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We present a family of symplectic splitting methods especially tailored to solve numerically the
time-dependent Schrodinger equation. When discretized in time, this equation can be recast in the
form of a classical Hamiltonian system with a Hamiltonian function corresponding to a generalized
high-dimensional separable harmonic oscillator. The structure of the system allows us to build
highly efficient symplectic integrators at any order. The new methods are accurate, easy to
implement, and very stable in comparison with other standard symplectic integrators. © 2006
American Institute of Physics. [DOL: 10.1063/1.2203609]

I. INTRODUCTION

For understanding the basic atomic and molecular phe-
nomena, the quantum mechanical treatment of molecular
processes plays an essential role. This requires, in general, to
solve the time-dependent Schrodinger equation (A=1),

i%zﬁ(x,t):(— iV2+V(x)>w(x,t), (1)

#(x,0)=Jy(x), where ¢: RYX R — C is the wave function as-
sociated with the system. We can write (1) as

= (T(P) + VO)W, 2)

with T(P)=P?/(2u), and the operators X and P are defined
by their actions on (x,t) as

Xip(x,t) = xih(x,t), Pip(x,t) =—iV h(x,1). (3)

In most cases, the Schrodinger equation has to be solved
numerically. For simplicity, let us consider the one-
dimensional problem and suppose that it is defined in a given
interval x e [xg,xy] ((xg,)=ixy,1)=0 or it has periodic
boundary conditions). A common procedure consists in tak-
ing first a discrete spatial representation of the wave function
lx,1): the interval is split in N parts of length Ax=(xy
—xo)/N and the vector u=(u,...,uy_;)" € CV is formed,
with u,=i(x,,7) and x,=xo+nAx, n=0,1, ... ,N-1. The par-
tial differential equation (1) is then replaced by the
N-dimensional linear ordinary differential equation (ODE)
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iditu(t) =Hu(r), u(0)=u, e C", (4)

where H € R¥*N represents the (in general, Hermitian) ma-
trix associated with the Hamiltonian.! The formal solution of
Eq. (4) is given by u(r)=e"™u,, but to exponentiate this N
X N complex and full matrix can be prohibitively expensive
for large values of N, so in practice other methods are pre-
ferred.

In general H=T+V, where V is a diagonal matrix asso-
ciated with the potential energy V and T is a full matrix
related to the kinetic energy 7. Their action on the wave
function vector is obtained as follows. Since the potential
operator is local in this representation, (Vu),=V(x,)u, and
thus the product Vu requires to compute N complex multi-
plications. Since periodic boundary conditions are assumed,
for the kinetic energy one has Tu=7"'D;Fu, where F and
F~! correspond to the forward and backward discrete Fourier
transforms and Dy is local in the momentum representation
(i.e., it is a diagonal matrix). The transformation F from the
discrete coordinate representation to the discrete momentum
representation (and back) is done via the fast Fourier trans-
form (FFT) algorithm, requiring O(N log N) operations.

Since the matrix-vector product Hu can be computed
efficiently using FFTs, Fourier methods turn into very popu-
lar algorithms to approximate the solution e""HuO.F3 Thus
we can enumerate, in particular, the Chebyshev scheme, the
short iterative Lanczos propagator, the second order differ-
encing scheme, methods based on Krylov subspace tech-
niques, and splitting schemes. All these methods obviously
have their merits and demerits. Their performances depend
on each particular problem and even the computer where
they are implemented, the accuracy desired, how frequently
the output is required, the storage requirements, etc. An ex-
tensive analysis can be found in Refs. 1-9 These families of

© 2006 American Institute of Physics

Downloaded 22 Jun 2006 to 131.111.8.99. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.2203609
http://dx.doi.org/10.1063/1.2203609
http://dx.doi.org/10.1063/1.2203609

234105-2 Blanes, Casas, and Murua

methods have been thoroughly studied indeed to build effi-
cient algorithms for the numerical solution of the
Schrodinger equation.

Most Fourier methods are based on approximating the
solution u(¢)=e ™y, by repeated products Hu. A notewor-
thy exception is formed by unitary split operator (USO) al-
gorithms, which instead take advantage of the usual separa-
bility H=T+V. Some of the most popular USO methods are
the first order Lie-Trotter and the second order leapfrog
composition,1

eM=¢Te™ + O(P) (5)

zeT/2VeTTeT/2V + 0(7_3), (6)

for a time step 7=—iAt. Since the last exponential in (6) can
be evaluated together with the first one in the next step, both
schemes require the same computational cost. Here, clearly,
(e™u);=e™"y,, and for the kinetic part one has e™u
=F'e™rFu. Observe that e and e™ are both unitary
transformations, hence the name of USO for this class of
schemes.

There are other ways, however, of using splitting tech-
niques in this context. For instance, in the so-called symplec-
tic split operator (SSO) schemes the evolution operator is
approximated by a composition of symplectic matrices.”'*!!
This is, in fact, the approach followed here: we propose new
families of SSO methods especially adapted to the numerical
integration of the Schrodinger equation. They are based on
the idea of processing and are constructed with two different
goals in mind: to attain maximal stability and maximal accu-
racy. It turns out that by adding more stages than strictly
necessary for a given order, it is possible to increase the
order of the methods and design new algorithms that outper-
form other SSO schemes previously available by several or-
ders of magnitude with the same computational cost. What is
more striking is that the extra stages can also be used to
enlarge the stability interval and the accuracy of processed
second order methods so that the resulting schemes are
highly efficient for all practical purposes. Although the new
integrators involve a large number of stages, their implemen-
tation is not difficult and several practical algorithms are pre-
sented.

The structure of the paper is the following. In Sec. II we
briefly review different families of SSO methods, with par-
ticular emphasis on integrators using the processing tech-
nique. We also present new families of schemes especially
well adapted to the numerical integration of Eq. (4) and dis-
cuss their practical implementation. In Sec. III we illustrate
the main features of the new methods on some relevant nu-
merical examples. Finally, Sec. IV contains a detailed theo-
retical analysis which justifies the particular choice of meth-
ods in Sec. II and their behavior in practice.

J. Chem. Phys. 124, 234105 (2006)

Il. COMPOSITION INTEGRATORS BASED
ON SYMPLECTIC SPLIT OPERATOR BASIC SCHEMES

A. Basic symplectic split operators

Usually H in (4) is a real symmetric matrix, so that
complex vectors can be avoided by writing u=q+ip, with
q.p € RY. Equation (4) is then equivalent to”

4 H Ca H 7
,4=Hp. - p=-Hq, (7
where Hq and Hp require both a real-complex FFT and its
inverse. In addition, system (7) can be seen as the classical
evolution equations corresponding to the Hamiltonian func-
tion H=%pTHp+%qTHq. Clearly, one may write

nH A H AT S

with the 2N X 2N matrices A and B given by

-l

The evolution operator corresponding to (8) is

cos(tH) sin(fH) )

— sin(rH) cos(tH) ©

0®=<
which is an orthogonal and symplectic 2N X 2N matrix. As
before, its evaluation is computationally very expensive, and
thus some approximation is required. The usual procedure is
to split the whole time interval into M steps of length
h=t/M, so that O(t)=[O(h)]¥, and then approximate O(h)
acting on the initial condition at each step.

In this respect, observe that

&:<1 H> eB:<I 0)
0 1) -H I

and the costs of evaluating the actions of e* and e® on
z=(q,p)" are essentially the cost of computing the products
Hp and Hgq, respectively. It makes sense, then, to use split-
ting operator methods similar to (5) and (6), which in this
setting read as

O, (h) = e"e®, (10)

02(/’1) - ehB/ZehAehB/Z. (1 1)

Here and in the sequel O, () denotes an approximation of
order n in the time step h to the exact operator (9), i.e.,
0,(h)=0(h)+O(h™"). As e* and ¢® are symplectic matri-
ces, these schemes are referred to as SSO methods. Unitarity
is no longer preserved by these schemes, but in any case
neither the average error in energy nor the norm of the solu-
tion increases with time, since, as shown in Ref. 12, they are
conjugate to unitary methods. The mechanism that takes
place here is analogous to the propagation of the error in
energy for symplectic integrators in classical mechanics.

On the other hand, the splitting (8) is general, in the
sense that it can always be applied, even when the Hamil-
tonian cannot be split into two simple parts, as is the case for
USO methods.
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TABLE 1. Two algorithms for the numerical integration of (8) using M steps
of length h=¢/M with the symmetric second order method (11) (i) by storing
three vectors per step (algorithm 1) and (ii) by storing two vectors with one
more exponential output, i.e., applying Eq. (12) (algorithm 2).

Algorithm 1 Algorithm 2

q0=9(0) qp=9q(0)
Po=p(0) _ h
sp=Hq, Po=p(0)+7Hq,
do, n=1, M do, n=1, M
_ Eﬁ Pu=Pn-1 _thn—l
pn—l/2_pn—l_2 P q,=q,_,+hHp,
q9,=q,-1+ thn— 172 It (OUtPUt) then
dp=Hgq, %ol 1,) =0,

h h
p"=p"7|/2_58p pou/(tn)zpn_qun
If (output) then endif

Loud1,) =1, enddo
pout([n) =Px
endif
enddo

Schemes (10) and (11) (of orders 1 and 2, respectively)
both require four real FFTs, and thus their computational cost
is similar to the USO methods (5) and (6). A possible imple-
mentation of the second order scheme requiring only one
evaluation of e® and e® per step is presented as algorithm 1
in Table L with (q(tn) ’p(tn)) = (qout(tn)’pout(tn))~ This proce-
dure needs only two products per step (Hp,_;,»,Hq,) and
storing three vectors (Sp,q,_1>Pu_1)-

If output is not frequently required, one may consider
another algorithm which only needs storing two vectors.
Notice that from (10) and (11) it is clear that O,
=ehB/2Ole‘hB/2, and so, after M steps,

[02]M — ehB/2[01]Me—hB/2’ (12)

which results in algorithm 2 of Table I.

B. A brief review of composition methods

Schemes (10) and (11) have good stability properties and
minimal storage requirements. In addition, they are very easy
to implement and are relatively fast to compute. However,
their low order of approximation makes them useless when
highly accurate results are desired.

One of the simplest techniques to build symplectic meth-
ods of any desired order is by composing a basic lower order
integrator with different time steps.B_15 Thus, given a sym-
metric integrator Q,,, of order 2n, the composition

02n+2(h) = OZn(alh)OZn(aOh)OZH(alh)a (13)

where a;=1/(2-2"@"1) @,=1-2a,, is a symmetric inte-
grator of order 2n+2 for (8). The iteration can be started, for
example, with O, as given in (11). This recursive procedure
has, however, two main drawbacks: the large number of op-
erators involved (making the algorithm expensive) and the
presence of large positive and negative coefficients (a;>1
and ay<-1 for all n), generating substantial error terms.
Other algorithms are obtained by considering the follow-
ing composition [which includes (13) as a particular case]:

J. Chem. Phys. 124, 234105 (2006)

On(h) = Oz(ﬁkh) Tt Oz(ﬁzh)oz(ﬁlh)~ (14)

The structure of the nonlinear equations to be satisfied by the
B; coefficients for attaining order n (the so-called order con-
ditions) is more intricate, but the resulting methods are gen-
erally more efficient. Schemes up to order 10 can be found in
the literature (see Refs. 16—18 and references therein).

Even more general methods, which also include the
former compositions as particular cases for system (8), have
the form

On(h) — ehkaehakA .. ehblBehalA. (15)

Now the number of exponentials k (and therefore the number
of coefficients {a;,b;}*,) has to be sufficiently large to solve
the corresponding order conditions. In practice, only meth-
ods up to order 6 have been constructed, '®!71? Nevertheless,
when A and/or B have some special structure it is possible to
design more efficient schemes.'”"""! This is the case, in par-
ticular, for the problem defined by (8). If we denote by
[A,B]=AB-BA (the commutator of A and B), then it is
easy to verify that [A,[A,[A,B]]]=[B,[B,[B,A]]]=0. As a
consequence, the number of order conditions for the coeffi-
cients a; and b; reduces drastically.

Several methods with different orders have been con-
structed along these lines indeed.”'"** Of particular rel-
evance are the schemes presented in Ref. 7 since only k=n
exponentials ¢"%* and ¢"*® are used to achieve order n for
n=4, 6, 8, 10, and 12. By contrast, in a general composition
(15) the minimum number k of exponentials ¢"*A and "B
(or stages) required to attain order n=8, 10 is k=15, 31,
respectively.m’23 Actually, in Ref. 7 the authors also consider
the case k>n as well as the processing technique in order to
obtain new fourth order schemes (n=4) with better stability
properties.

C. New schemes based on processing

It is, in fact, possible to design extremely efficient inte-
grators for the general separable linear differential equation

u=Myv, v=Nu, (16)

with ue RY, ve R” and M € RV*¥ N e RM*N satisfying
certain assumptions.12 Observe that the Schrodinger equation
in form (8) is a particular example of (16) with u=q, v=p,
and M=-N=H. This class of methods are based on the idea
of processing.

In principle, the processing technique allows us to re-
duce significantly the number of stages in a method of a
given order. Here, however, we take a number larger than
strictly necessary to solve all the order conditions to improve
the efficiency and stability of the resulting schemes. In any
case, their practical implementation can be carried out by
slightly modifying algorithm 2 of Table I.

In the following we summarize the main features of the
schemes and refer the reader to Sec. IV and to Ref. 12 for
technical details and a comprehensive theoretical study.

The processing technique is well illustrated by the sym-
metric composition O,(h4) of (11), which, as we noticed, can
be written as (12) after M steps. Thus, with a simple correc-
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tion to the first order method O,(%) one is able to increase
the order while preserving all its properties, and this is vir-
tually cost-free.

A processed method has the general structure

S(h) =P(h)K(h)P~'(h). (17)

Here K is called the kernel and P~!' and P are the pre- and
postprocessor (also called corrector), respectively. We say
that K has an effective order n if there exists P such that
S(h)=0(h)+O(h™?).

One may replace ¢"®2 and ¢ in (12) by more general
operators P and P~!, but no higher order methods are ob-
tained. This can be accomplished only by replacing O,(h)
with more general kernels.”**

Here we take as kernel K a composition of type (15).
Then methods of order n=2k can, in principle, be con-
structed, as shown in Ref. 12. In fact, many different solu-
tions for the coefficients @; and b; exist, although all of them
lead to processed methods with exactly the same perfor-
mance. With this fact in mind, for simplicity we consider two
different types of kernel:

hB/2

(i)  the (2m)-stage symmetric composition

K(h) = &AM 1B . .. ohbuB a1 Aghb,B . .. JibiB ghaiA (18)

determined by the 2m coefficients a; and b;, where i
=1,...,m, and
(ii))  the (2m—1)-stage symmetric composition

K(h) — ehalAehblB . eham_lAehmeeham_lA e ehblBehalA (19)
defined by the 2m—1 coefficients a;, where i=1,...,m—1,
and b;, where i=1,...,m. Notice that A and B play similar
roles, so that they can be interchanged. Also, the last expo-
nential ¢"14 is not counted in the total number of stages
because it can be concatenated with the first exponential in
the next step [this is sometimes called the first-same-as-last
(FSAL) property”].

Usually, the efficiency of an integrator is characterized
by its accuracy (in terms of some measure of the error terms)
normalized by its computational cost (for instance, the num-
ber of stages). As is well known, by suitably increasing the
number of stages it is possible to achieve a higher efficiency
without raising the order.'>*” In other words, the extra cost
can be used to reduce the size of the error terms. This is
especially true for the problem at hand: it turns out that the
improvement in efficiency takes place even when a really
large number of stages is considered. Here we propose ker-
nels with up to 2m—1=19, 2m=32, and 2m=38 stages (other
options are also possible), and for each kernel we select the
corresponding coefficients, a; and b;, according to two dif-
ferent criteria. The first set of solutions is taken so as to
provide methods of order n=10, 16, and 20. The second set
of coefficients bring highly accurate second order methods
with an enlarged domain of stability. The resulting processed
integrators are denoted by P;n, where k is the number of
stages and n is the order. Thus, P332 is a second order
method with a kernel formed by 38 stages.

J. Chem. Phys. 124, 234105 (2006)

TABLE II. Algorithms for the numerical integration of (8) using M steps of
length h=1/M by a processed method with kernel (15) and pre- and post-
processors given by (20). We use Horner’s rule to optimize the evaluation of
the polynomial function of H.

Algorithm 3 Function Horner

qo=Horner(q(0),d) Function Horner (v,z)

po=Horner(p(0),¢) W=2z,V
do, n=1, M do, i=1,s
do, i=1, k w=z,_v+(hH)’w
q;=9q;_+a;hHp; enddo
p;=p;-1—b;hHg; V=w
enddo end
Go=4dx
Po=Px«

If (output) then
Q,u1,)=Horner (qq,¢)
Pou(t,) =Horner (p,.d)
endif

enddo

Once a kernel is built, we have to find appropriate pre-
and postprocessors. The kernel being symmetric, it can be
shown that they may be taken as block diagonal matrices,
i.e.,

PzCNo 0 ) F%%mm) 0 )
0 Pz(l’l) 0 Pl(h)

where P2=P]1. In practice and for simplicity we may choose
P, and P, as polynomial functions of H,

P,(h) = 2, d(hH)*, (20)

Pi(h) = X c;(hH)Y,
i=0 i=0

for a given s. In this way the constraint P2=P]1 is relaxed to
P,=P;'+O(h**?). As a consequence, symplecticity is only
preserved up to order 2s, but the effect on the error is not
propagated along the evolution.”®

Let us define the polynomial scalar function p,(z)
=37 ,ciz*. The coefficients ¢=(cy, ...,c,) are chosen to sat-
isfy some order conditions (see Sec. IV), whereas the coef-
ficients d; can be obtained by requiring that

pa(2) =2 d = + O(h**?), (21)
i=0

p1(2)

In Sec. IV we list the ¢; and d; coefficients corresponding to
the method P3g2.

For an efficient implementation of the resulting pro-
cessed methods it is convenient to optimize the computation
of the action of P, and P, on both q and p. This can be done,
for instance, with Horner’s rule (to minimize the number of
vector-matrix products or FFTs). Given v € RV (correspond-
ing to q or p) and z=(zy,2;, ... ,Z,) (corresponding to ¢ or d),
the algorithm is given in Table II as the function Horner.

Finally, the whole processed method can be used in prac-
tice as algorithm 3 in Table II. Observe that the differences
with algorithm 2 of Table I are minimal and that the non-
processed integrators of type (15) are included in this imple-
mentation by replacing the function Horner by the identity
map.
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The processed methods introduced here involve s prod-
ucts Hq and Hp for the preprocessor to start the algorithm,
then k=2m—1 or k=2m products at each step for the kernel
and finally s more products in the postprocessor for getting
output. As mentioned, the average relative error in energy
remains, in general, constant and the error in phase space (in
q,p) grows only linearly with time, i.e., £~ ar. However, if
we approximate the pre- and postprocessor by a polynomial
function as in (20), another source of error is introduced in
the procedure. It turns out, however, that this second contri-
bution to the error is of a local character and does not grow
with time,”® £~ B(s), where B(s)—0 for s— o if one stays
in the region of convergence. In this way the total error is
given by

EP ~ at+ B(s).

Since the value of a depends typically on the problem, the
optimal choice of s in (20), namely, the minimum value of s
such that B(s) does not dominate %), depends both on the
problem and the time interval of integration z.

On the other hand, if output is frequently required the
efficiency of the algorithms can be reduced (even when
s" <s products are used for the postprocessor). In this case,
though, P(h) can be approximated by a linear combination of
the internal stages of the kernel."?

lll. NUMERICAL EXAMPLES

To illustrate the performance of the new integrators pro-
posed here we examine a simple problem which is frequently
used as a test bench for numerical methods. Let us consider
the one-dimensional Schrodinger equation (1) with the
Morse potential V(x)=D(1-e"*)? as a good approximation
for the study of the vibration states of a diatomic molecule.”’
The parameter D corresponds to the dissociation energy and
a to the length parameter. The unperturbed system has 24
bounded states whose energy is given by

ez rea) 5
E,=\n+—=-|wy—|(n+-| —.
2 2/) 4D
Here wo=a\2D/ u, and the ground state is described by the
wave function

@(x) = o exp(- (y— 1/2)ax)exp(— ye™ ),

where y=2D/w, and o is a normalizing constant. We
take the following parameter values: u=1745au., D
=0.2251 a.u., and @=1.1741 a.u., corresponding to the HF
molecule. As an initial condition we take the Gaussian wave
function

(x,0) = p exp(— Blx - x,,)%),

where 8= \«"m/ 2, k=2Dda?, p is a normalizing constant, and
x,=—1/10.

We assume that the system is defined in the interval x
€ [-0.8,4.32], which is split into N=64, 128 parts of length
Ax=0.08, 0.04, and consider the finite dimensional linear
equation (8) with periodic boundary conditions. In all cases
we integrate along the interval 7 € [0,207], with T=2/w,.

The following methods are compared:

J. Chem. Phys. 124, 234105 (2006)

|
N

LOG(ERROR NORM)
5 L

GM1212

|
o]

44 46 48 5 52 54 56
LOG(N. FFTs)

FIG. 1. Error in the wave function vs the number of FFT calls in logarithmic
scale for the methods O,, YS34, M8, GM,4, GM¢4, GMg8, and GM,12.

* The second order method O, of (11).

e The well known three-stage fourth order method
(YS;4) obtained from the recursion (13), and the 17-
stage eighth order method (M;8) of type (14) whose
coefficients can be found in Refs. 17, 30, and 31 (a very
similar performance is attained with the coefficients
given in Refs. 16 and 23). Both methods take O, as a
basic scheme.

» The k-stage nth order methods (GM;n) for k=n=4, 8,
12, (k=6, and n=4) given in Ref. 7.

* The following k-stage processed methods™ of order n,
Pkn, built in this work: P1910, P3216, P382O’ P192, P322,
and P382

As a measure of the error we compare the wave func-
tions at the final time obtained by the integrators with the
exact _solution by computing the norm |jug—u,|
= \/Ei(uex—uap)f, where u,, corresponds to the exact solution
(computed numerically with high accuracy) and u,, is the
numerical approximation obtained by each method. The cost
is measured by the number of FFTs for different values of the
time step A. In all cases the largest time step considered
correspond to the stability limit of each method, i.e., the
largest value of h before an overflow appears. The cost of the
processed methods is measured by the cost of their kernels.
All computations are carried out in FORTRAN with double
precision.

The first experiment checks the standard splitting meth-
ods appearing in the literature in order to choose those with
the best performances for this particular problem. The pur-
pose is to use them afterwards as the reference methods to
which we compare the new processed schemes. In Fig. 1 we
show the results obtained in double logarithmic scale for N
=128. The methods considered are O,, YS34, M58, GM,4,
GMg¢4, GMg8, and GM,12. The superiority of the integra-
tors GM,,;n (especially tailored for the Schrédinger equation)
is manifest when accurate results are desired (the well known
schemes YS;4, M ;8 show their asymptotic behavior only
for very small time steps). Thus, in the sequel we take as
reference the most stable (0, and GM¢4) and most accurate
methods (GM,) (broken lines in the next figures).

It is important to remark that O, has the highest stability
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FIG. 2. Error in the wave function vs
the number of FFT calls in logarithmic

44 46 4.8 5
LOG(N. FFTs)

scale for P 410, P3,16, and P3520 (top
figures) and P92, P3,2, and P332 (bot-
tom figures) for x,=-1/10, N=128

(left figures) and N=64 (right figures).
The results for O, and GM,, (broken
lines) are included as references.

0 gf T~
s 2 s 2
5 5
z 4 > 4
o o
O g o -6f
& - T
o o
wl w -8r
o -8 5]
2 10 -]
12t
-12
4.6 48 5 5.2 4 42
LOG(N. FFTs)
| I of
s -2 s 2
5 5
=z -4 > 4
o o
O g o -6f
T - T
o o
L. w -8r
g -8 o
9 10 a0
=12
-12
4.6 4.8 5 52 4 4.2

LOG(N. FFTs)

it is possible to reach using splitting methods.*”> One must
also keep in mind that the stability can also be constrained by
the size of the mesh, i.e., the value of N considered in the
space discretization.

The purpose of the next experiments is twofold: first, to
analyze the performance of the two families of processed
(low and high order) methods under different circumstances,
and second, to show their superiority in comparison with the
previous standard splitting methods.

Since the new processed methods require a relatively
large number of stages per step, their efficiencies are fre-
quently manifest when large time steps are considered, oth-
erwise roundoff accuracy is usually reached, making the
methods difficult to compare. To avoid the constraint in-
volved in the mesh size, we have repeated the numerical
experiments both for N=64 and N=128. Figure 2 shows the
results obtained with N=128 (left figures) and N=64 (right
figures) for the schemes P410, P3,16, and P3520 of order 10,
16, and 20, respectively (top figures) and the second order
methods P2, P3,2, and P332 (bottom figures).

The improvement in the performance of each family of
methods when increasing the number of stages is clearly vis-
ible at the figure. This phenomenon takes place even for very
large numbers of stages. Nevertheless, what is really striking
is that the second order methods reach a surprisingly high
accuracy before they show their asymptotic second order be-
havior (P5,2 nearly and P332 always reach a roundoff error
before this second order slope is observed). In addition, the
P2 methods show better stability properties. To clarify this
fact, Fig. 3 shows the results obtained for N=128 for the
schemes O,, GMg4, GM,12, P3320, and Psg2, where the

44 46 48 5
LOG(N. FFTs)

superiority of the second order method P3g2 is clearly mani-
fest. It is also noticeable that P332 shows nearly the same
stability as the scheme GM¢4.

IV. THEORETICAL ANALYSIS OF THE NEW
PROCESSED METHODS

In this section we present the main ideas which led us to
construct the methods presented in Sec. II. The purpose is,
basically, to justify the high performance shown by the new
integrators and to pave the way for the more technical study
carried out in Ref. 12. Therefore, this section can be safely
skipped by readers interested only as users of the methods.

The main reason which allows us to build highly effi-
cient integrators for the Schrddinger equation resides basi-
cally in the small number of order conditions the kernel has

| |
N

LOG(ERROR NORM)
s

_8t
-10f
-12 : : : :
4.6 4.8 5 5.2
LOG(N. FFTs)

FIG. 3. Same as Fig. 2, with N=128 for the processed methods with 38-
stage kernels of effective orders 20 and 2. The results of GMg4 are also
included as references.
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to satisfy to attain a given order.”® In addition, the resulting
order conditions can be easily found and solved explicitly.
Consequently, one is able to construct methods of any order
without difficulty. Moreover, this permit us to improve the
schemes in a relatively simple way just by considering addi-
tional stages in order to increase the accuracy and stability at
a ratio which compensates the extra computational cost.

The nature of Eq. (8) allows one quite naturally to build
explicit methods which only involve matrix-vector products,
i.e., polynomial approximations to the solution (9). This can
be efficiently achieved with a composition of basic maps as
in (15) since, with a given number of products, it leads to the
polynomial with the highest possible degree. At the same
time symplecticity is automatically preserved. Notice that,
for example, from the equality

Y

( I ahH ) q 22)
“\-bhH I-abh®H*/|p

a straightforward computation of the right hand side of (22)
involves four products, while the left hand side requires only
two.

The following crucial observation greatly simplifies the
analysis and construction of our methods. Since H is a real
symmetric matrix, it is diagonalizable with real eigenvalues
\; € R, whence the linear system (8) can be decoupled into N
scalar harmonic oscillators of the form

d .
—pi==Ng; j=1,....N. (23)

=N g

ar
Moreover, any composition method (15) is invariant with
respect to a linear change of variables of the form q=Gq,
p=Gp, and thus for the theoretical analysis of (15) applied
to (8), we may consider the application of the integrator (15)
and, more generally, the processed integrator (17), to each of
the scalar harmonic oscillators (23).

Consequently, the problem of finding appropriate pro-
cessed composition methods with kernel (15) for Eq. (8) can
be reduced to the following. Find coefficients a; and b; in a
2 X 2 matrix of the form

K _( 1 O)(l a,gc)_”( 1 0)(1 a1x>
W=_px 10 1 —bx 1)\0 1

(24)
and a 2 X 2 matrix
(P P2<x>)
P = (P3<x) Py(x) 23

such that S(x)=P(x)K(x)P(x)~! approximates the solution
matrix

cos(x)

sin(x) )

—sin(x) cos(x)

O(x) = (

with x=N;z. For our analysis, we allow the entries P;(x) of
P(x) to be arbitrary functions, although in the practical

J. Chem. Phys. 124, 234105 (2006)

implementation to system (8) each P;(x) will be replaced by
an appropriate polynomial approximation.
Clearly, (24) can be written in the form

Ky (x) Kz(x))

K(x)= (K3(x) K,(x)

(26)

where the entries K(x) are polynomials in x. If I’,,_; and P,,
denote the set of polynomials of degrees 2r—1 and 2r which
only contain odd and even terms, respectively, then K;(x)
€ Pyi_s, whereas K,(x), K5(x) € Py_; and K (x) € Py Ob-
viously, the degree of the polynomials should be changed
appropriately if, for example, b; =0, as it happens for a sym-
metric composition.

What makes finding good processing methods a simpler
task than obtaining nonprocessed composition methods is the
fact that, as observed in Ref. 33, both accuracy and stability
essentially depend on tr K(x)=K,(x)+K4(x) (notice that this
is a polynomial in even powers of x). For a processed
method to be stable for a given x it is required that
|tr K(x)| <1, and for accuracy, tr K(x) must be a good ap-
proximation to 2 cos(x). In general (see Ref. 12 for details),
there is an infinite number of choices for the set of coeffi-
cients {a;,b;} such that for K(x) in (24), tr K(x) coincides
with a prescribed even polynomial in x (appropriately chosen
so that it approximates 2 cos(x) and has good stability prop-
erties). Obviously, for each such choice of the set of coeffi-
cients {a;,b;}, a different matrix (26) will be obtained. Such
different choices are seen to be essentially equivalent12 in our
context, provided that K,(x)=K;(x)=0 whenever |K;(x)
+K,4(x)|=2.

As previously mentioned and for simplicity, we restrict
ourselves to symmetric methods (that is, b;=0, a;_;,1=q;
and by_;=b;). Then it is easy to check that K;(x)=K,(x) and
thus tr K(x)=2K;(x). In other words, the accuracy and sta-
bility properties of the processed method essentially depend
only on the polynomial K,(x). In particular, the processed
integrator will have an order of accuracy of n=2q if

K, (x) = cos(x) + O(x*"*1)  as x — 0. (27)

For a k-stage symmetric kernel, the polynomial K;(x) has the
form

q k=q
Ki(x)=1+ 21 ajx2j+x2qz1 aj+qx2j,
Jj= J=

where we have split the coefficients of the polynomial into
two sets. The first one, {a,...,a,}, is chosen so as to ensure
that the processed method has the order n=2¢ (accuracy for
small values of x), whereas the second set, {1, ..., is
used to improve accuracy for large values of x and stability.

From these considerations it is clear that the first set is
determined by conditions (27), that is,

=0 |
a; = , i=1,...,qg.
=iy 1
With respect to the second set of coefficients, we propose to
determine {a,,,, ...,/ by requiring that
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TABLE III. Coefficients for the symmetric kernel (18) with m=19, corresponding to the processed method P;g2.

a;=0.021 567 285 179 758 507 570 535 029 527 8
a,=0.043 172 634385310 163 973 536 971 499 8
a3=0.043 132 429779 569 059 994 912 783 860 2
a,=0.042 785296 150 567 532 011 820 041 940 1
a5=0.044 974793 077 247 686 994 863 089 127 5
a=0.521477 840977 180 737 598 212 898 081
a;=-0.460 297 865 581 209 561 666 776 462 059
ag=0.047 665 772 371 778 444 673 756 470 398 2
a9=—0.299 809 415 632 442 402 707 251 772 031
a,0=0.360 890 555 491 738 732 398 154 005 651
a,;=0.035 531086 024 797 552 599 350 571 7327
a;,=0.045 145910959 192 914 369 839 635 478 7
a13=0.151 663 982 419 594 313 475 358 779 605
a;4=-0.122723981 192 628 473 398 202 625 228
a,5=-0.034 200 364 472 280 225 513 252 392 096 2
a,6=0.051 470280247 056 559 488 864 327 710 3
a,7=-0.003 469 161 496 833 743 744 014 917 139 03
a,3=0.020 104 643 066 961 682 381 420 284 561 0
a,9=-0.024 525 127 775 059 992 631 968 367 599 6
ar=1-2(a;+" " +ay)

b;=0.043 146 145 488 108 535 999 087 625 827 7
b,=0.043 185 323 459 336 415 208 749 029 206 3
b3=0.042 970474 465 098 214 753 936 388 546 8
b,=0.043 036 430 087 145 449 924 388 788 374 0
b5=0.053 280567 850 892 122 735 079 878 196 8
be=-0.000 074 163 259 065 200 898 234 960 429 951 1
b7=0.054 925 268 504 928 076 884 600 967 328 2
bg=0.057292 231 828 906 343 681 421 400 831 3
by=-0.000 216 083 699 929 765 754 852 184 048 464
b1p=0.042926 282729 985 071 023 168 967 959 8
b11=0.050959 058 338 225 962 551 795 708 253 3
b1,=0.012 587 646 630311 939 636 735292 990 3
b13=-0.001 101436 018 750 557 512 175 885 243 09
b14,=0.058 986 448 589 350 873 984 573 566 850 7
b15=-0.003939 190912 103 381 986 615 777 740 09
b16=0.090918 979 158 864 182 368 679 1563103
b17==0.107 654 717 879 545 729 464 023 522 278
b13=0.025427 811389330993 619 764 468 064 8
big=5=(by++-++by5)

K,(jm) = cos(jm) = (- 1)/, %(]77) =—sin(jm) =0,

(28)

where j=1,...,l and k=g+2[. Notice the interpolatory na-
ture of conditions (28), which permits one, for instance, to
get the coefficients by solving a linear system of equations.
For every considered polynomial K;(x) of this class, we have
observed that, for all x € [0,(I-1)7] [and in many cases for
all x €[0,l7]), the stability condition |K,(x)|<1 holds and
K, (x) is a fairly good approximation to cos(x)].

Once the polynomial K;(x) has been fixed, the next step
is to determine appropriate polynomials K,(x) and K;(x) in
(26). Since the determinant of each factor in (24) is 1, then
det(K(x))=1, i.e.,

Ki(x) - Ky(0)K3(x) = 1. (29)
On the other hand, with conditions (28) one has

-1y

Kz(i“’))
K;(jm) '

-1y

and since det(K(jm))=1, then either K,(jm)=0 or K;(jm)
=0. However, unless K,(j7)=K;(jm)=0, the matrix K(jm) is
linearly unstable (i.e., [K(jm)]" grows linearly with M).

In consequence, we need to find a pair [K,(x),K5(x)] of
polynomials in odd powers of x such that (29) holds and
K,(jm)=K5(jm)=0 for j=1,...,I. As shown in Ref. 12, there
is a finite number of such pairs [K,(x),K3(x)] of polynomi-
als, and in some isolated cases the corresponding K(x) does
not admit a decomposition of the form (24). In Ref. 12 we
derive a finite step-by-step constructive algorithm to obtain
the coefficients a; and b; from the polynomials K;(x) if there
exists such a decomposition for a given K(x) with
det(K(x))=1.

K(jm) =<

As for the processor, it is possible in fact to consider a
block-diagonal matrix instead of the more general expression
(25),

(P 0 ) 4%&w 0)
P‘( 0 P,/ P=1 P/

with P,(x)P,(x) = 1. We then choose P,(x) so that the matrix
K (x
S(x) = PKP"! =( 1)

PI(x)K,(x) )
P3(0)K;(x)

K;(x)

corresponding to the processed method is orthogonal. That
is, P%(x)Kz(x)=—P§(x)K3(x), which gives at once

4 [_ 4 [
P =g =T (30)

Recall that, for the practical application to (8), P,(x) and
P,(x) in (30) must be replaced by an appropriate polynomial
approximation (for instance, obtained by truncating their
Taylor expansion).

In our experiments we have found that in all cases the
performance of the methods always improves when [ in-
creases. This is the reason why we have chosen methods
with relatively large values of [ (I=7, 12, and 14 for the
kernels with 19, 32, and 38 stages, respectively). Notice that
for /=14 we are adding 2/=28 extra parameters (with respect
to those required by the order of precision of the processed
method).

A second family of processed methods has been also
constructed, which only differs in the way K;(x) is chosen.
The remaining steps are exactly the same. For this family we
take a;=1 to ensure consistency (this guarantees that the
methods are of second order since the kernel is symmetric)
and choose {a;, ..., .} in such a way that the integral
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TABLE IV. Coefficients for the polynomials P;(x) and P,(x) in (20) with s=21 for P32 (cy=dy=1).

J. Chem. Phys. 124, 234105 (2006)

¢;=0.000 116 251 208 684 740 621 1140 814
c,=4.437 111761894 176 717316 941 X 10713
¢,=2.939931 769 324 440 416 879 823 X 107>
€10=2.250 866 251 009 862 206 361 312X 1073
c13=1.851 409 459 980 067 426 102 173 X 107+
c16=1.595 498 786 085 559 337 026 367 X 1075
c19=1.423 077 177 952 293 495 040 530 X 1079

d;=-0.000 116 251 208 684 740 621 114 081 4
d,=—1.748 185 395 473 289 243 875 044 X 10713
d,=-8.469 091 056 567 204 221 082 539 X 1072°
dyy=-5.353 346 141 747 406 366 467 657 X 10730
dy;=-3.861783 526343716602 117 122 X 107
d 6=-3.037 693 851 132 668 729 625 454 X 107
d19=—2.542 100 400 250 845 548 947 583 X 107

¢,=3.376774 894 743 804 480 444 394 X 1078
c5=1.749973 819 201 524 252 032 138 X 10718
c3=1.235098 758 247 133 102 034 345 X 10728
¢11=9.727 578 606 034 733 795 739 798 X 10~
c14=8.141 553 608 452 406 208 018 081 X 10+
¢17=7.104 576 813 414 967 870 669 619 X 107°
€2=6.398 117 951 527 209 690 698 617 X 10~%°

d,=-2.025 340 542 677 493 159 320 967 X 1078
ds=-6.075 023900 031 386 380 514 259 X 10~"°
dy=-3.308 402 609 398 670 050 765 033 X 107>
dy;=-2.202 620915 392 627 214 792 992 X 10~%
dy,=—1.641 163 468 907 425 875 108 297 X 10~*
dy7=-1.320 846 410 906 512 328 044 568 X 10~
dyy=—1.123916 118 043 500 908 715 140 X 107°

c3=1.176 364 067 599 484 205 038 903 X 10~
c6=7.101 748 878 564 126 570 715 907 X 107>
c9=5.248 386 453 665 149 303 792 009 X 10~
c1p=4.231 641 947 350 449 068 306 722 X 10~+
€15=3.596 667 466 064 486 029 961 227 X 1072
c15=3.174 598 116 648 571 190 359 996 X 1072
€,=2.884 478 510 968 248 948 572 185 X 10772

dy=-5.483 616 185 447 620 695 388 045 X 10712
dg=-2.227 092 296 947 007 254 380 344 X 10722
dy=-1.319 641 733 480 979 355 653 975 X 10732
d,=-9.173 684 223 172953 098 611 281 X 10~
di5=-7.033925 071 359 782 763 595 843 X 10753
d 5=-5.778 602 796 374 270 082 897 366 X 10763
dy;=-4.991 692 562 368 483 793 888 509 X 10773

flﬂ- (1 B (i)2)_”2<1{1(x)2_CZOS(X)>2dx
i I X

is minimized. Notice that this is equivalent to minimizing in
the least square sense the coefficients of the Chebyshev se-
ries expansion of (K,(x)—cos(x))/(x*"*?) in the interval
[-lm,l7].

This procedure makes sense since our aim is to construct
methods which are stable in a relatively large interval,
x € [~lm,l], and are also accurate when large time steps are
considered. High order methods ensure accuracy for small
values of x because they approximate the Taylor series ex-
pansion of the exact solution. On the other hand, by applying
Chebyshev techniques we determine kernels that, while be-
ing low order approximations for small time steps (e.g., sec-
ond order), give very accurate results for values of x in the
whole interval (see Ref. 12 for more details). The processed
methods denoted by P;2 in Sec. II belong precisely to this
second family of schemes.

As an illustration, in Table III we show the coefficients
in (18) for the second order 38-stage kernel of the method
Ps32. From these coefficients, and using for example Math-
ematica, one can obtain, by composition, the matrix K(x) in
Eq. (26). Then, making use of the polynomials K,(x) and
K;(x) we obtain the functions P;(x) and P,(x) for the pro-
cessor as given in Eq. (30). Finally, it only remains to take a
Taylor series expansion up to a desired order. For the readers
convenience, in Table IV we collect the coefficients ¢; and d;
in Eq. (20) up to s=21. All these coefficients are also avail-
able from the authors upon request. In spite of the surpris-
ingly small values taken by the coefficients c¢; and d;, we
must keep in mind that we are considering P, (x)=3_cx*,
where x can take relatively large values and the products
cx*, for the first terms, can give contributions which are not
negligible. It is important to bear in mind that in double
precision we can deal with coefficients in the range from
1073 to 10°%7 with a relative precision of 107>, Obviously,
we would have smaller coefficients by rewriting the polyno-
mial as P,(x)==L,(ex)? where, for example, es
=0.016761...,e,0=0.018 518..., and e,(,=0.019 731..., and
then using a proper modification of Horner’s rule.

V. CONCLUSIONS

We have considered a new family of symplectic splitting
methods for numerically solving the time-dependent
Schrodinger equation. These methods are designed for inte-
grating linear separable systems where the different parts in
which they are split satisfy certain commutator relations. A
particular case where they can be applied is precisely the
Schrodinger equation when the wave function is separated in
its real and imaginary parts.

The proposed methods are built using the processing
technique. This procedure allows us to consider numerical
schemes with as many stages as desired for optimization pur-
poses. We have shown that this strategy leads to highly effi-
cient methods whose relative performance depend both on
the number of stages and the criterion for optimization con-
sidered.

Several algorithms for the practical implementation of
the new methods are presented, and their superiority in com-
parison with other symplectic integrators published in the
literature is manifest through numerical experiments. Espe-
cially remarkable is the high performance shown by the sec-
ond order processed methods.

It is important to mention that for nonprocessed schemes
the coefficients a; and b; have to solve a relatively large
system of nonlinear equations, and then their numerical so-
Iution is not so straightforward. However, it might be the
case that most techniques used to obtain efficient kernels
could also be used to find highly efficient and stable non-
processed methods, this being an interesting problem to be
analyzed.

In conclusion, we claim that the processing technique
leads to extraordinarily efficient symplectic split operator
methods for the Schrédinger equation, and thus they deserve
further analysis and study. In particular, it would be very
interesting to analyze under which conditions this technique
is superior to other schemes used in practice, such as the
Chebyshev scheme or methods based on Krylov subspace
techniques.3
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