Symplectic Small Deformations of Special Instanton Bundle on $\mathrm{P}^{2 n+1}\left({ }^{*}\right)$.

Carla Dionisi

Abstract

Let $M I_{\text {Simp }}, \mathrm{p}^{2 n+1}(k)$ be the moduli space of stable symplectic instanton bundles on $\mathbb{P}^{2 n+1}$ with second Chern class $c_{2}=k$ (it is a closed subscheme of the moduli space $M I_{\mathrm{P}^{2 n+1}}(k)$). We prove that the dimension of its Zariski tangent space at a special (symplectic) instanton bundle is $2 k(5 n-1)+4 n^{2}-10 n+3, k \geqslant 2$.

Introduction.

Symplectic instanton bundles on $\mathrm{P}^{2 n+1}$ are holomorphic bundles of rank 2 n (see [1], [4] and [6]) that correspond to the self-dual solutions of Yang-Mills equations on $\mathrm{P}^{n}(\mathrm{H})$. They are given by some monads (see section 2 for precise definitions) and their only topological invariant is $c_{2}=k$.

At present the dimension of their moduli space $M I_{\text {Simp, }{ }^{2 n+1}(k) \text { is not known except }}$ in the cases $n=1$, where the dimension is $8 k-3$ (see [3]), and in few other cases corresponding to small values of k .
$M I_{\text {Simp, } \mathrm{P}^{2 n+1}}(k)$ is a closed subscheme of $M I_{\mathrm{p}^{2 n+1}}(k)$ and this last scheme parametrizes stable instanton bundles with structural group $G L(2 n)$.

The class of special instanton bundles was introduced in [7].
Let $E \in M I_{\mathrm{p}^{2 n+1}}(k)$ be a special symplectic instanton bundle. The tangent dimension $h^{1}(\operatorname{End}(E))$ was computed in [6] and it is equal to $4(3 n-1) k+(2 n-5)(2 n-1)$.

The Zariski tangent space of $M I_{\text {Simp, } \mathrm{P}^{2 n+1}}(k)$ at E is isomorphic to $H^{1}\left(S^{2} E\right)$ and in this paper we prove that

$$
\begin{equation*}
h^{2}\left(S^{2} E\right)=\binom{k-2}{2}\binom{2 n-1}{2}, \quad \forall k \geqslant 2 \tag{1}
\end{equation*}
$$

By the Hirzebruch-Riemann-Roch formula, since $h^{0}\left(S^{2} E\right)=0$ and $h^{i}\left(S^{2} E\right)=0$,

[^0]$\forall i \geqslant 3$, it follows that:
$$
\chi\left(S^{2} E\right)=h^{2}\left(S^{2} E\right)-h^{1}\left(S^{2} E\right)=2 n^{2}+n+\frac{1}{2}\left[k^{2}\binom{2 n-1}{2}-k\left(10 n^{2}-5 n-1\right)\right]
$$
and
Theorem 0.1. - Let E be a special symplectic instanton bundle.Then
$$
h^{1}\left(S^{2} E\right)=2 k(5 n-1)+4 n^{2}-10 n+3, \quad k \geqslant 2
$$
(for $n=1$ it is well known that $h^{1}\left(S^{2} E\right)=8 k-3$) and, in the real case, for $n=2$ the dimension $18 k-1$ has been found in [5] with different techniques).

Now, since by the Kuranishi map $H^{2}\left(S^{2} E\right)$ is the space of obstructions to the smoothness at E of $M I_{\text {Simp }, \mathbb{P}^{2 n+1}}(k)$, we obtain

Corollary 0.1. - $\forall k \geqslant 2$ the dimension of any irreducible component of $M I_{\text {Simp }, \mathrm{P}^{2 n+1}}(k)$, containing a special symplectic instanton bundle is bounded by the value $2 k(5 n-1)+4 n^{2}-10 n+3$ (linear in k).

Corollary 0.2. - $\forall n M I_{\text {Simp, } \mathbb{P}^{2 n+1}(3)}$ is smooth at a special instanton bundle E, and the dimension of any irreducible component containing E is $4 n^{2}+20 n-3$.

The main remark of this paper is that it is easier to compute $H^{2}\left(S^{2} E\right)$ and $H^{2}(\stackrel{2}{\wedge} E)$ together as $S L(2)$-modules (although this second cohomology space has a geometrical meaning only for orthogonal bundles) than to compute $H^{2}\left(S^{2} E\right)$ alone.

1. - Preliminaries.

Throughout this paper \boldsymbol{K} denotes an algebraically closed field of characteristic zero. U denotes a 2-dimensional K vector space ($U=\langle s, t\rangle$), $S_{n}=S^{n} U$ its n-th symmetric power

$$
\left(S_{n}=\left\langle s^{n}, s^{n-1} t, \ldots, t^{n}\right\rangle\right), \quad V_{n}=U \otimes S_{n}\left(V_{n}=\left\langle s \otimes s^{n}, s \otimes s^{n-1} t, \ldots s \otimes t, \ldots t \otimes t^{n}\right\rangle\right)
$$

and $\mathbb{P}^{2 n+1}=\mathbb{P}\left(V_{n}\right)$.
Definition 1.1. - A vector bundle E on $\mathrm{P}^{2 n+1}$ of rank $2 n$ is called an instanton bundle of quantum number $k i f$:

- E has Chern polinomial $c_{t}(E)=\left(1-t^{2}\right)^{-k}$;
- $E(q)$ has natural cohomology in the range $-(2 n+1) \leqslant q \leqslant 0$, that is $H^{i}(E(q)) \neq 0$ for at most one $i=i(q)$.

By [5], [2], the Definition 1.1 is equivalent to:
i) E is the cohomology bundle of a monad:

$$
0 \rightarrow O(-1)^{k} \rightarrow \Omega^{1}(1)^{k} \rightarrow O^{2 n(k-1)} \rightarrow 0
$$

or ii) E is the cohomology bundle of a monad:

$$
0 \rightarrow O(-1)^{k} \xrightarrow{A} O^{2 n+2 k} \xrightarrow{B^{t}} O(1)^{k} \rightarrow 0
$$

(where, after we have fixed a coordinate system, A and B can be identified with matrices in the space $\operatorname{Mat}\left(k, 2 n+2 k, S_{1}\right)$)

DEFINITION 1.2. - An instanton bundle E is called symplectic if there is an isomorphism $\varphi: E \rightarrow E^{\vee}$ satisfying $\varphi=-\varphi^{\vee}$.

Definition 1.3. - An instanton bundle is called special if it arises from a monad where the morfism B^{t} is defined in some system of homogeneous coordinates $x_{0}, \ldots x_{n}, y_{0} \ldots y_{n}$ on $\mathrm{P}^{2 n+1}$ by the trasposed of the matrix:

$$
B=\left(\begin{array}{cccccccccccc}
x_{0} & \ldots & x_{n} & 0 & \ldots & 0 & y_{0} & \ldots & y_{n} & 0 & \ldots & 0 \\
0 & x_{0} & \ldots & x_{n} & 0 & \ldots & 0 & y_{0} & \ldots & y_{n} & 0 & \ldots \\
\ldots & \ldots \\
\ldots & 0 & x_{0} & \ldots & x_{n} & 0 & \ldots & 0 & y_{0} & \ldots & y_{n} & 0 \\
0 & \ldots & 0 & x_{0} & \ldots & x_{n} & 0 & \ldots & 0 & y_{0} & \ldots & y_{n}
\end{array}\right) .
$$

The following lemma is well known (and easy to prove)
Lemma 1.1.

$$
\begin{gathered}
H^{0}(O(1)) \cong V^{\vee}, \\
H^{0}\left(\Omega^{1}(2)\right) \cong \stackrel{2}{\wedge} V^{\vee}, \\
H^{i}\left(\mathbb{P}^{n}, S^{2} \Omega^{1}(1)\right)= \begin{cases}0, & \text { se } i \neq 1, \\
\wedge^{2} V^{\vee}, & \text { se } i=1\end{cases}
\end{gathered}
$$

2. - Existence of a special symplectic instanton bundle.

There is a natural exact sequence of $G L(U)$-equivariant maps for any $k, n \geqslant 1$ (Clebsch-Gordan sequence):

$$
\begin{equation*}
0 \rightarrow \stackrel{2}{\wedge} U \otimes S_{k-1} \otimes V_{n-1} \xrightarrow{\beta} S_{k} \otimes V_{n} \xrightarrow{\mu} V_{k+n} \rightarrow 0 \tag{2}
\end{equation*}
$$

where μ is the multiplication map and β is defined by $(s \wedge t) \otimes f \otimes g \rightarrow(s f \otimes t g-$ $-t f \otimes s g)$.

We can define (see [6]) the morphism

$$
\tilde{b}: S_{k-1}^{\vee} \otimes \Omega^{1}(1) \rightarrow \stackrel{2}{\wedge} U^{\vee} \otimes S_{k-2}^{\vee} \otimes V_{n-1}^{\vee} \otimes O
$$

and it is induced the complex

$$
\begin{equation*}
A \otimes O(-1) \xrightarrow{\tilde{a}} S_{k-1}^{\vee} \otimes \Omega^{1}(1) \xrightarrow{\tilde{b}} \stackrel{2}{\wedge} U^{\vee} \otimes S_{k-2}^{\vee} \otimes V_{n-1}^{\vee} \otimes O, \tag{3}
\end{equation*}
$$

where A is a k-dimensional subspace of $S_{2 n+k-1}^{\vee} \otimes \stackrel{2}{\wedge} U^{\vee}$ such that (3) is a monad and the cohomology bundle E is a special symplectic instanton bundle. It was proved in [6] that

$$
H^{2}(\operatorname{End} E) \cong \operatorname{Ker}\left(\Phi^{\vee}\right)^{\vee}
$$

where

$$
\Phi^{\vee}: S_{k-2}^{\otimes 2} \otimes V_{n-1}^{\otimes 2} \rightarrow S_{k-1}^{\otimes 2} \otimes \stackrel{2}{\wedge} V_{n}
$$

and there is an isomorphism of $S L(2)$-representations

$$
\varepsilon: S_{k-3}^{\vee} \otimes S_{k-3}^{\vee} \otimes S^{2} V_{n-2}^{\vee} \rightarrow \operatorname{Ker}\left(\Phi^{\vee}\right)
$$

3. - How to identify $H^{2}\left(S^{2} E\right)$ and $H^{2}\left({ }_{\wedge}^{2} E\right)$.

Proposition 3.1. - Let E be special symplectic instanton bundle, cohomology of monad (3) and $N=\operatorname{Ker} \tilde{b}$. Then
(i) $H^{2}\left(S^{2} E\right) \cong H^{2}\left(S^{2} N\right)$,
(ii) $H^{2}\left({ }^{2} N\right) \cong H^{2}\left({ }_{\wedge}^{2} N\right)$.

Proof. - We denote $B:=S_{k-1}^{\vee}$ and $C:=\stackrel{2}{\wedge} U^{\vee} \otimes S_{k-2}^{\vee} \otimes V_{n-1}^{\vee}$.
The result follows from the two exact sequences given by monad (3):

$$
\begin{gather*}
0 \rightarrow N \rightarrow B \otimes \Omega^{1}(1) \rightarrow C \otimes O \rightarrow 0 \tag{4}\\
0 \rightarrow A \otimes O(-1) \rightarrow N \rightarrow E \rightarrow 0
\end{gather*}
$$

In fact, by performing the second symetric and alternating power of sequence (4), we have

$$
0 \rightarrow S^{2} N \rightarrow \widetilde{A} \rightarrow B \otimes C \otimes \Omega^{1}(1) \rightarrow \stackrel{2}{\wedge} C \otimes O \rightarrow 0
$$

(6)

where $\widetilde{A}:=S^{2}\left(B \otimes \Omega^{1}(1)\right)=\left(S^{2} B \otimes S^{2}\left(\Omega^{1}(1)\right)\right) \oplus\left({ }^{2} B \otimes \Omega^{2}(2)\right)$ and

$$
\begin{equation*}
0 \rightarrow \wedge^{2} N \rightarrow \bar{A} \rightarrow B \otimes C \otimes \Omega^{1}(1) \rightarrow O \otimes S^{2} C \rightarrow 0 \tag{7}
\end{equation*}
$$

where $\bar{A}:=\stackrel{2}{\wedge}\left(B \otimes \Omega^{1}(1)\right)=\left(\stackrel{2}{\wedge} B \otimes S^{2}\left(\Omega^{1}(1)\right)\right) \oplus\left(S^{2} B \otimes \Omega^{2}(2)\right)$.
3.1. Identifying $H^{2}\left(S^{2} N\right)$ and $H^{2}\left(\wedge^{2} N\right)$. - i) Diagram (6) gives the following two exact sequences:
(8) $O \rightarrow H^{0}\left(M^{1}\right) \rightarrow H^{1}\left(S^{2} N\right) \rightarrow H^{1}(\widetilde{A}) \rightarrow H^{1}\left(M^{1}\right) \rightarrow H^{2}\left(S^{2}(N)\right) \rightarrow H^{2}(\widetilde{A}) \rightarrow \ldots$,
(9) $O \rightarrow H^{0}\left(M^{1}\right) \rightarrow B \otimes C \otimes H^{0}\left(\Omega^{1}(1)\right) \rightarrow \stackrel{2}{\wedge} C \rightarrow H^{1}\left(M^{1}\right) \rightarrow B \otimes C \otimes H^{1}\left(\Omega^{1}(1)\right) \rightarrow \ldots$.

Sequence (9) implies:

$$
H^{0}\left(M^{1}\right)=0 \quad \text { and } \quad \mathrm{H}^{1}\left(\mathbf{M}^{1}\right) \cong \wedge^{2} \mathrm{C}
$$

Then, by using the two formulas:

$$
H^{1}(\tilde{A})=\left(S^{2} B \otimes H^{1}\left(S^{2} \Omega^{1}(1)\right)\right) \oplus\left(\wedge^{2} B \otimes H^{1}\left(\Omega^{2}(2)\right)\right)=S^{2} B \otimes \wedge^{2} V^{\vee}
$$

and:

$$
H^{2}(\widetilde{A})=\left(S^{2} B \otimes H^{2}\left(S^{2} \Omega^{1}(1)\right)\right) \oplus\left(\stackrel{2}{\wedge} B \otimes H^{2}\left(\Omega^{2}(2)\right)\right)=0
$$

sequence (8) becomes:

$$
0 \rightarrow H^{1}\left(S^{2} N\right) \rightarrow H^{1}(\widetilde{A}) \rightarrow H^{1}\left(M^{1}\right) \rightarrow H^{2}\left(S^{2}(N)\right) \rightarrow 0,
$$

i.e.

$$
\begin{aligned}
0 \rightarrow & H^{1}\left(S^{2} N\right) \rightarrow S^{2} B \otimes \wedge^{2} V^{\vee} \stackrel{\widetilde{\Phi}}{\rightarrow} \wedge \\
& \left.\Rightarrow H^{2}\left(S^{2} N\right) \cong \operatorname{Coker}(\widetilde{\Phi})=\left(\operatorname{Ker}\left(\widetilde{\Phi}^{\vee}\right)\right)^{\vee} N\right) \rightarrow 0
\end{aligned}
$$

Then:

$$
H^{2}\left(S^{2} N\right)^{\vee}=\operatorname{Ker}\left[\wedge\left(S_{k-2} \otimes V_{n-1}\right) \xrightarrow{\tilde{\Phi} \vee} S^{2}\left(S_{k-1}\right) \otimes \wedge^{2} V_{n}\right] .
$$

ii) Diagram (7) gives the following two exact sequences:

$$
\begin{gather*}
O \rightarrow H^{0}(M) \rightarrow H^{1}(\wedge N) \rightarrow H^{1}(\bar{A}) \rightarrow H^{1}(M) \rightarrow H^{2}\left({ }^{2} \wedge N\right) \rightarrow H^{2}(\bar{A}) \rightarrow \ldots \tag{10}\\
O \rightarrow H^{0}(M) \rightarrow B \otimes C \otimes H^{0}\left(\Omega^{1}(1)\right) \rightarrow S^{2} C \otimes H^{0}(O) \rightarrow H^{1}(M) \rightarrow 0 \rightarrow \ldots \tag{11}\\
\|
\end{gather*}
$$

and, from sequence (11), we get $H^{0}(M)=0$ and $H^{1}(M) \simeq S^{2} C$.
Then, since:

$$
H^{1}(\bar{A})=\left(H^{1}\left(S^{2}\left(\Omega^{1}(1)\right) \otimes \stackrel{2}{\wedge} B\right)\right) \oplus\left(S^{2} B \otimes H^{1}\left(\Omega^{2}(2)\right)\right)=\stackrel{2}{\wedge} B \otimes \wedge^{2} V^{\vee}
$$

sequence (10) becomes:

$$
\begin{aligned}
& O \rightarrow H^{0}(M) \rightarrow H^{1}\left(\bigwedge^{2} N\right) \rightarrow H^{1}(\bar{A}) \rightarrow H^{1}(M) \rightarrow H^{2}\left(\bigwedge_{\wedge} N\right) \rightarrow 0 \\
& \quad \|_{0}
\end{aligned}
$$

i.e.

$$
\begin{gathered}
0 \rightarrow H^{1}(\stackrel{2}{\wedge} N) \rightarrow \stackrel{2}{\wedge} B \otimes \stackrel{2}{\wedge} V^{\vee} \xrightarrow{\Phi} S^{2} C \rightarrow H^{2}\left({ }_{\wedge}^{2} N\right) \rightarrow 0 \\
\Rightarrow H^{2}(\stackrel{2}{\wedge} N) \approx \operatorname{Coker}(\bar{\Phi})=\left(\operatorname{Ker}\left(\bar{\Phi}^{\vee}\right)\right)^{\vee}
\end{gathered}
$$

Then we obtain:

$$
\left(H^{2}(\stackrel{2}{\wedge} N)\right)^{\vee}=\operatorname{Ker}\left[S^{2}\left(S_{k-2} \otimes V_{n-1}\right) \stackrel{\Phi^{\vee}}{\rightarrow} \wedge S_{k-1} \otimes \stackrel{2}{\wedge} V_{n}\right]
$$

3.2. Identifying $H^{2}\left(S^{2} E\right)$. - We have

$$
H^{2}\left(S^{2} E\right)^{\vee} \cong \operatorname{Ker} \widetilde{\Phi}^{\vee}
$$

where $\widetilde{\Phi}^{\vee}: \stackrel{2}{\wedge}\left(S_{k-2} \otimes V_{n-1}\right) \rightarrow S^{2} S_{k-1} \otimes \stackrel{2}{\wedge} V_{n}$ is explicitly given by $\widetilde{\Phi}^{\vee}\left((g \otimes v) \wedge\left(g^{1} \otimes v^{1}\right)\right)=s g \cdot s g^{1} \otimes\left(t v \wedge t v^{1}\right)-s g \cdot t g^{1} \otimes\left(t v \wedge s v^{1}\right)+$

$$
-t g \cdot s g^{1} \otimes\left(s v \wedge t v^{1}\right)+t g \cdot t g^{1} \otimes\left(s v \wedge s v^{1}\right)
$$

i.e. $\widetilde{\Phi}^{\vee}=\tilde{p} \circ(\stackrel{2}{\wedge} \beta)$, where $\beta: \stackrel{2}{\wedge}_{\wedge} \| \otimes S_{k-2} \otimes V_{n-1} \rightarrow S_{k-1} \otimes V_{n}$ is such that

$$
(s \wedge t) \otimes(g \otimes v) \mapsto(s g \otimes t v)-(t g \otimes s v)
$$

and

$$
\begin{aligned}
\tilde{p}: & \stackrel{2}{\wedge}\left(S_{k-1} \otimes V_{n}\right) \rightarrow S^{2} S_{k-1} \otimes \stackrel{2}{\wedge} V_{n} \\
& \left.\|{ }_{\|}^{\wedge} S_{k-1} \otimes S^{2} V_{n}\right) \oplus\left(S^{2} S_{k-1} \otimes \stackrel{2}{\wedge} V_{n}\right)
\end{aligned}
$$

is such that

$$
(f \otimes u) \wedge\left(f^{\prime} \otimes u^{1}\right) \mapsto f \cdot f^{\prime} \otimes u \wedge u^{1}
$$

Now, we consider the $S L(2)$-equivariant morphism:

$$
\hat{\varepsilon}^{1}: \stackrel{2}{\wedge}\left(S_{k-3} \otimes V_{n-2}\right) \rightarrow \stackrel{2}{\wedge}\left(S_{k-2} \otimes V_{n-1}\right)
$$

where, up to the order of factors, the map $\tilde{\varepsilon}^{1}:=\beta^{1} \wedge \beta^{1}$ and $\beta^{1}: S_{k-3} \otimes V_{n-2} \rightarrow S_{k-2} \otimes$ $\otimes V_{n-1}$ is defined as β. Hence, $\tilde{\varepsilon}^{1}$ is injective.

Finally, we define

$$
\tilde{\varepsilon}: \stackrel{2}{\wedge} S_{k-3} \otimes S^{2} V_{n-2} \rightarrow \stackrel{2}{\wedge}\left(S_{k-2} \otimes V_{n-1}\right)
$$

as $\tilde{\varepsilon}=\tilde{\varepsilon}^{1} \circ \tilde{i}$, where $\tilde{i}: \stackrel{2}{\wedge} S_{k-3} \otimes S^{2} V_{n-2} \rightarrow \stackrel{2}{\wedge}\left(S_{k-3} \otimes V_{n-2}\right)$ such that

$$
f \wedge f^{\prime} \otimes u \cdot u^{1} \mapsto(f \otimes u) \wedge\left(f^{\prime} \otimes u^{1}\right)+\left(f \otimes u^{1}\right) \wedge\left(f^{\prime} \otimes u\right)
$$

is an injective map. Then, also $\tilde{\varepsilon}$ is injective.
Lemma 3.1. - $\operatorname{Im} \tilde{\varepsilon} \subset \operatorname{Ker} \widetilde{\boldsymbol{\Phi}}^{\vee}$.
Proof. - Straightforward computation.
3.3. Identifying $H^{2}(\stackrel{2}{\wedge} E)$. - We have

$$
H^{2}(\wedge E)^{\vee} \cong \operatorname{Ker} \bar{\Phi}^{\vee},
$$

where $\bar{\Phi}^{\vee}: S^{2}\left(S_{k-2} \otimes V_{n-1}\right) \rightarrow \stackrel{2}{\wedge} S_{k-1} \otimes \stackrel{2}{\wedge} V_{n}$ is explicity given by $\bar{\Phi}^{\vee}\left((g \otimes v) \cdot\left(g^{1} \otimes v^{1}\right)\right)=s g \wedge s g^{1} \otimes\left(t v \wedge t v^{1}\right)-s g \wedge t g^{1} \otimes\left(t v \wedge s v^{1}\right)-$

$$
-t g \wedge s g^{1} \otimes\left(s v \wedge t v^{1}\right)+\left(\operatorname{tg} \wedge t g^{1}\right) \otimes\left(s v \wedge s v^{1}\right)
$$

i.e. $\bar{\Phi}^{\vee}=\bar{p} \circ\left(S^{2} \beta\right)$ where

$$
\begin{aligned}
& \bar{p}: S^{2}\left(S_{k-1} \otimes V_{n}\right) \rightarrow \wedge_{\Lambda}^{2} S_{k-1} \otimes \wedge^{2} V_{n} \\
& \left.\quad \|^{2} \Lambda_{k-1} \otimes \bigwedge_{n}^{2} V_{n}\right) \oplus\left(S^{2} S_{k-1} \otimes S^{2} V_{n}\right)
\end{aligned}
$$

is such that

$$
\bar{p}\left((f \otimes u) \cdot\left(f^{\prime} \otimes u^{1}\right)\right)=f \wedge f^{\prime} \otimes u \wedge u^{1}
$$

We consider the $S L(2)$-equivariant morphism:

$$
\bar{\varepsilon}^{1}: S^{2}\left(S_{k-3} \otimes V_{n-2}\right) \rightarrow S^{2}\left(S_{k-2} \otimes V_{n-1}\right)
$$

such that:
$\bar{\varepsilon}^{1}\left((f \otimes u) \cdot\left(f^{\prime} \otimes u^{1}\right)\right)=(s f \otimes t u) \cdot\left(s f^{\prime} \otimes t u^{1}\right)-(s f \otimes s u) \cdot\left(t f^{\prime} \otimes t u^{1}\right)+$

$$
-(t f \otimes t u) \cdot\left(s f^{\prime} \otimes s u^{1}\right)+(s f \otimes t u) \cdot\left(s f^{\prime} \otimes t u^{1}\right)
$$

($\bar{\varepsilon}^{1}=S^{2} \beta^{1}$ hence $\bar{\varepsilon}^{1}$ is injective). Finally, we define

$$
\bar{\varepsilon}: S^{2} S_{k-3} \otimes S^{2} V_{n-2} \rightarrow S^{2}\left(S_{k-2} \otimes V_{n-1}\right)
$$

as $\bar{\varepsilon}=\bar{\varepsilon}^{1} \circ \bar{i}$ where $\bar{i}: S^{2} S_{k-3} \otimes S^{2} V_{n-2} \rightarrow S^{2}\left(S_{k-3} \otimes V_{n-2}\right)$ such that

$$
f \cdot f^{\prime} \otimes u u^{1} \mapsto(f \otimes u)\left(f^{\prime} \otimes u^{1}\right)+\left(f \otimes u^{1}\right)\left(f^{\prime} \otimes u\right)
$$

is an injective map. Then, also $\bar{\varepsilon}$ is injective
Lemma 3.2. - $\operatorname{Im} \bar{\varepsilon} \subset \operatorname{Ker} \bar{\Phi}^{\vee}$.

Proof. - Straightforward computation.
Theorem 3.1. - For any special symplectic instanton bundle E

$$
H^{2}\left(S^{2} E\right) \simeq \wedge^{2}\left(S_{k-3}\right)^{\vee} \otimes S^{2}\left(V_{n-2}\right)^{\vee} .
$$

Proof. - By lemma 3.1 and 3.2 we have the following diagram with exact rows and columns:

It was shown in [7] that:

$$
H^{2}(\operatorname{End} E) \simeq \operatorname{Ker} \Phi^{\vee}=H^{2}(N \otimes N)^{\vee} \simeq S_{k-3}^{\otimes 2} \otimes S^{2} V_{n-2}
$$

We have proved that there are two injective maps:

$$
\begin{aligned}
& \tilde{\varepsilon}: \wedge^{2}\left(S_{k-3}\right) \otimes S^{2} V_{n-2} \rightarrow \operatorname{Ker} \widetilde{\Phi}^{\vee} \simeq H^{2}\left(S^{2} N\right)^{\vee} \simeq H^{2}\left(S^{2} E\right)^{\vee} \\
& \bar{\varepsilon}: S^{2}\left(S_{k-3}\right) \otimes S^{2} V_{n-2} \rightarrow \operatorname{Ker} \bar{\Phi}^{\vee} \simeq H^{2}\left({ }^{2} N\right)^{\vee} \simeq H^{2}\left({ }^{2} E\right)^{\vee}
\end{aligned}
$$

Then, we can consider the following diagram:

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow S^{2} S_{k-3} \otimes S^{2} V_{n-2} \rightarrow S_{k-3}^{\otimes 2} \otimes S^{2} V_{n-2} \rightarrow \wedge^{2} \\
\downarrow \bar{\varepsilon} & \downarrow \varepsilon & S_{k-3} \otimes V_{n-2} \rightarrow 0 \\
\downarrow \rightarrow H^{2}(\wedge E)^{\vee} \rightarrow H^{2}(\text { End } E)^{\vee} \rightarrow H^{2}\left(S^{2} E\right)^{\vee} \rightarrow 0 \\
\downarrow \\
0
\end{array}
$$

and by the Snake-Lemma there is the exact sequence:

\Rightarrow Coker $\bar{\varepsilon}=0 \Rightarrow \bar{\varepsilon}$ is an isomorphism $\Rightarrow \tilde{\varepsilon}$ is an isomorphism.
Thus:

$$
H^{2}\left(S^{2} E\right)^{\vee} \cong \stackrel{2}{\wedge}\left(S_{k-3}\right) \otimes S^{2}\left(V_{n-2}\right)
$$

i.e. $H^{2}\left(S^{2} E\right) \simeq \stackrel{2}{\wedge}\left(S_{k-3}\right)^{\vee} \otimes S^{2}\left(V_{n-2}\right)^{\vee}$ as we wanted.

Remark 3.1. - By this theorem formula 1 and theorem 0.1 are easily proved.

REFERENCES

[1] V. Ancona, I fibrati istantoni sugli spazi proiettivi, quaderno INDAM, Roma (1996).
[2] V. Ancona - G. Ottaviani, Stability of special instanton bundles on $\mathrm{P}^{2 n+1}$, Trans. Amer. Math. Soc., Vol. 341, n. 2 (1994), pp. 677-693.
[3] A. Hirschowitz - M. S. Narasimhan, Fibrés de't Hooft spéciaux et applications (Proc. Nice Conf. 1981), Birkhäuser, Basel and Boston (1982), pp. 143-163.
[4] M. Mamone Capria - S. M. Salamon, Yang Mills fields on quaternionic spaces, Nonlinearity, 1 (1988), pp. 517-530.
[5] M. Mamone Capria, Teoria di Yang Mills e strutture Geometriche, Doctoral thesis (1990).
[6] C. Okonek - H. Spindler, Mathematical instanton bundles on $\mathbb{P}^{2 n+1}$, J. Reine Angew. Math., 364 (1986), pp. 35-60.
[7] G. Ottaviani - G. Trautmann, The Tangent space at a special symplectic instanton bundle on $\mathrm{P}^{2 n+1}$, Manuscripta Math., 85 (1994), pp. 97-107.
[8] H. Spindler - G. Trautmann, Special instanton bundles on $\mathrm{P}^{2 n+1}$, their geometry and their moduli, Math. Ann., 286 (1990), pp. 559-592.

[^0]: (*) * Entrata in Redazione il 24 gennaio 1997 e, in versione finale, il 30 giugno 1997.
 Indirizzo dell'A.: Dipartimento di Matematica ed Applicazioni «R. Caccioppoli», Università di Napoli Federico II, via Cintia (loc. Monte S. Angelo), I-80138 Napoli, Italy. E-mail address: dionisi@matna2.dma.unina.it

