may also be used if we wish to make things more involved and
introduce the velocities (d/dx)x̂ = k̂ as new arguments in the Lagrangian. Dropping
the hat to simplify the notation, the Lagrangian becomes

L = C(x(t0 + T ))− λT0
(
x(t0)− α

)
−
∫ t0+T

t0

λ(t)T
( d
dt
x(t)− k(t)

)
dt

−
∫ t0+T

t0

Λ(t)T
(
k(t)− f(x(t), t)

)
dt. (24)

(Note that while, for extra clarity, different symbols were used before for the argu-
ment x̂ in the Lagrangian and the solution x of the initial value problem that features
in C(x(t0 + T )), we shall not be so careful hereafter.) Taking variations and choos-
ing the multipliers to cancel the undesired contributions to δL, leads to the relations
λ(t0) = ∇αC(x(t0 + T )), λ(t0 + T ) = ∇xC(x(t0 + T )), λ0 = λ(t0) found above
and, additionally, to Λ(t) ≡ λ(t) (as expected).

3.3 The discrete problem: RK integration
Let us suppose that (19) has been discretised by means of the RK scheme (1) to get,
n = 0, . . . , N − 1,

xn+1 = xn + hn

s∑
i=1

bikn,i, (25)

kn,i = f(Xn,i, tn + cihn), i = 1, . . . , s, (26)

Xn,i = xn + hn

s∑
j=1

aijkn,j , i = 1, . . . , s, (27)

and that, in analogy with the preceding material, we wish to estimate the impact on xN
of a perturbation of the initial condition x0 = α. Linearisation of the RK equations
(25)–(27) around xn, Xn,i shows that the perturbed RK solution x̄n, n = 0, . . . , N ,
satisfies x̄n = xn + δn + o(|η|) with

δn+1 = δn + hn

s∑
i=1

bidn,i, (28)

dn,i = ∂xf(Xn,i, tn + cihn)∆n,i, i = 1, . . . , s, (29)

∆n,i = δn + hn

s∑
j=1

aijdn,j , i = 1, . . . , s (30)

(the vectors dn,i and ∆n,i are the variations in the slopes kn,i and stages Xn,i respec-
tively).

On the other hand, if we regard the given differential equations (19) together with
the variational equations (20) as a 2d-dimensional system for the vector y = [xT, δT]T

and apply the RK scheme as in (4)–(6), we also arrive at (25)–(30). We have thus
proved, as in, say, [17, Chapter VI, Lemma 4.1]:
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Theorem 5 The processes of RK discretisation and forming variational equations com-
mute: the RK discretisation of the continuous variational equations (19)–(20) yields the
variational equations (25)–(30) for the RK discretisation.

The situation for the adjoint equations is not quite as neat (cf. [34]). In order to
find the discrete sensitivity ωTδN we would like to numerically integrate (21) with final
condition λN = ω in such a way that (cf. (23))

λTNδN = λT0 δ0. (31)

Although in actual computation the approximations λn are to be found without using
the equations (28)–(30) for δn (this is the whole point behind the use of adjoints),
let us consider for a moment the 3d-dimensional system (19)–(21) for the extended
vector y = [xT, δT, λT]T. Then the condition (31) demands that we integrate this large
system in such a way as to exactly preserve the invariant I(y(t), y(t)) = λ(t)Tδ(t) in
(22). According to Theorem 1, we may achieve this goal by using the RK scheme (1)
provided that it is symplectic. This results in the relations (25)–(30) in tandem with
(n = 0, . . . , N − 1):

λn+1 = λn + hn

s∑
i=1

bi`n,i, (32)

`n,i = −∂xf(Xn,i, tn + cihn)TΛn,i, i = 1, . . . , s, (33)

Λn,i = λn + hn

s∑
j=1

aij`n,j , i = 1, . . . , s. (34)

Let us summarise the preceding discussion:

Theorem 6 Assume that the 3d-dimensional system (19)–(21) is discretised by a sym-
plectic RK scheme (1). Then for any RK solution (31) holds. In particular, for the
RK solution specified by the initial condition x0 = α, δ0 = η together with the final
condition λN = ω,

ωTδN = λT0 η.

For a non-symplectic RK scheme of order ρ, ωTδN and λT0 η are approximations
of order ρ to their continuous counterparts ωTδ(t0 + T ) and λ(t0)Tη respectively and
therefore λT0 η will be a O(hρ) approximation to the true sensitivity ωTδN of the dis-
crete solution.

In practice, the variational equations (20) do not need to be integrated. We succes-
sively find x0, x1, . . . , xN via (25)–(27) and, once these are available, we set λN = ω,
and compute λN−1, . . . , λ0 from (32)–(34) taken in the order n = N−1, N−2, . . . , 0.
For this reason, it may be advisable to rewrite (32)–(34) in the following ‘reflected’
form (see Appendix B) that emphasises that the approximation λn at tn is to be found
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from the approximation λn+1 at tn+1:

λn = λn+1 + (−hn)

s∑
i=1

bi`n,i, (35)

`n,i = −∂xf(Xn,i, tn+1 + (1− ci)(−hn))TΛn,i, i = 1, . . . , s, (36)

Λn,i = λn+1 + (−hn)

s∑
j=1

(bj − aij)`n,j , i = 1, . . . , s. (37)

In analogy to the continuous case, for a symplectic RK discretisation, the gradient
∇αC(xN ) may be computed by finding λ0 from the recursion (32)–(34) (or (35)–(37))
with λN = ∇xC(xN ).

3.4 The discrete problem: PRK integration
Theorem 6 may be generalised easily with the help of Theorem 3. Hereafter it is
understood that when using the PRK scheme the x, δ equations are integrated with
the set of coefficients (1) (so that the δn are exactly the variations in xn) and the λ
equations with the set of coefficients (9). In other words, the system is partitioned as
q = [xT, δT]T, p = λ. This approach leads to (25)–(30) supplemented by the relations
obtained by replacing the lower case coefficients aij , bi, ci in (32)–(34) by their upper
case counterparts:

λn+1 = λn + hn

s∑
i=1

Bi`n,i, (38)

`n,i = −∂xf(Xn,i, tn + Cihn)TΛn,i, i = 1, . . . , s, (39)

Λn,i = λn + hn

s∑
j=1

Aij`n,j , i = 1, . . . , s. (40)

The generalisation of Theorem 6 is:

Theorem 7 Assume that the 3d-dimensional system (19)–(21) is discretised by a sym-
plectic PRK scheme (1), (9). Then (31) holds for any PRK solution. In particular, for
the PRK solution specified by the initial condition x0 = α, δ0 = η together with the
final condition λN = ω,

ωTδN = λT0 η.

Once more, for a symplectic PRK discretisation, the gradient ∇αC(xN ) coincides
with λ0 if λN = ∇xC(xN ). For a non-symplectic discretisation of the adjoint equa-
tions, λ0 is a only an approximation to∇αC(xN ). For this reason non-symplectic PRK
discretisations cannot be implied by the direct differentiation procedure described in
Section 3.2.

How do we compute exactly (i.e. up to round-off) the sensitivity ωTδN with the help
of the adjoint system when the x integration has been performed with a non-symplectic
RK scheme (1) and Theorem 6 cannot be invoked? Theorem 7 suggests the way. For
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simplicity we only look at the case where in (1) none of the weights bi, i = 1, . . . , s,
vanishes (for the general situation see Appendix A). From the coefficients in (1) we
compute a new set

Aji = bi − biaij/bj , i, j = 1, . . . , s, Bi = bi, Ci = ci i = 1, . . . , s. (41)

In view of (16)–(17), we now have a PRK scheme for the discretisation of (19)–(21)
and Theorem 7 applies. If (1) is explicit, the computations required to descend from
λN to λ0 are also explicit. Here is the simplest example. Assume that the x equations
are integrated with the explicit Euler rule (s = 1, a11 = 0, b1 = 1, c1 = 0). With that
choice, Xn,1 = xn and

xn+1 = xn + hnf(xn, tn).

The trick just described yields A11 = 1, B1 = 1, C1 = 0. Accordingly, the stage Λn,1
coincides with λn+1 and using (11) we see that the required λ integrator is:

λn+1 = λn − hn∂xf(xn, tn)Tλn+1.

Obviously this is not the explicit Euler rule, because λ in the right-hand side appears
at time tn+1. And, unless the problem is autonomous, it is not the implicit Euler rule
either because t is evaluated at the retarded time tn. (For RK enthusiasts only: the
coefficients A11 = 1, B1 = 1, C1 = 0 correspond to the Radau IA method of one
stage introduced by Ehle, [20, Section IV.5].)

In the particular situation where the x integration has been performed by a symplec-
tic RK method (symplectic RK methods possess non-vanishing weights [31], Section
8.2), the recipe (41) will lead to Aij = aij and the resulting PRK method will coincide
with the original RK method. In the general case, for (31) to hold, the adjoint equations
for λ have to be integrated with coefficients different from those used for the original
equations for x.

There are hidden difficulties with the use of this recipe. When stability is an issue,
as in stiff problems or time-discretisations of partial differential equations, it is neces-
sary to investigate carefully the stability behaviour of the λ integration [34]. On the
other hand, and as noted before, the order of accuracy of the overall PRK, x, λ, inte-
grator may be lower than the order of the RK method (1) for x we started with. When
investigating the order of the overall PRK method we have to take into account that the
right-hand side of (19) is independent of λ and the right-hand side of (21) is linear in λ.
These features imply that many elementary differentials vanish and that accordingly it
is not necessary to impose the order conditions associated with them. Furthermore we
have to take into account the reduction in the number of independent order conditions
implied by symplecticness.

3.5 The discrete problem: automatic differentiation
According to the preceding discussion, for any RK integration of (19) with nonzero
weights, it is possible to find∇αC(xN ) by means of an integration of the adjoint equa-
tions with the coefficients (41). It is however clear that it is also perfectly possible
to compute ∇αC(xN ) by repeatedly using the chain rule in (25)–(27), something that

15



we shall perform presently. Since C is scalar and α ∈ Rd, where d is possibly large,
reverse accumulation [13] is to be preferred and this may be performed with the help
of Lagrange multipliers as in Section 3.2.

We shall need the following auxiliary result:

Lemma 2 Suppose that the mapping Ω : Rd+d′ → Rd′ is such that the Jacobian
matrix ∂γΩ is invertible at a point (α0, γ0) ∈ Rd × Rd′ , so that in the neighborhood
of α0, the equation Ω(α, γ) = 0 defines γ as a function of α. Consider a real-valued
function in Rd of the form ψ(α) = Ψ(α, γ(α)), for some Ψ : Rd+d′ → R. There exists
a unique vector λ0 ∈ Rd′ such that (superscripts denote components):

∇αψ|α0 = ∇αΨ|(α0,γ0) +

d′∑
r=1

λr0∇αΩr|(α0,γ0),

0 = ∇γΨ|(α0,γ0) +

d′∑
r=1

λr0∇γΩr|(α0,γ0).

Proof: The second requirement may be rewritten as

(∂γΩ)Tλ0 = −∇γΨ, (42)

with the matrix and right-hand side evaluated at α0, γ0. This is a linear system that
uniquely defines λ0. To check that the vector λ0 we have just found satisfies the first
requirement, we use the chain rule

∂αψ|α = ∂αΨ|(α,γ(α)) + ∂γΨ|(α,γ(α))∂αγ|α,

differentiate Ω(α, γ(α)) = 0 to get

∂αΩ|(α,γ(α)) + ∂γΩ|(α,γ(α))∂αγ|α = 0,

evaluate at α0, and eliminate ∂αγ|α0
. 2

It is useful to rephrase the lemma by introducing the Lagrangian

L(α, γ, λ) = Ψ(α, γ) + λTΩ(α, γ).

so that the relation Ω(α0, γ0) = 0 and the equation (42) that defines de multiplier are
respectively

∇λL(α, γ, λ)|(α0,γ0,λ0) = 0, ∇γL(α, γ, λ)|(α0,γ0,λ0) = 0,

while the gradient we seek is computed as

∇αψ|α0
= ∇αL(α, γ, λ)|(α0,γ0,λ0).

Note that these developments mimic the material in Section 3.2, with γ playing the part
of x̂, γ0 the part of x, etc.

In numerical differentiation, ψ is the function whose gradient is to be evaluated,
the components of α are the independent variables, and the components of γ represent
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intermediate stages towards the computation of ψ. (For instance, in the simple case
(d = 1) where ψ(α) = α

√
1 + α exp(α) cos(exp(α)), we may set the constraints

Ω1 = γ1 − exp(α) = 0, Ω2 = γ2 − cos(γ1) = 0, Ω3 = γ3 − αγ1γ2 = 0, Ω4 =

γ4−
√

1 + γ3, ψ = αγ4.) The interpretation of the γr as successive stages implies that,
in practice, Ω will possess a lower triangular structure: Ωr will only involve γ1,. . . ,γr.
The evaluation of ψ successively finds the numerical values of γ1,. . . ,γd

′
in a forward

fashion. The numerical values of the components λr0, are then found by backward
substitution in the upper-triangular linear system (42) and finally the lemma yields
the required value of the gradient. If Ψ and Ω have been judiciously chosen, then
the mappings ∇αΨ, ∇γΨ, ∇αΩr, ∇αΩr required to compute the gradient will have
simple analytic expressions, easily derived by a human or by a computer programme.

We now apply this technique to find ∇αC(xN ). In (25)–(27) we think that (the
components of) xn, n = 0, ..., N , and kn,i, n = 0, . . . , N − 1, i = 1, . . . , s, play the
role of (the components of) γ and introduce the Lagrangian

C(xN )− λT0 (x0 − α)−
∑N−1
n=0 hnλ

T
n+1

[
1
hn

(xn+1 − xn)−
∑s
i=1 bikn,i

]
−
∑N−1
n=0 hn

∑s
i=1 biΛ

T
n,i

[
kn,i − f(Xn,i, tn + cihn)

]
, (43)

where we understand that the stage vectors Xn,i have been expressed in terms of the
xn and kn,i by means of (27). Clearly this discrete Lagrangian is the natural RK
approximation to (24).

A straightforward application of Lemma 2 now directly yields the following result,
where we note that the hypothesis bi 6= 0, i = 1, . . . , s, is natural because, when, say,
b1 = 0, the Lagrangian (43) does not incorporate the constraint kn,1 = f(Xn,1, tn +
c1hn). (The case of zero weights is considered in Appendix A.)

Theorem 8 Consider the RK equations (25)–(27), with bi 6= 0, i = 1, . . . , s. The
computation of ∇αC(xN ) based on the use of Lemma 2 with Lagrangian (43) leads to
the relations (38)–(40), with the coefficients Aij , Bi, Ci given by (41), together with
∇xC(xN ) = λN ,∇αC(xN ) = λ0.

Note that, in the situation of the theorem, λN , λN−1, λN−2, . . . successively yield
∇xN
C(xN ), ∇xN−1

C(xN ), ∇xN−2
C(xN ), . . . It is well known that the reverse mode

of differentiation implies an integration of the adjoint equations. The theorem shows
additionally that, for an RK computation of x, the implied adjoint equation integration
is such that the x, λ system is discretised with a symplectic PRK method. In this way
the chain rule provided us with symplectic integration before the latter was invented.

A further remark: the use of the chain rule with forward accumulation implies an
RK integration of the variational equations (20) with the original RK coefficients (1).
In agreement with a previous discussion, the forward mode is more expensive; each
partial derivative ∂/∂αr, r = 1, . . . , d, in the gradient requires a separate integration.

4 A simple optimal control problem
We explore next the role of symplectic methods when integrating the differential equa-
tions that arise in some optimal control problems [35], [38], [39]. In this section we
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look at the simplest case, where the developments are very similar to those just consid-
ered; more general problems are treated in the next.

4.1 The continuous problem
Consider now the d-dimensional system

d

dt
x = f(x, u, t), (44)

where x is the state vector and u a ν-dimensional vector of controls. Our aim is to find
functions x(t) and u(t), subject to (44) and the initial condition x(t0) = α ∈ Rd, so as
to minimise a given cost function C(x(t0 + T )).

The variational equation is (cf. (20))

d

dt
δ = ∂xf(x(t), u(t), t) δ + ∂uf(x(t), u(t), t) ζ, (45)

where ∂u is the Jacobian matrix of f with respect to u and ζ denotes the variation in u,
see e.g. [35, Section 2.8], [38, Section 5.1]. Now δ(t0) = 0, as x(t0) remains nailed
down at α.

An adjoint system (cf. (21))

d

dt
λ = −∂xf(x(t), u(t), t)T λ, (46)

and constraints
∂uf(x(t), u(t), t)Tλ(t) = 0, (47)

are introduced, see e.g. [35, Section 9.2], in such a way that the following proposition
holds (cf. Proposition 1). Again the key is to ensure the validity of the conservation
property (23).

Proposition 2 For each choice of vectors x, u, δ, ζ, λ and real t:(
− ∂xf(x, u, t)T λ

)T
δ + λT

(
∂xf(x, u, t)δ + ∂uf(x, u)ζ

)
= 0. (48)

Therefore if δ(t), λ(t), ζ(t) satisfy (45)–(47), then (22)–(23) hold.

The use of the proposition is as follows. We solve the two-point boundary problem
given by the states+costates system (44), (46)–(47) with initial/final conditions

x(t0) = α, λ(t0 + T ) = ∇C(x(t0 + T )). (49)

Then, the variation δ(t0 + T ) at the end of the interval is orthogonal to the gradient of
the cost since, from (23),

∇C(x(t0 + T ))Tδ(t0 + T ) = λ(t0 + T )Tδ(t0 + T ) = λ(t0)Tδ(t0) = 0. (50)

18



This of course means that any solution [x(t)T, λ(t)T, u(t)T]T of the boundary-value
problem satisfies the first-order necessary condition for C to attain a minimum. As in
sensitivity analyses, the costates λ may be interpreted as Lagrange multipliers.

It is customary to introduce the function H(x, λ, u, t) = λTf(x, u, t) (pseudo-
Hamiltonian) so that (44), (46)–(47) take the very symmetric form

d

dt
x = ∇λH,

d

dt
λ = −∇xH, ∇uH = 0. (51)

4.2 The discrete problem: indirect approach
In the indirect approach, approximations to the optimal states, costates and controls are
obtained by discretisation of the boundary value problem (44), (46)–(47), (49). Note
that we have to tackle a differential-algebraic system [20, Chapter VI.1], with the con-
trols being algebraic variables as (d/dt)u does not feature in any of the equations (44),
(46)–(47). Under suitable technical assumptions (invertibility of the second derivative
ofH with respect to u), the system is of index one. This means that the constraints (47)
may be used to express, locally around the solution of interest, the algebraic variables
as functions of the differential variables, u = Φ(x, λ, t). (When applying the im-
plicit function theorem, the relevant Jacobian matrix is the Hessian ∂uuH and this will
generically be positive definite, if Pontryagin’s principle [38, Section 7.2] holds so that
H(x, λ, ·, t) is minimised by Φ(x, λ, t).) For a system of index one we may think that
the right-hand sides of (44) and (46) have been written as functions of x, λ and t by set-
ting u = Φ(x, λ, t), thus transforming the differential-algebraic system into a system of
ordinary differential equations. In fact the transformed system is the canonical Hamil-
tonian system with Hamiltonian function H(x, λ, t) = H(x, λ,Φ(x, λ, t), t), because
the chain rule and ∇uH = 0 imply that, in (51), ∇xH(x, λ, u, t) = ∇xH(x, λ, t) and
∇xH(x, λ, u, t) = ∇xH(x, λ, t). This Hamiltonian system may be discretised with
the PRK scheme (1), (9). (Recall that RK schemes are included as particular cases
where both sets of coefficients just coincide.) The discrete equations are solved to find
the approximations xn and λn to x(tn), λ(tn) and finally the approximations to the
controls are retrieved as un = Φ(xn, λn, tn).

The analytic expression of the implicit function Φ will in general not be available,
so that it will not be possible to findH explicitly. This is not a hindrance: the approxi-
mations xn, λn, un that one would get by a PRK integration of the Hamiltonian system
may be found in practice as solutions of the set of equations (52)–(59) below, obtained
by direct discretisation of the differential-algebraic format (44), (46)–(47). The equiv-
alence between the two approaches, differential and differential-algebraic is seen by
eliminating the controls from (52)–(59), see [20, Chapter VI.1].
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The discrete equations are (n = 0, . . . , N − 1):

xn+1 = xn + hn

s∑
i=1

bikn,i, (52)

kn,i = f(Xn,i, Un,i, tn + cihn), i = 1, . . . , s, (53)

Xn,i = xn + hn

s∑
j=1

aijkn,j , i = 1, . . . , s, (54)

λn+1 = λn + hn

s∑
i=1

Bi`n,i, (55)

`n,i = −∂xf(Xn,i, Un,i, tn + Cihn)TΛn,i, i = 1, . . . , s, (56)

Λn,i = λn + hn

s∑
j=1

Aij`n,j , i = 1, . . . , s, (57)

∂uf(Xn,i, Un,i, tn + Cihn)TΛn,i = 0, i = 1, . . . , s, (58)

together with (n = 0, . . . , N )

∂uf(xn, un, tn)Tλn = 0, (59)

and the boundary conditions x0 = α, λN = ∇C(xN ) from (49).
What is the accuracy of this technique? We encounter the same difficulty we found

in the preceding section: relevant here is the order of the overall PRK scheme rather
than the (possibly higher) order of the RK coefficients (1) used for the state variables.
In the preceding section the approximations xn are found independently of the λn and,
accordingly, the possible order reduction does not affect them. In the optimal control
problem, states and costates are coupled and any order reduction will harm both of
them. This was first noted by Hager who also provided relevant counterexamples, see
[15, Table 3]. Hager (Proposition 6.1) also shows that there is no order reduction for
explicit, forth order RK schemes with positive weights.

The obvious analogue of Theorem 5 holds: the variations δn in the discrete solution
xn satisfy the equations that result from discretising (45) with the coeffients (1). These
equations are (28) and (30) where now

kn,i = ∂xf(Xn,i, Un,i, tn + cihn) ∆n,i + ∂uf(Xn,i, Un,i, tn + cihn)Zn,i, (60)

(∆n,i, Zn,i are the stages associated with the variables δ and ζ).
Assume next that the PRK is symplectic. Recall that symplecticness may be the

result of choosing the RK coefficients (1) (bi 6= 0, i = 1, . . . , s) for the state variables
and retrieving from (41) the coefficients (9) for the integration of the adjoint system.
The symplecticness of the integrator makes it possible to formulate a discrete analogue
of Proposition 2.

Theorem 9 Assume that xn, λn, un, n = 0, . . . , N , satisfy the equations (52)–(59)
arising from the application of a symplectic PRK method and that, furthermore, δn,
n = 0, . . . , N , δ0 = 0, are the variations in xn. Then, for n = 0, . . . , N − 1,

λTn+1δn+1 = λTnδn.
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The PRK scheme may be a symplectic RK scheme or the result of choosing freely the
RK coefficients (1), bi 6= 0, i = 1, . . . , s, for the states and then using (41) to determine
the coefficients for the integration of the costates.

Proof: Use Lemma 1 with S(q, p) = λTδ. This results in

λTn+1δn+1 − λTnδn = hn
∑
i

bi(Λ
T
n,ikn,i + `Tn,i∆n,i)

where kn,i and `n,i come from (60) and (56) respectively. According to (48), each of
the terms being summed vanishes. 2

When the boundary conditions (49) are imposed,

∇C(xN )TδN = λTNδN = λT0 δ0 = 0,

which means that the discrete solution satisfies the first-order necessary conditions for
C(xN ) to achieve a minimum subject to the constrains (52)–(54) and x0 = α. In this
way we have proved that symplectic discretisation commutes [26] with the process of
forming necessary conditions for minimisation:

Theorem 10 A solution {xn}, {λn}, {un} of the equations (52)–(59) arising from
discretising with a symplectic PRK integrator the necessary conditions for the contin-
uous optimal control problem satisfies the necessary conditions for C(xN ) to achieve
a minimum subject to the discrete constraints (52)–(54) and x0 = α. The PRK scheme
may be a symplectic RK scheme or the result of choosing freely the RK coefficients (1),
bi 6= 0, i = 1, . . . , s, for the states and then using (41) to determine the coefficients for
the integration of the costates.

When the states+costates system is integrated by means of a non-symplectic PRK,
xN will not satisfy the necessary conditions for C to be minimised subject to the con-
straints (52)–(54) and x0 = α. Therefore non-symplectric PRK discretisations cannot
be obtained via the direct approach considered next.

4.3 The discrete problem: direct approach
The direct approach (see e.g. [38, Chapter 9]) based on RK discretisation begins by
applying the scheme (1) to the differential equation (44) to get (52)–(54). Then, these
equations and x0 = α are seen as constraints of a finite-dimensional optimisation
problem for the minimisation of C(xN ).

We use the standard method of Lagrange multipliers based on the Lagrangian in
(43), trivially adapted to the present circumstances by letting f depend on the controls.
The method leads in a straightforward way to the following result, first proved by Hager
[15], see also [4]. (However [15] does not point out that the relations (41) correspond
to symplecticness. Furthermore [15] and [4] do not use a discrete Lagrangian obtained
by discretisation of the continuous Lagrangian.)

Theorem 11 The first-order necessary conditions for the minimisation of C(xN ) sub-
ject to x0 = α and (52)–(54), bi 6= 0, i = 1, . . . , s, are x0 = α, ∇C(xN ) = λN
together with (52)–(58), with the coefficients Aij , Bi, Ci given by (41).
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In other words, when the direct approach is used, we arrive at exactly the same set
of equations for xn, λn, Xn,i, Λn,i, Un,i we obtained, with the help of RK technology,
via the indirect approach in Theorem 10. Let us observe that the direct approach does
not provide ‘natural’ approximations un to u(tn). Hager [15] suggests to define un by
locally minimising H(xn, λn, u, tn) which leads to (59). He also notes ([15], Table 4)
that the order of convergence of the control stages Un,i may be lower than that in un,
something that it is not suprising at all: typically, internal stages are more inaccurate
than end-of-step approximations. We remark that, in the direct approach and once
the RK method for x has been chosen, the minimisation of C implicitly provides the
‘right’ coefficients Aij , Bi, Ci to be used in the integration of the costates in order
to ensure symplecticness of the overall PRK integrator. In the indirect approach those
coefficients have to be determined by using the relations (16)–(17) and Theorem 3.

While the direct and indirect approaches may be seen as mathematically equivalent
here, both have their own interest. The direct approach suggests to solve the discrete
PRK equations with the help of optimisation techniques and these may be an efficient
choice in practice. On the other hand, the direct approach ‘hides’ the PRK integration
of the costates, a fact that may lead to the wrong impression that the order of accuracy
of the overall procedure coincides with the order of the RK scheme used to discretise
the differential constraint (44). This was emphasised in [15], where the order of the
PRK method (1), (9), (41) is called the order of the RK method (1) for optimal control
problems. A discussion of the advantages of the direct and indirect approaches is not
within our scope here, see e.g. [38, Chapter 9], [10].

5 Some extensions
Let us look at some extensions of the preceding material.

5.1 Generalised conservation
Here are simple generalisations of Theorems 1 and 3. Only Theorem 13 will be proved;
the other proof is of course very similar. For a typical application of Theorem 12, take
the case where y comprises positions and velocities of a mechanical system, I is the
kinetic energy and ϕ is the work of the forces.

Theorem 12 Assume that, for the differential system (2), there exist a real-valued bi-
linear mapping I in RD × RD and a real-valued function ϕ in RD such that, for each
solution y(t)

d

dt
I(y(t), y(t)) = ϕ(y(t))

and, therefore,

I(y(t0 + T ), y(t0 + T ))− I(y(t0), y(t0)) =

∫ t0+T

t0

ϕ(y(t)) dt.
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If the system is integrated by means of a symplectic RK scheme as in (4)–(6), then

I(yN , yN )− I(y0, y0) =

N−1∑
n=0

hn

s∑
i=1

bi ϕ(Yn,i).

Note that the last sum, based on the RK quadrature weights bi and in the approx-
imation y(tn + cihn) ≈ Yn,i, is the ‘natural’ RK discretisation of the corresponding
integral.

Theorem 13 Assume that, for the partitioned system (10), there exist a real-valued
bilinear map S in RD−d × Rd and a real-valued function ϕ in RD−d × Rd, such that
for each solution

d

dt
S(q(t), p(t)) = ϕ(q(t), p(t))

and, therefore,

S(q(t0 + T ), p(t0 + T ))− S(q(t0), p(t0)) =

∫ t0+T

t0

ϕ(q(t), p(t)) dt.

If the system is integrated by means of a symplectic PRK scheme as in (11)–(13), then

S(qN , pN )− S(q0, p0) =

N−1∑
n=0

hn

s∑
i=1

bi ϕ(Qn,i, Pn,i).

Proof: Use Lemma 1 and note that, under the present hypotheses,

S(kn,i, Pn,i) + S(Qn,i, `n,i) = ϕ(Qn,i, Pn,i),

because S(f(q, p, t), p) + S(q, g(q, p, t)) ≡ φ(q, p) (cf. the proof of Theorem 3). 2

5.2 Other optimal control problems
Consider first the situation in Section 4, but assume that the value x(t0) is not pre-
scribed. Then δ(t0) is free and for (50) to hold it is necessary to impose the condition
λ(t0) = 0. This replaces in (49) the initial condition x(t0) = α. The results in Section
4 are valid in this setting after the obvious modifications.

We next look at the case where (44) and x(0) = α are imposed, but the cost function
is given by

C(x(t0 + T )) +

∫ t0+T

t0

D(x(t), u(t), t) dt (61)

(this is sometimes called a Mayer-Lagrange cost [38], as distinct from the Mayer cost
C(x(t0 + T )) envisaged before). The adjoint system and constraints are, respectively,

d

dt
λ = −∂xf(x, u, t)T λ−∇xD(x, u, t),

∂uf(x, u, t)Tλ+∇uD(x, u, t) = 0.
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These are of the form in (51) for the pseudo-Hamiltonian H = λT f +D.
The conservation property (23) is replaced by the generalised conservation

λ(t0 + T )Tδ(t0 + T )− λ(t0)Tδ(t0)

+

∫ t0+T

t0

(
∇xD(x(t), u(t), t)Tδ(t) +∇uD(x(t), u(t), t)Tζ(t)

)
dt = 0,

which holds for arbitrary δ(t), λ(t) satisfying the variational equations (45), the adjoint
system and the constraints. After setting δ(t0) = 0 and λ(t0 + T ) = ∇C(x(t0 + T )),
we recover the first-order necessary conditions for the minimisation of the cost.

For a symplectic PRK discretisation of the algebraic-differential system, Lemma 1
may be used, just as in the proof of Theorem 13, to show (the notation should be clear
by now):

λTNδN − λT0 δ0 +
N−1∑
n=0

hn

s∑
i=1

bi

(
∇xD(Xn,i, Un,i, tn + cihn)T∆n,i

+∇uD(Xn,i, Un,i, tn + cihn)TZn,i

)
= 0.

By setting λN = ∇C(xN ) and δ0 = 0, we get the necessary condition for the discrete
solution to minimise the discretised cost

C(xN ) +

N−1∑
n=0

hn

s∑
i=1

biD(Xn,i, Un,i).

Therefore also in this case, results corresponding to Theorems 10 and 11 hold for a
symplectic PRK discretisation.

It is of course possible to combine the cost (61) with alternative boundary specifi-
cations. If x(t0) is not prescribed, then we have to impose λ(t0) = 0, as pointed out
above. If both x(t0) = α and x(t0 + T ) = β are imposed (in which case the term
C(x(t0 + T )) may be dropped from the cost), then λ(t0) and λ(t0 + T ) are both free.

5.3 Constrained controls
Let us go back once more to the problem in Section 4 and suppose that the controls u
are constrained so that, for each t, it is demanded that u(t) ∈ U , where U is a given
closed, convex subset of Rν . Then (see e.g. [15]), the constraint (47) on λ has to be
replaced by

u(t) ∈ U, −∂uf(x(t), u(t), t)Tλ(t) ∈ NU (u(t)),

whereNU (u) is the cone of all vectorsw ∈ Rν such that, for each v ∈ U , wT(v−u) ≤
0. Proceeding as in Proposition 2, we see that now (d/dt)λ(t)Tδ(t) ≥ 0 and therefore

∇C(x(t0 + T ))Tδ(t0 + T ) ≥ 0,
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which is the necessary condition for a minimum in the continuous problem. For a
PRK discretisation of the boundary value for the states+costates system, the relation
(d/dt)λ(t)Tδ(t) ≥ 0 implies

kTn,iΛn,i + ∆T
n,i`n,i ≥ 0

and therefore we may use Lemma 1 yet again to conclude that for symplectic PRK
methods and if the weights bi are positive,

∇C(xN )TδN ≥ 0.

Once more, results similar to Theorems 10 and 11 hold. See [9] for order reduction
results.

6 Lagrangian mechanics
Let us now consider Lagrangian mechanical systems [2]. Denote by L(x, u, t) the La-
grangian function, where x ∈ Rd are the Lagrangian co-ordinates and u = (d/dt)x the
corresponding velocities. According to Hamilton’s principle, the trajectories t 7→ x(t)
of the system are characterised by the fact that they render stationary (often minimum)
the action integral ∫ t0+T

t0

L(x(t), u(t), t) dt,

among all curves t 7→ x̄(t) with x̄(t0) = x(t0) and x̄(t0 + T ) = x(t0 + T ). This may
of course be viewed as a control problem to make stationary (or even maximum) the
cost (61) with C ≡ 0 and D = −L, subject to the constraint ẋ = u with fixed end-
values x(t0) and x(t0 + T ). The theory in Section 5 applies. The pseudo-Hamiltonian
isH(x, λ, u, t) = λTu−L(x, u, t). The constraint∇uH = 0 reads λ = ∇uL(x, u, t);
thus the control costates coincide with the mechanical momenta. The elimination of
the controls with the help of Pontryagin’s principle would determine u as a function
Φ(x, λ, t) by maximising (recall that we are here trying to maximise the cost!) the
function u 7→ H(x, λ, u, t). In mechanics, this exactly corresponds with the theory of
the Legendre transformation as presented in [2, Section 14]: that theory shows that,
if L is a strictly convex function of u, then, at given x and t, the velocity vector u
that corresponds to a given value of the momentum λ is globally uniquely defined and
maximises λTu − L(x, u, t). In most mechanical problems L = T (x, u, t) − V(x, t),
with T and V the kinetic and potential energy respectively, and T is quadratic, positive-
definite in u, thus ensuring the required convexity. In control theory the elimination of
the controls u in the pseudo-Hamiltonian H gives rise to the ‘control’ HamiltonianH;
correspondingly, in mechanics the Hamiltonian is defined as the result of expressing
in λTu − L(x, u, t) the velocities as functions of the momenta (and x and t). Finally
the evolution of the states and costates (mechanical co-ordinates and momenta) obeys
Hamilton’s canonical equations. Hamiltonian solution flows are symplectic and, in this
way, we have travelled all the way from action minimisation to symplecticness.
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A similar journey may take place in the discrete realm. Choose any RK scheme (1)
with nonzero weights to discretise the differential constraint (d/dt)x = u and minimise
the associated discrete action

N−1∑
n=0

hn

s∑
i=1

bi L(Xn,i, Un,i, tn + cihn).

As we know from Theorem 10, this direct approach implies a symplectic PRK inte-
gration of the Hamiltonian system for x and λ, where the λ equations are integrated
with the coefficients (9). This is nothing more than the variational construction of PRK
symplectic integrators, already presented in the early paper [37] by Suris (see [24] for
more information on integrators based on the principle of least action, cf. [21]). In
this way, Hager’s result [15] may be viewed as an extension of Suris work to general
control problems.
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Appendix A: Schemes with some vanishing weights
If one or more wieghts bi in (1) vanish, then it is not possible to use the recipe (41)
to define the coefficients required to create a combined symplectic PRK method (1),
(9). Given the partitioned system (10) and the q coefficients (1), how to integrate the
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p equations so as to have a symplectic scheme? The solution to this problem is rather
weird and it is best to begin with the simplest example.

Let us study the second-order scheme (due to Runge in his 1895 original paper [19,
Section II.1]), s = 2,

a11 = a21 = a22 = 0, a12 = 1/2, b1 = 1, b2 = 0, c1 = 1/2, c2 = 0. (62)

While it is customary to label the stages so that the abscissas ci increase with i, we
have departed from this practice; if we adopted it, formula (67) below would get a
rather disordered appearance.

We regularise the zero weight and consider the one-parameter family, ε 6= 0:

a11 = a21 = a22 = 0, a12 = 1/2, b1 = 1, b2 = ε, c1 = 1/2, c2 = 0. (63)

(The regularised scheme is not even consistent, but this does not hinder the argument.)
From (41), we set

A11 = 1, A12 = A22 = ε, A21 = 1− 1/(2ε), B1 = 1, B2 = ε, C1 = 1/2, C2 = 0.
(64)

Thus, the PRK specified by (63)–(64) is symplectic for each ε. The idea now is to take
limits as ε → 0; the limit integrator, if it exists, will preserve quadratic invariants and,
when applied to Hamiltonian problems, the symplectic structure. The difficulty is that
from the equation that defines Pn,2

Pn,2 = pn + hn

(
1− 1

2ε

)
g(Qn,1, Pn,1, tn + hn/2) + hnε g(Qn,2, Pn,2, tn)

we may expect that, for fixed qn, pn, the stage vector Pn,2 grows unboundedly as ε→ 0
and that, therefore, a limit integrator cannot be defined. However, the stage Pn,2 only
affects Pn,1 and pn+1 through the small coefficients A1,2 = B2 = ε, and this makes
it possible to prove that the limit scheme exists for some particular differential equa-
tions. Specifically, we assume in the remainder of this section that in the partitioned
differential system (10) being integrated, f and g have the special form

f = f(q, t) g = L(q, t) +M(q, t)p (65)

(with q = x, p = λ, this format includes the system (19), (21) in Section 3). When (65)
holds, the q integration with coefficients (63) converges, as ε → 0, to the integration
with the originally given coefficients (62). The system for the p stages P1, P2 (the
index n is sometimes dropped to shorten the formulas) may be written as

P1 = pn + hn(L1 +M1P1) + hn(εL2 + hnM2m2),

m2 =
ε

hn
pn +

(
ε− 1

2

)
(L1 +M1P1) + ε(εL2 + hnM2m2),

where we have scaled m2 = (ε/hn)P2 to avoid blow-up and used the abbreviations

L1 = L(Q1, tn + hn/2), M1 = M(Q1, tn + hn/2),

L2 = L(Q2, tn), M2 = M(Q2, tn).
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Now take limits as ε→ 0, to get

P1 = pn + hn(L1 +M1P1) + h2nM2m2,

m2 = −1

2
(L1 +M1P1).

Since B1 = A11 and B2 = A12, the end-of-step approximations is given by pn+1 =
P1.

We write these equations in a way similar to (11)–(13):

pn+1 = pn + hn`1 + h2nM2m2, (66)
`1 = g(Q1, P1, tn + hn/2),

M2 = M(Q2, tn),

P1 = pn + hn`1 + h2nM2m2,

m2 = −1

2
`1.

The combination of these formulas for p with the scheme (62) for q is a first-order
integrator that conserves quadratic invariants as in Theorem 3 and, for Hamiltonian
problems, preserves the symplectic structure. Of course the integrator is not a PRK
method; since M = ∂pg, the formula (66) is reminiscent of Runge-Kutta methods that
use higher derivatives of the solution [19, Section II.13].(Such high-order derivative
methods cannot be symplectic for general problems [18].) Note that, while `1 is an
approximation to the first derivative (d/dt)p, the vector M2m2 has the dimensions of
the second derivative (d2/dt2)p.

Let us now turn to the general case. Assume that in (1) the first r weights b1, . . . ,
br do not vanish, while br+1 = · · · = bs = 0. The regularisation procedure used for
Runge’s method leads to the fancy integrator:

pn+1 = pn + hn

r∑
i=1

bi`i + h2n

s∑
α=r+1

Mαmα. (67)

Pi = pn + hn

r∑
j=1

(
bj −

bjaji
bi

)
`j (68)

+h2n

s∑
β=r+1

(
1− bjaβi

bi

)
Mβmβ , i = 1, . . . , r,

mα = −
r∑
j=1

bjajα`j − hn
s∑

β=r+1

aβαMβmβ , α = r + 1, . . . , s. (69)

Here the r vectors `i are as in (12), so that the method uses r slopes and additionally
s − r matrices Mα = M(Qα, tn + cαhn). From the relations (69) the mα may be
viewed as functions of the `i.

The following result is a consequence of the construction via regularisation:

Theorem 14 Consider partitioned systems of the special format (65), where the q
equations are integrated with the RK scheme (1), b1 6= 0,. . . , br 6= 0, br+1 = · · · =
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bs = 0, and the p equations with the formulas in (67)–(69). If S(q(t), p(t)) is a con-
served quantity as in Theorem 3, then S(qn, pn) is independent of n. If the system is
Hamiltonian, then the map (qn, pn) 7→ (qn+1, pn+1) is symplectic.

Proofs of this theorem that do not rely on taking limits as ε → 0 are of course
possible. For such an alternative proof of the conservation of S, we may note that
manipulations (not reproduced here) similar to those used to prove Lemma 1 show that
for the present method, in lieu of (18), we may write:

S(qn+1, pn+1)− S(qn, pn) = hn

r∑
i=1

bi
(
S(ki, Pi) + S(Qi, `i)

)
+ h2n

s∑
α=r+1

(
S(kα,mα) + S(Qα,Mαmα)

)
.

This is an algebraic identity that does not require that the system integrated to be con-
servative. When S is conserved, the first sum vanishes as in the proof of Theorem 3.
For the second sum note that from S(f(q, t), p) + S(q, L(q, t) + M(q, t)p) ≡ 0 it
follows that S(f, p) + S(q,Mp) ≡ 0.

For the adjoint equations in Section 3, the conclusion of Theorem 7 holds if the x
equations are integrated with a (nonsymplectic) RK method with one or more vanishing
weights and the λ equations are integrated as in (67)–(69). Similarly Theorem 8 holds
for a suitable choice of the Lagrangian (details will not be given, but see below).

What is the situation for the control problem in Section 4? Recall that the corre-
sponding system of differential equations is given by (44), (46), where, in the right-
hand sides, u has been expressed as u = Φ(x, λ, t). That system of differential equa-
tions does not possess the format (65) for which (67) makes sense and, accordingly, we
cannot provide analogues to Theorems 9 and 10.

In order to gain additional insight, let us use the direct approach based on Runge’s
second order integrator (62). We define the Lagrangian (compare with (43) and note
consistency with (24) due to the factor h2n):

C(xN )− λT0 (x0 − α)−
N−1∑
n=0

hnλ
T
n+1

[ 1

hn
(xn+1 − xn)− kn,1

]
−
N−1∑
n=0

hnΛT
n

[
kn,1 − f(Xn,1, Un,1, tn + hn/2)

]
−
N−1∑
n=0

h2nµ
T
n

[
kn,2 − f(Xn,2, Un,2, tn)

]
,

where, as on other occasions, the stages Xn,1 = xn + (hn/2)kn,2, Xn,2 = xn must
be seen as known functions of xn and kn,2. Taking gradients with respect to xn, kn,1,
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kn,2 leads to the necessary conditions

λn+1 = λn − (∂xf(Xn,1, Un,1, tn + hn/2))TΛn − h2n(∂xf(Xn,2, Un,2, tn))Tµn,

Λn = λn+1,

µn =
1

2
(∂xf(Xn,1, Un,1, tn + hn/2))TΛn;

which clearly correspond to the integrator (66).(By considering the case where f is
independent of u, this shows that Theorem 8 holds in this case.) However, taking
gradients with respect to Un,1 and Un,2 yields

(∂uf(Xn,1, Un,1, tn + hn/2))TΛn = 0, (∂uf(Xn,2, Un,2, tn))Tµn = 0.

The second equation is totally meaningless. It cannot be seen as a discretisation of (47)
because µn is not an approximation to the costate λ; it does not even possess the right
dimensions for that to happen. The values of Un,2 retrieved from this constraint will
have no relation to the true optimal controls. The paper [15] nicely illustrates this with
an example (see also [9]).

Since the trouble arises by the presence of the controls, things may be fixed by
tampering with Un,2, as pointed out in [15], [9]. However, there is no shortage of RK
schemes with nonzero (or even positive) weights, so that, in practice, resorting to such
fixes seems ill advised.

Appendix B: Reflecting and transposing RK coefficients
Scherer and Türke [32] associated with the set of RK coefficients (1) two new sets
called the reflection and the transposition of the original. The reflected coefficients are
given by (i, j = 1, . . . , s)

arij = bj − aij , bri = bi, cri = 1− ci

and the transposed coefficients are defined, only for methods with nonvanishing weights
bi, by

atij = bjaji/bi, bti = bi, cti = 1− ci.

The operations of reflection and transposition commute: the transposition of the reflec-
tion coincides with the reflection of the transposition as both lead to

artij = bj − bjaji/bi, brti = bi, crti = ci.

Furthermore both operations are involutions: each is its own inverse.
The paper [32] introduces the operations of reflection and transposition as algebraic

manipulations that make it possible to interrelate important families of RK methods; no
attempt is made there to interpret computationally the meaning of integrating with the
reflected or transposed coefficients. What do reflection and composition mean? The
interpretation of reflection is well known [31, Section 3.6], [19, Chapter II, Theorem
8.3]: a step of length −hn with the reflected RK method inverts the transformation
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yn 7→ yn+1 induced by a step of length hn with the original method. In this paper we
have seen this idea at work when moving from (32)–(34) to (35)–(37). The formulas
(41) provide meaning to the idea of transposition: to construct a symplectic PRK out
of a given RK method with nonvanishing weights the p coefficients are determined
by reflecting and transposing the given q coefficients. The transposed of the q coeffi-
cients are then those required to integrate backwards the p equations in, say, sensitivity
analyses.

As a further illustration of these ideas, consider the linear non-autonomous system

d

dt
q = M(t)q,

d

dt
p = −M(t)Tp,

integrated with the PRK method (1), (9). Since p and q are uncoupled, this amounts
to an RK integration of the q equations with the coefficients (1) together with an RK
integration of the p equations with the coefficients (9). The system has the invariant
qTp; Theorem 3 ensures that it will be preserved if the p coefficients are the transpo-
sition of the reflection of the q coefficients. Both sets of coefficients only coincide if
q itself is integrated symplectically. A nonsymplectic integration of q is possible, but
then one has to compensate by integrating the p equations in an appropriate way and
the order and stability of the p integration has to be investigated separately. Again, if
the p equations are integrated backward in time, then, preservation of qTp requires that
such backward integration be performed with the transposition of the coefficients used
to propagate q forward.

The material in the preceding section shows that, for systems of the special form
(65), the scheme (67) may be viewed as the reflected and transposed of (1) in the case
of zero weights.

We conclude this appendix with a remark on terminology. Monographs such as
[17] and [31] use the word ‘adjoint’ to refer to the method with reflected coefficients.
Section 3 and the discussion in this section suggest that, in order to proceed as in the
differential equation case, it would have been better to keep the word adjoint for the
reflected and transposed method. And call reflected to what in [17] or [31] is called
adjoint. With that alternative terminology, for RK schemes, symplecticness would
simply be self-adjointness.
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