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Rigid body molecular models possess symplectic structure and time-reversal symmetry. Standard
numerical integration methods destroy both properties, introducing nonphysical dynamical behavior
such as numerically induced dissipative states and drift in the energy during long term simulations.
This article describes the construction, implementation, and practical application of fast explicit
symplectic-reversible integrators for multiple rigid body molecular simulations. These methods use
a reduction to Euler equations for the free rigid body, together with a symplectic splitting technique.
In every time step, the orientational dynamics of each rigid body is integrated by a sequence of
planar rotations. Besides preserving the symplectic and reversible structures of the flow, this scheme
accurately conserves the total angular momentum of a system of interacting rigid bodies. Excellent
energy conservation can be obtained relative to traditional methods, especially in long-time
simulations. The method is implemented in a research code,ORIENT, and compared with a
quaternion/extrapolation scheme for the TIP4P model of water. Our experiments show that the
symplectic-reversible scheme is far superior to the more traditional quaternion method. ©1997
American Institute of Physics.@S0021-9606~97!02339-8#
an
a
un
ar
ea
on
e
er
i.e
m
o-
ic
ev
ns
n
io

ep

gr
ds
to
n-
po

e

ic
elf
g

es
in

ift.
uc-
al
of
–

-
e

ility
-

y-
al
n-
-
ea
sical
and
o
the
in

g

te-
lec-
e-
rve

ic

m

I. INTRODUCTION

Rigid body molecular dynamics simulations are
increasingly important tool in chemical and physic
research.1,2 With steady increases in the size of systems
der study and the time intervals over which simulations
carried out, and to keep pace with improvements in the r
ism of molecular models, better numerical integrati
schemes are also needed. Symplectic and time-reversibl
tegration methods are schemes which automatically pres
a corresponding mechanical structure of the phase flow,
the process by which positions and momenta evolve in ti
While the primary motivation for mathematical study of ge
metric integrators—as opposed to more traditional numer
schemes—may be largely aesthetic, there is growing
dence that, particularly in large or lengthy computatio
these geometrical integrators can provide clear-cut efficie
and stability improvements over standard integrat
schemes.3–7

For rigid bodies, the traditional use of parameters to r
resent the motion~e.g., quaternions! leads to a straightfor-
ward integration technique using standard numerical inte
tion methods such as explicit Runge–Kutta metho
predictor–corrector schemes, and Gragg–Bulirsch–S
extrapolation.8,9 However, the parameterized description i
troduces additional coupling in the Hamiltonian between
sitions and momenta, and effectively prevents the use of

a!Visitor at the Department of Applied Mathematics and Theoretical Phys
Cambridge, United Kingdom, in 1996/97.

b!Visitor at the Isaac Newton Institute for Mathematical Sciences, Ca
bridge, United Kingdom, in 1996.
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ficient ~explicit! integration methods that are symplect
and/or time-reversible. The loss of structure manifests its
in an energy drift during long-time simulations. Correctin
this drift by such measures as rescaling of the velociti9

does not improve stability. In practice, very small steps
time often must be used in order to limit the energy dr
Moreover, the loss of physicality associated with the destr
tion of structure can manifest itself in peculiar nonphysic
behavior: in the next section we show that a discretization
a single rigid body using a nonsymplectic explicit Runge
Kutta discretization may haveasymptotically stable (dissipa
tive) fixed points, something which is impossible in the tru
symplectic flow~or under symplectic discretization!.

One of the authors recently reported outstanding stab
and efficiency improvements using a partially implicit sym
plectic and reversible method for rigid body molecular d
namics simulations.7,10 This method employed a canonic
rotation matrix formulation for each body and used co
strained SHAKE~Ref. 11! integration to preserve orthogo
nality. In the current article, we further improve on this id
by using instead an integration method based on the clas
mechanics concepts of constrained dynamics, splitting,
‘‘reduction.’’12 Specifically, the Hamiltonian is broken up s
that the rotational free-body dynamics is decoupled from
interaction terms. Each free rigid body is then integrated
Euler ~momentum! representation using a further splittin
into integrable parts. The result is anexplicit scheme which
constructs the numerical solution by concatenation of in
grable flows, and thus automatically conserves the symp
tic structure. A symmetric decomposition insures tim
reversibility, and the method can also be shown to conse

s,

-
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5841Dullweber, Leimkuhler, and McLachlan: Rigid body molecular dynamics
total angular momentum. Our approach is based on a s
ting technique for treating a free rigid body independen
proposed by Reich13 and McLachlan14 which was later ex-
tended by Reich15 into a scheme for simulating a rigid bod
in a potential field. The current article shows that for realis
molecular applications involving multiple rigid bodies, th
explicit symplectic approach is not only competitive but ge
erally far superior to the traditional quaternion-based integ
tion approach.

Compared to standard methods, the symplectic appro
is more stable, enabling the use of larger time steps. C
pared to the semi-explicit SHAKE-based scheme,7,10 the
splitting method is more efficient~since it is explicit!. For
multiple rigid bodies not coupled by constraints, the splitti
method thus appears to offer a substantial improvement
existing schemes.

II. SYMPLECTIC METHODS

In this section, we introduce the concept of a symplec
method by deriving the popular Verlet~leapfrog! integrator
used inN-body simulations by splitting the Hamiltonian. W
then show that a similar type of approach can be used
develop an integrator for a single rigid body, and we sh
that the latter scheme behaves more reliably than a Run
Kutta method.

A. Verlet as a symplectic splitting method

For systems with a Hamiltonian of the formH5T(p)
1V(q), the Verlet method provides a simple approach
symplectic integration.16 Here,

T~p!5 1
2 pTM21p

is the kinetic energy~M is a mass matrix!, and V is the
potential energy. The Verlet method can be viewed as c
structing an approximate solution by pasting together the
act solutions of the kinetic and potential parts ofH.5,16

Given positionsqn and momentapn, which approximate
the solution at timet5t01nDt, we first compute the exac
solution to just the potential part of the Hamiltonian for
step of size1

2 Dt in time. Since the equations of motion fo
V5V(q) are

d

dt
q50,

d

dt
p5f~q![2¹qV,

we notice that we can solve them exactly:q is constant dur-
ing the step (q[qn) andp undergoes a linear motion from
pn to pn11/2:

pn11/25pn1 1
2 Dtf~qn!.

We next solve just the kinetic term for one full step in tim
during which the momenta are constant~sinceT is indepen-
dent ofq! and the positions evolve in straight line motion

qn115qn1DtM21pn11/2.
J. Chem. Phys., Vol. 107, N
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Finally, we updatep again by integrating the potential term
for one half time step:

pn115pn11/21 1
2Dtf~qn11!.

The fact that the numerical solution is constructed by stri
ing together a sequence of exact solutions of partial Ham
tonians ensures that the result will be a symplectic met
~the symplectic maps form a group3!. Although symplectic
methods can be constructed by other techniques,3 it is the
splitting method which typically proves to be most useful
applications.4,5,6 The leapfrog method also respects the tim
reversal symmetry of the equations, and it preserves
within a small multiple of computer rounding error the a
gular momentum of a system of particles~in the absence of
periodic boundaries!. An extension of the leapfrog method
SHAKE, is available for holonomically constrainedN-body
simulations and is also symplectic and time-reversible.17

Symplectic methods can be shown to exactly conse
a nearby energy functionH̃'H.3 This in turn can be shown
to ensure long term approximate conservation of ene
in certain cases.18 It has also been shown that, followin
‘‘scattering’’ events, such as the close approach of one ri
body to another, symplectic integrators like Verlet return
very nearly the pre-encounter energy. This is a particula
nice feature since it is these events that cause trouble w
using standard methods. It is also easy to build extra pro
ties such as conservation of momentum and reversibility i
symplectic integrators. They show excellent long term sta
ity and fidelity to the properties of solutions of the contin
ous model; in some sense they report qualitatively corr
dynamics in complex situations which cannot be followed
high accuracy.3 Finally, since they are simple, fast, and e
plicit, we consider them excellent for large molecular d
namics simulations.

B. A single rigid body

As an example, we now consider the case of single a
ally symmetric rigid body spinning in a linear potential fie
and pinned at one point along its axis of symmetry. T
simplest physical interpretation is a heavy ‘‘Lagrange top
but we could also suppose it to model a molecular fragm
acted on by a charge distant enough to permit linearizatio
the potential. This simple model illustrates in a striking fas
ion the advantages of symplectic methods over nonsymp
tic schemes, even when the former are of lower class
order of accuracy.

We will assume that the components of the diagonaliz
inertial tensor in body coordinates areI 15I 251, with I 3

treated as a free parameter. We will also assume that
mass, the gravitational constant, and the distance from
center of mass to the fixed point are all one. The equation
motion can be developed in terms of a unit vectoru
5(u1 ,u2 ,u3) representing the orientation of the body rel
tive to a fixed reference configuration, and the angular m
menta p i , i 51,2,3, using a generalized Hamiltonia
formalism.12 The ui can be viewed as playing a similar ro
to quaternions. The energy of the system is given by
o. 15, 15 October 1997
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H5H~p,u!5
1

2 S p1
21p2

21
1

I 3
p3

2D1u3 ,

and the equations are Hamiltonian with respect to the ge
alized Poisson bracket12 defined for functionsF,G by

$F,G%:52p•~¹pF3¹pG!

2u•~¹pF3¹uG2¹pG3¹uF !.

This means that each of the components of the vector fie
constructed by computing the Poisson bracket of the ass
ated variable with the Hamiltonian function:

d

dt
u15$u1 ,H%5

u2p3

I 3
2u3p2 ,

and so on.
We will compare the numerical solution using a popu

fourth order Runge–Kutta method8 with the results obtained
from a symplectic splitting method.13,14

This splitting method is derived in a similar way to th
leapfrog method. We first breakH into four pieces:

H5H11H21H31H4 ,

H15
1

2
p1

2, H25
1

2
p2

2, H35
1

2I 3
p3

2, H45u3 .

Each of these terms is completely integrable. For exam
the solution evolves under the termH1 according to

d

dt
u150,

d

dt
p150,

d

dt
u25p1u3 ,

d

dt
p25p1p3 ,

d

dt
u352p1u2 ,

d

dt
p352p1p2 .

Both terms are thus integrated in terms of identical simu
neous planar rotations. Similar equations are obtained forH2

andH3 , while underH4 , only p evolves, and according to

d

dt
p15u2 ,

d

dt
p252u1 ,

which is just straight line motion.
The flow map ofH is approximated within a time ste

by the concatenation of the flows on each of the four ter
This method is only first order, but it is symplectic.

As a numerical experiment, we solved the top using
popular explicit 4th order Runge–Kutta method. The mot
of the center of mass from typical initial conditions is pe
odic or quasiperiodic. We first choseI 351 ~spherical top!
and integrated the motion from various initial values. In F
1 we show two trajectories along with the associated va
tion in energy, forDt50.1. Note that there is a clear secul
~linear! drift in the energy with time. This qualitative behav
ior is observed regardless of time step, as long as i
J. Chem. Phys., Vol. 107, N
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sufficiently small, although the actual magnitude of the e
ergy variation does of course depend on step size. Moreo
this type of drift would be expected, essentially regardless
the integration strategy used, as long as it is not a symple
or reversible method.

The results of integrating instead with the symplec
scheme are shown in Fig. 2. The energy fluctuation

FIG. 1. Integrations performed with the fourth order Runge–Kutta meth
(Dt50.1): ~a! u is plotted at each time step for a quasiperiodic orbit of t
spherical top, started fromu(0)5(0,1,0), p(0)5(0,0,21); ~b! a periodic
solution fromu(0)5(0,0,1), p(0)5(0,1,0); ~c! energy error for~a!; ~d!
energy error for~b!.

FIG. 2. The top solved using the first order symplectic method (Dt50.1),
and initial conditions as in Fig. 1:~a! quasiperiodic solution;~b! periodic
solution; ~c! energy error for~a!; ~d! energy error for~b!.
o. 15, 15 October 1997
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5843Dullweber, Leimkuhler, and McLachlan: Rigid body molecular dynamics
greater, but there is no evident drift. The large difference
magnitude of the energy error is the result of the higher or
of accuracy of the Runge–Kutta method~we are using the
same step size ofDt50.1!; it could be eliminated by using a
higher-order symplectic method instead of the simple sp
ting scheme.

We now make the numerical problem slightly more di
ficult by considering a ‘‘skinny top’’ (I 350.1) with the same
initial data and step size. Again, we first attempted to use
Runge–Kutta method. The periodic orbit was again correc
computed, with similar energy error as for the spherical to
however, the quasiperiodic trajectory is now complete
wrong @Fig. 3~a!#: the top spirals in toward the upright equ

FIG. 4. The symplectic method applied to the skinny top (Dt50.1), initial
conditions as in Fig. 1:~a! quasiperiodic solution;~b! periodic solution;~c!
energy error for~a!; ~d! energy error for~b!.

FIG. 3. The Runge–Kutta method (Dt50.1) on theskinny top, initial con-
ditions as in Fig. 1:~a! quasiperiodic orbit, the successive points rapid
decay toward the upright position!~b! periodic solution;~c! energy error for
~a!; ~d! energy error for~b!.
J. Chem. Phys., Vol. 107, N
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librium position, which has apparently become an asympt
cally stable~i.e., dissipative! fixed point of the discrete map
Note that there is no such artificial behavior present in
symplectic solution~Fig. 4!.

Since the variablesui in the description of the top play a
similar role to quaternions, it might be argued that the pro
lem with the Runge–Kutta top simulation is that the leng
R5Au1

21u2
21u3

2 of u is decaying with time~Fig. 5!. Would
normalizing this vector at each time step improve the resu
This normalization does lead to a marked change in
simulation results, but not for the better! The top now grad
ally evolves towards the ‘‘hanging down’’ position~Fig. 6!.
In Fig. 6~b!, we also see that the energy error is now su
stantially worse.

Similarly poor results were obtained when we resca
the angular momentap in order to preserve the energy
each step.

If we hold the time interval fixed and decrease the s
size, we will of course eventually obtain correct results fro
the Runge–Kutta method, but the appearance of such a
tificial structure in an otherwiseapparently stable numerica
computationis very disturbing. Moreover, we note that th
energy @Fig. 3~c!# is reasonably well preserved~to within
10%!, so it would not be immediately obvious from exam
nation of the energy that the results were entirely incorre
To highlight this observation, we performed the same cal

FIG. 5. The length,R5(u1
21u2

21u3
2)1/2, of the unit vector associated with

the top along the solution of Fig. 3~a!.

FIG. 6. ~a! With normalization (R[1), the skinny top now converges to th
‘‘hanging down’’ configuration;~b! energy for the normalized Runge–Kutt
method. Parameters and initial data are as in Fig. 3.
o. 15, 15 October 1997
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5844 Dullweber, Leimkuhler, and McLachlan: Rigid body molecular dynamics
lation, increasingp~0! by a factor of five and decreasing th
step size by a corresponding factor. The resulting trajec
and energy error are shown in Fig. 7. Despite the tota
incorrect dynamics, the energy is conserved to wit
0.0004! The corresponding solution using the symplec
method is still well-behaved and is, in fact, a good appro
mation to the correct dynamics~Fig. 8!.

This example demonstrates some of the reasons why
are interested in symplectic methods. We have seen th
popular standard method can introduce artificial dynam
behavior in the simulation of simple rigid body problems,
time steps for which a lower-order symplectic splittin
method is well-behaved. In the next section, we will descr
the extension of the splitting method which is needed
treating systems of rigid bodies.

III. THE SPLITTING METHOD FOR RIGID BODY
SYSTEMS

We consider systems of~presumably a large number o!
rigid bodies moving and rotating in three dimensions, w
conservative forces acting on and between them. As in s
dard~e.g., quarternion! models, the orientation of each bod
is specified by the rotation which it has undergone from
fixed reference configuration. But now there are two n
features:~i! we represent this rotation by a 333 matrix Q;
~ii ! we add a constraint that this matrix actually be a rotati

FIG. 7. The Runge–Kutta trajectory of the skinny top fromu5(0,1,0), p
5(0,0,25), Dt50.02.

FIG. 8. The symplectic trajectory of the skinny top fromu5(0,1,0), p
5(0,0,25), Dt50.02.
J. Chem. Phys., Vol. 107, N
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namelyQTQ51. Then the system may be conveniently d
scribed, and treated, using the methods of constrai
Hamiltonian dynamics. These methods make it easy to
rive not only the equations of motion for complex systems12

but also good geometric integrators for them.15,17,19,20

We denote the total mass of thei th rigid body bymi , the
position of its center of mass byqi , linear momentum bypi ,
orientation by Qi , and angular momentum in the bod
frame, stored in a vector, bypi . Here qi , pi , and pi are
vectors inR3, andQi is a 333 orthogonal matrix.19,20

The Hamiltonian for the total system is the total energ
given by the sum of the translational kinetic energy of ea
body, Ti

trans(pi), the rotational kinetic energy of each bod
Ti

rot(pi), and the potential energyV(q,Q), which we take to
depend on the positions and orientations of the bodies o
and not on their momenta. That is,

T~p,p!5(
i

~Ti
rot~pi !1Ti

trans~pi !!,

~1!

H~p,p,q,Q!5T~p,p!1V~q,Q!,

whereTi
trans(pi)5S i upi u2/2mi .

We would now like to employ a leapfrog-like splittin
approach as in Sec. II.A, but there are several subtle
First, the solution of the free rigid body, due toTi

rot(pi), is
expensive to compute. However, it can be approximated
ficiently using a splitting method due to McLachlan14 and
Reich.13 To retain the nice properties of Verlet, the approx
mation must be time-reversible and symplectic. This give
splitting method which is symplectic overall, time-reversib
preserves total linear and angular momentum, and uses
one force evaluation and one rotation of each rigid body
time step.

Another difficulty is that the constraintsQi
TQi51 must

be applied to the potential term. The equations of motion
this term are:15

d

dt
qi50,

d

dt
pi52

]V

]qi
,

~2!

d

dt
Qi50,

d

dt
pi52rotS Qi

T ]V

]Qj
D ,

where the (l ,m) entry of the matrix]V/]Qi is just the de-
rivative with respect to the corresponding element ofQi :

~]V/]Qi ! l ,m5]V/]Qi
lm ,

and the notation rot refers to a mapping of 333 matrices to
vectors constructed by first computing the skew symme
part (A2AT), then associating this to a vector inR3:

rot~A!:5skew21~A2AT!,
o. 15, 15 October 1997
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where

skew~v!:5S 0 v3 2v2

2v3 0 v1

v2 2v1 0
D . ~3!

Since qi and Qi are constant, these equations are ea
solved.

The constrained differential equations due to the~trans-
lational and rotational! kinetic energies are

d

dt
qi5pi /mi ,

d

dt
pi50,

~4!

d

dt
Qi5Qi skew~ I i

21pi !,

d

dt
pi5pi3~ I i

21pi !,

where the 333 matrix I i is the moment of inertia tensor o
the i th rigid body.

The motion of the centers of mass is

qi~ t !5qi~0!1Dtpi /mi , ~5!

and need not be considered further.~As the bodies are now
uncoupled, we temporarily drop the subscripti .!

In practice, at this point we change variables to the pr
cipal axis of each body, so we can assume thatI is diagonal.
Now we note that the rotational part of~4! is a sum of three
rigid bodies, with inertia tensorsI ( j ), j 51,2,3, each with a
single nonzero entryI j on the diagonal. The motion of a rigi
body with such a simple inertia tensorcanbe found in terms
of elementary functions. For example, inx it is

G x~ t !: HQ~ t !5Q0Rx~u!T

p~ t !5Rx~u!p0
, ~6!

where Rx(u) is a rotation about thex axis by an angleu
5tp1 /I 1 . In practice, we use rational orthogonal appro
mations to the rotations~see Appendix A!.

Notice that the constraintQTQ51, although used im-
plicitly in the derivation, never needs to be artificially e
forced. The matricesQi are always orthogonal because th
are only ever changed by multiplication by an element
orthogonal matrix.

The updatesG x ,G y ,G z constructed in this way are
symplectic and preserve the total angular momentum of e
body. We now compose them so as to approximate the fl
of the whole body. That is, we apply them sequentially wh
retaining the important time-reversible property:
J. Chem. Phys., Vol. 107, N
ly
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y

ch
w

G ~Dt !:5G x~ 1
2 Dt!G y~ 1

2 Dt!
3G z~Dt !G y~ 1

2 Dt!G x~ 1
2 Dt! . ~7!

The above equations~5,6,7! now define the approximate mo
tion due to the kinetic energy termT(p,p) in ~1!. Equations
~2! define the exact motion due to the potential energy te
V(q,Q). In a long simulation we merely apply these tw
updates alternately, thus using one force evaluation and
rigid body rotation per time step. There is some subtlety
ensuring that the overall order of the method is still two—s
Appendix B. An alternative to Eq.~7! that uses fewer rota
tions, and is much more accurate for nearly symmetric b
ies, is discussed in Appendix C.

IV. APPLICATION: TIP4P WATER

Due to the importance of water and aqueous solutio
we perform a molecular dynamics simulation of water a
first benchmark for our integration scheme. In our mod
rigid water monomers interact with a TIP4P intermolecu
potential function.21 The potential is based on the early ide
of Bernal and Fowler22 and comprises three point charg
together with an oxygen–oxygen Lennard-Jones term.
charges are located at the two hydrogen atoms and on
symmetry axes of the molecule. Details of our potential p
rameters can be found elsewhere.21 TIP4P has been widely
used in molecular dynamics and Monte Carlo calculations
liquid water, ice, and hydrated proteins. However, it can
be expected to reproduce the true potential accurately
cause its simple form ignores important nonadditive pol
ization effects in water.

We compare our symplectic method with a quaternio
extrapolation scheme based on a Gragg–Bulirsch–S
~GBS! integrator with adaptive step size.8 GBS is not sym-
plectic but known for high-accuracy solutions to ordina
differential equations with low computational effort. Th
adaptive step size is not crucial for our results. Both meth
have been implemented in the software packageORIENT,23

which can treat interacting molecules in a flexible and ac
rate way. Details of the implementation are given in Appe
dix A.

We have seen in the top example~Sec. III! that integrals
of motion ~total energy, overall angular and linear mome
tum, etc.! do not tell the whole story regarding physical r
alism. Nonetheless, to have any hope of dynamical fide
these quantities must be approximately conserved in a
lecular dynamics simulation. We measure absolute total
ergy values and the standard deviations rel(E) of the total
energy relative to its absolute mean value,

s rel~E!5
s~E!

Ē
, ~8!

with
o. 15, 15 October 1997
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s~E!5F 1

N21 S S (
j 51

N

Ej
2D 2NĒ2D G1/2

,

Ē5
1

N (
j 51

N

Ej .

Ej denotes the energy value at thej th evaluation, and all
relevant variables are evaluated every 100 fs. This shoul
long enough to avoid correlation effects.

In order to measure the computational costs, we ca
late also the number of force evaluations needed for a ce
accuracy. This number is the crucial parameter for efficie
of an integration scheme because the calculation of fo
typically dominates the costs. It should be easy to conv
this number into real computational time for any giv
implementation of the force calculation on a particular co
puter.

In our first example we solve Newton’s equations
motion for trajectories of 1 ns for a water trimer (H2O)3 at
fixed total energy~50 kJ/mol!. At this energy the water clus
ter is stable and we observe only a few isomerizations.
trajectories start from the cyclic global minimum24 with no
overall angular and linear momentum.

At the beginning we focus on the computational co
and plot the standard deviation of the total energys rel(E)
versus the number of force calculations in Fig. 9. The fig
shows how the new method outperforms quaterni
extrapolation in efficiency. A quaternion/GBS simulatio
needs up to ten times more force calculations in orde
achieve the same accuracy. For example, the new sympl
method needs about 1 million force evaluations for
s rel(E)51024, whereas quaternion/GBS requires 10 millio
evaluations for the same accuracy in this simulation.

Another important difference becomes clear if we lo
at the evolution of the total energy as a function of integ
tion time ~Figs. 10 and 11!. Quaternion/extrapolation pro
duces a smooth but growing total energy. Higher accur

FIG. 9. Relative standard deviation of the trimer energy which results f
a given number of force calculations for a 1 nstrajectory. The symplectic
method requires far fewer force calculations for the same accuracy c
pared to quaternion/extrapolation with adaptive step size~simulations a–h!.
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can reduce the effect but cannot eliminate the underly
drift. This can also be seen in the evolution of the stand
deviations rel(E) in Fig. 12. In contrast, if we look at the
same plot for the symplectic method we see an oscillat
but stable evolution of the total energy even at low accur
~Fig. 11!. Stability in our example is lost only for time step
which lead to accuracies below the lowest one shown in F
9 (Dt.4 fs).

We now turn to the modulus of the overall linear an
angular momenta~Figs. 13 and 14!,

-
FIG. 10. Evolution of total energy for the three lowest~top! and highest
~bottom! accuracies in Fig. 9 for a quaternion/extrapolation integrat
scheme. All curves are smooth but drift away from the initial energy.

FIG. 11. The figures shows the total energy for the biggest~top! and the
smallest~bottom! step size used in Fig. 9 with the symplectic integrati
scheme. We always observed stable oscillation around the starting ener
50 kJ/mol. The initial shift to higher energy in the top graph is an entro
effect due to starting at the global minimum and disappears for less di
guished starting points.
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Plin5U(
i 51

N

piU,
Pang5U(

i 51

N

r i3pi1pi8U, ~9!

whereN is the number of molecules,r i denotes the vecto
between the center of mass of moleculei and the center of
mass of the whole system,pi is the linear momentum o
moleculei , andpi8 the corresponding angular momentum
the same coordinate system.

The overall linear momentum is in principle conserv
by both methods. Therefore, it can serve to assess nume
rounding errors due to machine accuracy. These er
should increase with higher numbers of force evaluatio
Figure 13 illustrates this effect.

However, in contrast to our symplectic metho
quaternion/extrapolation does not conserve the overall an

FIG. 12. The plot of representative standard deviations shows again the
in energy for quaternion/extrapolation trajectories, whereas the sympl
methods leads to stable energy conservation.

FIG. 13. The initially vanishing overall linear momentum is in princip
conserved by both methods. Therefore, the above plot gives an estima
numerical rounding errors due to machine accuracy.
J. Chem. Phys., Vol. 107, N
cal
rs
s.

u-

lar momentum in principle. The resulting difference becom
obvious in Fig. 14. For quaternion/GBS the initially vanis
ing overall rotation is decreasing with increasing accura
Nonetheless, it remains several orders of magnitude hig
than for the symplectic method. The latter only suffers fro
accumulation of rounding error which grows with the num
ber of force calculations. However, overall rotation rema
negligible for the symplectic method.

We did not observe nonphysical effects in any of t
simulations. Both methods produced consistent results c
pared with a systematically different method: Monte Ca
sampling and normal mode analysis. We compared ensem
averages like caloric curves from microcanonical molecu
dynamics simulations with transformed Monte Carlo resu
for the canonical ensemble. We also reproduced intermole
lar normal mode frequencies with dipole autocorrelati
functions in low energy molecular dynamics runs.

Finally, we demonstrate that this comparison holds a
for bigger systems. We did some simulations for~H2O)10,
~H2O)20, and~H2O)30 with the same intermolecular potentia
and obtained very similar results. Figure 15 shows the p
formance for three different time steps (Dt51,2,4 fs) in the
symplectic integration and one representative quatern
GBS result for each of the model clusters. It suggests that
gap between the new method and nonsymplectic quatern
extrapolation increases with system size. Simulations at
ferent total energies did not show any significant differen
and underlined the above conclusions.

V. SUMMARY

We have presented a powerful method for rigid bo
molecular simulations of the type commonly used in chem
cal and physical studies. The symplectic splitting method
stable, and more reliable than standard quaternion integra
methods, since it mimics physical properties of the true fl
of the continuous time problem. Moreover, the integrator

rift
tic

of

FIG. 14. Evolution of the overall angular momentum during the integrati
The symplectic method conserves the initially vanishing angular momen
much more accurately. Notice that smaller step sizes in this method lea
slightly more overall rotation of the system.
o. 15, 15 October 1997
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5848 Dullweber, Leimkuhler, and McLachlan: Rigid body molecular dynamics
efficiently implemented in terms of a few planar rotations p
rigid body at each time step, and is comparable in terms
work per time step to the standard quaternionic integra
Numerical calculations demonstrate the superiority of
symplectic method to the standard approach.

While the new method is in some respects comparabl
SHAKE-based symplectic rigid body schemes,7,10 those
methods sacrifice something in terms of robustness~since
they require the solution of a nonlinear system using so
iterative solver! and in terms of computational complexity
However, the SHAKE-based methods readily generalize
systems of rigid bodiesconnected by constraints10 ~e.g.,
joints or rods!, whereas the splitting method discussed h
does not.
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APPENDIX A: IMPLEMENTATION

This appendix is intended to demonstrate how easily
symplectic method can be implemented in a molecular
namics program.

A molecule can be described by a center of mass p
tion vector q, an orientation matrixQ, and vectors for its
linear and angular momentum~p andp!. The elements ofQ
are the direction cosines between the global axes system
a local molecule-fixed frame. Positionsq and momentap of

FIG. 15. Computational efficiency of both methods for different model s
tems. For bigger systems the symplectic method~opaque symbols! performs
increasingly better than the quaternion/extrapolation scheme~filled sym-
bols!. Results for~H2O!10, ~H2O!20, and~H2O!30 comprise symplectic simu-
lations withDt51,2,4 fs~i.e., 1 000 000, 500 000, and 250 000 force calc
lations! and one representative quaternion/Gragg–Bulirsch–Stoer
~compare Fig. 9!.
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the translational degrees of freedom will be propagated
simple leapfrog scheme. It will maintain the symplecticity
the integration.

In the first step we need to calculate linear force vect
fn and torquestn at timetn[t01nDt for all molecules in the
system. Both are functions of all position vectorsq and ro-
tation matricesQ.

Having calculated the forces, we can start the integrat
itself and propagate the momenta of all molecules from ti
tn to tn11 :

pn11/25pn1 1
2 Dttn,

pn11/25pn1 1
2 Dtfn. ~A1!

Then we move the center of mass position a full time ste

qn115qn1Dtpn11/2m.

We now apply consecutive rotationsR1 to R5 to all an-
gular momenta and update all orientation matrices for a
time step fromtn to tn11 ,

R1 :5RxS 1

2
Dt

p1

I 1
D ; p5R1p ; Q5QR1

T ,

R2 :5RyS 1

2
Dt

p2

I 2
D ; p5R2p ; Q5QR2

T ,

R3 :5RzS Dt
p3

I 3
D ; p5R3p ; Q5QR3

T ,

R4 :5RyS 1

2
Dt

p2

I 2
D ; p5R4p ; Q5QR4

T ,

R5 :5RxS 1

2
Dt

p1

I 1
D ; p5R5p ; Q5QR5

T ,

whereI 1 , I 2 , I 3 are elements of the diagonal inertia tens
of a molecule andp1 , p2 , p3 are the corresponding com
ponents ofp in the principal axes system.Rx(f) denotes a
rotation around thex axis by an anglef, and Ri

T is the
transpose ofRi . A computationally efficient representatio
of Rx(f) is, for example,

Rx~f!5S 1 0 0

0 cosf 2sin f

0 sin f cosf
D

'S 1 0 0

0
12f2/4

11f2/4
2

f

11f2/4

0
f

11f2/4

12f2/4

11f2/4

D ,

and all other rotations follow straightforwardly.
After obtainingqn11 andQn11 for all molecules we can

now calculate the forcesfn11 and torquestn11 at time
t1Dt and propagate the momenta another half time step

-

n
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pn115pn11/21 1
2 Dtfn11

pn115pn11/21 1
2 Dttn11.

This is the end of one integration step. Since the forces
torques are not dependent on the momenta we do not ne
calculate the forces again, but can start directly with the fi
half time step for the momenta~Eq. A1!.

The method is implemented in our packageORIENT,23

which also incorporates the quaternion/GBS algorithm w
adaptive step size8 as an alternative.ORIENT is a program for
carrying out calculations of various kinds for an assembly
interacting molecules. It uses a site–site potential speci
by the user, including electrostatic, induction, repulsion, d
persion, and charge–transfer interactions if required.25 The
electrostatic interactions may be described by simple p
charges or by more elaborate descriptions involving dist
uted multipoles.25 Distributed polarizabilities may be used
required, and the site–site repulsion and dispersion
charge–transfer terms may be anisotropic. In the above
culations we did not use any potential cut-off or oth
changes to the intermolecular TIP4P potential.21

1. Computation of interbody forces

In the formulation of the equation of motion, we need
compute the derivatives of the potential with respect to c
ter of mass and rotational components. In this section
show that this procedure is straightforward for both site-
site and dipolar interactions.

a. Site –site potentials

In our application~Sec. V!, we suppose each rigid bod
is composed of a number of point masses that interact p
wise with the point masses in the other rigid bodies. They
not interact within one body, because their relative positio
are held fixed. Suppose the~symmetric! pair potential of two
point masses located atx andy is W(x,y), creating a force
f52¹xW(x,y) on the mass atx. To keep the equations clea
we will write them out for the case of a single partic
mounted on each body, atxi in the reference configuratio
for body i . After time t it has reached the locationji(t):
5Qi(t)xi1qi(t). The total potential energy is then

V~q,Q!5(
j . i

W~Qi~ t !xi1qi~ t !,Qj~ t !xj1qj~ t !!, ~A2!

giving derivatives

]V

qi
52(

j . i
f~ji ,jj !,

]V

Qi
52(

j . i
f~ji ,jj !xi

T , ~A3!

and the differential equations~2! due to the potential are
J. Chem. Phys., Vol. 107, N
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dt
qi50,

d

dt
pi5(

j . i
f~ji ,jj !,

~A4!
d

dt
Qi50,

d

dt
pi5(

j . i
rot~Qi

Tf~ji ,jj !xi
T!5(

j . i
~Qi

Tf~ji ,jj !!3xi .

We use these equations together withf(ji ,jj ) supplied by
standardORIENT routines for the interparticle forces.

b. Dipolar soft spheres

Dipolar soft sphere models can also be handled. We s
pose an interbody potential between particlesi and j of the
form7,26,27

V5V~qi ,Qi ,qj ,Qj !5Vs.r.1Vd ,

whereVs.r. consists of short range interactions andVd repre-
sents the dipole–dipole terms:

Vs.r.54eS s

r i j
D 12

,

Vd5
1

r i j
3 mi•mj2

3

r i j
5 ~mi•r i j !~mj•r i j !,

where

r i j 5qi2qj , r i j 5ir i j i ,

andmi denotes the orientation of thei th dipole vector, easily
expressed in terms of the rotation matrixQi and some initial
fixed reference orientationm̄i :

mi~ t !5Qim̄i .

Evaluation of the derivatives of the various terms with r
spect to the center of mass positions (qi) is straightforward.
The derivatives of the dipolar potential with respect to t
components of the rotation matrix are also straightforward
we expressVd in terms of the individual components ofQi ,
m̄i :

Qi5~Qi
kl!,1<k,l<3, m̄i5~m̄ i

1,m̄ i
2,m̄ i

3!.

For example,

mi•mj5(
k

(
l

(
m

Qi
lkQj

lmm i
km j

m ,

with derivatives

]

]Qi
lk ~mi•mj !5(

m
Qj

lmm i
km j

m .

Similar expressions hold for the other terms and allow us
work out the full derivatives. This approach can be extend
to treat other multipole approximations25 as well.
o. 15, 15 October 1997
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APPENDIX B: SECOND ORDER ACCURACY OF THE
SPLITTING METHOD

If we denote the time-Dt solution of HamiltonianH by
expH(Dt), then the Verlet or leapfrog method of Sec. IIA ca
be written

expT~ 1
2 Dt!expV~Dt !expT~ 1

2 Dt! .

When we take a large number,n, of time steps in a row, the
total update can be written

expT~ 1
2 Dt!~expV~Dt !expT~Dt !!n expT~2 1

2 Dt! ,

because of the ‘‘flow property’’ expT(a)expT(b)5expT(a
1b). Essentially one need only alternate the updates dueV
andT.

In the rigid body splitting method, we do not use th
exact solution expT , but an approximation to it, sayfT . This
approximation will not have the flow property. However, f
the method

expV~ 1
2 Dt!fT~Dt !expV~ 1

2 Dt! , ~B1!

n steps take the form

expV~ 1
2 Dt!~fT~Dt !expV~Dt !!n expV~2 1

2 Dt! ,

so that we can still alternate the two updates, as before~If
both pieces of the Hamiltonian had been approximated,
result would no longer hold.! The basic method~B1! is sec-
ond order because it has the time-symmetry prope
f (Dt) f (2Dt)51.3

APPENDIX C: SPECIAL RIGID BODY UPDATES

Although the solution of the rigid body system wit
Hamiltonian T(p,Q)5( i 51

3 p i
2/2I i and constraintQTQ51

in general involves elliptic functions,28 there is one common
special case which does not. This is the symmetric rigid b
with ~say! I 15I 2 ~in principal coordinates!, e.g., NH3. Then
it is well-known that~i! the momentum evolves by a plan
rotation, and~ii ! the orientation evolves by a combination
this rotation and a secondary rotation about the axis defi
by the angular momentum. The solution in this case is

p~ t !5Rzp0 ,

Q~ t !5Q0Rz
TRp0

T , ~B2!

where Rz is rotation about thez axis by angle t(1/I 3

21/I 2), and Rp0
is rotation about anglep0 by angle

tup0u/I 2 . This rotation can be expressed in terms of the m
trix exponential asetskew(p0) or evaluated in terms of trigo
nometric functions.

If the body is truly symmetric then it may not be nece
sary to remember its rotation about its axis of symmetry, a
the factorRz

T in the Q update@Eq. ~B2!# can be omitted.
This update not only replaces the five rotations neede

Eq. ~7! by one~slightly more complicated! rotation, it is also
exact. Thus in situations where error committed by Eq.~7!
might be large, i.e., when a relatively large proportion of t
J. Chem. Phys., Vol. 107, N
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total energy of the system is in the rotational kinetic ene
of the bodies, this update will lead to a much more accur
update overall.

In one test with two rigid bodies and initially half th
energy as rotational kinetic energy, this method was foun
be twice as fast in the rigid body updates and ten times
accurate overall.

Furthermore, we can apply this idea togeneral rigid
bodies as well. We partition the Hamiltonian as

2T5S p1
2

I 2
1

p2
2

I 2
1

p3
2

I 3
D 1p1

2S 1

I 1
2

1

I 2
D .

The first term corresponds to a symmetric rigid body, and
second evolves by a planar rotation as in Eq.~6!. We can
compose these into an overall rigid body update using th
rotations, instead of the five in Eq.~7!. Because the symmet
ric update is more complicated, we found no change in sp
over Eq.~7!, but for nearly symmetric bodies (I 1'I 2), there
were substantial improvements in accuracy.

Unfortunately, water is not symmetric enough! Its m
ments of inertia are proportional to 2.88, 1.88, and 1.00,
in practice we found only modest improvements using t
modified scheme in the present application.
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