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SYMPLECTIC SEMIFIELD PLANES
AND Z4–LINEAR CODES

WILLIAM M. KANTOR AND MICHAEL E. WILLIAMS

In memory of Jaap Seidel

Abstract. There are lovely connections between certain characteristic 2 semi-
fields and their associated translation planes and orthogonal spreads on the one
hand, and Z4–linear Kerdock and Preparata codes on the other. These inter–
relationships lead to the construction of large numbers of objects of each type.
In the geometric context we construct and study large numbers of nonisomor-
phic affine planes coordinatized by semifields; or, equivalently, large numbers
of non–isotopic semifields: their numbers are not bounded above by any poly-
nomial in the order of the plane. In the coding theory context we construct
and study large numbers of Z4–linear Kerdock and Preparata codes. All of
these are obtained using large numbers of orthogonal spreads of orthogonal
spaces of maximal Witt index over finite fields of characteristic 2.

We also obtain large numbers of “boring” affine planes in the sense that
the full collineation group fixes the line at infinity pointwise, as well as large
numbers of Kerdock codes “boring” in the sense that each has as small an
automorphism group as possible.

The connection with affine planes is a crucial tool used to prove inequiv-
alence theorems concerning the orthogonal spreads and associated codes, and
also to determine their full automorphism groups.

1. Introduction

A surprising advance in coding theory was the discovery that versions of some
standard nonlinear binary codes can be viewed as linear codes over Z4 [HKCSS].
Among these codes were Kerdock and Preparata codes, well–known examples of
nonlinear binary codes containing at least twice as many codewords as any linear
code of the same length and minimum distance, which made them combinatorially
“better” than linear codes but not as easy to work with. The Z4–versions combine
simpler descriptions and implementations with combinatorial optimality. These
codes were further investigated in [CCKS] from the vantage point of projective
planes and semifields (i.e., either fields or nonassociative division algebras), provid-
ing a better understanding of some of their mathematical underpinnings besides
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896 W. M. KANTOR AND M. E. WILLIAMS

producing new connections with other areas of mathematics. The present paper fo-
cuses further on the finite geometry aspects of these codes: once we have obtained
suitable planes and orthogonal spreads, the machinery developed in [CCKS] has
immediate coding–theoretic consequences.

We briefly introduce some of the terminology used throughout this paper. Binary
Kerdock codes are constructed using Kerdock sets: families of 2n−1 skew–symmetric
n×n binary matrices such that the difference of any two is nonsingular. Orthogonal
spreads (in our setting this means families of qm+ 1 totally singular (m+ 1)–spaces
of an orthogonal space of type O+(2m + 2, q) that partition the singular points
of the space) arise from analogous sets of (m + 1) × (m + 1) matrices over GF(q)
for any q. Symplectic spreads (families of qm + 1 totally isotropic m–spaces of a
2m–dimensional symplectic space over GF(q) that partition the points of the space)
arise in a similar way from symmetric matrices, and produce both affine planes and
Z4–Kerdock codes. Various aspects of the similarities of the descriptions of these
combinatorial objects were thoroughly investigated in [CCKS]; we refer to that
paper and [Ka3] for further background. For now we only mention the Gray map,
an isometry φ from ZN4 to Z2N

2 that was used so effectively in [HKCSS] for passing
between binary and Z4–codes. We will construct binary Kerdock codes K2 for
which K4 = φ−1(K2) is Z4–linear. The corresponding Z4–Preparata code P4 = K⊥4
is its dual, and then the corresponding binary ‘Preparata’ code is P2 = φ(P4). It
is important to note that the original Kerdock code [Ke] is a special case of these
constructions, but the original Preparata code [Pr] is not when m > 3.

We work exclusively in characteristic 2, where there is a wonderful connection
between orthogonal and symplectic spreads. We use a method that produces large
numbers of binary orthogonal spreads and hence also translation planes and Ker-
dock codes. This method recursively intertwines translation planes, symplectic
semifields, symplectic geometries and orthogonal geometries. Assume that m is an
odd integer. Begin with a translation plane of even order (qn)m whose lines through
the origin comprise a symplectic spread S of an underlying 2m–dimensional sym-
plectic space W over GF(qn). Then S remains a symplectic spread when viewed
as a collection of mn–dimensional subspaces in the GF(q)–space W . Moreover, S
arises from an essentially unique orthogonal spread Σ of an O+(2mn+ 2, q)–space
(this is where characteristic 2 is crucial); if ν is any nonsingular point of the latter
space, then projecting Σ into associated symplectic space ν⊥/ν produces another
symplectic spread Σ/ν over GF(q), producing in turn another translation plane
of order qmn. Thus, an orthogonal spread potentially spawns large numbers of
nonisomorphic translation planes; moreover, the automorphism group of Σ essen-
tially determines both the automorphism groups of these translation planes and
isomorphisms among the planes.

This up and down process for constructing orthogonal and symplectic spreads
originated in [Ka1]. By starting with a desarguesian plane and going “up and
down” just once, it was used there to produce new examples of translation planes,
orthogonal spreads and Kerdock codes. Retaining control of isomorphisms and
automorphisms during repeated applications of the “up and down process” has
been a basic obstacle to its further use. In this paper we preserve some control
over this process by using a combination of disgusting calculations with kernels of
semifields (Section 3.2), undergraduate group theory, and elementary properties of
projective planes (Proposition 4.11). Because of their close relationship, we call all
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SEMIFIELD PLANES AND CODES 897

planes obtained from desarguesian planes via the “up and down process” scions of
desarguesian planes (cf. [KW]).

Our constructions are based on a strange–looking and awkward binary operation
on F = GF(qm) for q even and m odd,

(1.1) x ∗ y = xy2 +
n∑
i=1

(
Ti
(
ζix
)
y + ζiTi

(
xy
))
,

associated with the following data: a chain F = F0 ⊃ F1 ⊃ · · · ⊃ Fn ⊇ K =
GF(q) of fields with corresponding trace maps Ti : F → Fi, together with any
sequence

(
ζ1, . . . , ζn

)
of elements ζi ∈ F ∗. We will see that this defines a presemifield

P∗(F,+, ∗). Starting with this presemifield, we will study several objects:

(1) A symplectic semifield S◦(F,+, ◦) (Section 2.3).
(2) A symplectic spread S∗ (Section 2.1) of the space F 2 (relative to the alter-

nating bilinear form ((x, y), (x′, y′)) = T (xy′ + x′y), using the trace map
T : F → K):

S∗ = {S∗[s] | s ∈ F ∪ {∞}}, where

S∗[∞] = 0⊕ F and

S∗[s] =
{

(x, x ∗ s) | x ∈ F
}
, s ∈ F.

(1.2)

(3) An affine translation plane A(S∗) = A(P∗) = A(S◦) of order qm, whose
point set is F 2 and whose lines are the subsets x = c and y = x ∗m+ b for
c,m, b ∈ F (Section 2.1).

For the rest of this list, Fn ⊃ K.
(4) An orthogonal spread Σ∗ (Section 2.4) of the space

V = F ⊕K ⊕ F ⊕K
equipped with quadratic form Q(x, a, y, b) = T (xy) + ab :

(1.3)

Σ∗ = {Σ∗[s] | s ∈ F ∪ {∞}}, where

Σ∗[∞] = 0⊕ 0⊕ F ⊕K and

Σ∗[s] =
{(
x, a, x ∗ s+ s(a+ T (xs)), T (xs)

)
|

x ∈ F, a ∈ K
}
, s ∈ F.

(1.4)

(5) When K = GF(2), a Kerdock set (Section 5.1)

M∗ = {Ms | s ∈ F}, where

(x, a)BMs = (x ∗ s+ T (xs)s+ as, T (xs))B,
(1.5)

of (m+1)×(m+1) skew–symmetric matrices written using an orthonormal
basis B of F ⊕K (with respect to the K–bilinear form T (xy) on F ).

(6) When K = GF(2), a Kerdock code (Section 5.1)

(1.6) K2(∗) = { (QM (v) + u · v + ε)v∈Zn2 |M ∈ M∗, u ∈ Z
n
2 , ε ∈ Z2},

where QM denotes a quadratic form in n = m+1 variables whose associated
bilinear form is uMvt, and u · v = uvt is the usual dot product.

(7) When K = GF(2), a Z4–linear Kerdock code K4(∗); see (5.7).
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898 W. M. KANTOR AND M. E. WILLIAMS

(8) When K = GF(2), a Z4–linear Preparata code P4(∗) = K4(∗)⊥ whenever
K4(∗) is linear; see (5.9).

(9) When K = GF(2), a ‘Preparata’ code P2(∗), the image of P4(∗) under the
Gray map; see (5.9).

The following roughly approximates the results of this paper (where ρ(m) denotes
the number of prime factors of m, counting multiplicities, and logarithms are always
to the base 2):

Theorem 1.7. Let q be a power of 2 and let m be an odd composite integer. Then
there are at least (qm − 1)ρ(m)−3/(m log q)2 pairwise inequivalent objects of each of
the sorts 1–9 (where q = 2 in 5–9).

Lumping all of these different types of objects together has produced a noticeably
imprecise theorem. For precise statements see Theorems 4.13, 4.15 and 5.11. The
above version is intended to provide a flavor of our results: the lower bound clearly is
exponential in m, but more significantly it is not bounded above by any polynomial
in qm. We note that the proofs of bounds also deal with more general questions,
such as isomorphisms when using different chains (Fi)n0 of possibly different lengths.

Based on the survey [CW] of semifields, it appears that the number of pairwise
nonisomorphic finite semifield planes in print is not very large, and is significantly
smaller than the number studied here. In fact the number previously known may
not even be as large as the order of the plane for large planes. Undoubtedly there
are many many more such planes, but isomorphism questions are, in general, very
difficult (cf. Section 6).

This paper is organized as follows. Section 2 contains a construction for some
computationally approachable cases of the “up and down process”. Section 3 ap-
plies this to begin the study of the presemifields in (1.1). A crucial tool, and the
starting point for much of this research, was the unexpected observation that, by
computing the kernels of semifields, we could then determine equivalences among
orthogonal spreads and Kerdock codes. Section 4 contains our results on isomor-
phisms, automorphisms and numbers of orthogonal spreads, semifields and planes.

Section 5 contains a brief discussion of how our results on semifield symplectic
and orthogonal spreads produce coding–theoretic results, essentially as immediate
consequences of the results in [CCKS]. However, whereas that paper discussed,
for certain lengths, just one Z4–linear Kerdock and Preparata code other than the
codes in [HKCSS], part of the content of Theorem 1.7 is that in this paper we
deal with rather large numbers of such codes. In Section 5 we also discuss quasi–
automorphism groups. While the latter results are straightforward, they concern
aspects of nonlinear codes that do not seem to have been dealt with previously.

We already mentioned that it is difficult to keep track of full automorphism
groups during the “up and down process”. However, it is possible to preserve
some relatively large subgroups of the collineation group of the initial desarguesian
plane. In this paper we are concerned with preserving a Sylow 2–subgroup of
order qm of SL(2, qm). In [KW] we preserved a subgroup of order qm + 1 acting
transitively on orthogonal and symplectic spreads, yielding flag–transitive affine
planes. Yet another possibility, explored at length in [Wi], is nearly flag–transitive
planes, in which a subgroup of order qm − 1 is preserved that fixes two points
of the line at infinity and transitively permutes the remaining points of that line.
See [Ka5, 3.6] for a summary of those results. Those nearly flag–transitive planes
were used to produce Z4–Kerdock codes that are extended cyclic: each admits a
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SEMIFIELD PLANES AND CODES 899

cyclic automorphism group fixing the 0 coordinate and permuting the remaining
coordinates regularly.

In the present paper we construct still further planes and codes in which the full
automorphism group is relatively small. In general it is very difficult to determine
the automorphism group of a translation plane, especially when the group is not
very large. Any translation plane of order qm arising from a GF(q)–linear spread
necessarily has an automorphism group of order at least q2m(q−1). This minimum
can occur for the full automorphism group, and a translation plane is called boring
in this case; thus, its full collineation group fixes every point on the line at infinity.
Boring planes are interesting because most of the known finite affine planes have
been found by means of relatively large collineation groups. In Section 4.4 we
construct boring translation planes, as well as boring semifield planes (whose full
collineation groups are generated by perspectivities); we use these later to construct
boring binary and Z4–linear Kerdock codes (Section 5.6). Many boring planes with
kernel GF(2) were obtained in [Ka4]; here our examples have kernels larger than
GF(2). There are very few known examples of this boring phenomenon: two planes
of order 172 [Ch] and over 300 of order 72 [ChD, MR] appear to be the only published
examples. Similarly, the only published boring semifield planes appear to be two
dual ones of order 32 [Kn1, p. 207].

Each of our translation planes is symplectic. A lovely recent result of Maschietti
[Ma] gives a necessary and sufficient condition for a finite translation plane of even
order to be symplectic in terms of the existence of line–ovals with special properties.

Most of the results of this paper are essentially in [Wi] (summarized in [Ka3,
Ka5]). This paper is dedicated to the memory of Jaap Seidel, who instigated
[CCKS] and hence also indirectly the above references as well as this paper.

2. Symplectic and orthogonal spreads and affine planes

Let K = GF(q).

2.1. From spreads to projective planes. Let W be a 2m–dimensional vector
space over K. A spread of W is a family S of qm + 1 subspaces of dimension m
whose union is all of W ; that is, every nonzero vector is in a unique member of S.
Any spread of W determines a translation plane A(S), an affine plane of order qm

whose points are vectors and whose lines are the cosets U +w with U ∈ S, w ∈W .
The spread S corresponding to a desarguesian plane A(S) is called a desarguesian
spread.

Any isomorphism between two translation planes is induced by a semilinear
transformation of the underlying vector spaces. The collineation group of A(S) is

(2.1) Aut A(S) = VoΓL(V )S ,

where ΓL(V ) is the group of all invertible semilinear transformations of V , while
ΓL(V )S = Aut A(S)0, the stabilizer of 0, is the group of those transformations
sending S to itself.

The set of all nonsingular linear transformations fixing every member of S, to-
gether with 0, is a field, the kernel K(A(S)) of the translation plane. It is the largest
field over which the spread consists of subspaces.

See [De] for the above and for further background concerning translation planes
and their associated projective planes.
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Symplectic spreads. We refer to [Ta] for background concerning symplectic
spaces and groups. Suppose that our K–space W is equipped with a nondegenerate
alternating bilinear form ( , ). A spread S of W is called symplectic if each W ∈ S
is totally isotropic: (W,W ) = 0.

The most obvious example of a symplectic spread S consists of all 1–spaces of
K2, using the form ((x, y), (x′, y′)) = xy′ − x′y. Although this only produces the
desarguesian plane A(S), it is the starting point of this paper: we will “distort”
this spread.

The underlying symplectic geometry of the bilinear form has isometry group
Sp(2n, q) and group ΓSp(2n, q) of semilinear transformations preserving the form
projectively and up to field automorphisms.

2.2. Prequasifields and planes. A translation plane is usually coordinatized by
an algebraic system called a quasifield [De, pp. 132-135]. Here it will be convenient
to consider a weaker but geometrically equivalent system:

Prequasifields. A prequasifield P∗ = P∗(F,+, ∗) defined on F = GF(qm) uses
the usual addition on F together with a new binary operation ∗ satisfying (for all
x, y, z ∈ F )

(x+ y) ∗ z = x ∗ z + y ∗ z,
x ∗ y = x ∗ z =⇒ x = 0 or y = z, and
x ∗ y = 0 ⇐⇒ x = 0 or y = 0.

If it has an identity element, P∗ is a quasifield; in view of (1.1), we must delete
this condition even though an identity element is readily introduced (see below).
P∗(F,+, ∗) is a presemifield if both distributive laws hold, and a semifield if, in
addition, there is an identity element.

A translation plane A(P∗) = A(S∗) is obtained using a spread S∗ defined as
in (1.2).

Remark 2.2. The kernel (or left nucleus) K(P∗) of a quasifield P∗ is the set of all
k ∈ F satisfying (for all x, y ∈ F )

k ∗ (x+ y) = k ∗ x+ k ∗ y,
k ∗ (x ∗ y) = (k ∗ x) ∗ y.

It is isomorphic to the kernel K(A(P∗)) of the plane A(P∗).

Isotopisms. An isotopism between two presemifields P∗(F, ∗,+) and P◦(F, ◦,+)
is a triple (α, β, γ) of additive permutations of F such that

(2.3) γ(x ∗ y) = α(x) ◦ β(y) ∀x, y, z ∈ F.

We will also regard the equation (2.3) as representing the isotopism. Any presemi-
field P∗ = (F, ∗,+) is isotopic to a semifield: fix any 0 6= e ∈ F and define ◦ by
(x ∗ e) ◦ (e ∗ y) = x ∗ y for all x, y ∈ F . Then (F, ◦,+) is a semifield with identity
e ∗ e, and is obviously isotopic to P∗.

Remark 2.4.
(i) Two semifields coordinatize isomorphic planes if and only if they are iso-

topic [Al2].
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SEMIFIELD PLANES AND CODES 901

(ii) We will need the following special case of an easy result concerning iso-
topisms of groups [Al1, Theorem 2]: If |F | is even and α, β : F → F are
additive permutations such that α(x)β(y)2 = β(xy2) for all x, y ∈ F, then
α(x) = λ−1xσ and β(x) = λxσ for some λ ∈ F ∗, σ ∈ Aut(F ), and all
x ∈ F .

A result corresponding to (i) also holds for ternary rings coordinatizing arbitrary
projective planes [Kn1].

2.3. Symplectic prequasifields. From now on we will always assume that
F = GF(qm) and K = GF(q) with q even.

The trace map T : F → K determines an inner product T (xy) on the K–space
F having an orthonormal basis that lets us identify F , equipped with this inner
product, with Km, equipped with its usual dot product.

We assume now that our prequasifield P∗ is symplectic: it satisfies the following
two conditions for all x, y, z ∈ F :

T (x(x ∗ y)) = T (xy)2,(2.5)

T (x(z ∗ y)) = T (z(x ∗ y)).(2.6)

One example of a symplectic prequasifield is x ∗ y = xy2; the corresponding plane
is desarguesian. In this paper we will study many more examples; even more are
studied in [Wi]. Note that, if we had required that our prequasifield has an identity
element, then we would have had to use a more complicated version of the inner
product. Thus, for example, it is more convenient in the present context to use the
preceding inconvenient–looking modification xy2 of ordinary multiplication in F .

Replacing x in turn by x, z, x + z in (2.5) produces (2.6); but (2.6) is no
less restrictive than (2.5) [Ka5, 3.10]. A simple calculation yields the following
explanation of the term “symplectic prequasifield”:

Proposition 2.7. Equip the K–space F 2 with the alternating bilinear form

(2.8) ((x1, y1), (x2, y2)) = T (x1y2 − x2y1).

Then the spread S∗ of F 2 associated with a prequasifield P∗ as in (1.2) is symplectic
if and only if (2.6) holds.

The role of (2.5) will become clear in Theorem 2.18.

2.4. Orthogonal spreads. We refer to [Ta, p. 136] for background concerning
quadratic forms and their orthogonal groups and geometry. Let V = K2n = X⊕Y
for subspaces X and Y both of which are identified with Kn. Equip V with the
quadratic form Q(x, y) = x · y (using the usual dot product on Kn); the associated
nondegenerate bilinear form is

(2.9) (u, v) = Q(u+ v)−Q(u)−Q(v),

and determines an underlying symplectic geometry if q is even. The underlying
orthogonal geometry of the quadratic form has isometry group O+(V ) = O+(2n, q)
and group ΓO+(V ) = ΓO+(2n, q) of semilinear transformations preserving the form
projectively and up to field automorphisms. Moreover, V has (qn − 1)(qn−1 + 1)
nonzero singular vectors, and each totally singular n–space (i.e., n–space on which
Q vanishes, such as X and Y ) contains qn − 1 nonzero singular vectors.

An orthogonal spread of V is a family Σ of qn−1 + 1 totally singular n–spaces
that partitions the set of all nonzero singular vectors. Two orthogonal spreads
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are called equivalent if there is an element of ΓO+(V ) sending one to the other.
The automorphism group of Σ is just its set–stabilizer ΓO+(V )Σ in the (semilinear)
orthogonal group (compare (2.1)).

If n is even there is always at least one orthogonal spread [Di, Dy, Ka1]. None
exists if n is odd.

2.5. Orthogonal spreads ←→ symplectic spreads. Let ν denote any nonsin-
gular point (1–space) of the above orthogonal space V : Q(ν) 6= 0. If Σ is any
orthogonal spread of V , then n is odd and {Z ∩ ν⊥ | Z ∈ Σ} is a family of totally
singular (n − 1)–spaces that partitions the set of nonzero singular vectors of ν⊥.
Since the characteristic is 2, ν is contained in the hyperplane ν⊥. The (2n − 2)–
space ν⊥/ν is turned into a symplectic space using the inherited alternating bilinear
form (u+ ν, v + ν) := (u, v) (for u, v ∈ ν⊥). Then

(2.10) Σ/ν := {〈Z ∩ ν⊥, ν〉/ν | Z ∈ Σ}
is a symplectic spread of the symplectic space ν⊥/ν, obtained by slicing the original
spread. Note that there is no quadratic form inherited by ν⊥/ν.

The preceding construction can be reversed, proceeding from symplectic spreads
to orthogonal ones. Namely, let m = n−1, and start with a symplectic spread S in
a symplectic K–space W of dimension 2m. Identify W with the symplectic space
ν⊥/ν arising, as above, from the orthogonal space V and one of its nonsingular
points ν. Each totally singular (n − 1)–space of ν⊥ lies in exactly two totally
singular n–spaces of V , one from each family [Ta, 11.61]. Pick a family M of such
n–spaces. Then the lift

(2.11) Σν(S) :=
{
X
∣∣X ∈M and

〈
X ∩ ν⊥, ν

〉/
ν ∈ S

}
is an orthogonal spread of V such that

(2.12) S = Σν(S)/ν and Σ = Σν(Σ/ν).

This passage from symplectic to orthogonal spreads is essentially unique: a different
choice of the family M produces an equivalent orthogonal spread. See [Ka1, I] for
more details.

When S is a desarguesian spread, producing a desarguesian affine plane A(S),
Σν(S) is called a desarguesian orthogonal spread.

Back and forth. Starting with a symplectic spread S in a 2m–dimensional sym-
plectic K–space with m odd, we have just produced an orthogonal spread Σν(S)
in a (2m + 2)–dimensional orthogonal K–space, corresponding to a nonsingular
point ν, in such a way that Σν(S)/ν is S. Once we have Σ, we can form a dif-
ferent symplectic spread Σν(S)/ν′ using a different nonsingular point ν′. In other
words, we can use the orthogonal spread to “distort” A(S) into a “new” affine plane
A(Σν(S)/ν′). See Theorem 2.18 for a coordinate version of this.

Isomorphisms.

Theorem 2.13 ([Ka1, 3.6, 3.7]). For i = 1, 2, consider an orthogonal spread Σi
in an O+(2m + 2,K)–space Vi equipped with a quadratic form ϕi. Let νi be a
nonsingular point of Vi, and write Si = Σi/νi.

(i) The affine planes A(Si) are isomorphic if and only if there is a semilinear
transformation ω : V1 → V2 satisfying
(a) Σω1 = Σ2,
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SEMIFIELD PLANES AND CODES 903

(b) νω1 = ν2, and
(c) ϕ2(vω) = ϕ1(v)τ for some τ ∈ Aut(F ) and all v ∈ V1.

(ii) Aut A(Σ1)0/K
∗(A(Σ1)) ∼= ΓO+(V1)Σ1,ν1/K

∗, where K∗(A(Σ1)) ≥ K∗.
More precisely, Aut A(Σ1)0 consists of the transformations kḡ, where

k ∈ K∗(A(Σ1)) and ḡ is the transformation of ν⊥1 /ν1 induced by an element
g ∈ ΓO+(V1)Σ1,ν1 .

Part of this is clear: by (2.10), any ω behaving as in (i) produces an isomorphism
of planes. It is the converse that is not at all obvious. According to [Ka1, 3.6], any
isomorphism A(S1)→ A(S2) sending 0 to 0 is essentially symplectic, preserving the
symplectic forms on ν⊥i /νi up to scalars and field automorphisms, hence lifting to
ν⊥1 → ν⊥2 and then also to V . The theorem implies that equivalences among or-
thogonal spreads completely determine isomorphisms among the affine planes they
spawn, while the automorphism group of an orthogonal spread determines, up to
the kernels, the collineation groups of the planes it spawns. Consequently, in order
to understand an affine plane A(Σ/ν) we might focus instead on the orthogonal
spread Σ. However, we will also see that knowledge of the kernel K(A(Σ/ν)) of
each such plane will greatly aid in our investigation of some orthogonal spreads Σ.

2.6. Changing fields: up and down. There is a simple way to use Section 2.5
in order to obtain large numbers of new orthogonal and symplectic spreads.

Start with a symplectic spread S in a 2m–dimensional symplectic F ′–space W =
F 2 over a subfield F ′ of F , with alternating bilinear form ( , ). Let K be any
proper subfield of F ′, and let T : F ′ → K be the trace map. Then T (u, v) defines a
nondegenerate alternating K–bilinear form on the K–space W . Viewed as a family
of subspaces of this K–space, S is still a spread, and each of its members is still
totally isotropic with respect to the new form. Thus, S is a symplectic spread of
the K–space W . Here, dimKW = 2m[F ′ : K].

Now Section 2.5 can be applied if m[F ′ : K] is odd, producing an orthogonal
spread Σν(S) of a (2m[F ′ : K] + 2)–dimensional orthogonal K–space, after which
we can come down via new nonsingular points ν′ and obtain seemingly “new”
symplectic spreads Σν(S)/ν′.

Up and down process. This process of repeatedly going from a symplectic spread
over some field, changing to a smaller field, going up to an orthogonal spread and
then back down to a symplectic spread over the smaller field, is called the up and
down process. In general it is difficult to keep control over properties of these
spreads. However, in Section 1 we mentioned important special cases where control
can be maintained.

2.7. Up and down using coordinates. Suppose that F = GF(qm) ⊇ F ′ =
GF(qm

′
) ⊇ K = GF(q) are fields with mm′ odd and with corresponding trace

maps T ′ : F → F ′ and T : F → K. The following observations permeate this
paper:

Lemma 2.14. If z ∈ F and u ∈ F ′, then

(i) TT ′(z) = T (z),
(ii) T (uz) = T (uT ′(z)), and
(iii) T ′(u) = u and T (1) = 1.
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Proof. (i) Let Aut(F/K) = 〈α〉, so that Aut(F/F ′) = 〈αm/m′〉. Since T (zα
j

) =
T (z)α

j

= T (z) we have TT ′(z) = T (
∑m/m′

i=1 zα
m′i

) =
∑m/m′

i=1 T (z) = (m/m′)T (z) =
T (z).

(ii) By (i), T (uz) = TT ′(uz) = T (uT ′(z)).
(iii) T ′(u) =

∑m/m′

1 u = u, and T (1) = 1 similarly. �

A prequasifield P∗(F,+, ∗) with kernel containing F ′ defines a spread S∗ in the
F ′–space W = F 2 using (1.2). Consider the following additional properties of P∗
for some l ∈ F and all x, x′, y ∈ F :

T ′
(
x(x ∗ y)

)
= T ′

(
lxy
)2
,(2.15)

T ′(x(x′ ∗ y)) = T ′(x′(x ∗ y)).(2.16)

In fact l is not essential here: there is an isotopic prequasifield, defined by x ◦ y =
x ∗ (l−1y), that satisfies (2.5), (2.6), and hence is symplectic. Moreover, l is not
needed for the study of our presemifields. However, including l simplifies a more
general result: see Theorem 2.18(ii).

As before, (2.15) implies (2.16). Moreover, the members of the spread S∗ (cf.
(1.2)) are totally isotropic with respect to the nondegenerate alternating F ′–bilinear
form

(
(a, b), (c, d)

)′ := T ′(ad+bc), since ((x, x∗s), (y, y∗s)
)′ = T ′(x(y∗s)+y(x∗s)) =

0 by (2.16).
A fundamental aspect of our study of orthogonal spreads involves the seem-

ingly simple matter of changing fields (cf. Section 2.6). Thus, we now view W
as a K–space and equip it with the nondegenerate alternating K–bilinear form(
(a, b), (c, d)

)
:= T (ad+ bc). By Lemma 2.14(i), P∗ satisfies (2.15) and (2.16) with

T in place of T ′, and the members of S∗, when viewed as K–subspaces, remain
totally isotropic with respect to this new form (i.e., T (x(y ∗s)+y(x∗s)) = 0). This
change of perspective does not affect the affine plane A(S∗).

Next, consider the O+(2m + 2, q)–space V in (1.3). The associated alternating
bilinear form is given by

(2.17) ((x, a, y, b), (x′, a′, y′, b′)) = T (xy′ + x′y) + ab′ + a′b.

By Section 2.5, for any nonsingular point ν ∈ V we can identify W with ν⊥/ν and
then lift the symplectic spread S∗ to an orthogonal spread Σν(S∗) in V . We will
need all of this in terms of coordinates:

Theorem 2.18. Suppose that P∗ satisfies (2.15) for the trace map T ′ : F → F ′,
and that k(x ∗ y) = kx ∗ y for all k ∈ F ′, x, y ∈ F .

(i) P∗ determines the orthogonal spread Σ∗ = {Σ∗[s] | s ∈ F ∪ {∞}} of the
orthogonal K–space V in (1.3), where

Σ∗[∞] = 0⊕ 0⊕ F ⊕K,

Σ∗[s] =
{(
x, a, x ∗ s+ ls(a+ T (lxs)), T (lxs)

)
| x ∈ F, a ∈ K

}
, s ∈ F,

for the trace map T : F → K.
(ii) For any nonsingular point of the form ν = 〈0, λ2, ζ, 1〉, ζ ∈ F, λ ∈ K∗, the

symplectic spread Σ∗/ν in (2.10) arises from the prequasifield P◦(F, ◦,+)
defined, for x, y ∈ F, by

x ◦ y = x ∗ y + lyT (lxy) + lyλT (lλxy) + lyT (xζ) + ζT (lxy).
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Moreover, P◦ satisfies an analogue of (2.15): T
(
x(x ◦ y)

)
= T (lλxy)2 for

all x, y ∈ F .
(iii) If ν = 〈0, 1, 0, 1〉 then S◦ = S∗.

Proof. (i) By hypothesis, each member of Σ∗ is a K–subspace of V of K–dimension
m+ 1. We first show each of these subspaces is totally singular. This is obvious for
Σ∗[∞]. Consider Σ∗[s]: by (1.3),

Q
(
(x, a, x ∗ s+ ls(a+ T (lxs)), T (lxs))

)
= T

(
x(x ∗ s) + xlsa+ xlsT (lxs)

)
+ aT (lxs)

= T
(
x(x ∗ s)

)
+ T

(
lxsT (lxs)

)
= 0,

since (2.15) holds with T in place of T ′ (by Lemma 2.14(i)), as required.
Next we check that the members of Σ∗ pairwise intersect trivially. Certainly

Σ∗[s] ∩ Σ∗[∞] = 0 for each s ∈ F . Hence the members of Σ∗ are all maximal
totally singular subspaces of the same type M and any two members of M intersect
in a subspace of even dimension, since m + 1 is even [Ta, 11.61]. If s, t ∈ F

with Σ∗[s] ∩ Σ∗[t] 6= 0, it follows that Σ∗[s] ∩ Σ∗[t] ∩ 〈0, 1, 0, 1〉⊥ 6= 0. By (2.17),
〈0, 1, 0, 1〉⊥ =

{
(x, b, y, b) | x, y ∈ F, b ∈ K

}
. Thus, there exists x ∈ F ∗ with(

x, T (lxs), x ∗ s, T (lxs)
)

=
(
x, T (lxt), x ∗ t, T (lxt)

)
. Then x ∗ s = x ∗ t, so that s = t

as P∗ is a prequasifield.
(ii) By (2.17), 〈0, λ2, ζ, 1〉⊥ =

{
(x, λ2b+T (xζ), y, b) | x, y ∈ F, b ∈ K

}
. For each

s ∈ F , Σ∗[s] ∩ ν⊥ is{(
x, λ2T (lxs) + T (xζ), x ∗ s+ ls

[
λ2T (lxs) + T (xζ)

]
+ lsT (lxs), T (lxs)

)
| x ∈ F

}
,

so that
〈
ν,Σ∗[s] ∩ ν⊥

〉/
ν consists of all vectors of the form(

x, T (xζ), x ∗ s+ ls
[
λT (lλxs) + T (lxs) + T (xζ)

]
+ ζT (lxs), 0

)
+ 〈0, λ2, ζ, 1〉

= (x, T (xζ), x ◦ s, 0) + ν

since λ ∈ K. Then the isometry ν⊥/ν →W sending
(
x, T (xζ), y, 0

)
+ ν →(x, y)

maps the symplectic spread Σ∗/ν to the symplectic spread associated with P◦.
Finally, P◦ satisfies the analogue of (2.15):

T
(
x(x ◦ y)

)
= T

(
(x(x ∗ y) + lxyT (lxy)

)
+ T

(
lλxyT (lλxy)

)
+ T

(
lxyT (xζ) + xζT (lxy)

)
= T (lλxy)2

since P∗ satisfies (2.15) with T in place of T ′.
(iii) Here x ◦ y = x ∗ y. �

Remark. We used λ2
i here instead of λi in order to simplify the statement of the

next proposition.

2.8. Up and down from desarguesian spreads. We now iterate Theorem 2.18,
starting with the desarguesian spread and using a sequence of subfields of F . We
call a symplectic spread S a scion of the desarguesian spread if it is obtained
by applying the “up and down process” beginning with the desarguesian spread.
Correspondingly, the translation plane A(S) is a scion of the desarguesian plane.
The following result is more general than we need but involves no more effort than
the semifield case, which occurs when all λi are 1.
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Proposition 2.19. Let (Fi)n0 be a chain of distinct fields such that F = F0 and
[F : Fn] is odd, with trace maps Ti : F → Fi. Set λ0 = 1; let λi ∈ F ∗i and ζi ∈ F be
arbitrary for 1 ≤ i ≤ n; and for 0 ≤ i ≤ n write ci =

∏i
j=0 λj. Define P∗(F,+, ∗)

by

x ∗ y = xy2 +
n∑
i=1

(
ci−1yTi(ci−1xy) + ciyTi(cixy)

)
+

n∑
i=1

(
ci−1yTi(xζi) + ζiTi(ci−1xy)

)
.

Then P∗(F, ∗,+) is a prequasifield coordinatizing a scion of the desarguesian plane,
and Tn(x(x ∗ y)) = Tn(cnxy)2 for all x, y ∈ F as in (2.15).

Proof. We use induction on n. If n = 0 then x ∗ y = xy2 corresponds to the
desarguesian plane, and T0(x(x ∗ y)) = T0(c0xy)2 for c0 = λ0 = 1.

Suppose that, for some n ≥ 0, we have the stated semifield P∗. We now consider
an additional field Fn+1 ⊂ Fn, together with λn+1, ζn+1 and cn+1. We will use
F ′ = Fn and K = Fn+1, T ′ = Fn and T = Tn+1 in Theorem 2.18(ii). That
theorem gives us a coordinate description of the orthogonal spread Σ∗ in the K–
space Vn+1 = F⊕K⊕F⊕K; moreover, Σ∗/〈0, λ2

n+1, ζn+1, 1〉 is a symplectic spread
coordinatized by P◦, where, using l = cn in the inductive step,

x ◦ y = x ∗ y + cnyTn+1(cnxy) + cnλn+1yTn+1(cnλn+1xy)

+ cnyTn+1(xζn+1) + ζn+1Tn+1(cnxy)

= xy2 +
n+1∑
i=1

(
ci−1yTi(ci−1xy) + ciyTi(cixy)

)
+

n+1∑
i=1

(
ci−1yTi(xζi) + ζiTi(ci−1xy)

)
.

Also by Theorem 2.18(ii), Tn+1(x(x ◦ y)) = Tn+1(cnλn+1xy)2 = Tn+1(cn+1xy)2,
as required. �

A direct computational proof is given in [Wi] that the multiplication in Propo-
sition 2.19 defines a prequasifield (compare Section 3.1). We already noted above
that the prequasifield in the proposition is just the presemifield in (1.1) if all λi are
1. In this case any term with ζi = 0 can be deleted, as can the corresponding field
Fi. This explains the assumption ζi ∈ F ∗ in (1.1).

On the other hand, if all ζi are 0 then A(P∗) admits a group of collineations
(x, y) → (s−1x, sy) fixing two points at infinity and cyclically permuting the re-
maining ones; this situation is studied in detail in [Wi].

Finally, we note that these are far from all scions of the Desarguesian plane. If
some λi are not 1 and some ζi are not 0, then no nontrivial subgroup of SL(2, qm) is
preserved in the above construction, and presumably the corresponding orthogonal
spreads all have tiny automorphism groups. On the other hand, we have only
included scions in the theorem whose coordinate versions can be described “easily”.
There are other noteworthy scions of desarguesian planes, obtained using chains of
fields and other choices of ν = 〈α, λ, ζ, 1〉 with α 6= 0. These include the flag–
transitive scions studied in [KW].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SEMIFIELD PLANES AND CODES 907

2.9. Elementary abelian groups from presemifields. We now specialize the
situation in Section 2.7 to the case where we start with a presemifield P∗(F,+, ∗),
|F | = qm, with q even and m odd; we also assume that l = 1. Then the associated
translation plane A(P∗) is a symplectic semifield plane. We assume that we are
in the situation of Theorem 2.18, so that we have F, F ′,K, T, T ′ and Σ∗; (2.5) and
(2.6) hold.

The K–spaces F 2 and V = F ⊕K ⊕ F ⊕K are equipped with the alternating
and quadratic forms

(
(x, y), (w, z)

)
= T (xz + yw) and Q(x, a, y, b) = T (xy) + ab,

respectively. For each e ∈ F define ψe : F 2 → F 2 and ηe : V → V by

(x, y)ψe = (x, y + x ∗ e),
(x, a, y, b)ηe = (x, a+ T (xe), y + x ∗ e+ (a+ b)e, b+ T (xe)).

(2.20)

By a straightforward calculation, ψeψf = ψe+f and ηeηf = ηe+f for all e, f ∈ F .
If H ≤ ΓL(V ) then CV (H) denotes the set of vectors fixed by H .

Lemma 2.21.

(i) E(S∗) :=
{
ψe | e ∈ F

}
is an elementary abelian group of symplectic isome-

tries of the K–space F 2 that stabilizes S∗[∞] and permutes the remaining
members of S∗ regularly. It induces all elations of the semifield plane A(S∗)
with axis S∗[∞].

(ii) E(Σ∗) :=
{
ηe | e ∈ F

}
is an elementary abelian group of orthogonal isome-

tries of the K–space V that stabilizes Σ∗[∞] = 0⊕ 0⊕F ⊕K and permutes
the remaining members of Σ∗ regularly.

(iii) CV
(
E(Σ∗)

)
=
{

(0, a, y, a) | a ∈ K, y ∈ F
}
, and E(Σ∗) permutes the set

{〈0, 0, y, 1〉 | y ∈ F} of points of Σ∗[∞] not in CV
(
E(Σ∗)

)
regularly.

(iv) The set of nonsingular points of CV
(
E(Σ∗)

)
is
{
〈0, 1, y, 1〉 | y ∈ F

}
, and

has size qm.

Proof. These all involve simple calculations. �

3. The semifields

We now begin our study of the presemifields (1.1). We always let m be an
odd integer such that qm > 8.

The presemifields in (1.1) involve a relatively unwieldy formula. To complicate
matters, we will need to introduce isotopic semifields (cf. Section 2.2). These will
involve even more awkward formulas (3.7)(iii) and calculations.

This section contains many of the computations needed later: we will determine
the kernels of many of the semifields and hence of the associated affine planes
(Theorem 3.4), prove that the semifields are not commutative if the chain of fields
contains more than one field (Theorem 3.24), and determine exactly when two of
the presemifield operations are equal (Proposition 3.38). Each of these is crucial
for later results concerning planes or codes.

3.1. The presemifields in (1.1). When we specialize Theorem 2.19 to the case
λi = 1 and ζi 6= 0 for all i, then all ci = 1 and we obtain the binary operation
defined in (1.1). Thus, writing F0 = F ,

(3.1) P
(
(Fi)n0 , (ζi)

n
1

)
= P∗

(
(Fi)n0 , (ζi)

n
1

)
:= P∗(F,+, ∗)
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is a symplectic presemifield (i.e., satisfying (2.5) and (2.6)), and A(P∗) is a sym-
plectic semifield scion of the desarguesian plane (by Proposition 2.19). The case
n = 0 corresponds to the desarguesian plane we started with.

For completeness we provide a direct computational proof that (1.1) does, indeed,
define a presemifield. This will allow some of the remarkable features of (1.1) to
become evident, features that will figure prominently in the rest of this paper.

Since ∗ clearly is 2–sided distributive, we only need to prove that x, y ∈ F and
x ∗ y = 0⇒ z := xy is 0. Multiply (1.1) by x:

(3.2) z2 +
n∑
i=1

(
zTi(ζix) + ζixTi(z)

)
= 0.

Let T0 = 1: F0 → F0. Using backwards induction, we will prove that Tj(z) = 0 for
each 0 ≤ j ≤ n. For j = n, apply Tn to (3.2). By Lemma 2.14(i),

0 = Tn(z2) +
n∑
i=1

TnTi

(
zTi(ζix) + ζixTi(z)

)
= Tn(z)2 +

n∑
i=1

Tn

(
Ti(z)Ti(ζix) + Ti(ζix)Ti(z)

)
= Tn(z)2.

If Tj+1(z) = · · · = Tn(z) = 0 for some 0 ≤ j ≤ n− 1, then (3.2) becomes

z2 +
j∑
i=1

(
zTi(ζix) + ζixTi(z)

)
+

n∑
i=j+1

zTi
(
ζix
)

= 0.

Apply Tj:

Tj(z2) +
j∑
i=1

(
Tj(zTi(ζix)) + Tj(ζixTi(z))

)
+ Tj(z)

n∑
i=j+1

Ti(ζix) = 0,

so by Lemma 2.14(ii)

Tj(z2) +
j∑
i=1

(
Tj(Ti(z)Ti(ζix)) + Tj(Ti(ζix)Ti(z))

)
+ Tj(z)

n∑
i=j+1

Ti(ζix) = 0,

and hence

Tj(z)2 + Tj(z)
n∑

i=j+1

Ti(ζix) = 0.

Thus, if Tj(z) 6= 0, then Tj(z) =
∑n

i=j+1 Ti(ζix), and hence, by Lemma 2.14(i),

Tj(z) =
n∑

i=j+1

Ti(ζix) = Tj+1

( n∑
i=j+1

Ti(ζix)
)

= Tj+1(Tj(z)) = Tj+1(z) = 0,

a contradiction. Thus, Tj(z) = 0, as claimed.
Hence, by backwards induction, z = T0(z) = 0. Consequently, P∗ is a semifield.
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3.2. Kernels. In order to compute the kernel of a semifield plane, it suffices to
compute the kernel

(3.3) K(S◦) =
{
k ∈ F | (k ◦ x) ◦ y = k ◦ (x ◦ y) for all x, y ∈ F

}
of any coordinatizing semifield S◦(F,+, ◦). The goal of this section is the following

Theorem 3.4. If n ≥ 1 and [F : F1] > 3, then the kernel of any semifield isotopic
to P∗

(
(Fi)n0 , (ζi)

n
1

)
is isomorphic to Fn.

Note that some numerical restriction is needed here, since the plane is desargue-
sian if qm = 8. Nevertheless, the restriction on F1 is unfortunate.

In order to try to minimize notation, for the remainder of this section all sum-
mations will be from 1 to n unless otherwise indicated. We will need the reduction
contained in part (ii) of the next observation:

Lemma 3.5.

(i) If λ ∈ F ∗ and σ ∈ Aut(F ), then P∗
(
(Fi)n0 , (ζi)

n
1

)
and P◦

(
(Fi)n0 , (λζ

σ
i )n1
)

are isotopic: λ(x ∗ y)σ = (λ−1xσ) ◦ (λyσ) for all x, y ∈ F.
(ii) P∗

(
(Fi)n0 , (ζi)

n
1

)
is isotopic to a presemifield P◦

(
(Fi)n0 , (ζ

′
i)
n
1

)
with

∑
Ti(ζ′i)

= 0.

Proof. (i) This is an easy calculation using (1.1).
(ii) Define an additive map Φ: F → F1 by λ→

∑
Ti(λζi). Since FΦ ⊆ F1 ⊂ F ,

the kernel of Φ contains some λ ∈ F ∗. Now use (i) with σ = 1. �

Remark 3.6. The semifields (1.1) arising when n = 1 were studied in [Ka1], where
the corresponding plane was called a second cousin of the desarguesian plane. The
preceding lemma explains why there was only one semifield other than a field arising
there for a chain of fields F = F0 ⊃ F1 : each presemifield P((Fi)1

0, (ζ1)) is isotopic
to P((Fi)1

0, (1)).
Since x ∗ y = xy2 + T (x)y + T (xy), we have Aut(F ) ≤ Aut(P∗). For later

reference we note that, by [Ka1, I 4.1] and Corollary 3.23, if qm > 8 then this plane
is nondesarguesian, its kernel is isomorphic to F1, and

Aut A(P∗)0 = (E(S∗)×K∗)oAut(F )

(cf. Lemma 2.21(i)), where K∗oAut(F ) acts on F 2 via (x, y) → (kxσ, kyσ) for
k ∈ K∗, σ ∈ Aut(F ).

We now obtain semifields from our presemifields as in Section 2.2:

Definition 3.7.

(i) x→ x is the inverse of x→ 1 ∗ x, so that x2 +
∑
Ti(ζi)x +

∑
ζiTi(x) = x,

i.e., 1 ∗ x = x.

(ii) x → x̂ is the inverse of x → x ∗ 1, so that x̂ +
∑(

Ti(ζix̂) + ζiTi(x̂)
)

= x,

i.e., x̂ ∗ 1 = x.
(iii) S◦ := S◦(F, ◦,+) is the semifield isotopic to P∗ defined by

x ◦ y = x̂ ∗ y ,

with multiplicative identity 1 ∗ 1.
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We will also use further abbreviations: for all u ∈ F ,

û ∗ y = ûy2 + cuy +
∑

ζiTi(ûy) with

cu =
∑

Ti(ζiû) ∈ F1.
(3.8)

Proof of Theorem 3.4. By Lemma 3.5(ii), we can change the ζi so as to have

(3.9)
∑

Ti(ζi) = 0.

It suffices to consider the semifield (3.7)(iii) determined by the new elements ζi.
We will make frequent use of the fact that (3.9) simplifies (3.7)(i).

Lemma 3.10.

(i) The map x→ x is additive.
(ii) The map x→ x̂ is Fn–linear.
(iii) If

∑
Ti(ζix̂) = 0 and T1(x̂) = 0, then x̂ = x,

∑
Ti(ζix) = 0 and Ti(x) = 0

for all i.
(iv) If T1(y) = 0 then y2 = y.
(v) x̂ ∗ 1 = x and 1 ∗ x = x for all x ∈ F .

Proof. (i) and (ii) are clear.
(iii) Ti(x̂) = 0 for all i by Lemma 2.14(i), so that (3.7)(ii) reduces to x̂ = x, and

hence
∑
Ti(ζix) = 0 and Ti(x) = 0 for all i.

(iv) Ti(y) = 0 for all i by Lemma 2.14(i), so that (3.7)(i) reduces to y2 = y by
(3.9).

(v) By definition, x̂ ∗ 1 is the unique z such that z ∗ 1 = x ∗ 1, so that x̂ ∗ 1 = x.
Similarly, 1 ∗ x is the unique z such that 1 ∗ z = 1 ∗ x, so that 1 ∗ x = x. �

Lemma 3.11. If
∑
Ti(ζiŷ) = 0 and T1(ŷ) = 0, then y2 = y.

Proof. By Lemma 3.10(iii), ŷ = y and Tj(y) = 0 for all j. We will prove that
Tj(y) = 0 using backwards induction on j = n, . . . , 1. First consider the case j = n.
By (3.7)(i),

(3.12) y2 +
∑(

Ti(ζi)y + ζiTi(y)
)

= y .

Apply Tn:

Tn(y2) +
∑(

Tn(Ti(ζi)y) + Tn(ζiTi(y))
)

= Tn(y) = 0.

By Lemma 2.14(ii),

Tn(y2) +
∑(

Tn(Ti(ζi)Ti(y)) + Tn(Ti(ζi)Ti(y))
)

= 0,

and hence Tn(y) = 0.
If Tj+1(y) = · · · = Tn(y) = 0 for some j ≥ 1, then (3.12) becomes

y2 +
j∑
i=1

(
Ti(ζi)y + ζiTi(y)

)
+

n∑
i=j+1

Ti(ζi)y = y.
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Applying Tj and again using Lemma 2.14 yields

0 = Tj(y) = Tj(y2) +
j∑
i=1

Tj

(
Ti(ζi)Ti(y) + Ti(ζi)Ti(y)

)
+ Tj

( n∑
i=j+1

Ti(ζi)y
)

= Tj(y)2 +
n∑

i=j+1

Ti(ζi)Tj(y),

since
∑n

i=j+1 Ti(ζi) ∈ Fj+1. If Tj(y) 6= 0 then

Tj(y) =
n∑

i=j+1

Ti(ζi) = Tj+1

( n∑
i=j+1

Ti(ζi)
)

= Tj+1(Tj(y)) = Tj+1(y) = 0

by Lemma 2.14(i), a contradiction. Thus, Tj(y) = 0.
Induction now gives Tj(y) = 0 for all j ≥ 1. By (3.9), (3.12) now reduces to

y2 = y. �

We need to prove that the kernel K of our semifield S◦ equals κ := {f ∗ 1 | f ∈
Fn}, and hence is a field of size |Fn|. (N.B.—The fact that κ is a field can be seen
directly: if k, l ∈ Fn then (k ∗ 1) ◦ (l ∗ 1) = (kl) ∗ 1 using (1.1) and (3.7)(iii).)

First of all, K ⊇ κ: if k ∈ Fn then k ∗ 1 ∈ K. For, let x, y ∈ F and calculate using
(3.7)(iii):

(k ∗ 1) ◦ (x ◦ y) = k̂ ∗ 1 ∗ (x ◦ y) = k ∗ (x ◦ y) = k(1 ∗ (x ◦ y)),

since k̂ ∗ 1 = k by Lemma 3.10(v) and ∗ is left Fn–linear. By (3.7)(i), the left
Fn–linearity of ∗ and Lemma 3.10(v),

k(1 ∗ (x ◦ y)) = k(x ◦ y) = k(x̂ ∗ y) = (kx̂) ∗ y = k̂x ∗ y = (kx) ◦ y.
Again since ∗ is left Fn–linear, Lemma 3.10(i,v) and (3.7)(iii) imply that

(kx) ◦ y = (k(1 ∗ x)) ◦ y = (k ∗ x) ◦ y =
(
(k̂ ∗ 1) ∗ x

)
◦ y =

(
(k ∗ 1) ◦ x

)
◦ y.

Then k ∗ 1 ∈ K by (3.3).
It remains to prove that K ⊆ κ. Let k behave as in (3.3).
We restrict the elements x in (3.3) in the following ways:
(A1) Assume that cx = 0 and T1(x̂) = 0. Then x̂ = x, T1(x) = 0 and x2 = x by

Lemmas 3.10(iii) and 3.11.
(A2) Assume that ck◦x = 0 and T1(k̂ ◦ x) = 0. Then k̂ ◦ x = k ◦ x and k ◦ x2

=
k ◦ x, again by Lemmas 3.10(iii) and 3.11.

(A3) x 6= 0. Note that x 6= 1 by (A1), since T1(1) = 1 6= T1(x) by Lemma
2.14(iii).

Thus, x lies in the kernel of four additive maps F → F1. By hypothesis, [F : F1] >
3, so that |F |/|F1|4 ≥ |F1| ≥ 2 and there is an element x meeting all of these
conditions. We now fix x subject to these conditions.

Lemma 3.13. We may assume that some k ∈ K satisfies k̂ /∈ Fn, ck = 0 and
k ◦ x = k̂x.

Proof. The first assertion is obvious. We use it to deal separately with the case
|F | = 25. Since each line of A(S◦) is a vector space over K, we must have K = F
(i.e., S◦ is a field). Then there are at least |F |/|F1|2 = 8 choices for k such that
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ck = 0 and T1(k̂x) = 0; by (3.8), (3.7)(iii) and (A1), k ◦ x = k̂x for at least 6 such
elements k /∈ F1.

Now assume that |F | > 25; we will show that ck = 0 and k ◦ x = k̂x. Consider
all y 6= 0 satisfying the following four conditions (dependent upon our choice of x):

(B1) Assume that T1((k ◦ x)y) = 0. Then Ti((k ◦ x)y) = 0 for all i by Lemma
2.14(i).

(B2) Assume that T1(xy) = 0. Then Ti(xy) = 0 for all i by Lemma 2.14(i).
(B3) Assume that T1(k̂ xy2) = 0. Then Ti(k̂ xy2) = 0 for all i by Lemma 2.14(i).

(B4) Assume that T1(xy2) = 0. Then xy2
2

= xy2 by Lemma 3.10(iv).
By (A1), (3.7)(ii,iii), (3.8) and (B2), x̂ = x and x ◦ y = x̂ ∗ y = x̂y2 + cxy +∑
ζiTi(x̂y) = xy2. Then, by (3.7)(ii), (3.8) and (B3),

k ◦ (x ◦ y) = k̂ ∗ xy2 = k̂ xy2
2

+ ck xy
2 +

∑
ζiTi(k̂ xy2)

= k̂ xy2
2

+ ck xy
2.

(3.14)

By (A1) and (A2), k̂ ◦ x = k ◦ x and x =
√
x. By (3.7)(iii) and (3.8),

(3.15) k ◦ x = k̂ ∗ x = k̂x+ ck
√
x+ Λk,x

for Λk,x :=
∑
ζiTi(k̂x). Moreover, by (3.7)(iii), (3.8), (A2) and (B1),

(k ◦ x) ◦ y = k̂ ◦ x ∗ y = (k ◦ x) ∗ y

= (k ◦ x)y2 + ck◦xy +
∑

ζiTi((k ◦ x)y)

= (k ◦ x)y2.

Write z = y2, so that xz2 = xz by (B4). By (3.3), (3.14) and (3.15),

k̂ xz2 + ck xz = (k̂x+ ck
√
x+ Λk,x)z,

so that ck
√
xz = ck

√
x z + Λk,xz. Since z = y2 6= 0,

ck
√
x/z = ck

√
x+ Λk,x ,

where the right side depends only on our chosen x satisfying (A1)–(A3).
Since |F | > 25 there are at least |F |/|F1|4 ≥ 4 choices for y satisfying (B1)–(B4)

(i.e., at least |F1| > 4 choices if n = 1 and at least |F1| ≥ |F2|3 ≥ 8 choices if there
are n + 1 ≥ 3 fields in our chain (Fi)n0 ). Then ck = Λk,x = 0, and k ◦ x = k̂x by
(3.15). �

Lemma 3.16. k̂ ∈ Fn.

Proof. Again we are dealing with (3.3). We still have a fixed x satisfying (A1)–
(A3), but this time we let y remain arbitrary. We have k̂ ◦ x = k ◦ x = k̂x by (A2)
and Lemma 3.13. By (3.7)(ii,iii), (3.8) and (A2),

(k ◦ x) ◦ y = (̂k ◦ x) ∗ y = k̂xy2 + ck◦xy +
∑

ζiTi(k̂xy)

= k̂xy2 +
∑

ζiTi(k̂xy).
(3.17)

On the other hand, by (A1), (3.7)(iii) and (3.8), we have x̂ = x and

x ◦ y = x̂y2 + cxy +
∑

ζiTi(x̂y) = xy2 +
∑

ζiTi(xy).
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By (3.7)(iii), (3.8) and Lemma 3.13,

(3.18) k ◦ (x ◦ y) = k̂{xy2 +
∑

ζiTi(xy)}2 +
∑

ζiTi(k̂{xy2 +
∑

ζiTi(xy)}).

Write z = y. By (3.3), (3.17) and (3.18),

k̂xz2 +
∑

ζiTi(k̂xz)

= k̂{xz2 +
∑

ζiTi(xz)}2 +
∑

ζiTi(k̂{xz2 +
∑

ζiTi(xz)}).
(3.19)

By (3.7)(i) and (3.9),

(3.20) xz2 +
∑

ζiTi(xz)
2

=
∑

ζiTi

(
xz2 +

∑
ζiTi(xz)

)
+ xz2 +

∑
ζiTi(xz).

Substituting this into (3.19) and rearranging gives∑
ζiTi

(
k̂{xz + xz2 +

∑
ζiTi(xz)}

)
= k̂

∑
ζiTi

(
xz + xz2 +

∑
ζiTi(xz)

)(3.21)

for our choice of x and all z ∈ F .
The map z → xz + xz2 +

∑
ζiTi(xz) is additive. We claim that it is invert-

ible. For suppose that xz = xz2 +
∑
ζiTi(xz) for some z. Then we can replace

xz2 +
∑
ζiTi(xz) by xz in (3.20) and obtain

(xz)2 =
∑

ζiTi(xz) + xz2 +
∑

ζiTi(xz),

so that x2z2 = xz2. Then z = 0 by (A3). Thus, our map is invertible.
Let w ∈ F be arbitrary and let z satisfy w = xz + xz2 +

∑
ζiTi(xz) in (3.21):

(3.22)
∑

ζiTi(k̂w) = k̂
∑

ζiTi(w) ∀w ∈ F.

Temporarily let w = 1:
∑
ζiTi(k̂) = k̂

∑
ζi by Lemma 2.14(iii). Thus,

w

n∑
i=1

ζiTi(k̂) = wk̂

n∑
i=1

ζi

for all w ∈ F . Now temporarily let w ∈ Fn−1 − Fn. Then (3.22) becomes
n−1∑
i=1

ζiwTi(k̂) + ζnTn(k̂w) = k̂
( n−1∑
i=1

ζiw + ζnTn(w)
)

by Lemma 2.14(iii). Adding the preceding equations yields

wζnTn(k̂) + ζnTn(k̂w) = k̂wζn + k̂ζnTn(w).

Since w ∈ Fn−1 − Fn we have w + Tn(w) 6= 0, and hence

k̂ = (wTn(k̂) + Tn(k̂w))/(w + Tn(w)) ∈ Fn−1.

Consequently, (3.22) reduces to k̂ζnTn(w) = ζnTn(k̂w) for all w ∈ F . Set w = 1
and use Lemma 2.14(iii) in order to obtain k̂ = k̂Tn(1) = Tn(k̂1) ∈ Fn. This proves
the lemma, contradicts Lemma 3.13, and hence completes the proof of Theorem 3.4.

�

Corollary 3.23. If qm > 8 then the kernel of A∗((Fi)1
0, (1)) is isomorphic to F1.
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Proof. This was proved in [Ka3, 5.3] when |F1| > 2. If |F1| = 2 then [F : F1] ≥ 5,
and Theorem 3.4 completes that proof.

If |F1| > 2 we will give a shorter version of [Ka3, 5.3]. Define a semifield S◦
as in (3.7)(iii) using P∗((Fi)1

0, (1)). Let a ∈ F1. By (3.7)(i,ii), â = a and a2 = a
since T1(ζ1a) = T1(a) = a. By (3.7), if z ∈ F then ẑ = z, z ◦ a = za2 = za and
a ◦ z = az2 + T1(a)z + T1(az) = a(z2 + z + T1(z)) = az. Then F1 ⊆ K: if x, y ∈ F
then (a ◦ x) ◦ y = (ax) ◦ y = a(x ◦ y) = a ◦ (x ◦ y) since x → x ◦ y is F1–linear, so
that a ∈ K by (3.3).

Suppose that |K| > |F1|. Then each line of F 2 is a vector space over K, hence of
odd dimension, so that [K : F1] is odd. Fix a ∈ F1 − {0, 1}. By (3.3), x ◦ (y ◦ a) =
(x ◦ y) ◦ a for all x, y ∈ K. By the preceding paragraph, it follows that x ◦ (ya) =
(x ◦ y)a, and hence

xya2 + T1(x)ya+ T1(x ya) = {xy2 + T1(x)y + T1(xy)}a.
Thus,

x{ya2 + y2a} = T1(x)(ya+ ya) + T1(x ya) + T1(xy)a.
If ya2 + y2a 6= 0 for some y ∈ K, then K is contained in a 2–dimensional F1–

subspace of F (recall that a ∈ F1), whereas [K : F1] ≥ 3. Thus, ya2 + y2a = 0 for
all y ∈ K, so that

T1(x)(y
√
a+ ya) = T1(xy

√
a) + T1(xy)a ∈ F

for all x, y ∈ K. Since
√
a + a 6= 0 and T1(1) = 1, this produces the contradiction

K ⊆ F1. �

3.3. Noncommutativity and dual kernel. Theorem 3.4 and Corollary 3.23 do
not handle all of the presemifields P∗

(
(Fi)n0 , (ζi)n1

)
; this remains an open question.

However, those results and the next one show that most of them coordinatize
nondesarguesian planes.

Proposition 3.24. S◦
(
(Fi)n0 , (ζi)

n
1

)
is not commutative if n ≥ 1 and |Fn| > 2.

Proof. Assume that S◦ is commutative. Let a ∈ Fn − GF(2). The right side of
x ◦ y = y ◦ x is Fn–linear in y (by (3.7)), and hence the same must be true of the
left side, so that

x̂ ay2 +
∑[

Ti(ζix̂)ay + ζiTi(x̂ ay)
]

= a
{
x̂y2 +

∑[
Ti(ζix̂)y + ζiTi(x̂y)

]}
for all x, y ∈ F , by (1.1). Write x in place of x̂ and rearrange, using the fact that
a ∈ Fn: for all x, y ∈ F ,

(3.25) x(ay2 + ay2) =
∑

Ti(ζix)[ay + ay] +
∑

ζiTi(x[ay + ay]).

We claim that ay2 + ay2 = 0 for all y ∈ F . For, temporarily choose x 6= 0 such
that

∑
Ti(ζix) = 0 and T1(x[ay + ay]) = 0, and then Ti(x[ay + ay]) = 0 for all i

by Lemma 2.14(i); since [F : F1] ≥ 3 there exists such a nonzero x. Then (3.25)
implies our claim.

Since a ∈ Fn, (3.25) now states that

(a+
√
a)
(∑

Ti(ζix)y +
∑

ζiTi(xy)
)

= 0,

for all x, y ∈ F . Since a+
√
a 6= 0,

(3.26)
∑

Ti(ζix)y +
∑

ζiTi(xy) = 0 ∀x, y ∈ F.
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We now show that (3.26) is impossible. Fix x, choose y 6= 0 such that T1(xy) = 0
and hence Ti(xy) = 0 for all i (Lemma 2.14(i)), and obtain

∑
Ti(ζix)y = 0 for at

least |F |/|F1| ≥ 2 choices for y. It follows that, for all x ∈ F , T1(ζ1x) is 0 if n = 1
and is

∑n
2 Ti(ζix) ∈ F2 if n > 1. Since x is arbitrary, this contradicts the fact that

T1(ζ1F ) = F1. �

Proposition 3.27. If n ≥ 1 and [F : F1] > 5, then the kernel of the dual of the
plane A

(
(Fi)n0 , (ζi)n1

)
is GF(2).

Proof. We will use the same semifield S◦(F,+, ◦) as in the proof of Theorem 3.4;
this is defined in (3.7)(iii). The dual plane is coordinatized by S◦′(F,+, ◦′), where
x ◦′ y = y ◦ x [De, 3.1.36]. Therefore, in view of (3.3), assume that k ∈ F and

(3.28) (x ◦ y) ◦ k = x ◦ (y ◦ k)

for all x, y ∈ F . We must prove that there are only two possibilities for k.
We first show that

(3.29) yk = y ◦ k
for all y. For, fix y and choose x satisfying various additional conditions:

(1) cx◦y = T1(x̂ ◦ y) = 0, so that x̂ ◦ y = x ◦ y by Lemma 3.10(iii).
(2) cx = T1(x̂ȳ) = 0, so that x ◦ y = x̂ ∗ y = x̂y2 by (3.8) and Lemma 2.14(i).
(3) T1((x ◦ y)k̄) = 0, so that (x ◦ y) ∗ k = (x ◦ y)k

2
= x̂y2k

2
by (3.8), (1), (2)

and Lemma 2.14(i).
(4) T1(x̂ y ◦ k) = 0, so that x̂∗y ◦ k = x̂ y ◦ k2

by (3.8), (2) and Lemma 2.14(i).
Since [F : F1] ≥ 7, some x 6= 0 satisfies these six additive conditions. By (3.7)(iii),
(3.28) now becomes x̂ y2k̄2 = (x ◦ y) ∗ k = x̂ ∗ y ◦ k = x̂ y ◦ k2

, so that (3.29) holds.
Next we fix x and choose y satisfying additional conditions:
(1′) cx◦y = T1(x̂ ◦ y) = 0, so that x̂ ◦ y = x ◦ y by Lemma 3.10(iii).
(2′) T1(x̂y) = 0, so that x ◦ y = x̂ ∗ y = x̂y2 + cxy by (3.8) and Lemma 2.14(i).
(3′) cx◦y = T1((x ◦ y)k̄) = 0, so that (x ◦ y) ∗ k̄ = (x ◦ y)k̄2 = (x̂y2 + cxy)k̄2 by

(3.8), Lemma 2.14(i) and (2′).
(4′) T1(x̂(yk)) = 0, so that x̂ ∗ (yk) = x̂(yk)2 + cx(yk) by (3.8) and Lemma

2.14(i).
Once again some y 6= 0 satisfies these six requirements. By (3.7)(iii), (3.28) and
(3.29),

(x̂y2 + cxy)k̄2 = (x ◦ y) ∗ k̄
= x̂ ∗ y ◦ k
= x̂(yk)2 + cx(yk).

Here y 6= 0, and we can choose x so that cx 6= 0 (since T1(ζ1F ) = F1). It follows
that k

2
= k. �

3.4. Duality. It seems likely that all of our semifield planes are not self–dual,
except for the desarguesian ones; this would contain Proposition 3.24 as a very
special case. However, we have not been able to prove this without additional
hypotheses (Theorem 3.31).

If S◦ is a semifield, then A(S◦) is self–dual if and only if S◦ has an antiau-
totopism: a triple (α, β, γ) of additive permutations of S◦ such that γ(y ◦ x) =
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α(x) ◦ β(y) for all x, y ∈ S◦. Clearly, the autotopisms and antiautotopisms form a
group. We begin with a simple observation:

Theorem 3.30. Assume that S◦ is a semifield whose group of autotopisms has
odd order. If A(S◦) is self–dual, then

(i) A(S◦) admits a polarity, and
(ii) if |S◦| is not a square, then there is some k 6= 0 in S◦ such that (k◦x)◦y =

(k ◦ y) ◦ x for all x, y ∈ S◦.

Proof. (i) A group whose order is twice an odd number contains involutions.
(ii) Since the plane has nonsquare order n, a polarity has exactly n+ 1 absolute

points by a classical result of Baer [Ba, Theorems 5 and 6]. Then A(S◦) can
be coordinatized by a commutative semifield by [Ga, Theorem 3], and hence the
desired k exists by [Ga, Theorem 4]. �
Theorem 3.31. The plane A∗((Fi)n0 , (ζi)

n
1 ), n ≥ 1, is not self–dual if either

(i) [F : F1] > 5 and |Fn| > 2, or
(ii) [F : F1] > 3 and |F | is not a square.

Proof. (i) By Theorem 3.4 and Proposition 3.27, A∗
(
(Fi)n0 , (ζi)n1

)
and its dual have

different kernels.
(ii) We will prove later in Theorem 4.12 that the autotopism group of A∗ is

isomorphic to a subgroup of Aut(F ), so that the hypotheses of Theorem 3.30 hold.
Thus, we will consider the semifield S◦ in (3.7), assume that there is some k ∈ F ∗

such that

(3.32) (k ◦ x) ◦ y = (k ◦ y) ◦ x ∀x, y ∈ F,
and deduce a contradiction. By [Kn1, p. 207], we may assume that |F | > 25.

As in the proof of Theorem 3.4, we begin by making restrictions on x and y:

(1x) Assume that ck◦x = 0 and T1(k̂ ◦ x) = 0. Then k̂ ◦ x = k ◦ x = k̂ ∗ x by
Lemma 3.10(iii).

(1y) Assume that ck◦y = 0 and T1(k̂ ◦ y) = 0. Then k̂ ◦ y = k ◦ y = k̂ ∗ y.
By (1x), (3.7) and (3.8),

(k ◦ x) ◦ y = (k ◦ x) ∗ y

= (k ◦ x)y2 +
∑

ζiTi((k ◦ x)y)

= {k̂x2 + ckx+
∑

ζjTj(k̂x)}y2

+
∑

ζiTi
(
{k̂x2 + ckx+

∑
ζjTj(k̂x)}y

)
,

(3.33)

with a similar formula for (k ◦ y) ◦ x.
We claim that ck = 0. For this purpose we further restrict x and y as follows:
(2x) Assume that T1(k̂x) = 0, so that Ti(k̂x) = 0 for all i by Lemma 2.14(i).
(2y) Assume that T1(k̂y) = 0, so that Ti(k̂y) = 0 for all i.
(3) Assume that,

T1

({
k̂x2 + ckx +

∑
ζjTj(k̂x)

}
y +

{
k̂y2 + cky +

∑
ζjTj(k̂y)

}
x
)

= 0,

so that, for all i,

Ti

({
k̂x2 + ckx+

∑
ζjTj(k̂x)

}
y +

{
k̂y2 + cky +

∑
ζjTj(k̂y)

}
x
)

= 0.
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Then (3.32), together with (3.33) and its version for (k ◦ y) ◦ x, implies that

(3.34) (k̂x2 + ckx)y2 = (k̂y2 + cky)x2.

There are at least |F |/|F1|3 ≥ 4 choices for x satisfying (1x) and (2x), and then
|F |/|F1|4 ≥ 4 choices for y satisfying (1y), (2y) and (3), since |F | > 25. Thus, we
can choose x and y such that x 6= 0 and y 6= 0, x. Then ck = 0 by (3.34).

Now fix x such that ck◦x =
∑
Ti(ζik̂ ◦ x) 6= 0 (cf. (3.8)); such a choice is possible

since T1(ζ1F ) = F1. Choose y such that (1y) holds, as well as T1(k̂y) = 0 and
T1(k̂y2x) + T1(k̂ ◦ x ȳ) = 0. Then

(3.35) Ti(k̂y) = Ti(k̂y2x+ k̂ ◦ x y) = 0

for all i, by Lemma 2.14(i), and the version of (3.33) for (k ◦ y) ◦ x reduces to

(3.36) (k ◦ y) ◦ x = k̂y2x2 +
∑

ζiTi(k̂y2x).

On the other hand, for any x we have, by (3.7) and (3.8),

(k ◦ x) ◦ y = k̂ ◦ x ∗ y

= k̂ ◦ x y2 + ck◦xy +
∑

ζiTi(k̂ ◦ x y),
(3.37)

while k̂ ◦ x + ck◦x +
∑
ζiTi(k̂ ◦ x) = k ◦ x = k̂ ∗ x = k̂x2 +

∑
ζiTi(k̂x). Thus, by

(3.35)–(3.37),{
k̂x2 +

∑
ζiTi(k̂x) + ck◦x +

∑
ζiTi(k̂ ◦ x)

}
y2 + ck◦xy = k̂y2x2,

so that {∑
ζjTi(k̂x) + ck◦x +

∑
ζiTi(k̂ ◦ x)

}
y2 = ck◦xy.

Here ck◦x 6= 0, so that there is just one possible y 6= 0 satisfying this equation.
However, for our chosen x we made four additive restrictions on y, so that the
number of chosen y is at least |F |/|F1|4 ≥ 4 since |F | > 25, a contradiction. �

3.5. Equality. It appears to be not entirely trivial to determine when two of our
presemifields are equal, although the result holds no surprises:

Proposition 3.38. For presemifields P∗
(
(Fi)n0 , (ζi)

n
1

)
and P◦

(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
with

F = F0 = F ′0, if x ∗ y = x ◦ y for all x, y ∈ F, then n = n′, Fi = F ′i and ζi =
ζ ′i for 1 ≤ i ≤ n.

Proof. Set

f(x, y) =
n∑
i=1

(
ζiTi(xy) + Ti(ζix)y

)
= xy2 + x ∗ y,

g(x, y) =
n′∑
i=1

(
ζ′iT
′
i (xy) + T ′i (ζ

′
ix)y

)
= xy2 + x ◦ y.

Lemma 3.39.

(i) If n ≥ 1, then f(x, y) 6= 0 for some x, y ∈ F .
(ii) If f(kx, y) = kf(x, y) for all x, y ∈ F, then k ∈ Fn.
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Proof. (i) We have already proved that (3.26) is impossible.
(ii) Let x ∈ F ∗. Since [F : F1] ≥ 3, some y ∈ F ∗ satisfies T1

(
kxy

)
= 0 =

T1(xy). By Lemma 2.14(i), Ti
(
kxy

)
= 0 and Ti(xy) = 0 for all i, and the equation

f(kx, y) = kf(x, y) reduces to
∑
Ti
(
ζikx

)
y = k

∑
Ti(ζix)y. Hence, for all x ∈ F ,

n∑
i=1

Ti
(
ζikx

)
= k

n∑
i=1

Ti(ζix).

Let 0 ≤ j ≤ n be maximal such that k ∈ Fj . Suppose that j < n. Then
Ti(ζikx) = kTi(ζx) for all i ≤ j, so that

(3.40)
n∑

i=j+1

Ti
(
ζikx

)
= k

n∑
i=j+1

Ti(ζix)

for all x ∈ F . Choose x such that Tj+1(ζj+1x) 6= 0. Then Tj+1(ζj+1Fj+1x) =
Fj+1 properly contains the image of Fj+1 under the map l →

∑n
j+2 Ti(ζilx) (we

interpret this sum to be 0 if j + 1 = n). Then there is some l ∈ Fj+1 such that∑n
j+1 Ti(ζilx) 6= 0. Now (3.40) yields the contradiction k ∈ Fj+1.
Thus, j = n and k ∈ Fn, as claimed. �

Proof of Proposition 3.38. Suppose that n′ = 0. Then g(x, y) is identically 0. If
n > 0, then f(x, y) is nonzero for some x, y ∈ F , by Lemma 3.39(i). Thus, the
proposition holds if n or n′ is 0.

Now suppose, inductively, that n, n′ > 0, and that the conclusion holds for(
(Fi)n−1

0 , (ζi)n−1
1

)
and

(
(F ′i )

n′−1
0 , (ζ′i)

n′−1
1

)
.

Lemma 3.39(ii) implies that Fn is the largest subfield of F over which f(x, y) is
linear in x. Likewise F ′n′ is the largest subfield of F over which g(x, y) is linear in
x. Hence Fn = F ′n′ := K.

Most of the proof consists of showing that ζn = ζ′n′ . We write ζ for ζn and ζ′ for
ζ ′n′ . We may assume that [Fn−1 : K] ≥ [F ′n′−1 : K].

Fix l ∈ F ′n′−1 −K. By hypothesis,

f(lx, y) + lf(x, y) = g(lx, y) + lg(x, y)

for all x, y ∈ F . If k is such that l ∈ Fk−1 − Fk, then this simplifies to
n∑
i=k

(
ζiTi(lxy) + Ti(ζilx)y

)
+ l

n∑
i=k

(
ζiTi(xy) + Ti(ζix)y

)
= ζ′T ′n′(lxy) + T ′n′(ζ

′lx)y + l
(
ζ′T ′n′(xy) + T ′n′(ζ

′x)y
)
.

Since Tn = T ′n′ , it follows that
n−1∑
i=k

(
ζiTi(lxy) + Ti(ζilx)y

)
+ l

n−1∑
i=k

(
ζiTi(xy) + Ti(ζix)y

)
= Tn

(
(ζ + ζ′)lx

)
y + (ζ + ζ′)Tn(lxy)

+ l
(
Tn((ζ + ζ′)x)y + (ζ + ζ′)Tn(xy)

)(3.41)

for all x, y ∈ F .
If possible, choose x, y ∈ F such that the left hand side of (3.41) is not zero.

Then l 6∈ Fn−1, so that Fn−1 6= F ′n′−1. As [Fn−1 : K] ≥ [Fn′−1 : K] was assumed,
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we must have [Fn−1 : K] > [F ′n′−1 : K] ≥ 3. Moreover, the map Fn−1 → F given by

t →
n−1∑
i=k

(
ζiTi(l(tx)y) + Ti(ζil(tx))y

)
+ l

n−1∑
i=k

(
ζiTi((tx)y) + Ti(ζi(tx)y

)
= t

( n−1∑
i=k

(
ζiTi(lxy) + Ti(ζilx)y

)
+ l

n−1∑
i=k

(
ζiTi(xy) + Ti(ζix)y

))
is injective, and hence its image spans a K–subspace of F having K–dimension
exactly [Fn−1 : K] ≥ 5. However, using the right hand side of (3.41), we see that
our map is also

t → Tn

(
(ζ + ζ′)l(tx)

)
y + (ζ + ζ′)Tn

(
l(tx)y

)
+ lTn

(
(ζ + ζ′)(tx)

)
y + l(ζ + ζ′)Tn

(
(tx)y

)
.

Since y, ζ + ζ′, ly and y(ζ + ζ′) are fixed, the image of this map spans at most a
4–dimensional K–subspace, which is a contradiction.

Hence, no such x, y exist, and for all x, y ∈ F both sides of (3.41) are 0:

Tn
(
(ζ + ζ′)lx

)
y + (ζ + ζ′)Tn(lxy) = lTn

(
(ζ + ζ′)x

)
y + l(ζ + ζ′)Tn(xy).

Then

(3.42)
(
lTn
(
(ζ + ζ′)x

)
+ Tn

(
(ζ + ζ′)lx

))
y = l(ζ + ζ′)Tn(xy) + l(ζ + ζ′)Tn(lxy)

for all x, y ∈ F .
Suppose that ζ 6= ζ′. Choose x ∈ F such that Tn(l(ζ + ζ′)x) 6= 0. Then

lTn((ζ+ζ′)x)+Tn(l(ζ+ζ′)x) 6= 0 (as otherwise lTn((ζ+ζ′)x) = Tn(l(ζ+ζ′)x) ∈ K∗
and hence l ∈ Fn = K, which is not the case). Consequently, as y varies over F
the left side of (3.42) spans F and the right side spans at most a 2–dimensional
K–subspace of F , whereas [F : K] ≥ 3.

Thus, ζ = ζ′, so that f(x, y) + ζTn(xy) +Tn(ζx)y = g(x, y) + ζTn(xy) +Tn(ζx)y
states that

n−1∑
i=1

(
ζiTi(xy) + Ti(ζix)y

)
=
n′−1∑
i=1

(
ζ′iT
′
i (xy) + T ′i (ζ

′
ix)y

)
for all x, y ∈ F . Induction now completes the proof of the proposition. �

4. The semifield orthogonal spreads and semifield planes

This is the main section of this paper. Its goals are the determination, under mild
arithmetical assumptions, of the automorphism groups of our semifield orthogonal
spreads and planes (Theorem 4.12), as well as equivalences between pairs of these
semifield orthogonal spreads or planes (Theorem 4.13). For example, under mild
arithmetical assumptions two presemifields P∗

(
(Fi)n0 , (ζi)

n
1

)
and P◦

(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
determine equivalent orthogonal spreads if and only if n′ = n, F ′i = Fi and ζ′i = λζσi
for all 1 ≤ i ≤ n and some λ ∈ F ∗ and σ ∈ Aut(F ).

When [F : F1] > 3, the crucial idea is to use kernels of semifields to detect the
equivalence of orthogonal spreads: we will see that there is a unique nonsingular
point ν of V fixed by E(Σ∗) (cf. Lemma 2.21(ii)) such that the kernel of the plane
A(Σ∗/ν) is largest. It follows that O(V )Σ∗ must fix ν and hence is determined by
Aut A(Σ∗/ν). At this point induction can be used. This outline is the pleasant
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part of the argument. The difficult part is the implementation: in Theorem 3.4 we
had to calculate the kernels of planes defined using the ridiculous formula (1.1).

Always m will be an arbitrary odd integer > 1, and we will use the fields F =
GF(qm) and K = GF(q), qm > 8, with corresponding trace map T : F → K. In
this section we study the following objects:

• a presemifield P∗
(
(Fi)n0 , (ζi)

n
1

)
, where we always assume that F0 = F ;

• a symplectic spread (1.2), denoted S∗ = S∗
(
(Fi)n0 , (ζi)

n
1

)
, of the Fn–space

F 2;
• a corresponding affine plane (cf. Section 2.1), denoted A(S∗) = A(P∗) =

A∗
(
(Fi)n0 , (ζi)

n
1

)
= A

(
(Fi)n0 , (ζi)

n
1

)
; and

• an orthogonal spread Σ∗ = Σ∗((Fi)n+1
0 , (ζi)n1 ) = Σ((Fi)n+1

0 , (ζi)n1 ), defined
in (1.4), of the K–space V given in (1.3), where K = Fn+1. Note that

S((Fi)n0 , (ζi)
n
1 ) = Σ((Fi)n+1

0 , (ζi)n1 )/〈0, 1, 0, 1〉,
S((Fi)n+1

0 , (ζi)n+1
1 ) = Σ((Fi)n+1

0 , (ζi)n1 )/〈0, 1, ζn+1, 1〉,
(4.1)

for any ζn+1 ∈ F ∗, by Theorem 2.18(ii,iii) and Propositon 2.19.

Recall that an orthogonal spread Σ is called desarguesian if it is the lift Σν(S) of
a desarguesian spread S, so that A(Σ/〈0, 1, 0, 1〉) is a desarguesian plane A(S) (cf.
(2.12)). In the above notation, n = 0 and Σ = Σ((Fi)1

0, (ζ1)) if the orthogonal space
is an F1–space; each nondesarguesian plane corresponding to a slice Σ/〈0, 1, ζ, 1〉 is
a second cousin whose kernel is F1 (cf. Remark 3.6 and Corollary 3.23).

4.1. Nondesarguesian orthogonal spreads. At crucial points in the proofs of
Proposition 4.11 and Theorem 4.13 we will need to know that we are not dealing
with desarguesian spreads:

Proposition 4.2. Assume that n ≥ 1.

(i) The affine plane A(S∗
(
(Fi)n0 , (ζi)

n
1

)
) is nondesarguesian if either [F : F1] >

3 or |Fn| > 2.
(ii) The orthogonal spread Σ∗((Fi)n+1

0 , (ζi)n1 ) is nondesarguesian.

Proof. (i) If [F : F1] > 3 use Theorem 3.4, while if |Fn| > 2 use Proposition 3.24.
(ii) By (4.1), A(S∗) ∼= A(Σ∗/〈0, 1, 0, 1〉) = A

(
(Fi)n0 , (ζi)

n
1

)
, so the kernel of this

plane contains Fn ⊃ Fn+1. This plane is nondesarguesian by (i).
Assume that Σ∗ is a desarguesian spread of an orthogonal Fn+1–space. Then,

as noted in Remark 3.6, every semifield spread slice (2.10) of Σ∗ produces either a
desarguesian plane or a second cousin of a desarguesian plane, where this second
cousin has kernel Fn+1. Since Fn ⊃ Fn+1, this is not the case for A(S∗). �

4.2. Automorphism groups of semifield orthogonal spreads. Given a semi-
field orthogonal spread Σ∗ = Σ∗((Fi)n+1

0 , (ζi)n1 ), under mild arithmetical assump-
tions we will show in Theorem 4.12 that ΓO+(2m + 2,K)Σ∗

∼= (K∗ × E(Σ∗))oΛ,
where K = Fn+1, E(Σ∗) is the elementary abelian group of order qm in Lemma
2.21(ii) and Λ ≤ QAut(F ). Critical to this will be the fact that ΓO+(2m+ 2,K)Σ∗

fixes the nonsingular point 〈0, 1, 0, 1〉 (Proposition 4.4).
We note that only the cases of the results in this and the next section involving

the hypothesis [F : F1] > 3 are needed for our coding–theoretic applications in
Sections 5.5 and 5.6.
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For the orthogonal space V in (1.3), let

(4.3) X = F ⊕K ⊕ 0⊕ 0 and Y = 0⊕ 0⊕ F ⊕K.
These play the roles of the x– and y–axes.

Proposition 4.4. Let Σ∗((Fi)n+1
0 , (ζi)n1 ) and Σ◦((F ′i′ )

n′+1
0 , (ζ′i)

n′

1 ) be semifield or-
thogonal spreads in the K–space V in (1.3), where n ≥ 1, n′ ≥ 1, F = F0 = F ′0 and
K = Fn+1 = F ′n′+1. Suppose that either [F : F1] > 3 and [F : F ′1] > 3, or |K| > 2.
If ω ∈ ΓO+(V ) satisfies

Σω∗ = Σ◦ and E(Σ∗)ω = E(Σ◦),

then ω fixes the nonsingular point 〈0, 1, 0, 1〉.
Proof. Since ω sends CV (E(Σ∗)) to CV (E(Σ◦)), it permutes the set {〈0, 1, ζ, 1〉 |
ζ ∈ F} of all nonsingular points in CV (E(Σ∗)) = CV (E(Σ◦)) (cf. Lemma 2.21(iv)).
Thus, 〈0, 1, 0, 1〉ω =

〈
0, 1, ζ, 1

〉
for some ζ ∈ F . We must show that ζ = 0.

By Lemma 2.21(iii), CV (E(Σ∗)) has nonzero intersection with a unique member
Σ∗[∞] = Y of Σ∗ and a unique member Σ◦[∞] = Y of Σ◦, so that Y ω = Y . Since
E(Σ◦) fixes 〈0, 1, 0, 1〉 and is transitive on Σ◦−{Y }, we may assume that Xω = X .

We now consider separately the cases [F : F1] > 3 and [F : F ′1] > 3, or |K| > 2.
Case 1. [F : F1] > 3 and [F : F ′1] > 3. By (2.10), ω induces an isomorphism

between the affine planes A = A(Σ∗/〈0, 1, 0, 1〉) and A′ = A(Σ◦/〈0, 1, ζ, 1〉). By
(4.1), A = A

(
(Fi)n0 , (ζi)

n
1

)
).

Assume that ζ 6= 0, and write ζ′n′+1 = ζ. Then A′ = A((F ′i )
n′+1
0 , (ζ′i)

n′+1
1 ) by

(4.1). By Theorem 3.4, A′ has kernel isomorphic to Fn+1, while A∗ has kernel
isomorphic to Fn, hence of size greater than |Fn+1|.

This contradiction implies that ζ = 0 and 〈0, 1, 0, 1〉ω = 〈0, 1, 0, 1〉.
Remark. The above use of kernels was the starting point for much of this paper.
The case |K| = 2 is the one required in Sections 5.5 and 5.6.

Case 2. |K| > 2. We begin with a slight reduction. We first assume that the
result holds when ω is restricted to belonging to O+(V ) and deduce the general
statement from this special case. By [Ta, p. 136] we can write ω = kω′τ with
k ∈ K∗, ω′ ∈ O+(V ), and τ ∈ Aut(K). The scalar transformation

k : (x, a, y, b)→ k(x, a, y, b)

fixes X, Y , 〈0, 1, 0, 1〉 and Σ∗, while the field automorphism

τ : (x, a, y, b)→ (xτ , aτ , yτ , bτ )

fixes X,Y and 〈0, 1, 0, 1〉. We have Σω
′

∗ = Σωτ
−1

∗ = Στ
−1

◦ . By (1.1) and (1.4),
Στ
−1

◦ = Σ] for the presemifield P]

(
(F ′i )

n′

0 , (ζ
′
i
τ−1

)n
′

0

)
, while E(Σ◦)τ

−1
= E(Σ]) by

(2.20) and Lemma 2.21(ii). Thus, Σω
′

∗ = Σ] and E(Σ∗)ω
′

= E(Σ◦)τ
−1

= E(Σ]),
where ω′ ∈ O+(V ). Now our assumption concerning elements of O+(V ) implies
that ω′ fixes 〈0, 1, 0, 1〉, and hence so does ω.

Hence, we may now assume that ω ∈ O+(V ).

Lemma 4.5. For some invertible K–linear maps γ and δ on F and some ζ ∈ F,
(x, a, y, b)ω =

(
γ(x), T

(
ζγ(x)) + a, δ(y) + ζb, b

)
,

T (xy) = T
(
γ(x)δ(y)

)
,

for all x, y ∈ F and a, b ∈ K.
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Proof. We already have Xω = X and Y ω = Y . Since ω conjugates E(Σ∗) to
E(Σ◦), it stabilizes CV (E(Σ∗)) = CV (E(Σ◦)) =

{
(0, a, y, a) | a ∈ K, y ∈ F

}
,

CV (E(Σ∗))∩Y = 0⊕ 0⊕F ⊕ 0 and hence also (CV (E(Σ∗))∩Y )⊥ ∩X = 〈0, 1, 0, 0〉
(using (2.17)). Then there are invertible K–linear maps γ, δ : F → F , a K–linear
map f : F → K, and c, c′ ∈ K, u ∈ F , such that ω sends

(0, 1, 0, 0)→ (0, c, 0, 0)

(x, 0, 0, 0)→ (γ(x), f(x), 0, 0)

(0, 0, y, 0)→ (0, 0, δ(y), 0)

(0, 0, 0, 1)→ (0, 0, u, c′),

for all x, y ∈ F . Since ω must preserve the quadratic form on V as well as
the associated bilinear form (2.17), we have 1 =

(
(0, 1, 0, 0, ), (0, 0, 0, 1)

)
= cc′,

T (xy) =
(
(x, 0, 0, 0), (0, 0, y, 0)

)
= T (γ(x)δ(y)), and 0 =

(
(x, 0, 0, 0), (0, 0, 0, 1)

)
= T (γ(x)u) + f(x)c′. Since (0, c, u, c′) = (0, 1, 0, 1)ω ∈

〈
0, 1, ζ, 1

〉
, we have c = c′.

Since cc′ = 1, c = 1. Consequently, u = ζ, and hence ω behaves as required. �

Lemma 4.6. δ(x∗y) = γ(x)◦δ(y)+T
(
ζγ(x)

)
δ(y)+ζT

(
γ(x)δ(y)

)
for all x, y ∈ F .

Proof. We study how ω conjugates E(Σ∗) to E(Σ◦). Using (2.20), we associate to
each e ∈ F unique elements η∗e ∈ E(Σ∗) and η◦e ∈ E(Σ◦) such that

(0, 1, 0, 0)η∗e = (0, 1, e, 0) = (0, 1, 0, 0)η◦e .

By Lemma 4.5,

(0, 1, 0, 0)ω−1η∗eω = (0, 1, e, 0)ω = (0, 1, δ(e), 0) = (0, 1, 0, 0)η◦δ(e),

so that ω−1η∗eω = η◦δ(e). For all x ∈ F , a ∈ K, by (2.20) we have

(x, a, 0, 0)η∗eω =
(
x, a+ T (xe), x ∗ e+ ae, T (xe)

)
ω

=
(
γ(x), T (ζγ(x)) + a+ T (xe),

δ(x ∗ e) + δ(ae) + ζT (xe), T (xe)
)
,

(x, a, 0, 0)ωη◦δ(e) =
(
γ(x), T (ζγ(x)) + a, 0, 0

)
η◦δ(e)

=
(
γ(x), T (ζγ(x)) + a+ T (γ(x)δ(e)),

γ(x) ◦ δ(e) + T (ζγ(x))δ(e) + aδ(e), T (γ(x)δ(e)
)
.

Equating third coordinates yields

δ(x ∗ e) + δ(ae) + ζT (xe) = γ(x) ◦ δ(e) + T (ζγ(x))δ(e) + aδ(e),

where T (xe) = T
(
γ(x)δ(e)

)
by Lemma 4.5 and δ(ae) = aδ(e) since δ is K–linear.

�
We now come to the place in our argument where we use the assumption |K| > 2

in order to take advantage of the square appearing in (1.1):

Lemma 4.7. δ(xy2) + γ(x)δ(y)2 = 0 for all x, y ∈ F .

Proof. Let f(x, y) = x ∗ y + xy2 and g(x, y) = x ◦ y + xy2 for all x, y ∈ F . By
Lemma 4.6, for all x, y ∈ F ,

δ(xy2) + γ(x)δ(y)2 = δ(f(x, y)) + g(γ(x), δ(y))

+ T
(
ζγ(x))δ(y) + ζT (γ(x)δ(y)

)
.

(4.8)
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By (1.1) and the K–linearity of δ, the right side is K–linear in y. Let k ∈ K−{0, 1}.
Replace y by ky in (4.8) and add the result to (4.8) multiplied by k in order to
obtain (k2 + k)

(
δ(xy2) + γ(x)δ(y)2

)
= 0 for all x, y ∈ F , where k2 + k 6= 0. �

Completion of the proof of Proposition 4.4. In view of the preceding lemma we can
apply Remark 2.4(ii). Then Lemma 4.6 becomes: for some λ ∈ F ∗ and σ ∈ Aut(F ),

(4.9) λ(x ∗ y)σ = (λ−1xσ) ◦ (λyσ) + T (ζ(λ−1xσ))(λyσ) + ζT
(
(λ−1xσ)(λyσ)

)
for all x, y ∈ F .

Assume that ζ 6= 0. Consider the presemifield P]

(
(F ′i )

n′+1
0 ,(λ−σ

−1
ζ′i
σ−1

)n
′+1

1

)
,

where ζ′n′+1 = ζ. In view of (1.1), (4.9) states that x ∗ y = x]y for all x, y ∈ F .
The last field in the chain (F ′′i )n

′+1
0 is K = Fn+1, and this is smaller than Fn, the

last field in
(
(Fi)n0 , (ζi)

n
1

)
. Thus, Proposition 3.38 produces a contradiction.

Hence, ζ = 0, as required. �

For future use we will need a slight variation on part of the proof of Proposi-
tion 4.4:

Lemma 4.10. Let S∗
(
(Fi)n0 , (ζi)

n
1

)
and S◦

(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
be semifield symplectic

spreads in the K–space F 2, where F = F0 = F ′0 = GF(qm), Fn, F ′n′ ⊇ K = GF(q)
and q > 2. Suppose that g ∈ ΓL(2m, q) satisfies

Sg∗ = S◦, (0⊕ F )g = 0⊕ F and (F ⊕ 0)g = F ⊕ 0.

Then
(i) g has the form (x, y) → k(λ−1xσ, λyσ) for some k ∈ K∗, λ ∈ F ∗, σ ∈

Aut(F );
(ii) g induces the isotopism λ(x ∗ y)σ = λ−1xσ ◦ λyσ from P∗

(
(Fi)n0 , (ζi)

n
1

)
to

P◦
(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
; and

(iii) n′ = n, F ′i = Fi and ζ′i = λζσi for 1 ≤ i ≤ n.

Proof. (i) Both spreads are symplectic over K (this is why K is needed). Then
g ∈ ΓSp(2m, q) by [Ka1, 3.6] (this is really just Theorem 2.13(ii)): we can write
g = kg′τ with k ∈ K, g ∈ Sp(2m, q), τ ∈ Aut(F ), and reduce to the case g ∈
Sp(2m, q) exactly as in Case 2 of the proof of Proposition 4.4.

This time g has the form (x, y) → (γ(x), δ(y)) for invertible K–linear maps
γ, δ : F → F . Since g is symplectic, once again it is straightforward to obtain
T (xy) = T

(
γ(x)δ(y)

)
and δ(x ∗ y) = γ(x) ◦ δ(y). As in (4.8), for all x, y ∈ F this

states that δ(xy2) + γ(x)δ(y)2 = δ(f(x, y)) + g(γ(x), δ(y)). Exactly as in the proof
of Lemma 4.7, we can use |K| > 2 in order to deduce that δ(xy2) + γ(x)δ(y)2 = 0
for all x, y ∈ F . Then Remark 2.4(ii) implies (i) and (ii).

(iii) By Lemma 3.5(i), λ(x ∗ y)σ = (λ−1xσ) ◦ (λyσ) states that x ∗ y = x]y for all
x, y ∈ F , using the presemifield P]

(
(F ′i )

n′

0 , (λ−σ
−1
ζ′i
σ−1

)n
′

1

)
. Now Proposition 3.38

yields (iii). �

Next we use an entirely different approach in order to study the group ΓO+(V )Σ∗ :

Proposition 4.11. Let Σ∗((Fi)n+1
0 , (ζi)n1 ) be a semifield orthogonal spread in the

Fn+1–space (1.3) (using K = Fn+1), where either [F : F1] > 3 or |Fn+1| > 2. Then
E(Σ∗) is the unique Sylow 2–subgroup of O+(V )Σ∗ .
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Proof. We proceed in two steps.
Step 1: E(Σ∗) is a Sylow 2–subgroup of O+(V )Σ∗ . For otherwise, there is a

2–subgroup E0 > E(Σ∗) of O+(V )Σ∗ with [E0 : E(Σ∗)] = 2. Then E0 normalizes
E(Σ∗) and hence fixes the unique member Σ∗[∞] of Σ∗ fixed by E(Σ∗). Let ω ∈
E0 − E(Σ∗). Since E(Σ∗) is transitive on Σ∗ − {Σ∗[∞]}, we may assume that
Σ∗[0]ω = Σ∗[0]. By Proposition 4.4, 〈0, 1, 0, 1〉ω = 〈0, 1, 0, 1〉. Then ω2 = 1 since ω2

is an element of E(Σ∗) fixing Σ∗[0].
By (2.10) and Theorem 2.13(ii), ω induces a nontrivial collineation of the affine

plane A = A(Σ∗/〈0, 1, 0, 1〉). Since A has even order and ω fixes both S∗[0] and
S∗[∞], ω induces a Baer involution on A [De, p. 172]. Then ω fixes |Fn+1|m/2 points
of each line stabilized by ω. Since ω is Fn+1–linear and m is odd, this is impossible.

Step 2: E(Σ∗) E O+(V )Σ∗ . First note that O+(V )Σ∗ stabilizes Σ∗[∞]. For oth-
erwise, since E(Σ∗) is transitive on Σ∗ −{Σ∗[∞]}, O+(V )Σ∗ would be 2–transitive
on Σ∗. Since Σ∗ is nondesarguesian by Proposition 4.2, this contradicts [Ka1, II3.3].

By Lemma 2.21(iii), E(Σ∗) acts on Σ∗[∞] as all transvections with axis H : it
induces the identity on the hyperplane H :=

{
(0, 0, t, 0) | t ∈ F

}
and is transitive

on the points of Σ∗[∞]−H .
Let ω ∈ O+(V )Σ∗ , so that Σ∗[∞]ω = Σ∗[∞]. Consider Hω and E(Σ∗)ω .
If Hω 6= H , then G := 〈E(Σ∗), E(Σ∗)ω〉 is transitive on the points of Σ∗[∞] −

(H ∩ Hω). There are qm−1(q + 1) such points. The stabilizer in G of a point in
H − (H ∩Hω) contains E(Σ∗) and hence has order divisible by qm. Thus, G has
order divisible by qm+(m−1), which contradicts Step 1.

Thus, H = Hω. Hence both E(Σ∗) and E(Σ∗)ω induce all transvections of
Σ∗[∞] with axis H . Consequently, if E(Σ∗) 6= E(Σ∗)ω, then there exists 1 6=
η ∈ 〈E(Σ∗), E(Σ∗)ω〉 inducing the identity on Σ∗[∞]. With respect to a suitable
hyperbolic basis of V (containing bases of X and Y ), one easily checks that the
matrix of η has the form ( I M

O I ) and so has order 2. Thus, η lies in a Sylow 2–
subgroup of O+(V )Σ∗ , and hence lies in some conjugate of E(Σ∗). However, no
element of E(Σ∗) is 1 on a member of Σ∗.

Thus, E(Σ∗) = E(Σ∗)ω for any ω ∈ O+(V )Σ∗ , and hence E(Σ∗) is the unique
Sylow 2–subgroup of O+(V )Σ∗ . �
Theorem 4.12. Consider a presemifield P∗

(
(Fi)n0 , (ζi)n1

)
, where F = F0 ⊃ Fn.

Let Λ denote the largest subgroup of Aut(F ) that fixes each ζ−1
1 ζi, 2 ≤ i ≤ n. Then

(i) Aut A(S∗)0/K
∗(A(S∗)) ∼= E(S∗)oΛ if either [F : F1] > 3 or |Fn| > 2, and

(ii) ΓO+(V )Σ∗/F
∗
n+1
∼= E(Σ∗)oΛ for Σ∗ = Σ∗((Fi)n+1

0 , (ζi)n1 ) if either [F : F1]
> 3 or |Fn+1| > 2.

Proof. By Lemma 3.5(i), P∗
(
(Fi)n0 , (ζi)

n
1

)
and P◦

(
(Fi)n0 , (ζ

−1
1 ζi)n1 ) are isotopic, so

we may assume that ζ1 = 1. We use induction on n to prove the following two
slightly more precise versions of (i) and (ii), where we view Λ as consisting of maps
(x, y)→ (xσ , yσ) in (i′) or (x, a, y, b)→ (xσ , aσ, yσ, bσ) in (ii′), for σ ∈ Aut(F ):

(i′) Aut A(S∗)0 = (K∗(A(S∗)) × E(S∗))oΛ if either [F : F1] > 3 or |Fn| > 2,
and

(ii′) ΓO+(V )Σ∗ = (F ∗n+1 × E(Σ∗))oΛ for Σ∗ = Σ∗((Fi)n+1
0 , (ζi)n1 ) if either

[F : F1] > 3 or |Fn+1| > 2.
(N.B.—These are not correct without the restriction ζ1 = 1: in general, in place of
Λ we would need the conjugate of Λ by (x, y) → (ζ1x, ζ−1

1 y) in (i) or (x, a, y, b)→
(ζ1x, a, ζ−1

1 y, b) in (ii).)
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If n = 1 then Aut A(S∗)0 = (K∗(A(S∗))×E(S∗))oAut(F ) by Remark 3.6. Thus,
(i′) holds when n = 1 (without the assumption [F : F1] > 3 or |F1| > 2).

We now assume, inductively, that (i′) is true for some n, then deduce that (ii′)
is true for the same n, and finally prove that (i′) holds when n is replaced by n+ 1.

Assume that (i′) holds and that we are in the situation of (ii′). Then ΓO+(V )Σ∗

fixes 〈0, 1, 0, 1〉 by Propositions 4.4 and 4.11. Moreover, |Fn| > |Fn+1| ≥ 2, so that
(i′) can be applied. Then (ii′) holds by Theorem 2.13(ii).

Now assume that (ii′) holds,and consider S
(
(Fi)n+1

0 , (ζi)n+1
1

)
for some ζn+1 ∈ F ∗.

By (4.1), S
(
(Fi)n+1

0 , (ζi)n+1
1

)
= Σ∗/ν for the nonsingular point ν = 〈0, 1, ζn+1, 1〉 of

V . The hypotheses for this case of (i′) are exactly what are needed for (ii′). Thus,
by (ii′) and Theorem 2.13(ii), Aut A(Σ∗/ν)0 is generated by K∗(A(Σ∗/ν)) and the
group induced on ν⊥/ν by

ΓO+(V )Σ∗,ν = [(F ∗n+1 × E(Σ∗))oΛ]ν = (F ∗n+1 × (E(Σ∗))oΛζn+1 ,

since F ∗n+1 and E(Σ∗) both fix ν. Thus, (i′) holds for the new value of n. �

Remark. For suitably chosen ζ1 and ζ2 the group Λ can be any subgroup of Aut(F ).
In particular, Λ can have even order if q is a square, in which case Aut A(S∗)
contains Baer involutions. The smallest examples occur when |K| = 4 and m = 3,
producing several semifield planes of order 64 for which the kernel is GF(4) and
|Aut A(S∗)0| = 64 · 2.

4.3. Equivalences of semifield planes and orthogonal spreads. We now deal
with equivalence questions for our semifield planes and semifields. We also estab-
lish lower bounds on the number of pairwise nonisomorphic semifield planes and
inequivalent semifield orthogonal spreads produced in (1.1)–(1.4). Recall that these
are nondesarguesian under mild arithmetical assumptions (Proposition 4.2). The
following is the main result of this paper:

Theorem 4.13. Consider the presemifields P∗
(
(Fi)n0 , (ζi)

n
1

)
, P◦

(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
,

where n ≥ 1, n′ ≥ 1, F = F0 = F ′0, Fn, F
′
n′ ⊇ K, and either [F : F1] > 3 and

[F : F ′1] > 3, or |K| > 2. Then the following are equivalent:

(i) A(P∗) and A(P◦) are isomorphic semifield planes; and
(ii) n′ = n, F ′i = Fi, and there exist λ ∈ F ∗ and σ ∈ Aut(F ) such that ζ′i = λζσi

for all 1 ≤ i ≤ n.

If, in addition, Fn, F ′n′ ⊃ K = Fn+1 = F ′n′+1, then (i) and (ii) are both equivalent
to

(iii) Σ∗((Fi)n+1
0 ,(ζi)n1 ) and Σ◦((F ′i )

n′+1
0 ,(ζ′i)

n′

1 ) are equivalent orthogonal spreads
of the orthogonal K–space (1.3).

Proof. (i)⇒(ii): By Lemma 2.21(i), E(S∗) is a group of elations of A(S∗) having
axis S∗[∞] and transitive on S∗ − {S∗[∞]}. Then Aut A(S∗)0 fixes this line (as
otherwise A(S∗) would be desarguesian by a standard result concerning projective
planes [De, p. 130], contradicting Proposition 4.2).

As in the proof of Proposition 4.4, we can use the transitivity of E(S∗) in order
to assume that an isomorphism sends 0 ⊕ F and F ⊕ 0 to themselves. Now apply
Lemma 4.10 if q > 2.

It remains to consider the case [F : F1] > 3 and [F : F ′1] > 3. By Theorem 3.4,
the kernels of these planes are Fn and F ′n′ , respectively, so that Fn = F ′n′ . Once
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again we can use Lemma 4.10 if |Fn| > 2. Thus, we must now deal with the case
Fn = F ′n′ = GF(2). We may assume that n ≥ n′.

If n = 1 then A(S∗) is a second cousin of a desarguesian plane, and A(S◦) is
either desarguesian or also a second cousin of a desarguesian plane, and hence (ii)
holds by Remark 3.6.

Now assume that n≥2. We will use the orthogonal spreads Σ̃∗= Σ((Fi)n0 , (ζi)
n−1
1 )

and Σ̃◦ = Σ((F ′i )
n′

0 , (ζ
′
i)
n′−1
1 ) in the usual Fn–space V = F ⊕Fn⊕F ⊕Fn. (N.B.—

The subscripts ∗ and ◦ are included only for bookkeeping purposes: these binary
operations are not the ones involved in the definitions of these orthogonal spreads.)

By (4.1), S∗ = Σ̃∗/ν∗ and S◦ = Σ̃◦/ν◦ for the nonsingular points ν∗ = 〈0, 1, ζn, 1〉
and ν◦ = 〈0, 1, ζ′n′ , 1〉 of V . By Theorem 2.13(i), νg∗ = ν◦ and Σ̃g∗ = Σ̃◦ for some
g ∈ ΓO+(V ). As in the proof of Proposition 4.4, we can use the transitivity of
E(Σ∗) in order to assume that g fixes the subspaces (4.3). By Propositions 4.4 and
4.11, g normalizes E(Σ∗) and hence fixes ν = 〈0, 1, 0, 1〉. Consequently, g induces
an element ḡ ∈ ΓSp(ν⊥/ν) such that (Σ̃∗/ν)ḡ = Σ̃◦/ν.

By (4.1), Σ̃∗/ν = S((Fi)n−1
0 , (ζi)n−1

1 ) and Σ̃◦/ν = S((F ′i )
n′−1
0 , (ζ′i)

n′−1
1 ). By

Theorem 3.4, these planes have kernels Fn−1 and F ′n′−1, respectively. We have
Fn−1 = F ′n′−1 ⊃ Fn, so that Lemma 4.10 applies: n′ − 1 = n − 1, F ′i = Fi for all
1 ≤ i < n, and there exist k ∈ F ∗n , λ ∈ F ∗ and σ ∈ Aut(F ) such that g has the
form (x, y)→ k(λ−1xσ, λyσ); moreover, ζ′i = λζσi for all 1 ≤ i < n.

Since g fixes ν and the subspaces (4.3), it easily follows that (x, a, y, b)g =
(λ−1xσ , aσ, λyσ, bσ) for all (x, a, y, b) ∈ V . In particular, νg∗ = ν◦ states that
ζ′n′ = λζσn , so that (ii) holds.

(ii)⇒(i): The semifields are isotopic by Lemma 3.5(i), so that Remark 2.4(i)
applies.

Now we will assume that Fn, F ′n′ ⊃ K = Fn+1 = F ′n′+1. In view of (4.1) we will
consider

S∗=Σ∗((Fi)n+1
0 , (ζi)n1 )/ν=S∗((Fi)n0 , (ζi)n1 )

and
S◦=Σ◦((F ′i )

n′+1
0 ,(ζ′i)

n′

1 )/ν = S◦((F ′i )n
′

0 , (ζ
′
i)
n′

1 ),
where ν = 〈0, 1, 0, 1〉.

(i)⇒(iii): Since we are assuming (i), S∗ and S◦ are equivalent symplectic spreads.
Consequently, Theorem 2.13(i) implies (iii).

(iii)⇒(i): As before, Propositions 4.4 and 4.11 imply that any g ∈ ΓO+(V )
sending Σ∗ to Σ◦ fixes the nonsingular point ν and hence, by (2.10), induces an
isomorphism between the semifield planes A(S∗) and A(S◦). �

We now give lower bounds on the number of pairwise inequivalent orthogonal
spreads or translation planes we have constructed.

Definition 4.14. Let m = m0 be an odd composite integer. Let ξ = (mi)
l(ξ)
0

denote any sequence of l(ξ) + 1 ≥ 2 distinct integers such that mi | mi−1 for
1 ≤ i ≤ l(ξ). Then ξ determines a chain (Fi)

l(ξ)
0 of fields with Fi = GF(qmi),

1 ≤ i ≤ l(ξ), all of which contain GF(q).
We defined ρ(m) in Section 1. Write

ρ•(m) =

{
ρ(m) if m is not a power of 3,
ρ(m)− 1 if m = 3ρ(m).
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Theorem 4.15. Let q be a power of 2 and let m be an odd integer such that
ρ•(m) ≥ 3.

(i) There are more than qm(ρ•(m)−2)/m log q pairwise inequivalent semifield
orthogonal spreads of an O+(2m+ 2, q)–space.

(ii) There are more than
∑

ξ(q
m − 1)l(ξ)−2/m log q pairwise inequivalent semi-

field orthogonal spreads of an O+(2m+ 2, q)–space. This sum runs over all
sequences ξ such that ml(ξ) = 1, with the additional restriction m > 3m1 if
q = 2.

(iii) If m is not a power of 3 or if q > 2, then there are more than qm(ρ•(m)−1)/
(m log q)2 pairwise nonisotopic symplectic semifields of order qm having
kernel isomorphic to GF(q).

(iii′) If m is not a power of 3 or if q > 2, then there are more than qm(ρ•(m)−1)/
(m log q)2 pairwise nonisomorphic symplectic semifield planes of order qm

having kernel isomorphic to GF(q).
(iv) There are more than

∑
ξ(q

m − 1)l(ξ)/
(
m log q

)2 pairwise nonisomorphic
symplectic semifield planes of order qm. This sum runs over all sequences
ξ such that ml(ξ) > 1, with the additional restriction m > 3m1 if q = 2.

Proof. (i) Let ξ = (
∏ρ(m)
j=i+1 pj)

ρ•(m)
0 , where m =

∏ρ(m)
1 pi for primes pi such that

p1 > 3 if m is not a power of 3; if m is a power of 3 then merge two 3’s so
that m1 = m/9. There is a corresponding chain (Fi)

ρ•(m)
0 of fields. Note that

Fρ•(m) = GF(q).
Consider the orthogonal spreads Σ((Fi)

ρ•(m)
0 , (ζi)

ρ•(m)−1
1 ), where the ζi vary, but

now no longer make the usual restriction on the ζi: allow any of them to be 0. This
has the effect of deleting some of the fields Fi from the chain (Fi)

ρ•(m)
0 , leaving a

formula looking exactly like (1.1) but having fewer fields involved. This does not
influence our assumptions concerning m.

There are qm(ρ•(m)−1) sequences (ζi)
ρ•(m)−1
1 , and hence there are at least

qm(ρ•(m)−1)/(qm − 1)m log q > qm(ρ•(m)−2)/m log q

pairwise inequivalent orthogonal spreads, where we divided by (qm − 1)m log q in
order to account for the pairs λ, σ in Theorem 4.13, where we use K = GF(q).
(N.B.—One of these orthogonal spreads is desarguesian, where all ζi = 0.)

(ii) This is again immediate from Theorem 4.13, using the orthogonal spreads
Σ((Fi)

l(ξ)
0 , (ζi)

l(ξ)−1
1 ) for all sequences ξ subject to the stated restrictions and all

sequences (ζi)
l(ξ)−1
1 of nonzero elements; we need ml(ξ) = 1 in order to have Fl(ξ) =

GF(q).
(iii), (iii′), (iv) By Theorem 2.13, counting either the number of pairwise non-

isomorphic semifield planes or the number of nonisotopic semifields requires lower
bounds for both the number of pairwise inequivalent orthogonal spreads and the
number of pairwise nonisomorphic semifield planes produced by each such orthog-
onal spread.

For the sequence ξ defined in (i) the number of orthogonal spreads in (i) is
greater than qm(ρ•(m)−2)/(qm − 1)m log q. By Lemma 2.21(ii) and Theorems 4.12
and 2.13(i), each orthogonal spread produces at least (qm − 1)/m log q pairwise
nonisomorphic semifield planes. Multiplying our lower bounds proves (iii) and (iii′)
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(which trivially say the same thing). The kernel statements follow from Theo-
rem 3.4, since [F : F1] > 3.

For (iv), proceed in the same manner using all sequences ξ; this time the restric-
tion ml(ξ) > 1 allows us to construct the required orthogonal spread

Σ((Fi)
l(ξ)+1
0 , (ζi)

l(ξ)
1 )

over Fl(ξ)+1 = GF(q). �

4.4. Boring planes. We now turn to boring planes. We call a geometric object
boring provided its automorphism group is minimal subject to suitable conditions.
For example, a semifield plane A(S) or a semifield orthogonal spread Σ is boring if
Aut A(S)0/K

∗ ∼= E(S) or ΓO+(V,K)Σ/K
∗ ∼= E(Σ), respectively (cf. Lemma 2.21).

Hence, in the case of planes, Aut A(S) is generated by the elations and homologies
fixing the line at infinity pointwise together with all elations having axis S[∞].
Thus, if A(S) is a boring semifield plane of order qm whose kernel has size q, then
|Aut A(S)| = (q − 1)q3m.

Many of the spreads in the preceding theorem are boring:

Theorem 4.16. Let q be a power of 2 and let m be an odd integer such that
ρ•(m) ≥ 3.

(i) There are at least (qm − 1)ρ
•(m)−2qm/2m log q pairwise inequivalent boring

semifield orthogonal spreads of an O+(2m+ 2, q)–space.
(ii) There are at least (qm−1)ρ

•(m)−1qm/2m log q pairwise nonisomorphic bor-
ing semifield planes of order qm having kernel of size q.

Proof. (i) Consider a chain (Fi)
ρ•(m)
0 of subfields defined as in the proof of The-

orem 4.15(i). Let (ζi)
ρ•(m)−1
1 be a sequence of elements of F ∗ such that ζ1 = 1

and ζ2 is a primitive element of F ; there are at least (qm − 1)ρ
•(m)−3|F |/2 such

sequences. Since the stabilizer of ζ2 in Aut(F ) is trivial, Theorem 4.12 implies
that ΓO+(V )Σ = K∗ ×E(Σ) for the corresponding presemifield orthogonal spread
Σ((Fi)

ρ•(m)
0 , (ζi)

ρ•(m)−1
1 ). By Theorem 4.13 we must divide bym log q, since Aut(F )

sends ζ2 to that many other primitive elements.
(ii) As before, two affine planes arising from inequivalent orthogonal spreads are

never isomorphic. Consider an orthogonal spread Σ in (i). By Lemma 2.21(iii)
each nonsingular point 〈0, 1, ζ, 1〉, ζ ∈ F ∗, is fixed by ΓO+(V )Σ∗ = K∗ × E(Σ).
By Theorem 2.13(i), the qm − 1 planes A(Σ/〈0, 1, ζ, 1〉), ζ ∈ F ∗, are pairwise
nonisomorphic and satisfy |Aut A(Σ/〈0, 1, ζ, 1〉)0/K

∗| = qm.
In view of the construction of (Fi)

ρ•(m)
0 we have [F : F1] > 3. By Theorem 3.4,

each of these planes has kernel of order q and hence has full automorphism group
of order (q − 1)q3m. �

Lastly we construct large numbers of boring translation planes, meaning that
the full collineation group fixes the line at infinity pointwise. If A is such a plane
of order qm, and if K(A) ∼= GF(q), then |Aut A| = (q − 1)q2m. In [Ka4] the “up
and down process” was used in order to construct large numbers of boring planes
with K(A) ∼= GF(2); those planes have order 2m and full collineation groups of
order 22m. However, the argument there is very different from the one given below;
neither extends to the situation in the other.
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Theorem 4.17. Let q be a power of 2 and let m be an odd integer with ρ•(m) ≥ 3.
Then there are more than (q−1)(qm−1)ρ

•(m)−2qm/2m log q pairwise nonisomorphic
boring translation planes of order qm with kernel of size at least q.

Proof. By Theorem 4.16(i), there are at least (qm − 1)ρ
•(m)−2qm/2m log q inequiv-

alent boring orthogonal spreads Σ of our O+(2m+ 2, q)–space V over K = GF(q)
each having full automorphism group ΓO+(V )Σ = K∗ × E(Σ). For each such
spread, the nonsingular points 〈0, λ, 0, 1〉, λ ∈ K∗ − {1}, are all in different E(Σ)–
orbits and have trivial stabilizers in E(Σ) (cf. Lemma 2.21). Hence, for any such
nonsingular point, Theorem 2.13(ii) implies that

Aut A(Σ/〈0, λ, 0, 1〉)0/K
∗(A(Σ/〈0, λ, 0, 1〉) = 1.

Each of these planes arises from a symplectic spread of a K–space and hence has
kernel containing K. �

Remark. We do not know the kernels of the preceding planes, but we expect that
a calculation similar to that in Theorem 3.4 will suffice in order to obtain them.
This might provide a different approach to the type of result in [Ka4].

5. Binary and Z4–linear Kerdock and Preparata codes

Using orthogonal geometries and semifield planes, we now construct large num-
bers of Z4–linear Kerdock codes, and then by dualizing we obtain large numbers
of Z4–linear Preparata codes. The images of these Z4–linear codes under the Gray
map are binary codes with the same weight distribution as Kerdock’s or Preparata’s
original codes.

For background concerning this section we refer to [HKCSS], [CCKS] and [Ka3].
We will only very briefly survey parts of those papers.

5.1. Binary Kerdock codes. In this section we will index vectors over v ∈ Zn2 ,
for a fixed ordering of Zn2 . The first and second order Reed–Muller codes are the
subspaces

R(1, n) =
{

(u · v + ε)v | u ∈ Zn2 , ε ∈ Z2

}
and

R(2, n) =
{

(Q(v) + u · v + ε)v | Q ∈ Q, u ∈ Zn2 , ε ∈ Z2

}
of Z2n

2 , where Q denotes the set of all quadratic forms on Zn2 and we are using the
usual dot product on Zn2 . A Kerdock code is a certain union of cosets

Q+R(1, n) :=
{

(Q(v) + u · v + ε)v | u ∈ Zn2 , ε ∈ Z2

}
of R(1, n) in R(2, n), where n is even. These quadratic forms Q are chosen so that
the minimum distance between any of two of the cosets Q+R(1, n) and Q′+R(1, n)
is as large as possible, namely 2n−1 − 2(n−2)/2, which occurs if and only if Q +Q′

is nonsingular.
Each quadratic form Q on Zn2 can be written Q(v) = vUvt for a strictly upper

triangular n×n matrix U (hence with 0 diagonal); the corresponding bilinear form
(cf. (2.9)) is given by (u, v) = uMvt, where M = U + U t is a skew–symmetric
matrix (again the diagonal is 0). Conversely, each skew–symmetric matrix M can
be written M = UM + U tM for a unique strictly upper triangular matrix UM .
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Kerdock sets. This leads to the definition of a (binary) Kerdock set of n × n
skew–symmetric matrices: a set M of 2n−1 such matrices, containing 0, such that
the difference of any two of them is nonsingular. Such a set exists if and only if n
is even. The following proposition establishes their existence and relates them to
the previous sections:

Proposition 5.1 ([Ka3, 3.3]). Let X ∼= Y ∼= Zn2 and equip V = X ⊕ Y with the
quadratic form Q(x, y) = x·y. Let x1, . . . , xn, y1, . . . , yn be a basis of V with xi ∈ X,
yi ∈ Y, and xi ·xj = yi · yj = 0 and xi · yj = δij for 1 ≤ i, j ≤ n. Then, with respect
to this basis,

(i) every orthogonal spread Σ of V containing X and Y can be written as

Σ = {Y } ∪
{
X

(
I Mi

O I

) ∣∣ 1 ≤ i ≤ 2n−1

}
for a Kerdock set M = {Mi | 1 ≤ i ≤ 2n−1}; and

(ii) every binary Kerdock set arises in this way.

Note that a choice for Y is made when defining Σ in Proposition 5.1, so that
this proposition does not guarantee a bijection between binary orthogonal spreads
and Kerdock sets. (See Theorem 5.3(iii). In view of that theorem, the choice of X
does not affect matters in any significant way.)
Kerdock codes. Each Kerdock setM produces a family of upper triangular ma-
trices UM , M ∈ M, and hence also a family of quadratic forms QM as well as the
binary Kerdock code

K2(M) =
{

(QM (v) + u · v + ε)v |M ∈M, u ∈ Zn2 , ε ∈ Z2

}
⊂ Z2n

2 .

Here K2(M) is a code of length 2n having 2n−1 · 2n · 2 = 22n codewords and
minimum distance 2n−1− 2(n−2)/2. Also, as an approximation to linearity, K2(M)
is distance–invariant: any c ∈ K2(M) partitions the codewords of K2(M) according
to their distance from c:

distance from c # of words at that distance
0 1
2n−1 − 2(n−2)/2 2n(2n−1 − 1)
2n−1 2n+1 − 2
2n−1 + 2(n−2)/2 2n(2n−1 − 1)
2n 1

(5.2)

Equivalence and quasi–equivalence of binary codes. Two binary codes of
length N are equivalent if there is a permutation of the coordinates of ZN2 that
maps one code to the other. An automorphism of a code C is a permutation of
coordinates that stabilizes the code, and AutC denotes its group of automorphisms.

Two codes are quasi–equivalent if one is equivalent to a translate of the other
by an element of ZN2 . In Section 5.6 we will study the quasi–automorphism group
QAutC of a Kerdock code C. We will reduce this study and questions of equivalence
to equivalence among the corresponding binary orthogonal spreads (cf. Theorem 5.3
and Proposition 5.13).

Note that two codes are quasi–equivalent if and only each is the image of the other
by means of an isometry of the underlying metric space (ZN2 , Hamming metric). In
the case of linear codes, quasi–equivalence is almost the same as equivalence. For
a nonlinear code C, even one containing 0, it is noticeably weaker: if w ∈ C, then
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C and C + w are quasi–equivalent but, in general, not equivalent; yet clearly they
are not “significantly” different.

Equivalence of Kerdock sets. Two Kerdock sets M1 and M2 of n× n binary
matrices are called equivalent if and only if there are an invertible matrix A and
a skew–symmetric matrix M such that AtM1A + M = M2. Note that here, and
in the rest of this section, matrices and vector spaces are over Z2, so that field
automorphisms are not needed.

Theorem 5.3 ([Ka3, 3.4]). Let M1 and M2 be Kerdock sets of n × n binary
matrices, with corresponding orthogonal spreads ΣM1 and ΣM2 of V = X ⊕ Y
arising as in Proposition 5.1(i). Then the following are equivalent:

(i) M1 and M2 are equivalent.
(ii) The Kerdock codes K2(M1) and K2(M2) are quasi-equivalent.
(iii) The orthogonal spreads ΣM1 and ΣM2 are equivalent by an isometry of V

that stabilizes Y .

More is proved in [Ka3, 3.4]: The quasi–equivalences g : K2(M1)→ K2(M2) are
precisely the maps

g : (cv)v → (cvA+w)v + (QM (vA+ w) + u · (vA+ w) + ε)v(5.4)

for some u,w ∈ Zn2 , ε ∈ Z2, M ∈ M2 and A ∈ GL(n, 2) satisfying AM1A
t =

M2 +M . In particular, (i) ⇒ (ii).

5.2. Kerdock codes from prequasifields. Let F = GF(2m) with m > 1 odd,
and let T : F → Z2 be the trace map. Define an inner product on the Z2–space
F ⊕ Z2 by

(
(x, a), (y, b)

)
= T (xy) + ab. We use an orthonormal basis B to write

matrices, and we write (x, a)B for the coordinate vector of (x, a). We now index
vectors over v ∈ Zm2 ⊕Z2, for a fixed ordering of Zm2 ⊕Z2. Then it is easy to check
the following

Lemma 5.5 ([Ka3, 2.2]). Consider a symplectic prequasifield P∗(F, ∗,+) (so it
satisfies (2.5) and (2.6). For each s ∈ F let Ms be the matrix defined by

(x, a)BMs = (x ∗ s+ T (xs)s+ as, T (xs))B.

Then M∗ = {Ms | s ∈ F} is a Kerdock set with corresponding Kerdock code

(5.6) K2(∗) =
{

(QMs(v) + u · v + ε)v | s ∈ F, u ∈ Zn2 , ε ∈ Z2

}
⊂ Z2m+1

2 .

For example, the operation x ∗ s = xs2 coordinatizes the desarguesian plane
and the desarguesian orthogonal spread, and determines via the above lemma the
classical Kerdock code K2(∗) discovered by Kerdock [Ke] in 1972. His construction
technique was, however, rather different.

More generally, all of the prequasifields in Proposition 2.19 determine Kerdock
codes. We will study those of the form P∗

(
(Fi)n0 , (ζi)

n
1

)
given in (1.1). Since these

are semifields, the corresponding codes have additional structure: they produce
Z4–linear Kerdock and Preparata codes as well as elementary abelian groups of
quasi–automorphisms acting transitively on the set of codewords (cf. Sections 5.5
and 5.6).

On the other hand, those prequasifields arising in Proposition 2.19 with all ζi = 0
have the additional property z(x ∗ y) = (z−1x) ∗ (zy) for all x, y ∈ F , z ∈ F ∗. The
resulting nearly extended cyclic binary or Z4–Kerdock codes were studied in [Wi].
Their properties are briefly surveyed in [Ka3].
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5.3. Z4–codes and the Gray map. The breakthrough paper [HKCSS] intro-
duced the Gray map, an isometry φ : ZN4 → Z2N

2 . (The metric on Z2N
2 is the usual

Hamming metric. The metric on ZN4 is the Lee metric, defined by dL((ai), (bi)) =∑
|ai − bi|, where |ai − bi| ∈ {0, 1, 2, 3} has been reduced mod 4 and the sum is

taken in Z.) It was shown in [HKCSS] that, if K2 is the classical Kerdock code of
length N = 2m+1 with m odd, then K4 = φ−1(K2) is a Z4–linear code. This led to
the definition of the Z4–linear Preparata code P4 = K⊥2 and the binary ‘Preparata’
code P2 = φ(P4), having the exact same weight distribution as the original code
discovered by Preparata [Pr] in 1968. It is a code of length N , minimum distance
6 (a double error–correcting code), and has as many codewords as possible subject
to these conditions: 2N−2(m+1). If m > 3 then no binary ‘Preparata’ code is equiv-
alent to any of Preparata’s original codes [CCKS, 10.2]. Nevertheless, these ideas
provide a partial explanation for the remarkable formal duality between the dis-
tance distributions of the Kerdock and Preparata codes given by the MacWilliams
transform [HKCSS]. (We use quotation marks when discussing binary ‘Preparata’
codes in order to emphasize the fact that the class of codes we discuss does not
include Preparata’s original codes.)

Note that it is customary to talk about the Gray map, although this depends on
a particular arrangement of the coordinates of binary and Z4–vectors.

Equivalence of Z4–codes. Two ZN4 –codes are equivalent if there is a monomial
transformation of ZN4 mapping one code to the other.

5.4. Prequasifields and Z4–Kerdock codes. Consider a symplectic prequasi-
field P∗(F, ∗,+) (cf. (2.5) and (2.6)). We temporarily identify Zm2 with F =
GF(2m) and the dot product with the bilinear form T (xy). We fix an orthonormal
basis, and write matrices using it. Then (2.6) can be interpreted as saying that the
linear operator x→ x ∗ s is self–adjoint relative to this form; in other words, when
written with respect to our orthonormal basis it arises from a symmetric matrix
Ps. Then {Ps | s ∈ F} is a set of symmetric matrices such that the difference of
any two is nonsingular [CCKS, 5.1].

The Z4–valued quadratic form FPs . Identify the entries of Ps with elements
of Z4. Define FPs : Zm2 → Z4, a Z4–valued quadratic form [Br], by FPs(v) = vPvt,
where, for v ∈ Zm2 , we first identify the entries of v with elements of Z4 and then
perform the matrix multiplication in the ring Z4. This function has a property
analogous to (2.9):

FPs(u+ v) = FPs(u) + FPs(v) + 2uPsvt

for all u, v ∈ Zm2 viewed as lying in Zm4 . We also consider the expression 2u ·
v (mod 4) when u, v ∈ Zm2 , using the same convention.

This time we index vectors in Z2m

4 over v ∈ Zm2 , for a fixed ordering of Zm2 . As
in [CCKS], define the Z4–Kerdock code corresponding to P∗(F, ∗,+) by

(5.7) K4(∗) = {(FPs(v) + 2u · v + ε)v | s ∈ F, u ∈ Zn2 , ε ∈ Z4} ⊂ Z2m

4

(compare (5.6)).

Proposition 5.8 ([CCKS, 8.3, 8.9]).
(i) K2(∗) is the image of K4(∗) under the Gray map.
(ii) K4(∗) is Z4–linear if and only if P∗ is closed under addition; that is, if and

only if P∗ is a presemifield.
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The presemifield for the original Z4–linear Kerdock code [HKCSS] is F = GF(2m)
but with the operation x ∗ y = xy2 (compare (1.1)), so that every corresponding
semifield is isomorphic to GF(2m).

5.5. Equivalences among equivalences. Consider a presemifield P∗
(
(Fi)n0 , (ζi)n1

)
in (1.1). The corresponding binary and Z4–Kerdock codes K2(∗) and K4(∗) were
defined in (5.6) and (5.7). By Proposition 5.8, K4(∗) is Z4–linear, so we can also
consider the corresponding Z4–linear and binary ‘Preparata’ codes

(5.9) P4(∗) = K4(∗)⊥ and P2(∗) = φ(P4(∗))
using the Gray map φ.

Theorem 5.10. The following are equivalent for two presemifields P∗
(
(Fi)n0 , (ζi)n1

)
and P◦

(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
in (1.1), where n ≥ 1, |Fn| > 2, |F ′n′ | > 2, [F : F1] > 3 and

[F : F ′1] > 3:
(i) K4(∗) and K4(◦) are equivalent Z4–linear Kerdock codes of length 2m.

(ii) P4(∗) and P4(◦) are equivalent Z4–linear Preparata codes of length 2m.
(iii) K2(∗) and K2(◦) are quasi–equivalent binary Kerdock codes of length 2m+1.
(iv) P2(∗) and P2(◦) are quasi–equivalent binary ‘Preparata’ codes of length

2m+1.
(v) Σ∗

(
(Fi)n+1

0 , (ζi)n1
)

and Σ◦
(
(F ′i )

n′+1
0 , (ζ′i)

n′

1

)
are equivalent binary orthogo-

nal spreads of an O+(2m+ 2, 2)–space, where Fn+1 = F ′n′+1 = Z2.
(vi) A∗

(
(Fi)n0 , (ζi)

n
1

)
and A◦

(
(F ′i )

n′

0 , (ζ
′
i)
n′

1

)
are isomorphic semifield planes of

order 2m.
(vii) n′ = n and m′i = mi, ζ

′
i = λζσi whenever 1 ≤ i ≤ n, for some λ ∈ F ∗,

σ ∈ Aut(F ).

Proof. By [CCKS, 10.3], (i)–(iv) are equivalent.
By Theorem 4.13, (v)–(vii) are equivalent.
(i)⇒(v): [CCKS, 10.5].
(vii)⇒(iii): By Theorem 4.13, (vii) produces an equivalence in (v) that fixes Y ,

and hence (iii) holds by Theorem 5.3. �
Remark. We needed to have Fn, F ′n′ ⊃ Fn+1 = F ′n′+1 = Z2 here in order to be able
to define the codes and orthogonal spreads. The fact that (v) implies (iii) amounts
to verifying the hypotheses in [CCKS, 10.5(iii)] (see Propositions 4.4 and 4.11).

Theorem 5.11. If m is not a power of 3 and ρ(m) ≥ 3, then there are more than
2m(ρ(m)−2)m/m

(i) pairwise inequivalent Z4–linear Kerdock and Preparata codes of length 2m,
and

(ii) pairwise quasi–inequivalent binary Kerdock and ‘Preparata’ codes of length
2m+1.

If m ≥ 34 is a power of 3, then this lower bound is 2m(ρ(m)−3)m/m.

Proof. See Theorems 4.15(i) and 5.10. �
5.6. Quasi–automorphisms of binary Kerdock codes. Recall that an ex-
traspecial 2–group has center of order 2, modulo which the group is elementary
abelian and nontrivial. Extraspecial 2–groups played a crucial role in the applica-
tions of Kerdock codes to Euclidean line–sets [CCKS]. Here they arise in a rather
different manner (where once again we index vectors over v ∈ Zn2 ).
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Lemma 5.12. Every Kerdock code K2(M) of length 2n has an extraspecial group
〈T , T ∗〉 = T T ∗ of 22n+1 quasi–automorphisms stabilizing each coset of R(1, n) in
K2(M). Here

T = {Tw | w ∈ Zn2 } and T ∗ = {T ∗(t,δ) | t ∈ Zn2 , δ ∈ Z2},

where

(cv)vTw = (cv+w)v and (cv)vT ∗(t,δ) = (cv + t · v + δ)v.

Moreover, T ∗ acts transitively on each such coset.

Proof. This is a straightforward calculation. The center of T T ∗ is generated by
T ∗(0,1). �

Note that the elements of T ∗ correspond to ordinary addition of codewords taken
from the subcode R(1, n) of K2(M).

Proposition 5.13. LetM be a Kerdock set, and K2(M) and ΣM the corresponding
Kerdock code and orthogonal spread (cf. Proposition 5.1). Then

QAutK2(M)/〈T , T ∗〉 ∼= ΓO+(2m+ 2, 2)ΣM,Y .

Proof. Map g in (5.4) to
(
A−1 O
O At

)(
I M
O I

)
, which represents an orthogonal trans-

formation of the space V in Proposition 5.1. This map is a homomorphism, and is
onto ΓO+(2m+ 2, 2)ΣM,Y by the proof of Theorem 5.3 given in [Ka3, 3.4]. �

Remark. Each semifield orthogonal spread Σ∗ in an O+(2m + 2, 2)–space is pre-
served by the elementary abelian group E(Σ∗) in Lemma 2.21. By the preceding
proposition (cf. Theorem 5.3(iii) or (5.4)), this in turn produces an elementary
abelian group E of automorphisms of the associated code K2(∗) that acts transi-
tively on the cosets of R(1,m+ 1) in K2(∗); E also acts on K4(∗), and this corre-
sponds exactly to Z4–linearity. It is easy to check that the group T ∗E generated by
T ∗ and E is an elementary abelian group acting regularly on the set of codewords
of K2(∗). For, E is transitive on the cosets or R(1,m + 1) in K2(∗), while T ∗
acts transitively on each such coset. Thus, distance–invariance (5.2) has a simple
explanation for the codes K2(∗) arising from presemifields.

Boring codes. Every Kerdock code K2(M) of length 2m+1 admits the extraspecial
2–group of order 22(m+1)+1 in Lemma 5.12 that stabilizes every coset of R(1,m+1).
If this is the full quasi–automorphism group of the code, then we say that the
Kerdock code is boring. Similarly, a Z4–linear Kerdock or Preparata code is boring
if its full automorphism group consists of the translations corresponding to Z4–
linearity.

Theorem 5.14. If m is odd, not a power of 3, and ρ(m) ≥ 3, then there are more
than (2m − 1)ρ(m)−32m−1 pairwise quasi–inequivalent boring binary Kerdock codes
of length 2m+1, and the same number of inequivalent Z4–linear Kerdock codes.

Proof. For the second part use any one of the orthogonal spreads Σ∗ in Theo-
rem 4.16(i) together with Proposition 5.1 and (5.4). Also use the same Σ∗ for the
first part: there is a distinguished member Y ∈ Σ∗ fixed by O+(V )Σ∗ = E(Σ∗), so
choose any Y ′ 6= Y in Σ∗ and use it in place of Y in the preceding proposition. �

Of course, there is an analogous result when m = 3ρ(m) ≥ 34.
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6. Summary; open problems

We have constructed large numbers of semifields, semifield orthogonal spreads,
and Z4–linear Kerdock and Preparata codes. We were able to retain some reason-
able amount of control over the “up and down process”, whereas previous work
on orthogonal spreads or Kerdock codes had to settle for chains of at most two or
three fields [Ka1, Ka2].

We have not discussed the relationship between these objects and extremal line–
sets in Euclidean and complex spaces [CCKS].

While most of our results assert the existence of many more examples of various
types of geometries and codes than were previously known, the proofs and the ideas
behind them leave various open problems.

1. All of our semifield planes and Z4–linear Kerdock and Preparata codes start
with a desarguesian spread and then use the “up and down process”. There must
be many other “starter” planes that could be used for this purpose, but it is not
clear where to look for them.

2. The scions of desarguesian planes, obtained by the “up and down process”, need
to be studied further. We have focused on the semifield planes among those planes,
[KW] handles the flag–transitive ones, and [Wi] deals with those admitting a cyclic
group of order qm − 1 on the line at infinity. The boring planes in Theorem 4.17
are also among these scions. Are there others of these planes with interesting
properties? Is there any way to find the full automorphism groups of the planes or
the orthogonal spreads without using a “large” group as a crutch, as was done in
all of the preceding instances?

3. G. Wene has asked how the second cousin C of the desarguesian plane of order
32 [Ka1] is related to the plane determined by Knuth’s commutative semifield of
the same order [Kn2]. In view of the classification of semifield planes of order 32
[Wa, Kn1], and the determination of their automorphism groups [Kn1, p. 207], C

must be isomorphic to one of three planes in those references: Knuth’s plane A,
the plane AT obtained from it by “transposing” and the plane ATD obtained from
AT by dualizing. On the other hand, the plane arising from the dual spread of a
semifield plane A′ is A′DTD [BB], and hence CDTD ∼= C (this is an essential part
of the construction here and in [Ka1]). Consequently, the second cousin is AT , the
only one of the aforementioned three planes A′ in [Kn1, p. 207] that is isomorphic
to A′DTD.

However, this is an unsatisfactory proof: it depends on 40 year old computer
computations (made independently by Walker [Wa] and Knuth [HK, p. 27]) and
provides no real explanation. An explanation will be given in [Ka6].

4. Constructions are needed for boring translation planes of order qm when m is
even or q is odd. Undoubtedly there are very large numbers of these.

5. Constructions are needed for boring orthogonal spreads; none is known. In
characteristic 2 such an orthogonal spread would produce many boring translation
planes and many boring Kerdock codes. We suspect that most of the prequasifields
in Proposition 2.19 give rise to boring orthogonal spreads, but this appears to be
difficult to prove.
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6. Various field restrictions in our results, concerning either field-size > 2 or [F : F1]
> 3, need to be removed. Of course, best of all in this regard would be a less
computational approach to the main theorems of this paper.

7. Are there special properties of the line ovals in our symplectic semifield planes
(cf. [Ma])?

In order to define one of these line ovals, fix an orthonormal basis of F with
respect to the bilinear form Tn(xy), and for each s ∈ F let Ps be the matrix of
x→ x ∗ s with respect to this basis. Write elements of F using this basis, and let
d(Ps) ∈ F be the vector whose entries are the square roots of those of the diagonal
of Ps in the natural order. Then the lines x = 0 and y = xPs + d(Ps), s ∈ F ,
comprise a line oval. This is invariant under the group of translations

(x, y)→ (x, xPr + d(Pr)), r ∈ F.

We refer to [Ma] for the much more important regularity property of this line
oval.

Note also that the vectors d(Ps) played a significant role in [CCKS]. Namely,
the matrices P = Ps and M = Ms ∈ M are related by the formula

M =
(
P + d(P )Td(P ) d(P )T

d(P ) 0

)
[CCKS, 7.4], which defines a nonlinear bijection P → M from symmetric m ×m
matrices P to skew-symmetric (m+1)×(m+1) matrices M . It is not clear whether
there is a relationship between the roles in these two very different settings.
8. Finally, we come to the most important problem: much larger numbers of
semifield planes are needed in all characteristics. The difficulty is the nonisomor-
phism question for planes, which is harder than that for the semifields themselves.
Isotopies are notoriously difficult to deal with. A classical question concerning
semifields and their planes is the solvability of their autotopism groups, a difficult
question discussed in [De, pp. 242–243] (compare [Al2]) and for which little has
been done since the 1960’s. This question, usually dealt with by detailed compu-
tations using (2.3), seems to be less difficult than that of determining whether two
semifields are not isotopic. One of the few families of semifields for which there is
presently a complete solution to the isotopy question is dealt with in [Al3]. The
semifields studied there have a feature in common with those studied here: multi-
plication is defined using elements of an underlying field F , rather than in terms of
a basis of the semifield over some field.

In this paper we calculated, but we also had more additional structure than is
usually available in the study of semifields. What is needed is a better and more
general approach to proving nonisotopy. A simple way is to compare the kernels of
two semifields, or to compare various nuclei [De, p. 237]. However, these are very
weak invariants, and by themselves appear to be unable to produce as many as m
nonisomorphic planes of order qm for prime q and large m.
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